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1. basic definitions

Definition. A space X is locally path-connected if every point x ∈ X has a neigh-
bourhood basis of path-connected open sets.

The set of path components of X is denoted π0(X).

Exercise 1. Let X be connected and locally path-connected. Show that X is path-
connected.

Exercise 2. Let W = {(0, y) | |y| ≤ 1} ∪ {(x, sin(1/x) | 0 < x ≤ 2
π} be the

topologist’s sine curve in R2. Show that W is connected, but not path-connected. If
we adjoin an arc from (0, 1) to ( 2

π , 1) the resulting space is path-connected, but not
locally path-connected.

Definition. A loop at x0 in X is a continuous map σ : [0, 1] → X such that
σ(0) = σ(1) = x0, i.e., a path from x0 to x0. Two loops at x0 are homotopic rel x0
if they are homotopic through loops at x0.

We may identify the set of homotopy classes of loops at x0 in X with the ho-
motopy set [[0, 1], {0, 1};X,x0]. The function e(t) = (cos(2πt), sin(2πt)) maps [0, 1]
onto S1. Composition with e induces a bijection between maps from (S1, 1) to
(X,x0) and loops at x0, and (hence) between [S1, 1;X,x0] and [[0, 1], {0, 1};X,x0].
We shall use freely both versions.

Definition. Let α, β : [0, 1] → X be paths in X such that α(1) = β(0). The
concatenation of α and β is the path α.β given by α.β(t) = α(2t) if t ≤ 1

2 and

= β(2t− 1) if t ≥ 1
2 . Let α(t) = α(1− t), for all 0 ≤ t ≤ 1.

(Note. A minority of authors use the opposite convention for concatenation, as
the fundamental groupoid defined below then has better properties.)

Definition-Proposition-Exercise! If α and β are loops at x0 in X then so is α.β.
If α ∼ α′ and β ∼ β′ then α.β ∼ α′.β′, so concatenation induces a “multiplication”
on the set of homotopy classes of loops at x0. Moreover this multiplication is
associative, and if εx0

is the constant loop at x0 then α.εx0
∼ α ∼ εx0

α and
α.α ∼ εx0

∼ α.α. The fundamental group of X based at x0 is the set of homotopy
classes of loops at x0 in X with this multiplication, and is denoted π1(X,x0).

Let f : X → Y be a continuous map and let y0 = f(x0). Then composition with
f induces a function f∗ : π1(X,x0)→ π1(Y, y0). This function is a homomorphism
of groups. Moreover idX∗ = idπ1(X,x0) and (fg)∗ = f∗g∗, and so the fundamental
group is functorial, for basepoint-preserving maps of pointed spaces.

The subscript 1 refers to the family of higher homotopy groups (πq(X) = [Sq;X]),
which we shall not consider in this course. We shall however consider the role of
the basepoint later. Note that loops at x0 must have image in the path-component
of X containing x0, so we may usually assume X path-connected.

Definition. A space X with basepoint x0 is simply-connected (or 1-connected) if it
is path-connected and any loop at x0 is homotopic (rel basepoint) to the constant
loop at x0.

Exercise 3. Show that the following are equivalent

(1) X is simply-connected;
(2) any two paths α, β : [0, 1] → X with the same endpoints α(0) = β(0) and

α(1) = β(1) are homotopic (relative to the endpoints);
(3) any map f : S1 → X extends to a map from D2 to X.
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Note in particular that whether X is simply-connected or not is independent of
the choice of basepoint.

Exercise 4. Let X be a metric space, with metric ρ and basepoint x0, and let
Map∗(S

1, X) be the set of all maps f : S1 → X such that f(1) = x0. Define
a metric d on Map∗(S

1, X) by d(α, β) = max{ρ(α(s), β(s)) | s ∈ S1}. Check
that this is a metric, and show that π0(Map∗(S

1, X)) = π1(X,x0). (Similarly,
π0(Map(Sq, X)) = πq(X)).

Exercise 5. Suppose that X = A ∪B where A, B and A ∩B are nonempty, open
and path-connected. Let ∗ be a point in A ∩B. Show that π1(X, ∗) is generated by
the images of π1(A, ∗) and π1(B, ∗) (under the natural homomorphisms inducedby
the inclusions of these subsets into X). In other words, show that every loop at ∗
in X is homotopic to a product of finitely many loops at ∗, each of which lies either
in A or in B.

[Hint: you need to use the compactness of the interval [0, 1] and the assumption
that A ∩B is path-connected.]

Exercise 6. Use Exercise (5) to show that π1(Sn, ∗) = 1 if n > 1.

Exercise 7. Let X be a space with a basepoint ∗ and such that there is a map
µ : X ×X → X with µ(x, ∗) = x = µ(∗, x) for all x ∈ X. Show that π = π1(X, ∗)
is abelian. (This applies in particular if X is a topological group).

[Hint: consider the induced homomorphism µ∗ : π × π → π and work on the
algebraic level.]

Exercise 8. (a) Let G be a topological group. (Thus G is a group and has a
topology such that multiplication G×G→ G and inverse : G→ G are continuous).
Show that Ge, the path component of the identity, is a normal subgroup and that
π0(G) ∼= G/Ge is a group.

(b) Suppose that H is a normal subgroup of G which is discrete as a subspace.
Show that if G is path-connected H is central in G, i.e., that gh = hg for all
g ∈ G and h ∈ H.

(c) Give examples to show that each of the three bold-face assumptions is needed
for part (b).

[Hint for (b): for each h ∈ H consider the function sending g ∈ G to ghg−1 and
apply each of the bold-face assumptions to show that this function is constant.]

2. the basic result: π1(S1, 1) ∼= Z

This is the central calculation of the subject. We shall identify the 1-sphere S1

with the unit circle in the complex plane. Note that S1 is a topological group, and
we shall take its identity element 1 as the basepoint.

Let exp : C → C× be the complex exponential, given by exp(z) = e2πiz for
z ∈ C. Then exp restricts to a map expR : R → S1 which is an epimorphism of
groups, with kernel the integers Z. Thus expR induces an isomorphism (of groups)
R/Z ∼= S1, which is easily seen to be a homeomorphism. (In fact expR maps each
open interval of length < 1 homeomorphically onto an open arc on the circle.)

A lift of a map f : Y → S1 (through exp) is a map f̃ : Y → R such that

exp f̃ = f .



4 JONATHAN A. HILLMAN

Theorem 1. π1(S1, 1) ∼= Z.

Proof. (Sketch.) We show that every loop σ at 1 in S1 has an unique lift to a path
σ̃ : [0, 1]→ R starting at σ(0) = 0, that every homotopy of loops lifts to a homotopy
of paths, and that deg(σ) = σ̃(1) is an integer which depends only on the homotopy
class of the loop σ. It is then fairly routine to show that deg : π1(S1, 1)→ Z is an
isomorphism. �

The inclusion of S1 into C× = C\{0} is a homotopy equivalence, and the degree
homomorphism may be given by contour integration:

deg(σ) =
1

2πi

∫
σ

dz

z
.

Exercise 9. Show that [X;S1] is an abelian group with respect to the operation
determined by multiplication of maps (i.e., fg(x) = f(x)g(x) for all x ∈ X).

Exercise 10. Show that forgetting the basepoint conditions determines an isomor-
phism from π1(S1, 1) to [S1;S1].

Exercise 11 (The fundamental theorem of algebra - proof by homotopy theory).
Let P (z) = zn + an−1z

n−1 + · · ·+ a0 be a polynomial of degree n ≥ 1 with complex
coefficients. Show that if r is large enough Pt(z) = (1 − t)P (z) + tzn has no
zeroes on the circle |z| = r for any 0 ≤ t ≤ 1. Hence the maps : z → zn and
: z → P (rz)/|P (rz)| are homotopic as maps from S1 to S1. If P has no zeroes the
latter map extends to a map from the unit disc D2 to S1. CONTRADICTION.
Why?

Exercise 12. Let f : D → D be a continuous function, where D = {z ∈ C | |z| ≤ 1}
is the closed unit disc in the plane. Show that f has a fixed point, i.e., that f(z) = z
for some z in D.

[Hint: suppose not. Then the line from f(z) through z is well defined. Let g(z)
be the point of intersection of this line with S1 = ∂D (so z lies between f(z) and
g(z)). Show that g : D → S1 is continuous and g(z) = z for all z ∈ S1. Obtain a
contradiction by considering the induced homomorphisms of fundamental groups.]

3. covering maps

Definition. A map p : E → X is a covering map (and E is a covering space) if every
point x ∈ X has an open neighbourhood U such that p−1(U) is a nonempty disjoint
union of open sets V for which each restriction p|V : V → U is a homeomorphism.

Such an open subset U is said to be evenly covered (by p) and the subsets V of
E are called the sheets of the covering p over U . If U is connected the sheets of p
above U are the components of p−1(U), but in general there may not be a canonical
partition of p−1(U) into sheets.

A covering map p is onto, by definition, and so p−1(x) is nonempty, for all x ∈ X.
This is a discrete subset of E, called the fibre over x. If X has a basepoint ∗ we
shall always choose the basepoint for E to lie in the fibre over ∗, so that p is a
basepoint-preserving map.

Examples.

(1) exp : R→ S1, given by exp(x) = e2πix for x ∈ R.
(2) exp : C→ C×, given by exp(z) = e2πiz for z ∈ C.
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(3) : z 7→ zn for z ∈ S1 and n 6= 0.
(4) The projection of X × F onto X, where F is a discrete set.

