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Abstract

We show that every automorphism of a thick twin building interchanging the halves of
the building maps some residue to an opposite one. Furthermore we show that no auto-
morphism of a locally finite 2-spherical twin building of rank at least 3 maps every residue
of one fixed type to an opposite (a key step in the proof is showing that every duality
of a thick finite projective plane admits an absolute point). Our results also hold for all
finite irreducible spherical buildings of rank at least 3, and imply that every involution of
a thick irreducible finite spherical building of rank at least 3 has a fixed residue.
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1. Introduction

The theory of buildings grew from the fundamental work of Jacques Tits
starting in the 1950s. The initial impetus was to give a uniform description
of semisimple Lie groups and algebraic groups by associating a geometry
to each such group. This “geometry of parabolic subgroups” later became
known as the (spherical) building of the group [18]. Twin buildings were
introduced by Ronan and Tits in the 1980s, motivated by the theory of
Kac-Moody groups. Roughly speaking, a twin building is a pair of buildings,
called the halves, together with an opposition relation between the two halves
which resembles the important opposition relation in a spherical building.
Indeed every spherical building can be regarded as a twin building in a
natural way (see Section 2).
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Fixed point structures of automorphisms play an important and promi-
nent role in the theory of buildings and related groups, and more generally
in permutation group theory. Two key notions in the theory of spherical
buildings are the relations of adjacency and opposition of the chambers of
the building (the chambers are the basic elements of the building). The adja-
cency relation endows the building with a graph structure, and two chambers
are opposite if they are at maximal distance in this graph structure. This
gives additional structure to work with when studying automorphisms of
spherical buildings. In particular there is a connection between the size of
the fixed point set of an automorphism and the size of the set of chambers
mapped to an opposite chamber by the automorphism. Indeed, recently it
was shown in the papers [15, 17, 16, 22] that large fixed point structures in
spherical buildings are often implied by automorphisms that do not map any
chambers to opposite chambers. In other words, if no chamber is mapped far
away then the automorphism will fix a lot of chambers (or more generally,
residues). When it is not meaningful to consider fixed point structures, such
as when an automorphism interchanges the two halves of a twin building,
the structure of the set of chambers mapped onto an opposite chamber may
replace the tool of fixed point structures. The initiation of such a study is
one of the main goals of the present paper.

Another motivation for our work stems from so-called “Phan theory”,
where amalgams of groups acting on twin buildings and the related presen-
tations are efficiently investigated using the geometry of chambers mapped
onto an opposite by the involution centralising the group in question, see
[8]. Here we deal with the more general case of an arbitrary automorphism
(not necessarily of order 2).

An initial observation is the following (c.f. [8, Proposition 4.9] for the
case of an involution, and Section 3 for the general case).

Proposition 1.1. Every automorphism of a thick twin building swap-
ping the two halves of the building maps some spherical residue to an opposite
residue.

Thus we ask the question ‘How much can be mapped to an opposite?’.
For example, in the real projective plane PG(2,R) the automorphism given
by [a : b : c] ↔ (a : b : c) maps every flag to an opposite flag (here
[a : b : c] is a point of the projective plane in homogeneous coordinates,
and (a : b : c) is the line of the projective plane corresponding to the plane
ax + by + cz = 0 in R3). Furthermore it is shown in [17, Remark 4.5] that
there are automorphisms of thick finite generalised quadrangles of order
(2n − 1, 2n + 1) mapping every flag to an opposite. Considered as twin
buildings, these examples show that it is possible for an automorphism of a
twin building to map every chamber to an opposite chamber. Other such
examples can be constructed for the twin tree arising from PGL2(F[t, t−1])
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where F is any field. Despite these examples our main theorem is:

Theorem 1.2. Suppose that ∆ is an irreducible 2-spherical locally finite
thick twin building of type (W,S) with rank at least 3 and let J ⊆ S be
nonempty. Then an automorphism of ∆ cannot map every S\J-residue to
an opposite residue.

In fact we prove a slightly stronger statement (see Theorem 5.1) which
also shows that in an irreducible finite thick Moufang rank 2 building it is
impossible for an automorphism to map every vertex of a given type to an
opposite one. (Note that in the ‘simplicial complex’ language, S\J-residues
correspond to simplices of type J).