However the restriction of exp to a map from (0, 2) to S1 is not a covering map,
even though it is onto and is a local homeomorphism, for no neighbourhood of 1 in
S1 is evenly covered by exp|(0,2).

Exercise 13. Let p : E → X be a covering map, with X connected. Show that all
the fibres p−1(x) (for x ∈ X) have the same cardinality.

Definition. The group of covering transformations of a covering map p : E → X
is Aut(p) = Aut(E/X) = {f : E → E | f is a homeomorphism and pf = p}.

(We shall see below that if the spaces involved are connected and locally path-
connected the requirement that f be a homeomorphism is redundant).

Our goal is to show that the fundamental group of a “reasonable” space may
be identified with the group of covering transformations of a certain covering of
the space. This gives us a strong connection between two apparently quite differ-
ent ideas – homotopy classes of loops in a space and groups acting as continuous
permutations of a (covering) space. (Compare the identification of π1(S1, 1) with
Z, which used the description of S1 as the quotient of R under the action of Z by
translation.)

A lift of a map f : Y → X (through p) is a map f̃ : Y → E such that pf̃ = f .
In the following three lemmas we assume that p : E → X is a covering map such

that p(e) = x, where e and x are basepoints.

Lemma 2 (The Uniqueness Lemma). Let f : Y → X be a map with connected
domain Y . If f1, f2 : Y → E are two lifts of f which agree at at least one point
then f1 = f2.

Proof. The subset A = {y ∈ Y | f1(y) = f2(y)} is non-empty, by hypothesis.
Let y ∈ Y and let U be an evenly covered open neighbourhood of f(y). If

y ∈ A let V be a sheet of the covering over U which contains f1(a) = f2(a). Then
f−11 (V ) ∩ f−12 (V ) is open, and is contained in A since pf1 = pf2 and p|V is 1-1.
Thus A is open.

If y 6∈ A then we may choose disjoint sheets V1 and V2 over U such that f1(Y ) ∈
V1 and f2(y) ∈ V2. Then f−11 (V1) ∩ f−12 (V2) is open, and is contained in Y \ A.
Thus A is closed. Since Y is connected we must have A = Y , i.e., f1 = f2. �

As the second lemma is an easy extension of the argument for X = S1, we shall
not give a proof.

Lemma 3 (The Existence Lemma). Let σ : [0, 1] → X be a path beginning at
σ(0) = x. Then there is an unique lift σ̃ : [0, 1]→ E such that σ̃(0) = e. �

We shall derive the third lemma from this one in the next section.

Lemma 4 (The Covering Homotopy Lemma). Let F : Y × [0, 1] → X be a map

such that f = F0 : Y → X has a lift f̃ : Y → E. Then F has an unique lift

F̃ : Y × [0, 1]→ E such that F̃ (y, 0) = f̃(y) for all y ∈ Y .

These three results are clearly generalizations of those we used in considering
the case p = exp : R→ S1.

Theorem 5. The homomorphism p∗ : π1(E, e)→ π1(X,x) is 1-1.
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Proof. Let σ be a loop at e ∈ E such that pσ is homotopic to the constant loop,

via a homotopy ht. Then h̃t is a homotopy from σ (the unique lift of pσ to a path
starting at e) to the constant loop at e (the unique lift of the constant loop at x to

a path starting at e). Since : t 7→ h̃t(1) is a path in the fibre over x it is constant,

and so h̃t is a homotopy of loops. �

Theorem 6 (The Lifting Criterion). Let p : E → X be a covering map and
f : Y → X a map, where Y is connected and locally path-connected. Suppose that
e and y are points of E and Y , respectively, such that p(e) = f(y) = x. Then f

has a lift f̃ : Y → E such that f̃(y) = e if and only if f∗(π1(Y, y)) ⊆ p∗(π1(E, e)).

Proof. The condition is obviously necessary. For each point z ∈ Y choose a path ω

from y to z in Y . Then fω is a path from x to f(z) in X. Let f̃(z) be the endpoint

of f̃ω, the lift of fω to a path starting at e in E. We must check that this is well
defined and continuous.

If ω′ is another path from y to z in Y then ω.ω′ is a loop at y. Hence f(ω.ω′)
is a loop at x which by assumption lifts to a loop at e. Since fω is homotopic
to f(ω.ω′.ω′) = f(ω.ω′).fω′ (as paths from x to f(z)) their lifts have the same

endpoint, and so f̃ω(1) = f̃ω′(1). Thus f̃ is well defined.

Let V be an open neighbourhood of f̃(z). We may assume that V is a sheet
above an evenly covered open subset U = p(V ) of X. Let S be a path-connected
open neighbourhood of z in f−1(U). Let s ∈ S and let τ be a path from z to s in S.

Then ω.τ is a path from y to s so f̃(s) = f̃(ω.τ)(1) which is the endpoint of the lift

h of fτ beginning at f̃(z) in V . But (p|V )−1fτ is such a lift, and so h = (p|V )−1fτ ,

by uniqueness of lifts. Therefore f̃(s) = h(1) is in V . Hence f̃(S) ⊆ V and so f̃ is
continuous at z. Since z was arbitrary this completes the proof of the Theorem. �

Lemma 7. Let p : E → X be a covering map, where E is simply-connected and
locally path-connected, and let e, e′ ∈ E be two points such that p(e) = p(e′). Then
there is an unique map φ : E → E such that pφ = p and φ(e) = e′, and φ is a
homeomorphism.

Proof. By the Lifting Criterion and the Uniqueness Lemma there are unique maps
φ, ψ : E → E which lift p through itself and are such that φ(e) = e′ and ψ(e′) = e.
Then φψ and ψφ are lifts of p through itself which agree with idE at e′ and e,
respectively. Hence φψ = ψφ = idE , by the Uniqueness Lemma. �

This lemma justifies our claim above that a map f : E → E such that pf = p is
automatically a homeomorphism.

Theorem 8. Let p : E → X be a covering map, where E is simply-connected and
locally path-connected. Then G = Aut(E/X) and π = π1(X,x) are isomorphic.

Proof. Define a function ρ : G→ π as follows. Given g ∈ G, choose a path γg from
e to g(e) in E. Then pγg is a loop at x = p(e) = p(g(e)). Let ρ(g) = [pγg]. Since
E is simply-connected any two such paths are homotopic, and a homotopy of such
paths in E projects to a homotopy of loops in X. Therefore ρ is a well defined
function.

Given g, h ∈ G and paths γg, γh from e to g(e) and h(e), respectively, the con-
catenation γg.g(γh) is a path from e to g(h(e)). Therefore ρ(gh) = [p(γg.g(γh)] =
[pγg]pγh] = ρ(g)ρ(h), and so ρ is a homomorphism.
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If ρ(g) = 1 then pγg is homotopic to the constant loop at x. We can lift such a
homotopy to a homotopy ht from γg to the constant path at e. Since the endpoint
ht(1) is a path in the fibre over x it is constant, and so g(e)(= γg(1)) = e = idE(e).
Hence g = idE , by the above Lemma, and so ρ is 1-1.

Suppose finally that σ is a loop at x in X. Let σ̃ be the lift of σ to a path
beginning at e (i.e., σ̃(0) = e). Let e′ = σ̃(1). By the above lemma there is a
covering homeomorphism φ ∈ G such that φ(e) = e′. Since we may take γφ = σ̃ we
have ρ(φ) = [σ]. Thus ρ maps G onto π, and so is an isomorphism. �

Exercise 14. Suppose that X is connected and locally path-connected, and that ∗
is a basepoint for X. Pointwise multiplication of functions induces a multiplication
on the set [X, ∗;S1, 1]. Show that the map θ : [X, ∗;S1, 1] → Hom(π1(X, ∗),Z)
determined by θ(f) = π1(f) is a homomorphism of abelian groups. Using the
Lifting Criterion, show that it is 1-1. (It is in fact an isomorphism for reasonable
spaces X.)

Exercise 15. Let p : X → Y be a covering map, where X is connected and locally
path-connected and Y is simply-connected. Show that p is a homeomorphism.

Exercise 16. Let L = Z ⊕ Zi be the standard lattice in C. Let Ĉ = C ∪ {∞} be

the extended complex plane. Show that every analytic function from Ĉ to T = C/L
is constant.

There is however a rich theory of analytic functions from T to Ĉ!

Exercise 17. Show that if f : S2 → R2 is a function such that f(−x) = −f(x) for
all x ∈ S2 then f(y) = 0 for some y ∈ S2.

[Hint. Suppose not. Let g(x) = f(x)/||f(x)||, for all x ∈ S2. Show that there is
a commuting diagram

S2 g−−−−→ S1ya yp
P 2(R)

h−−−−→ S1

where a(x) = a(−x), p(z) = z2 and h(a(x)) = g(x)2. Apply the lifting lemma to

get a function h̃ : P 2(R)→ S1 and deduce a contradiction.]

4. the covering homotopy lemma

The argument given in [Greenberg] is incomplete, although it suffices if we as-
sume also that the space Y is locally connected. The full details of this argument
(for the general case) may be in found in [Spanier], pages 67-68.

Here follows an alternative argument, based on the special case Y = {y} (path
lifting).

Y × {0} f̃−−−−→ Eya yp
Y × [0, 1]

F−−−−→ X

1. There is an unique function F̃ : Y × [0, 1]→ E such that
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a) pF̃ = F ;

b) F̃ (y, 0) = f̃(y) for all y ∈ Y ; and

c) the function F̃y : [0, 1] → E defined by F̃y(t) = F̃ (y, t) for all 0 ≤ t ≤ 1 is
continuous, for all y ∈ Y .