In particular we see that under the hypothesis of Theorem 1.2 it is im-
possible for an automorphism to map every chamber to an opposite. After
some general reductions, the proof of Theorem 1.2 boils down to looking
at rank 2 residues. Recent results of [13] (see also [12]) imply that finite
Moufang generalized polygons other than projective planes do not admit
collineations mapping every chamber to an opposite. For projective planes,
the results of [13] can only be applied under some restrictions. In the present
paper we remove these restrictions, and show that no duality of any finite
projective plane can map every chamber to an opposite. These observations
will imply Theorem 1.2.

Along the way to proving Theorem 1.2 we prove the following theorem,
which is of interest in its own right.

Theorem 1.3. Let ∆ be a twin building of type (W,S) and let J ⊆ S be
nonempty. An automorphism θ : ∆→ ∆ maps all S\J-residues to opposite
residues if and only if it maps all chambers to opposite chambers. Moreover,
if θ maps all chambers to opposites then θ is necessarily type preserving, and
maps all residues to opposite residues.

Our analysis is ‘building theoretic’ in nature, yet our main results have
broader group theoretic applications. For example, in Corollary 5.6 we de-
duce that if G is a finite group of Lie type or a locally finite Kac-Moody
group (satisfying some conditions), then no “generalised Iwasawa decom-
position” can exist. That is, if θ is an automorphism of G mapping the
positive Borel B+ to the negative Borel B− then G 6= GθB

+, where Gθ is
the centraliser of θ in G. This extends results of [4] where involutions θ are
studied. We thank an anonymous referee for suggesting this application.

We also provide an application of our results to fixed point structures
of involutions of spherical buildings. In Corollary 5.5 we deduce that every
involution of a finite irreducible thick spherical building of rank at least 3
fixes some simplex, generalising the well known fact that every involution of
a projective space has many fixed points.
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2. Definitions and Examples

The main reference for this section is [1]. Let (W,S) be a Coxeter system.
We always assume that |S| <∞, and thatW is irreducible. Let ` : W → Z≥0

be the length function on W with respect to the generating set S. A building
of type (W,S) is a pair (∆, δ) where ∆ is a nonempty set (whose elements
are called chambers) together with a map δ : ∆×∆→W (called the Weyl
distance function) such that if C,D ∈ ∆ then the following conditions hold:

(B1) δ(C,D) = 1 if and only if C = D.

(B2) If δ(C,D) = w and if C ′ ∈ ∆ is a chamber with δ(C ′, C) = s then
δ(C ′, D) ∈ {w, sw}. If `(sw) = `(w) + 1 then δ(C ′, D) = sw.

(B3) If δ(C,D) = w then for any s ∈ S there is a chamber C ′ ∈ ∆ with
δ(C ′, C) = s and δ(C ′, D) = sw.

A twin building of type (W,S) is a triple ∆ = (∆+,∆−, δ∗) where ∆+

and ∆− are buildings of type (W,S), and δ∗ is a Weyl codistance function
which measures codistance between chambers in the ‘two halves’ of the twin
building. This codistance function satisfies the following three axioms, see
[1, Definition 5.133] or [21, §2.2], where we write δ for the Weyl distance
function on the buildings ∆+ and ∆−. The following must hold for all
ε ∈ {+,−}, C ∈ ∆ε and D ∈ ∆−ε, where w = δ∗(C,D):

(T1) δ∗(D,C) = w−1.

(T2) If C ′ ∈ ∆ε is such that δ(C ′, C) = s ∈ S and `(sw) = `(w) − 1, then
δ∗(C ′, D) = sw.

(T3) If s ∈ S then there exists C ′ ∈ ∆ε such that δ(C ′, C) = s and
δ∗(C ′, D) = sw.

Let s ∈ S. Chambers C,D in the same half of the building are s-adjacent
if δ(C,D) = s. Chambers C and D are adjacent if they are s-adjacent for
some s ∈ S. If J ⊆ S then a J-residue (or residue of type J) of ∆ε is
a set of the form {D ∈ ∆ε | δ(C,D) ∈ WJ} where C ∈ ∆ε and WJ is
the subgroup of W generated by J . There is a standard way to consider
buildings as simplicial complexes. In this language a J-residue becomes a
simplex of type S\J . In particular, S\{s}-residues correspond to vertices of
type s. In this paper we will mainly use the ‘residue’ language. We note
that a J-residue is a building of type (WJ , J).

Chambers C and D in different halves of a twin building are opposite if
δ∗(C,D) = 1. Residues P and Q in different halves of a twin building are
opposite if for each chamber C in P there is a chamber D in Q such that
C and D are opposite, and vice versa. Note that the axioms imply that
opposite residues have the same type.
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An automorphism of a twin building is a bijection θ of the chamber
set which maps adjacent chambers to adjacent chambers, and preserves the
opposition relation. By a standard gallery argument one sees that an auto-
morphism θ : ∆→ ∆ of a twin building induces an automorphism σ : S → S
of the Coxeter graph such that if the chambers C and D are s-adjacent then
Cθ and Dθ are σ(s)-adjacent. In this paper we are interested in automor-
phisms θ which interchange the two halves of the twin building. The case
when θ is an involution is studied in [4, 8, 9]. We do not assume that θ is
an involution, nor that it is type preserving (that is, we do not assume that
σ is the identity).

We recall some more terminology: A spherical building is a building
(∆, δ) of type (W,S) with W a finite Coxeter group. An {s}-residue is
sometimes called an s-panel or a panel for short. A (twin) building is thick
if every panel contains at least three chambers. A 2-spherical (twin) building
is one where every rank 2 residue is spherical, i.e., no rank 2 residue is a tree
(the rank of a building of type (W,S) is |S|). Recall also that a locally finite
building is one where the number of chambers in a panel is always finite;
locally finite is equivalent to finite for spherical buildings. In every thick twin
building and in every thick 2-spherical building, the number of chambers in
an s-panel, s ∈ S, only depends on s. The building is locally finite precisely
when all these numbers are finite. In this case the parameters of the building
are the numbers qs, s ∈ S, where every panel of type s contains precisely
qs + 1 chambers.

We conclude this section with some examples of buildings and twin build-
ings.

Example 1. Let (∆, δ) be a spherical building of type (W,S) (and so
W is finite). Let w0 be the unique longest element of W . Let ∆+ and ∆−

be disjoint copies of ∆, and for each C ∈ ∆ let C± denote the corresponding
chamber in ∆±. Define Weyl distance functions by δ± : ∆± ×∆± → W by
δ+(C+, D+) = δ(C,D) and δ−(C−, D−) = w0δ(C,D)w−1

0 , so that (∆+, δ+)
and (∆−, δ−) are spherical buildings of type (W,S). Define a Weyl codis-
tance function δ∗ by

δ∗(C+, D−) = δ(C,D)w0 and δ∗(C−, D+) = w0δ(C,D).

Then (∆+,∆−, δ∗) is a twin building of type (W,S). Note that cham-
bers C+ ∈ ∆+ and D− ∈ ∆− are opposite in the twin building (that is,
δ∗(C+, D−) = 1) if and only if the chambers C and D are opposite in the
original spherical building (that is, δ(C,D) = w0). Thus all spherical build-
ings can be regarded as twin buildings, and opposition in the twin building
agrees with opposition in the spherical building.

Example 2. Rank 2 buildings play an important role in the theory of
buildings. Usually rank 2 buildings are viewed as geometries, where one
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type of panels is the point set, and the other the set of lines. Then spheri-
cal rank 2 buildings are precisely the same as generalised m-gons (bipartite
graphs with diameter m and girth 2m, with m < ∞). By the Feit-Higman
Theorem [5] finite thick generalised m-gons only exist for m = 2, 3, 4, 6, 8.
Generalised m-gons with m = 3 are projective planes. Generalised m-gons
with m = 2, 4, 6, 8 are generalised digons, quadrangles, hexagons, and oc-
tagons (respectively).

Example 3. Let G be a Kac-Moody group over a field F with Weyl
system (W,S) (see [20]). Let B+ and B− be opposite ‘Borel subgroups’
of G. The Bruhat decompositions and the Birkhoff decompositions of G are

G =
⊔
w∈W

BεwBε and G =
⊔
w∈W

B−εwBε

where ε ∈ {−,+}. Then ∆+ = G/B+ and ∆− = G/B− are buildings of type
(W,S) with Weyl distance functions given by δ(gBε, hBε) = w if and only if
g−1hBε ⊆ BεwBε. Then ∆ = (∆+,∆−, δ∗) is a twin building of type (W,S),
where the Weyl codistance function is given by δ∗(gB−ε, hBε) = w if and
only if g−1hBε ⊆ B−εwBε.