Note that we are ignoring the topology of Y here, and so this assertion follows
immediately from the existence and uniqueness of lifts of paths.

2. The function F̃ defined above is continuous (i.e., as a function of two variables).
Let y ∈ Y . By the usual argument involving continuity of F and compactnes

of [0, 1] we may assume that there is an open neighbourhood N of y in Y and a
partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] such that F (N × [ti−1, ti]) is contained
in an evenly covered open subset Ui (say) of X, for each 1 ≤ i ≤ n.

Let Vi be a sheet of E above Ui which contains F̃ (y, ti−1). Since f̃ is con-

tinuous there is an open neighbourhood N1 ⊆ N of y with f̃(N1) ⊆ V1. Then
(p|V1

)−1F |N1×[0,t1] is a map lifting F |N1×[0,t1]. The uniqueness argument of part 1

implies that this map agrees with F̃ on N1 × [0, t1]. In particular, F̃ is continuous
on N1 × [0, t1].

We argue by induction. Suppose that y has an open neighbourhood Nk ⊆ N such

that F̃ is continuous on Nk× [0, tk]. Then there is an open neighbourhood Nk+1 ⊆
Nk of y with F̃ (y, tk) ∈ Vk+1 for all y ∈ Nk+1. The map (p|Vk+1

)−1F |Nk+1×[tk,tk+1]

lifts F |Nk+1×[tk,tk+1]. Since it agrees with F̃ on Nk+1 × {tk} we find as before that

F̃ is continuous on Nk+1 × [tk, tk+1]. Hence F̃ is continuous on Nk+1 × [0, tk+1].

After n steps we see that y has a neighbourhood Nn such that F̃ is continuous on

Nn × [0, 1]. Hence F̃ is continuous everywhere.

5. Groups acting on spaces

Let S be a set and G a group. An action of G on S is a homomorphism from G
to Perm(S), the group of bijections from S to itself. (More precisely, this is a left
action of G on S). Equivalently, a (left) action of G on S is a function µ : G×S → S
such that µ(1G, s) = s and µ(g, µ(h, s)) = µ(gh, s) for all g, h ∈ G and s ∈ S. We
shall write gs = µ(g, s) for simplicity. The orbit of G through a point s ∈ S is
the subset Gs = {gs | g ∈ G}. The set G\S of orbits is called the quotient of the
action, and there is a natural map from S onto G\S. (A right action is a function
ν : S×G→ S such that ν(s, 1G) = s and ν(ν(s, g), h) = ν(s, gh) for all g, h ∈ G and
s ∈ S. Such an action corresponds to an anti-homomorphism from G to Perm(S)).
An action is effective if g.s = s for all s ∈ S implies g = 1 in G, and it is free if it
satisfies the stronger condition that g 6= 1 implies that g.s 6= s for all s ∈ S.

If S is a topological space we require the action to be a homomorphism from G to
Homeo(S). Under suitable assumptions on the action there is a natural topology
on the quotient set such that the projection p of S onto G\S is continuous. In
particular, if every point s ∈ S has an open neighbourhood V which meets none of
its translates (i.e., gV ∩hV is empty if g 6= h) we may take the images p(V ) of such
open sets as a basis for the topology of G\S. As p(V ) is then an evenly covered
open neighbourhood of p(s) the map p is a covering map. The action is said to be
free and properly discontinuous. We shall consider only such group actions.
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Examples.

(1) Tori: Zn acting on Rn.
(2) Projective spaces: {±1} acting on Sn.
(3) Lens spaces: Z/nZ = {ζ ∈ C | ζn = 1} acting on S2n+1.
(4) Figure eight: Z2 acting on a rectangular lattice; the free group F (2) acting

on a tree. (See §6 and §12 below).
(5) Discrete subgroups of topological groups. (E.g., SL(2,Z) < SL(2,R). The

quotient space is homeomorphic to the complement of the trefoil knot!).

Given the simply-connected and locally path-connected covering space E and
the group G = Aut(E/X) of covering automorphisms, we can recover X as the
quotient space G\E. For the Lifting Criterion implies that given any two points
e1, e2 of E with p(e1) = p(e2) there is an unique covering automorphism g such
that g(e1) = e2. Thus the orbits of the action of G on E correspond bijectively to
the points of X. Similarly, if we divide out by the action of a subgroup H ≤ G we
obtain intermediate coverings E → H\E and H\E → X.

6. the infinite tv antenna

The universal covering of W = S1 ∨ S1 is an infinite 4-valent tree W̃ . Thus it
is a graph in which four edges meet at every vertex, and in which any two points
are the endpoints of an unique “geodesic” path. If we give each edge the euclidean
metric of the unit interval then the distance from the basepoint to any other vertex
is a positive integer.

We shall construct W̃ as a subset of the unit disc in R2.
Fix λ ∈ (0, 12 ).

The vertices: Let O = (0, 0) be the basepoint.
The vertices at distance n > 0 from O (with respect to the natural graph-metric)

are the points (a, b) = (Σnk=1εkλ
k,Σnk=1ηkλ

k), where

(1) εj , ηk ∈ {−1, 0, 1} for all j, k ≤ n;
(2) if n > 0 then exactly one of ε1 and η1 is 0;
(3) if εj 6= 0 and j < n then either εj+1 = εj and ηj+1 = 0 or εj+1 = 0 and

ηj+1 = ±1;
(4) if ηk 6= 0 and k < n then either ηk+1 = ηk and εk+1 = 0 or ηk+1 = 0 and

εk+1 = ±1.

Note that exactly one of εk and ηk is 0, for each 1 ≤ k ≤ n, and that the vertices
all lie in the open disc of radius Σk>0λ

k = λ/(1− λ) (which is < 1).

The edges: Connect O to each of (±λ, 0) and (0,±λ). Let α and β be the edges
from O to (λ, 0) and (0, λ), respectively.

If n > 0 and εn 6= 0 connect (a, b) to each of (a + εnλ
n+1, b) and (a, b ± λn+1).

If n > 0 and εn = 0 connect (a, b) to each of (a± λn+1, b) and (a, b+ ηnλ
n+1).

Note that if (say) ε1 = 1 then b < a, since λ2/(1 − λ) < λ. (Hence) this
graph embeds in the disc of radius λ/(1 − λ). Note that the path-length metric

on the graph is not the euclidean metric of the plane. (In fact W̃ does not embed
isometrically in R2).

The group: Let G be the subgroup of Homeo(W̃ ) generated by the “horizontal”
and “vertical” self-homeomorphisms X and Y defined as follows:

If a+ λ > 0 let X(a, b) = λ(a+ 1, b). Otherwise let X(a, b) = λ−1(a+ λ, b).
Similarly for Y .
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Then G acts freely on W̃ , with a single orbit of vertices G.O and two orbits of
edges Gα and Gβ. Moreover each vertex has a small neighbourhood disjoint from
all of its translates, and the interior of each edge (i.e., the edge minus its endpoints)

is disjoint from all of its translates. Hence G\W̃ ∼= S1 ∨ S1, and the projection

pW̃ → G\W̃ is a covering projection. Since W̃ is contractible, π1(S1 ∨ S1) ∼= G.
[It is more natural to define X and Y as hyperbolic transformations of the open

unit disc D2. Let Gk be the group of homeomorphisms of the extended complex
plane generated by Xk(z) = kz+1

z+k and Yk(z) = −iXk(iz) = kz−i
zi+k , where 1 < k <∞.

Then Xk preserves D2 and R, and Xk(0) = 1
k , while Yk preserves D2 and the

imaginary axis Ri, and Yk(0) = − 1
k i. Hence Gk preserves D2. Let TV be the union

of the orbits of Gk through the real and purely imaginary diameters of D2.

Let Zk = XkYkXk
−1Yk

−1. Then Zk(z) = αz+β
βz+α , where α = k4−2k2−1−2k2i and

β = −2k(1− i). It is not hard to see that TV ∼= W̃ if and only if | arg(Znk (1))| < π
4 ,

for all n ≥ 0. (Sketch the figure!) If so, then Gk acts freely on TV .
If | arg(Znk (1))| < π

4 , for all n ≥ 0, then the limit L = limZnk (1) is well-defined,

since Zk is orientation preserving and maps S1 to itself, and Zk(L) = L. Clearing
denominators gives a quadratic equation

βL2 + (α− α)L− β = 0

for L. Hence

L =
α− α±

√
(α− α)2 + 4|β|2

2β
=
ki±

√
2− k2

(i− 1)
.

These roots are in S1 if k ≤
√

2. (We want the root in the fourth quadrant.) If

k =
√

2 then arg(ki±
√
2−k2

(i−1) ) = −π4 . Therefore if 1 < k <
√

2 then TV ∼= W̃ and Gk
acts freely on TV , with quotient W .]

7. P∞(R)

It can be shown that nontrivial finite groups do not act freely on finite-dimensional
contractible spaces. However finite cyclic groups act freely on spheres, and by pass-
ing to an infinite union we may construct a contractible space on which all finite
cyclic groups act freely.

In §4 of Part I we defined S∞ = lim−→(: Sn → Sn+1) = qSn/ ∼ as the union

of the spheres, with the “equatorial” identifications given by s ∼ ιn+1(s) for all
s ∈ Sn. This space is contractible. (See the unnumbered exercise in §12 of Part I.)
The actions of S1 ⊂ C on the unit spheres S2n−1 ⊂ Cn given by multiplying all the
coordinates by z ∈ S1 are clearly compatible as n increases, and so S1 acts on S∞.

In particular, multiplication by −1 generates a free action of Z/2Z on S∞. We
may identify the orbit space Z/2Z\S∞ with P∞(R) = lim−→(: Pn(R) → Pn+1(R)),

which thus has fundamental group Z/2Z and contractible universal covering space.
Spaces with contractible universal covering spaces are said to be aspherical. The

homotopy type of an aspherical space is determined by its fundamental group, and
its homology can be calculated in purely algebraic terms. This realization lead to
the application of homological methods to group theory, and subsequently to their
application in number theory and algebraic geometry.
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8. intermediate coverings and subgroups of the fundamental group

Theorem 9. Let p : E → X and q : E′ → X be covering maps with E and E′

connected and X locally path-connected. If p̃ : E → E′ is a map such that p = qp̃
then p̃ is also a covering map.

Proof. Note first that E and E′ are also locally path-connected. Let U be a path-
connected open subset of X which is evenly covered for both p and q. Then the
sheets above U for p and q are the path components of the preimages: p−1(U) =
qα∈AWα and q−1(U) = qβ∈BVβ , where p|Wα

and q|Vβ are homeomorphisms. Since
each Wα is path connected and p̃ is continuous p̃(Wα) ⊆ Vρ(α), for some ρ : A→ B.
Since p|Wα

and q|Vρ(α)
are homeomorphisms it follows that p̃|Wα

is a homeomor-
phism onto Vρ(α). It follows easily that each Vβ is evenly covered for p̃.

In particular, p̃(E) is open in E′. Let z be a point of E′ in the closure of p̃(E),
and let V be a neighbourhood of z which is evenly covered for p̃. Then V ∩ p̃(E)
is nonempty, and so V ⊆ p̃(E) (since it is evenly covered). Hence f ∈ p̃(E) and
so p̃(E) is closed. Since E′ is connected it follows that p̃(E) = E′, i.e., p̃ is onto.
Hence p̃ is a covering projection. �

Exercise 18. Show that “p = qr, p a covering, r onto” does not imply that q is a
covering.

Exercise. Let q : E → X be a covering map. Suppose that V and V ′ are connected
open subsets of E such that q(V ) = q(V ′) and q|V and q|V ′ are homeomorphisms.
Then either V = V ′ or V ∩ V ′ = ∅.

Exercise 19. Let S be the circle of radius 1
2 with centre (− 1

2 , 0) and let X =
S ∪W = S ∨W , where W is the topologist’s sine curve. (See Exercise 2). Let
E = R∨ (Z×W ), where (n, (0, 0)) ∈ Z×W is identified with n ∈ R, for all integers
n ∈ Z. Then Z acts freely and properly discontinuously on E by translation, with
orbit space X. Show that the sheets above a neighbourhood of w = (0, 1) ∈ W of
diameter strictly less than 1 are not determined by their intersection with the fibre
over w. (Note that W fails to be locally path-connected).

It follows from the Lifting Criterion that if p : E → X is a covering map with
E simply-connected and locally path-connected covering then p is universal in the
sense that it factors through any other covering map. For if q : E′ → X is a covering
map such that q(e′) = x for some basepoint e′ then p lifts to a map p′ : E → E′

such that p′(e) = e′ and qp′ = p, and p′ is also a covering map, by Theorem 9. The
argument sketched in the section on group actions implies that E′ = H\E, where
ρ(H) = q∗(π1(E′, e′)).

If E′ is also 1-connected then by the same argument there is a map q′ : E′ → E
such that q′(e′) = e and q = pq′. It then follows by uniqueness of lifts that
q′p′ = idE and p′q′ = idE′ , and so E and E′ are homeomorphic.

More generally, there is a bijective correspondance between isomorphism classes
of connected covering maps q : E′ → X and subgroups of π1(X,x) which sends the
covering map q to q∗(π1(E′, e′)) and the subgroup κ of π1(X,x) to the covering
map pκ : ρ−1(κ)\E → X. There is a close analogy with Galois Theory!

If we attempt to carry through the construction of the isomorphism ρ of Theorem
8 without the assumption that E be simply-connected we find the homotopy class
of [pγg] depends on the choice of path γg from e to g(e) in E, and only the left
coset p∗(π1(E, e))[pγg] in p∗(π1(E, e))\π1(X,x) is well defined. Moreover not every
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coset is realised. In fact [pγg] is in the normalizer Nπ1(X,x)(p∗(π1(E, e)), since

[pγg]p∗α[pγg]
−1 = [p(γgg(α)γg)] is in p∗(π1(E, e)), for any [α] in π1(E, e). (In

general, if H is a subgroup of G then NG(H) = {g ∈ G | gHg−1 = H} is the largest
subgroup of G in which H is normal, and the coset space NG(H)/H = H\NG(H)
is a group). Thus we obtain a function

ρE : Aut(E/X)→ Nπ1(X,x)(p∗π1(E, e))/p∗(π1(E, e)).

Exercise 20. Check that ρE is an isomorphism.

Exercise 21. (a) Show that the map depicted below is a covering map, but that
Aut(p) is trivial.

"!
# 

"!
# 

"!
# A B C

p

D

B B
C

C
-r r r ree e eJ

I I I

(b) Find a 2-fold covering of the domain of p such that the resulting 6-fold cov-
ering of the figure eight S1 ∨ S1 has automorphism group S3 (the symmetric group
on 3 letters, i.e., the nonabelian group of order 6).

Exercise 22. Show that every connected covering of S1 is equivalent to either
exp : R → S1 or to one of the nth power maps pn : S1 → S1 with pn(z) = zn, for
some n ≥ 1.

9. existence of universal coverings

If X has a simply-connected and locally path-connected covering p : X̃ → X
then X is connected (since p is onto) and locally path-connected (since p is a local
homeomorphism). Moreover every point of X has an open neighbourhood U such
that any loop in U is null homotopic in X. (For if U is evenly covered the inclusion

of U into X factors through a map to X̃.)
Conversely, it can be shown that if X is connected, locally path-connected and

every point of X has an open neighbourhood with the above property (“semilocally
1-connected”!) then it has a simply-connected covering (necessarily locally path-
connected). We shall prove this under a somewhat more restrictive hypothesis.

Theorem 10. Let X be a connected and locally path-connected space in which every
point has a simply-connected open neighbourhood. Then X has a simply-connected
covering.

Proof. Choose a basepoint ∗ ∈ X, and let P be the set of all paths α : [0, 1] → X
starting at α(0) = ∗. Define an equivalence relation ∼ by α ∼ β if α(1) = β(1) and

α and β are homotopic as paths between their common endpoints. Let X̃ = P/ ∼
and let p : X̃ → X be the function defined by p([α]) = α(1), where [α] is the
equivalence class of α.

We define a topology on the set X̃ as follows. For each path-connected open
neighbourhood U of p([α]) let Uα = {[αβ] | β : [0, 1] → U, β(0) = α(1)}. We

take the collection of all such sets Uα as a basis for the topology of X̃. Since
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p−1(U) = ∪γ(1)=α(1)Uγ the map p is continuous, and since p(Uα) = U (by the
path-connectedness of U) it is open.

If U is simply-connected then p : Uα → U is 1-1 (check this!) and onto. Hence
p|Uα is a homeomorphism. Moreover if α(1) = α′(1) then either Uα = Uα′ or
Uα ∩ Uα′ is empty. Thus U is evenly covered and so p is a covering map.

Let c be the constant path at ∗. Given any other path α starting at ∗, we may
define a path α̃ = [αs] from [c] to [α] by αs(t) = α(st) for all 0 ≤ s, t ≤ 1. (Note

that α̃ lifts α, i.e., p([αs]) = α(s)). Thus X̃ is path-connected.

If τ is a loop in X̃ at [c] and α = pτ then τ lifts α so τ = α̃ so [α] = α̃(1) =
τ(1) = [c] so α ∼ c. A homotopy between these loops lifts to a homotopy from τ

to the constant loop at [c]. Thus X̃ is simply-connected. �

Exercise 23. Check that the condition that U be simply-connected can be weakened
to requiring only that every loop in U be homotopic to a constant loop in X.

The above argument is analogous to a classical construction by “analytic contin-
uation” of the Riemann surface associated to a somewhere convergent power series.
Example. (The Hawaiian earring). Let Cn be the circle in R2 with radius 1/n

and centre (1/n, 0), and let X = ∪n≥1Cn, with its natural topology as a subset of
R2. Then X is not semilocally simply-connected at (0, 0), as each Cn represents a
nontrivial element of π1(X, (0, 0)).

(Note that the obvious bijection from the semilocally simply-connected space
∨NS1 onto X is continuous, but is not a homeomorphism.)

Exercise 24. Show that (S1)N (the product of countably many circles) does not
have a universal covering space.

10. varying the basepoint

A path ω : [0, 1] → X from ω(0) = x to ω(1) = x′ determines an isomorphism
ω# : π1(X,x) → π1(X,x′) by ω#([α]) = [ω.α.ω]. This isomorphism depends only
on the homotopy class (rel endpoints) of the path. If ω is a loop at x then ω# is
just conjugation by [ω]. In particular, if X is path-connected the isomorphism class
of π1(X,x) is independent of the choice of base-point, and if π1(X,x) is abelian
for some (hence every) basepoint these groups are canonically isomorphic. (In the
latter case we really can ignore the basepoint!)

The fundamental groupoid of X is the category whose set of objects is X itself
(forgetting the topology) and whose morphisms are given by Hom(x, y) = the set
of homotopy classes (rel endpoints) of paths from x to y. Note however that the
rule for composing morphisms reverses the order of concatenation. In particular,
Hom(x, x) ∼= π1(X,x), for all x ∈ X, but the isomorphism sends [α] ∈ Hom(x, x)
to [α] ∈ π1(X,x), i.e., is inversion rather than the identity.