Example 4. Let F be a field and let G = PGL2(F[t, t−1]). Let K+ =
PGL2(F[t]) andK− = PGL2(F[t−1]). Let τ be the diagonal matrix diag(t, 1).
Then G has decompositions

G =
⊔
n≥0

KετnKε and G =
⊔
n≥0

K−ετnKε

where ε ∈ {−,+}. Let T ε be the graph with vertex set G/Kε, with vertices
gKε and hKε connected by an edge if and only if g−1hKε ⊆ KετKε. Define
a numerical codistance function d∗ by d∗(gK−ε, hKε) = n if and only if
g−1hKε ⊆ K−ετnKε. Then T = (T+, T−, d∗) is a twin tree (see [11]; in the
rank 2 case the twin building axioms can be efficiently restated in terms of
a numerical codistance function d∗). Note that the group homomorphism
t 7→ t−1 induces an involutive automorphism θ : T → T of the twin tree
which interchanges the two halves of the twin tree.

3. Proof of Proposition 1.1

The arguments of this section are adapted from [2, Lemma 3.1, Theo-
rem 3.2] (where it is shown that automorphisms of non-spherical buildings
have unbounded displacement) and [8, Proposition 4.9] (where involutions
of twin buildings are considered).
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Lemma 3.1. Let σ : S → S be an automorphism of the Coxeter graph of
W . Let w ∈W , and let J = {s ∈ S | `(sw) < `(w)}. Then WJ is spherical,
and if `(wσ(s)) < `(w) and `(swσ(s)) = `(w) for all s ∈ J , then σ(J) = J ,
w = wJ (the longest element of WJ), and swσ(s) = w for all s ∈ J .

Proof. By [1, Proposition 2.17] the parabolic subgroup WJ is finite.
Assume now that `(wσ(s)) < `(w) and `(swσ(s)) = `(w) for all s ∈ J . The
first inequality tells us that σ(J) ⊆ J ′ = {t ∈ S|`(wt) < `(w)}. By the
dual version of [1, Proposition 2.17], it follows that there is an expression
w = v′wσ(J) with `(w) = `(v′) + `(wσ(J)), since wσ(J) ∈ WJ ′ . If v′ 6= 1 has
reduced expression v′ = s1 · · · sr, then s1 ∈ J , and since there is a reduced
expression for wσ(J) ending in σ(s1) we obtain a reduced expression for w
which starts with s1 ∈ J and ends with σ(s1), contradicting the condition
that for all s ∈ J , we require `(swσ(s)) = `(w). Therefore v′ = 1, and
w = wσ(J). Since σ(s)wσ(J) (s ∈ J) is in Wσ(J), it must be shorter than
wσ(J), and so σ(J) ⊆ J . Since J is finite and σ is a bijection, it follows that
σ(J) = J and w = wJ . Now swσ(s) ∈ WJ for s ∈ J (since s, σ(s) ∈ J and
w = wJ ∈WJ) and `(swσ(s)) = `(wJ), so swσ(s) = w for all s ∈ J (by the
uniqueness of the longest element of WJ).

Proof (Proof of Proposition 1.1). Let C ∈ ∆ be such that the codis-
tance w = δ∗(C,Cθ) has minimal length. Let J = {s ∈ S | `(sw) < `(w)},
and let σ : S → S be the automorphism of the Coxeter graph induced by θ.
We claim that for all s ∈ J we have `(wσ(s)) < `(w) and `(swσ(s)) = `(w).

For if `(wσ(s)) > `(w) then, by thickness, we can choose a chamber D
with δ(C,D) = s such that δ∗(C,Dθ) = w. Since `(sw) < `(w) we have
δ∗(D,Dθ) = sw, contradicting minimality of w.

Therefore `(wσ(s)) < `(w), and so for all D with δ(C,D) = s we have
δ∗(C,Dθ) = wσ(s). Therefore δ∗(D,Dθ) ∈ {wσ(s), swσ(s)}. By minimality
of w we have δ∗(D,Dθ) = swσ(s) and `(swσ(s)) = `(w).

By the previous lemma, w = wJ = swσ(s) ∈ WJ . By connectivity in
the J-residue R of C, we get that δ∗(E,Eθ) = wJ ∈WJ for all chambers E
in R, and so every chamber in R is opposite to a chamber in Rθ, that is, R
is a spherical residue which is opposite its image under θ.