11. cardinality of π1

A metric space X is separable if it has a countable dense subset, or equivalently
if its topology has a countable basis. (The metric hypothesis below can be relaxed.)

Theorem 11. Let p : E → X be a covering map, where E is connected and X is a
separable, locally path-connected metric space. Then E is a separable metric space.
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Proof. The space X has a countable basis B consisting of evenly covered path-
connected open sets, and each of these sets is separable. Let VE be the family of
open subsets of E which are sheets over members of B. Thus each V ∈ VE is a
path-component of p−1(U) = qVα, for some U ∈ B. For each such V ∈ VE and
U ∈ B the intersection V ∩ p−1(U) = q(V ∩ Vα) is a disjoint union of open subsets
of V . Since V is separable at most countably many of these subsets V ∩ Vα can be
nonempty. Since B is countable it follows that each V ∈ VE meets only countably
many other members of this family.

Given W ⊆ E let V 0(W ) = W and V (W ) = ∪{V ∈ VE | V ∩ W 6= ∅}.
Then for each e ∈ E the set V∞(e) = ∪n≥0V n({e}) is open, and is separable,
since it is a countable union of sets in VE . If V∞(e) ∩ V∞(e′) is nonempty then
V∞(e) = V∞(e′). Hence these sets are also closed. Since E is connected these sets
are all equal to E, and so E is separable.

Let n(x, y) = min{n ≥ 0 | y ∈ V n({x})}, and let dE : E × E → [0,∞) be the
function defined by dE(x, y) = d(p(x), p(y)) + n(x, y). Then dE is a metric on E
which determines the given topology. �

Corollary. If X is semilocally 1-connected then π1(X,x) is countable.

Proof. The fibre of the universal covering is a discrete subset of a separable metric
space and so must be countable. �

The theorem and its corollary apply in particular if X is compact. Since a
connected locally separable metric space is separable, it also applies to any metriz-
able manifold. We shall have more to say about fundamental groups of compact
manifolds later.

Can one extend the idea of this theorem to bound the cardinality of π1(X, ∗)
when X is connected and locally separable, but not separable?

12. free groups

Theorem 12. Let X be a set. There is a group F (X) and a function j : X →
F (X) such that for every group H and function f : X → H there is an unique
homomorphism h : F (X)→ H such that f = hj.

The pair (F (X), j) is unique up to an unique isomorphism.

Proof. (Sketch.) Let W be the set of words of finite length of the form w =
xε11 . . . xεnn , where xi ∈ X, εi = ±1 and n is a non-negative integer. (If n =
0 write 1 for the “empty” word). Define a composition from W × W to W by
juxtaposition. Say two words v and w are equivalent, v ∼ w, if they can each
be reduced to the same word u by contracting subwords of the form xεx−ε (e.g.,
x1x
−1
2 x−13 x3x2 ∼ x1x

−1
2 x2 ∼ x1 ∼ x−14 x4x1, etc.). Then the composition respects

equivalence classes, and the set W/ ∼ with the induced composition is a group,
which we shall call F (X). There is an obvious 1-1 function j : X → F (X).

Given f : X → H we may extend it to a function from W to H by sending
w = xε11 . . . xεnn to f(x1)ε1 . . . f(xn)εn (where the product is formed in H). It is
not hard to check that equivalent words have the same image, and that we get a
homomorphism h : F (X) → H such that hj = f . It is clear that h is uniquely
determined by f .

In paricular, taking H = F (X) and f = j we see that if h is a self-homomorphism

of F (X) such that hj = j then h = idF (X). If (F̃ , j̃) is any other such pair then
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there are unique homomorphisms h : F (X) → F̃ and h̃ : F̃ → F (X). such that

hj = j̃ and h̃j̃ = j. Hence h̃h = idF (X) and hh̃ = idF̃ , and so h and h̃ are mutually
inverse isomorphisms. �

Addendum. The function j is 1-1 and the group F (X) is generated by j(X). �

In the language of categories, writing |H| for the set of elements of H, we have

Hom((Grp))(F (X), H) = Hom((Set))(X, |H|)

– the free group functor F from ((Set)) to ((Grp)) is left adjoint to the forgetful
functor | − | from ((Grp)) to ((Set)). (The final assertion of the theorem is typical
of such adjoint pairs.) The group F (X) is called the free group with basis X.

Each element of F (X) has an unique normal form, obtained by contracting all
possible subwords xεx−ε. The length of an element w is the number `(w) of letters
x±1 in the normal form. (Note also that the notions of normal form and length are
defined in terms of the basis X, and may not be preserved under isomorphisms.)

Exercise 25. Show that F (X) ∼= F (Y ) if and only if X and Y have the same
cardinality #X = #Y . (Note that if X is finite then #Hom((Grp))(F (X), Z/2Z) =

#Hom((Set))(X, |Z/2Z|) = 2#X , while if X is infinite #F (X) = #X).

Notation: let F (r) be the free group with basis of cardinality r. It is easy to
see that F (0) = F (∅) = 1 and that F (1) = F ({x}) ∼= Z.

Let W̃ be the infinite TV antenna, and let G be the subgroup of Homeo(W̃ )
generated by X and Y . There is an obvious epimorphism from F (2) = F (x, y) to

G. Let w be a reduced word in the alphabet {x, y}, and let P be a vertex of W̃ .
Then w(P ) = P implies that w = 1. (There is no back-tracking!). More generally,
if u and v are reduced words and u(P ) = v(P ) then v−1u(P ) = P , so v−1u is
not reduced (unless u = v = 1). Hence u and v have the same initial letter, say
u = au1, v = bv1. But then u1(P ) = v1(P ) and u1, v1 are reduced. Induction on
the length of u now gives u = v. In fact, if w is a reduced word of length n then
d(w(O), O) = n, and the number of reduced words of length n is 4.3n−1. if n ≥ 1.

These observations imply that the epimorphism : F (2)→ G is an isomorphism,
and so π1(S1∨S1) ∼= G is free on the obvious generators. Moreover, words in {x, y}
have an unique normal form: if u, v are reduced words and u ∼ v then u = v.

13. combinatorial group theory

The groups that arise in topology are often infinite, and so it is not practical
to give their multiplication tables. Instead we use presentations, giving a set of
generators (usually finite) and a list of relations between these generators that are
sufficient to characterize the group. Combinatorial group theory is the study of
groups in terms of such presentations. It has close connections with topology on
the one hand and with the theory of formal languages on the other.

Every group is a quotient of a free group. Consider the identity function from |H|
to H. By the characteristic property of free groups there is a homomorphism from
F (|H|) to H extending this function, and this homomorphism is clearly onto. In
general, this construction is grossly inefficient. We say that H is finitely generated
if there is a finite set X and an epimorphism f : F (X) → H. The set X may be
viewed as a set of generators for H, as every element of H is the image of a word
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in the x±1i . If f is an isomorphism, we call X a basis for H. In general, Ker(f)
represents the relations between the generators X.

Let F (X) be the free group with basis X, and let R be a subset of F (X).
Let 〈〈R〉〉 denote the smallest normal subgroup of F (X) containing R. Then the
quotient F (X)/〈〈R〉〉 is a group. Moreover any group is such a quotient, for if
f : F (X) → H is an epimorphism from a free group onto H then Ker(f) is a
normal subgroup of F (X), and there are many possible choices for the subset R.
(For instance, R could be all of Ker(f)!). We say that H has a presentation with
generators X and relators R, and usually write H = 〈X | R〉, although strictly
speaking we should also specify the epimorphism f . Any word inX which represents
an element of 〈〈R〉〉 is said to be a consequence of R.

Each relator r corresponds to an equation f(r) = 1 in H. It is often convenient to
write the relators as relations between words, so that the relation r = s corresponds
to the relator rs−1. We shall do this without further comment below. (A relation
u = v is a consequence of R if uv−1 ∈ 〈〈R〉〉.)
Examples.

(1) Z = 〈x | ∅〉.
(2) F (x, y) = 〈x, y | ∅〉 = 〈x, y, z | z〉.
(3) F (r) = 〈x1, . . . , xr | ∅〉.
(4) Z2 is the quotient of F (x, y) via h(x) = (1, 0) and h(y) = (0, 1). As Ker(h)

is the smallest normal subgroup containing xyx−1y−1 we have the presen-
tation Z2 = 〈x, y | xyx−1y−1〉. (Equivalently, Z2 = 〈x, y | xy = yx〉.)

We say that the group H is finitely presentable if there is a presentation 〈X | R〉
in which both X and R are finite sets. (The normal subgroup 〈〈R〉〉 is only finitely
generated if the quotient F (X)/〈〈R〉〉 is finite, or if R ⊆ {1}).

Two presentations define isomorphic groups if and only if they can be related by
a chain of “elementary Tietze transformations” of the following kinds:

(1) introduce a new generator x and a new relation x = w where w is a word
in the old generators;

(2) adjoin a relation that is a consequence of the other relations;
and their inverses.

Example. The symmetric group on three letters, S3. Let r = a2, s = abab−2,
t = aba−1b−2, u = b3 and v = aba−1b in F = F (a, b). Then S3 = 〈a, b | r, s〉 (via
f(a) = (12)(3) and f(b) = (123)). (Equivalently, S3 = 〈a, b | a2, aba = b2〉.)

Now t = sb2r−1b−2 and s = tb2rb−2, so 〈〈r, s〉〉 = 〈〈r, t〉〉 in F . Hence S3 =
〈a, b | r, t〉. Now u = (b2t−1b−2)t−1(at−1a−1)r(brb−1) is in 〈〈r, t〉〉, and so S3 =
〈a, b | r, t, u〉. Now v = tu and t = vu−1, so 〈〈r, t〉〉 = 〈〈r, t, u〉〉 = 〈〈r, u, v〉〉. Hence
S3 = 〈a, b | r, u, v〉 = 〈a, b | a2, b3, aba−1b〉. (Note: we cannot delete the relator
b3 from the latter presentation, for the group with presentation 〈a, b | a2, aba−1b〉
is isomorphic to the group of homeomorphisms of the real line R generated by
A(x) = −x and B(x) = x+ 1, for all x ∈ R, and so is infinite).

If some object or notion defined in terms of presentations for a group has the
same value for Tietze-equivalent presentations it is an invariant for the group.

For instance, let P be a presentation with finitely many generators for a group
G and let wP (n) be the number of elements of G represented by words of length at
most n in the given generators and their inverses. It can be shown that the asymp-
totic rate of growth of wP depends only on G, and not on P . If G is a free group,
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or is solvable but not virtually nilpotent then any such function has exponential
growth; if G is abelian or (more generally) virtually nilpotent the growth rate is
polynomial.

However there are logical difficulties in using presentations to study groups. For
instance, it can be shown that it is impossible to construct a (universal) algorithm
which will decide (in every case) whether a given presentation represents the trivial
group. One must rely on one’s ingenuity, experience and luck. (See exercises 28
and 29 below.)

Exercise 26. Find presentations for the groups Z⊕ (Z/3Z) and Z3.

Exercise 27. Verify that the group with presentation 〈x, y | x2 = y2 = (xy)2〉 is
isomorphic to the “quaternion group” Q8 = {±1,±i,±j,±k}.

[Hint: show that x2 = (xy)2 implies that x−1yx = y−1, hence x−1y2x = y−2,
hence x2 = x−2. Thus the cyclic group generated by the image of x2 has order (at
most) 2. Adding the extra relation x2 = 1 gives a presentation for the quotient
group, which thus has order 4. Thus our group has order dividing 8. Show that
there is a homomorphism from this group onto Q8, i.e., that Q8 is generated by a
pair of elements satisfying these relations.]

Exercise 28. Show that 〈x, y | xy2x−1 = y3, yx2y−1 = x3〉 is a presentation of the
trivial group.

Exercise 29. Show that 〈x, y | xymx−1 = ym+1, yxny−1 = xn+1〉 is a presentation
of the trivial group.

Exercise 30. Let P , Q be presentations for groups G, H, respectively. Use these
to give a presentation for the direct product G×H.

Exercise 31. Show that 〈x, y | xyx−1 = y3, yxy−1 = x3〉 is a presentation of Q8.

[Hint: compute the commutator xyx−1y−1 in two ways, to see that x2 = y−2.]

14. coproducts and pushouts

By a similar procedure to that used in constructing free groups we may con-
struct the coproduct of a family {Gx | x ∈ X} of groups indexed by a set X. (Use
words in the elements of the disjoint union of sets |Gx| \ {1}, contracting sub-
words formed from adjacent elements from the same group in the obvious way).
Then the coproduct ∗x∈XGx is generated by the images of the Gx, and any family
{fx : Gx → H | x ∈ X} of homomorphisms gives rise to an unique homomorphism
from ∗x∈XGx to H.

Exercise 32. Show that F (X) ∼= ∗x∈XZx, where Zx = Z for all x ∈ X.

There is a further extension of this construction which is useful in describing
how the fundamental group of a union of two spaces with a common subspace is
determined by the fundamental groups of the constituent spaces. Suppose given
a group H and two homomorphisms α1 : H → G1 and α2 : H → G2. There
is an essentially unique “pushout” of this data: A group P with homomorphisms
ω1 : G1 → P and ω2 : G2 → P with ω1α1 = ω2α2 and such that given any other
group Q and homomorphisms ψ1 : G1 → Q and ψ2 : G2 → Q with ψ1α1 = ψ2α2

there is an unique homomorphism Ψ : P → Q such that Ψωi = ψi for i = 1, 2.
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The square with vertices H, G1, G2, P and edges α1, α2, ω1, ω2 is called a
“pushout square”; loosely speaking P is called the pushout of G1 and G2 over H.
(Strictly speaking, the maps of G1 and G2 to P are part of the pushout data).

The pushout of a diagram may be constructed from the coproduct as follows.
Let P = G1 ∗ G2/〈〈α1(h)α2(h)−1 | h ∈ H〉〉. (Thus P is the biggest quotent of
G1 ∗G2 in which both images of H become identified.) Let ωi : Gi → G1 ∗G2 → P
be the obvious maps, for i = 1, 2.

If α1 and α2 are each injective we write P = G1 ∗H G2 and call this pushout the
generalized free product of G1 and G2 with amalgamation over H. The coproduct
of G1 and G2 is just the pushout of these groups over the trivial group: G1 ∗G2 =
G1 ∗{1} G2.

Exercise 33. Show that (Z/4Z) ∗Z/2Z (Z/4Z) has a composition series with quo-
tients Z/2Z, Z and Z/2Z.

Exercise 34. Describe the pushout of two homomorphisms αi : H → Gi (for
i = 1, 2) in terms of amalgamated products of certain quotient groups.

The notions of product, coproduct and pushout square are all essentially cate-
gorical, as is the notion of a “free” object - an adjoint to the forgetful functor from
((Grp)) or ((ModR)) (etc.) to ((Set)). See under the headings “limit” and “adjoint
functors” in any reference on Categories.

15. the van kampen theorem

The Van Kampen Theorem is one of those theorems where it is very important
to understand the result, but not at all necessary to know the techniques of proof
to use efficiently. (I’ve survived thus for years.) The statement is essentially that
“the fundamental group of a pushout of spaces is the pushout of their fundamental
groups”. More precisely, suppose that X and Y are path-connected spaces with
union Z, and that their intersection X ∩ Y is also path-connected. Choose a point
∗ ∈ X ∩ Y to be the basepoint for all these spaces. Then π1(Z, ∗) is the pushout of
the homomorphisms determined by the inclusions of X∩Y into X and Y . Thus it is
generated by the images of π2(X, ∗) and π1(Y, ∗), and the only relations between the
generator of π1(Z, ∗) are those which follow from relations in π2(X, ∗) or π1(Y, ∗)
and from setting the images of π1(X ∩ Y, ∗) in π2(X, ∗) and π1(Y, ∗) to be equal.
The statement is more complicated if one or more of the spaces involved is not
connected. (One should use groupoids rather than groups. There is not yet a
good analogue for the higher homotopy groups, which is one reason why they are
hard to compute, but the Mayer-Vietoris Theorem gives a satisfactory analogue for
homology.)

Examples.

(1) If Y is simply-connected then π1(X∪Y, ∗) is the largest quotient of π1(X, ∗)
in which the image of π1(X ∩ Y, ∗) is trivial.

(2) Let S1 ∨ S1 be the figure eight and let ∗ be the common point of the two
circles. Then π1(S1 ∨ S1, ∗) is free on two generators (one for each circle).

If X is path connected then X∪f e1 ' X∨S1, and hence π1(X∪f e1) ∼= π1(X)∗Z.

Exercise 35. Define isometries t, u of the plane R2 by t(x, y) = (x, y + 1) and
u(x, y) = (x + 1,−y) for all (x, y) ∈ R2. Verify that tut = u and that t and u2

commute. Let G be the group of homeomorphisms of R2 generated by t and u.
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(a) Show that the orbit of G through (x, y) is the set {(x + m, (−1)my + n) |
m,n ∈ Z}.

(b) Show that the projection of R2 onto the orbit space G\R2 is a covering map.
This orbit space is the Klein bottle Kb.

(c) Show that 〈t, u | tut = u〉 is a presentation for π1(Kb) ∼= G.

Exercise 36. The Möbius band Mb may be constructed by identifying opposite
sides of a rectangle with a half-twist. Explicitly, let

Mb = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, |y| ≤ 1}/ ∼ .

where (0, y) ∼ (1,−y) for all −1 ≤ y ≤ 1. The image of the line segment {(x, 0) |
0 ≤ x ≤ 1} in Mb is a circle C, the centreline of Mb.

(a) Show that the inclusion of the centreline C is a homotopy equivalence, and
that the inclusion of the boundary ∂Mb sends a generator of π1(∂Mb) ∼= Z to twice
a generator of π1(Mb) ∼= Z.

(b) The Klein bottle Kb may also be constructed by gluing two Möbius bands
together along their boundaries. Use Van Kampen’s Theorem with the observations
of part (a) to obtain a presentation of π1(Kb).

(c) Show that the presentation obtained in this way is equivalent to that of Ex-
ercise 35.

We may reduce the study of the case with X ∩ Y disconnected to the connected
case as follows. Let A and X be path-connected spaces, and suppose that h0, h1 :
A → X are embeddings with disjoint images. Let Y = (X qA× [0, 1])/ ∼, where
(a, 0) ∼ h0(a) and (a, 1) ∼ h1(a), for all a ∈ A. (In other words, glue A × [0, 1] to
X along its ends). Fix a basepoint a ∈ A and take x = h0(a) as the basepoint for
each of X and Y . Since X is path-connected there is a path ω : [0, 1] → X from
h1(a) to h0(a).