4. Proof of Theorem 1.3

In this section we prove Theorem 1.3, which will be an ingredient in the
proof of Theorem 1.2. Let J ⊆ S. We call an automorphism θ of a twin
building J-opposite if it maps all S\J-residues to opposite residues (in other
words, θ maps all type J simplices to opposites). We simply say opposite
instead of S-opposite (and so an automorphism is opposite if it maps all
chambers to opposite chambers).
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A key observation is that if θ is J-opposite then δ∗(C,Cθ) ∈WS\J for all
chambers C. Indeed if the S\J-residue of C is opposite the S\J-residue of
Cθ then there is a chamber D in the S\J-residue of C with δ∗(D,Cθ) = 1.
Since δ(C,D) ∈WS\J it follows that δ∗(C,Cθ) ∈WS\J .

Lemma 4.1. Suppose that the automorphism θ of ∆ is J-opposite with
J ⊆ S nonempty. Then θ is {s}-opposite for every s ∈ J .

Proof. We will call (S\{s})-residues type s vertices (using simplicial
complex language). We need to show that θ maps type s vertices to type s
vertices, for each s ∈ J . Let x be a type s vertex, with s ∈ J , and suppose
that xθ has type s′. Then s′ ∈ J because θ preserves J set-wise (as θ
maps S\J-residues to S\J-residues). Let C be a chamber contained in x.
Since θ is J-opposite we have w := δ∗(C,Cθ) ∈ WS\J . By (T3) there is a
chamber D with δ(C,D) = s and δ∗(D,Cθ) = sw. Since θ maps the type s
vertex of C to the type s′ vertex of Cθ we have δ(Cθ, Dθ) = s′, and so [1,
Lemma 5.139] gives δ∗(D,Dθ) ∈ {sw, sws′}. Since θ is J-opposite we have
δ∗(D,Dθ) ∈WS\J . Since w ∈WS\J this forces δ∗(D,Dθ) = sws′, and since
this must be an element of WS\J the Deletion Condition [1, §2.1] implies
that sws′ = w. Thus sw = ws′. The expressions sw and ws′ are reduced
since w ∈WS\J , and so by [1, Proposition 2.16] we have s = s′.

Lemma 4.2. If w ∈ WS\{s}, s ∈ S, then sw = ws if and only if s
commutes with each generator appearing in a reduced expression for w.

Proof. We have `(ws) = `(w) + 1 because w ∈WS\{s}. It follows from
Tits’ solution to the Word Problem [1, Theorem 2.33] that every reduced
expression for ws has exactly 1 occurrence of the generator s. Also if s′

appears in a reduced expression for w, and s′ does not commute with s,
then every occurrence of s′ in any reduced expression for ws must occur to
the left of the unique s generator.

Lemma 4.3. If θ is {s}-opposite for some s ∈ S then θ is S-opposite.

Proof. For the proof we define the Coxeter distance cox(u, v) between
u ∈ W and v ∈ W to be the minimum distance in the Coxeter graph of W
between nodes s and t such that s appears in a reduced expression for u,
and t appears in a reduced expression for v. (This is well defined because by
[1, Proposition 2.16] the set of generators appearing in a reduced expression
for an element of W does not depend on the particular reduced expression
chosen). Since W is irreducible, the Coxeter graph is connected, and so if
u, v 6= 1 then cox(u, v) < ∞. By convention we set cox(u, v) = ∞ if either
u or v is the identity.

Suppose that the automorphism θ is {s}-opposite. Let C be a chamber
of ∆ such that the Coxeter distance between s and w = δ∗(C,Cθ) is minimal.
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Since w ∈WS\{s} we have cox(s, w) ≥ 1. We aim to show that cox(s, w) =∞
(and so δ∗(C,Cθ) = 1 for all C, hence the result).

Suppose, for a contradiction, that d = cox(s, w) satisfies 1 ≤ d <∞. Let
s′ be a generator appearing in a reduced expression for w with cox(s, s′) = d.
Let t be the second last node on a geodesic in the Coxeter graph from s to
s′, so that cox(s, t) = d − 1 and cox(t, w) = cox(t, s′) = 1. By the twin
building axiom (T3) we can choose a chamber D with δ(C,D) = t and
δ∗(D,Cθ) = tw. Then δ∗(D,Dθ) ∈ {tw, twt′} where δ(Cθ, Dθ) = t′. We
consider each case.

Suppose that δ∗(D,Dθ) = tw. Since t does not appear in a reduced
expression for w we have `(tw) = `(w) + 1, and therefore cox(s, tw) = d− 1,
contradicting the fact that the chamber C minimises Coxeter distance.