We shall assume that ω is an embedding, with image I. (This is OK for rea-
sonable spaces, and can always be achieved after replacing X by a homotopy
equivalent space, if necessary). Let α(t) = (a, t) for 0 ≤ t ≤ 1 and let J be

the image of α in Y . Let X̂ = X ∪ J ⊆ Y . Note that I ∪ J ∼= S1. Then

Y = X̂ ∪ (A × [0, 1]) is a union of connected sets with connected intersection

X̂ ∩ (A× [0, 1]) = h0(A)∪ ({a} × (0, 1))∪ h1(A). Moreover X̂ is also such a union:

X̂ = X ∪ (I ∪ J) where X ∩ (I ∪ J) = I. Thus we can use the above version of the
Van Kampen Theorem to compute π1(Y, x).

•

X̂ ∩ (A× [0, 1]) =

>
α

•

<

J

ωX̂ =
X

h0(A) h1(A)

A× [0, 1]

•

Y =

A× [0, 1]

X

•x
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For simplicity of notation let G = π1(X,x) and H = π1(A, a). Let t be the loop

α.ω in X̂ ⊆ Y . Then π1(X̂, x) ∼= G∗Z, where the second factor is generated by the

image of t and π1(X̂ ∩ (A × [0, 1]), x) ∼= H ∗ α#H. The geometry determines two
homomorphisms from H to G : θ0 = h0∗ and θ1 = ω#h1∗. (We are being careful
about basepoints!) In π1(Y, ∗) these are related by t−1h0∗(h)t = ω#h1∗(h), for all
h ∈ H. Hence

π1(Y, ∗) = 〈G, t | t−1θ0(h)t = θ1(h), ∀h ∈ H〉.

If θ0 and θ1 are monomorphisms this construction is called the HNN extension
with base G, associated subgroups H0 = θ0(H) and H1 = θ1(H), and defining
isomorphism φ = θ1θ

−1
0 .

Notation: HNN(G;φ : H0
∼= H1), G ∗H φ or just G∗φ.

Exercise 37. Show how we may compute the fundamental group of a union X ∪Y
where X ∩ Y has finitely many components.

[Hint: constructing the union amounts to identifying certain connected subsets
of X with subsets of Y . Identify one pair at a time.]

Exercise 38. Let G = Z∗2 be the HNN extension with base Z and associated
subgroups Z and 2Z. Find a presentation for G, and show that G/G′ ∼= Z and
G′ ∼= Z[ 12 ], the additive group of dyadic rationals {m/2k ∈ Q | m ∈ Z, k ≥ 0}.

The following proof of the “connected” case of the Van Kampen Theorem is taken
from Elements de Topologie Algébrique, by C.Godbillon. The proof applies only to
spaces for which covering space theory works, but they are the most important.
(I’ve no idea whether the Van Kampen Theorem is true in much greater generality.)
The one basic fact that Godbillon uses is that if π1(X, ∗) = H then for every set
S with a left H-action there is an essentially unique covering p : E → X such that
p−1(∗) ∼= S as H-sets.

Let X and Y be connected open sets of Z = X ∪ Y with connected intersection
X ∩ Y , and let j1 : π1(X ∩ Y, ∗) → π1(X, ∗), j2 : π1(X ∩ Y, ∗) → π1(Y, ∗) k1 :
π1(X, ∗) → π1(Z, ∗) and k2 : π1(Y, ∗) → π1(Z, ∗) be the homomorphisms induced
by the inclusions. Suppose given a group G and homomorphisms h1 : π1(X, ∗)→ G
and h2 : π1(Y, ∗)→ G such that h1j1 = h2j2. We shall show that there is an unique
homomorphism h : π1(Z, ∗)→ G such that hk1 = h1 and hk2 = h2.

The groups π1(X, ∗) and π1(Y, ∗) act on G by left translations (g 7→ h1(x)g,
etc.). Therefore there are regular coverings p1 : E1 → X and p2 : E2 → Y and
isomorphisms r : G → p−11 (∗) and s : G → p−12 (∗) of sets with group actions.
Let D1 = p−11 (X ∩ Y ) and D2 = p−12 (X ∩ Y ). Since h1j1 = h2j2 the induced
coverings p|D1 : D1 → X ∩ Y and p|D2 : D2 → X ∩ Y are isomorphic, and thee is
an isomorphism t : D2 → D1 such that ts = r. Let E = E1 ∪ E2. Then p1 and p2
together determine a covering map p : E → Z. Let q : E1qE2 → E be the natural
map. Then q|E1

and q|E2
determine isomorphisms of E1 and E2 onto the induced

covers p : p−1(X)→ X and p : p−1(Y )→ Y , respectively.
The covering p : E → Z determines an action θ of π1(Z, ∗) on the fibre p−1(∗).

Taking into account the above isomorphisms we have θ(k1(x))qr(g) = qr(h1(x)g)

and θ(k2(x))qs(g) = qs(h2(x)g). Let u = qs = qts = qr. the function ĥ defined by

ĥ(γ) = u−1θ(γ)u determines an action of π1(Z, ∗) on G such that ĥ(k1(x))(g) =

h1(x)g and ĥ(k2(y))(g) = h2(y)(g). Since π1(Z, ∗) is generated by the images of k1
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and k2 the permutation ĥ(γ) is translation by an element h(γ) of G and the map
sending γ to h(γ) is a homomorphism of π1(Z, ∗) to G such that h1 = hk1 and
h2 = hk2.

Since π1(Z, ∗) is generated by the images of k1 and k2 the homomorphism h is
unique. Hence π1(Z, ∗) is the pushout.

P.J.Higgins has used groupoids to give a uniform treatment of the general case
[Math. Proc. Cambridge Phil. Soc. 60 (1964), 7-20].

16. realizing groups by 2-complexes and 4-manifolds

It follows from the Van Kampen Theorem that the fundamental group of a finite
complex is finitely presentable. As it can be shown that every compact manifold
is homotopy equivalent to a finite complex, compact manifolds also have finitely
presentable fundamental groups.

Let P = 〈X | R〉 be a finite presentation for a group G. This presentation
determines a finite 2-dimensional cell complex C(P ) with one 0-cell, a 1-cell for
each generator and a 2-cell for each relator. Adjoining the 1-cells to the 0-cell
(which we take as the basepoint) gives a wedge ∨|X|S1, with fundamental group
F (|X|). Each relator is a word in F (|X|), and so corresponds to a homotopy class
of loops in ∨|X|S1. We attach a 2-cell along a representative loop, for each relator.
It then follows from Van Kampen’s Theorem that π1(C(P )) ∼= G. Conversely, every
connected 2-dimensional complex is homotopy equivalent to one with a single 0-cell,
and every such complex arises in this way.

Exercise 39. A (finitely generated) group is free if and only if it is the fundamental
group of a (finite) connected graph, i.e., a connected 1-dimensional cell complex.
Use covering space theory to conclude that subgroups of free groups are free.

(This is quite delicate to prove algebraically!)

Definition. The deficiency of a finite presentation P = 〈X | R〉 is

def(P ) = |X| − |R| = 1− χ(C(P )).

The deficiency of a finitely presentable group is G is

max{def(P ) | P presents G}.

Example. Suppose G has presentation 〈x, y | r〉. Let V = S1 ∨S1. Then π1(V ) ∼=
F ({x, y}) = F (2). The word r determines a homotopy class of maps r : S1 =
∂D2 → V . Let C = V ∪r e2 = (S1 ∨ S1 ∪D2)/ ∼, where we identify points of ∂D2

with their images under r.
Let A = int 23D

2 and B = C− 1
2D

2. Then A∩B = S1× ( 1
2 ,

2
3 ) ' S1 and V ' B,

so Van Kampen’s Theorem gives π1(C) ∼= F ({x, y}/〈〈r〉〉 ∼= G. The general case is
similar.

We must work slightly harder to realize (finitely presentable) groups as funda-
mental groups of manifolds.

The circle S1 is the only compact connected 1-manifold without boundary, and
π1(S1, 1) ∼= Z is the only 1-dimensional Poincaré duality group.

There is a complete list of closed surfaces (compact connected 2-manifolds with-
out boundary), and their fundamental groups may be considered well understood.
Each may be constructed by identifying the sides of a polygon in pairs. This leads
to the presentations:
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(1) orientable surfaces: 〈ai, bi, 1 ≤ i ≤ g | Π[ai, bi] = 1〉. The case g = 1
corresponds to the torus.

(2) nonorientable surfaces: 〈vj , 1 ≤ j ≤ c | Πv2j = 1〉. The cases c = 1 and
c = 2 correspond to the projective plane and Klein bottle, respectively.

Excepting only π1(P 2(R)) = Z/2Z, they are all torsion free, and the torsion free
surface groups have an intrinsic algebraic characterization as the 2-dimensional
Poincaré duality groups. The fundamental group determines the surface up to
homeomorphism.

The next exercise corresponds to the fact that T#RP 2 ∼= Kb#RP 2 ∼= #3RP 2,
by the classification of surfaces.

Exercise 40. Show that the following presentations are equivalent:

(1) 〈a, b, c | aba−1b−1c2 = 1〉;
(2) 〈p, q, r | pqp−1qr2 = 1〉;
(3) 〈x, y, z | x2y2z2 = 1〉.

[Hint: for (1)⇔ (3), note that c and xyz each represent the element of order 2 in
the abelianization. The equivalence (2)⇔ (3) follows easily from Exercise 36(c).]

Less is known about 3-manifolds and their groups. The indecomposable fac-
tors of a 3-manifold group are either Z, Z ⊕ (Z/2Z), a finite subgroup of SO(4)
which acts freely on S3 (one of a known infinite list of such subgroups) or a 3-
dimensional Poincaré duality group. (It is not known whether the latter are always
3-manifold groups.) It is conceivable that 3-manifold groups are sufficiently special
that geometric methods may provide algorithmic solutions to the standard decision
problems of combinatorial group theory.

Example. If a, b, c, d be integers such that ad − bc = ±1 the map f(w, z) =
(wazb, wc, zd) determines a self homeomorphism of the torus S1 × S1. The union
(S1 ×D2) ∪f (S1 ×D2) has cyclic fundamental group.
π1(S1 × S1 × S1) ∼= Z3.
π1(S1 × P 2(R)) ∼= Z⊕ (Z/2Z).
No other abelian group is the fundamental group of a closed 3-manifold.
On the other hand, every finitely presentable group is the fundamental group

of some closed (orientable) 4-manifold. There are two natural approaches, each
essentially “thickening” the above construction so that we may assume the attaching
maps are embeddings.

(a) With a little more care, we may in fact assume that C(P ) is a 2-dimensional
polyhedron. Now every n-dimensional polyhedron can be embedded in R2n+1.
(This is a “general position” argument. The expected dimension of the intersection
of linear subspaces P,Q ⊆ Rn is dim(P ) + dim(Q) − n). Thus if C(P ) is a 2-
dimensional polyhedron it may be embedded as a union of polygon subsets of R5.
For ε sufficiently small the set Nε = {x ∈ R5 | |x − C(P )| ≤ ε} of all points
within distance ε of C(P ) is a compact 5-manifold, and the inclusion C(P ) ⊂ Nε
is a homotopy equivalence. (Moreover any two such “regular neighbourhoods” are
homeomorphic). Then ∂Nε is a closed orientable 4-manifold, and it can be shown
that π1(∂Nε) ∼= π1(Nε) ∼= G.

(b) We may mimic the construction of a cell complex by “attaching 1- and 2-
handles” to the 4-disc, to obtain a compact, bounded 4-manifold homotopy equiv-
alent to C(P ). We attach the 1-handles D1×D3 by embedding |X| disjoint copies
of S0 ×D3 in ∂D4, to get the boundary connected sum \|X|(S1 ×D3) ' ∨|X|S1.
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We then attach the 2-handles D2×D2 by embedding |R| disjoint copies of S1×D2

in ∂\|X|(S1 × D3) = ]|X|(S1 × S2). Note that π1(]|X|(S1 × S2) ∼= F (|X|). Then
M = D4 ∪|X| (D1 ×D3) ∪|R| (D2 ×D2) ' C(P ), and π1(∂M) maps onto π1(M).
The double D(M) = M ∪∂M M is then a closed 4-manifold and we again have
π1(M) ∼= G.

17. the hurewicz theorem

Let X be path-connected, and let ∗ be a basepoint for X. For each q ≥ 0 let
∗q : ∆q → X be the constant map with value ∗, considered as a singular q-simplex.

The map p : ∆1 → [0, 1] given by p(x, y) = y is a homeomorphism, and so
a path α : [0, 1] → X determines a singular 1-simplex α̂ = αp, with boundary
∂α̂ = α(1) − α(0). Clearly every singular 1-simplex arises in this way. Note also
that α̂ is a 1-cycle if and only if α is a loop (i.e., α(1) = α(0)).

Let h be the function given by h(α) = [α̂] (the homology class of the cycle
α̂) for all loops α at ∗ in X. The Hurewicz Theorem in degree 1 asserts that h
induces a induces an isomorphism π1(X, ∗)ab ∼= H1(X;Z), where πab = π/π′ is the
abelianization of π.

Let α be a loop at ∗ in X. Define a singular 2-simplex σ : ∆2 → X by σ(x, y, z) =

α(x + z). Then σF 0
2 = α̂, σF 1

2 = ∗1 and σF 2
2 = α̂, so ∂σ = α̂ − ∗1 + α̂. Since

∂∗2 = ∗1 − ∗1 + ∗1 = ∗1, it follows that α̂ + α̂ = ∂(σ + ∗2) and hence that
h(α) = −h(α).

Suppose now that A : [0, 1]2 → X is a homotopy of loops from α to α′. Define
singular 2-simplices by σI(x, y, z) = A(y, z) and σII(x, y, z) = A(1−z, 1−y). Then

∂(σI − σII + 2∗2) = α̂ + α̂′, so h(α) = −h(α′) = h(α′). Thus h gives rise to a
function hwz from π1(X, ∗) to H1(X;Z).

Let β be another loop at ∗ in X. Define a singular 2-simplex τ : ∆2 → X by

τ(x, y, z) = α(1− x+ z) if x ≥ z and τ(x, y, z) = β(z− x) if x ≤ z. Then τF 0
2 = β̂,

τF 1
2 = α̂.β and τF 2

2 = α̂, so ∂τ = α̂− α̂.β + β̂. In particular, if α and β are loops
at ∗ then hwz(α.β) = hwz(α) +hwz(β). Thus hwz is a homomorphism, and hence
π1(X, ∗)′ ≤ Ker(hwz), since homology groups are abelian. We shall show that hwz
is onto and that Ker(hwz) = π1(X, ∗)′ (i.e., is no larger).

Choose a path γx from ∗ to x for each x ∈ X. Then for any path α in X the
path γα(0).α.γα(1) is a loop at ∗, and hwz(γα(0).α.γα(1)) is the homology class of

γ̂α(0)+α̂+γ̂α(1) (which is a 1-cycle). Let ξ = Σrαα̂ be a singular 1-cycle in X. (Here
the sum is over a finite set of paths α in X and the coefficients rα are integers).
Then 0 = ∂ξ = Σrαα(1) − Σrαα(0), i.e., the endpoints of these paths match in
pairs, with the same multiplicities. Therefore Σrα(γ̂α(0) − γ̂α(1)) = 0 and so ξ =

Σrα(γ̂α(0)+α̂− γ̂α(1)), which has the same homology class as Σrα(γ̂α(0)+α̂+ γ̂α(1)).
It follows that hwz is onto.

It remains to prove that if α is a loop such that α̂ = ∂ζ for some singular 2-chain
ζ in X then α is in π1(X, ∗)′, the commutator subgroup. Let ζ = Σi∈Iε(i)σi where
the σi are singular 2-simplices and ε(i) = ±1, and write ∂σi = σi0 − σi1 + σi2.
Let I+ = {i ∈ I | ε(i) = 1} and I− = {i ∈ I | ε(i) = −1}. Let ∆1 have the
standard orientation (from (1, 0) to (0, 1), and orient (the boundary of) ∆2 so
that the face maps F0 and F2 : ∆1 → ∆2 are orientation preserving. (Then F1

reverses the orientation). Note that this orientation corresponds to the sequence
(cycle) of faces (2, 0, 1) = (0, 1, 2). Reversing the orientation of the boundary of
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∆2 gives the cycle (2, 1, 0) = (1, 0, 2). Let S = I × ∆2 and give each component
of I+ ×∆2 the standard orientation and each component of I− ×∆2 the opposite
orientation. Then S is a finite family of oriented affine 2-simplices. In the equation
α̂ = Σi∈Iε(i)(σi0 − σi1 + σi2) the faces σin must match in pairs (with opposite
signs), except for one equal to α̂.

CLAIM: if σim = σjn and cancel in this sum (i.e., have opposite signs) then
exactly one of the two corresponding face maps Fm : ∆1 → {i} × ∆2 and Fn :
∆1 → {j} ×∆2 is orientation preserving. (Either ε(i) = ε(j) and {m,n} = {0, 1}
or {1, 2}, or ε(i) 6= ε(j) and {m,n} ⊆ {0, 2} or m = n = 1.)

Identifying these two 2-simplices along this pair of edges gives a quadrilateral Q
such that

(1) σi ∪ σj defines a continuous function from Q to X;
(2) the chosen orientations determine a consistent orientation for (the boundary

of) Q;
(3) the CLAIM remains valid for other pairs of faces yet to be identified in this

way.

After finitely many such pairwise gluings we obtain a finite set of polygons P =
P0, . . . Pk with

(a) oriented boundaries ∂P, . . . ∂Pk;
(b) the edges making up the boundary of each polygon correspond to the as yet

unused faces of {σi | i ∈ I};
(c) these faces are matched in pairs (except for one equal to α̂, which corresponds

to an edge of ∂P );
(d) exactly one edge of each pair is oriented consistently with ∂P .
(e) continuous functions from Pi to X extending the σis.
We discard the components P1, . . . Pk. (These correspond to disjoint summands

of ζ which are 2-cycles, and thus have algebraic boundary 0). The boundary ∂P
is a concatenation of paths α.β1 . . . β2k, for some k ≥ 1, and clearly represents the
identity element of π1(X, ∗) (since it extends to a map from P to X). Let x(0) = ∗
and x(i) = βi(1), for 1 ≤ i ≤ 2k, and let β̃i = γx(i−1).βi.γx(i) for 1 ≤ i ≤ 2k. Then

∂P is homotopic to α.β̃1 . . . β̃2k, which is a product of loops at ∗. We thus get an
equation 1 = αΠ, where Π is the product of all the edges except α. Clearly Π is in
π1(X, ∗)′, since each factor occurs twice with exponents 1 and −1, and so α is also
in π1(X, ∗)′.

The Hurewicz homomorphism in degree 1 is basepoint-independent in the sense
that if ω is a path from x to x′ and α is a loop at x then hwz(ω̂#α) = hwz(α̂).
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