Suppose that δ∗(D,Dθ) = twt′. Suppose first that t′ 6= t (this case
only happens if d > 1). Since θ induces an automorphism of the Cox-
eter graph preserving s we have cox(s, t) = cox(s, t′) = d − 1. Thus
`(twt′) = `(w) + 2 (since neither t nor t′ appear in a reduced expres-
sion for w). Therefore cox(s, twt′) = d − 1, a contradiction. So we must
have that t′ = t. Since `(tw) = `(w) + 1 we have `(twt) = `(w) + 2 or
`(twt) = `(w). If `(twt) = `(w)+2 then cox(s, twt) = d−1, a contradiction.
If `(twt) = `(w) then by the Deletion Condition twt = w (for otherwise
cox(s, twt) = d − 1, a contradiction). Therefore tw = wt, contradicting
Lemma 4.2 since cox(s, s′) = 1 and so s and s′ do not commute.

Therefore cox(s, w) =∞, and the proof is complete.

Proof (Proof of Theorem 1.3). By Lemmas 4.1 and 4.3, if θ is J-
opposite with J ⊆ S nonempty then θ is opposite and so it maps all chambers
to opposite chambers. If θ maps all chambers to opposite chambers, then it
is immediate that θ maps all residues to opposite residues, so θ is J-opposite
for any J ⊆ S. In particular, θ is {s}-opposite for all s ∈ S, which means
vertices of type s are mapped to vertices of type s for all s ∈ S.

5. Proof of Theorem 1.2

We call a rank 2 building non-exotic if it is thick, finite and has parame-
ters (p, q) with gcd(p, q) > 1. As in Section 2, by parameters (p, q) we mean
that every panel of one type contains precisely p + 1 chambers and every
panel of the other type contains precisely q + 1 chambers.

It follows from [21, 5.6 Corollary 3] that every rank 2 residue in a locally
finite 2-spherical thick twin building of rank at least 3 satisfies the Moufang
condition. Now, it follows from the last sentences of Section 3 of [19] and
[6, 7] that every thick finite Moufang building of rank 2 is non-exotic. Hence
every rank 2 residue in a locally finite 2-spherical thick twin building of
rank at least 3 is non-exotic. (In particular this applies to any finite thick
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spherical building of rank at least 3). Hence the following theorem implies
Theorem 1.2.

Theorem 5.1. Suppose that ∆ is a twin building of type (W,S) with at
least one non-exotic rank 2 residue which is not a generalised digon. Let
J ⊆ S be nonempty. Then an automorphism θ : ∆ → ∆ cannot map every
S\J-residue to an opposite residue.

We will deduce Theorem 5.1 from Theorem 1.3 and the following propo-
sitions about automorphisms of rank 2 buildings. We will take the geometric
view of rank 2 buildings as generalised m-gons (see Example 2).

Recall that a collineation (respectively duality) of a generalised m-gon ∆
is a type preserving (respectively type swapping) automorphism θ : ∆→ ∆.
Here, the type is with respect to the ‘single’ spherical building structure,
and not as a twin building (see Example 1). Thus a duality maps points to
lines. An absolute point of a duality of a projective plane is a point which
is mapped to a line incident with the point.

Proposition 5.2 ([13] and [12]). Let ∆ be a finite generalised quadran-
gle, hexagon or octagon with parameters (p, q), where gcd(p, q) > 1. Then
every collineation of ∆ maps some point to a point at distance at most 2 in
the incidence graph. In particular, no collineation is opposite.

Dualities of finite projective planes are also treated in [13], but there is
an error in the proof of Corollary 5.5, which is pointed out in [14]. The
correct version can be found in [12, Corollary 1.4.5], which we restate here.

Proposition 5.3. Let ∆ be a finite projective plane of order q and let θ
be a duality of ∆ of order n. Let q′ be the square-free part of q (with q′ = 0
if q is a perfect square). Then θ admits at least one absolute point if one of
the following conditions is satisfied.

(i) q′ does not divide n.

(ii) q′ is even and divides n, but 8 does not divide n.

(iii) q′ = 3 mod 4, q′ divides n, but 4 does not divide n.

In the next proposition we show that these conditions can be omitted,
not only for the classical finite projective planes, but for all finite projective
planes including potential projective planes of non-prime-power orders.

Proposition 5.4. Every duality of a finite projective plane has an ab-
solute point.
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Proof. Suppose this is not true and consider a smallest counter-example
∆, of order q, with a duality θ without absolute points.

By Proposition 5.3 every duality of a plane of square order q admits at
least one absolute point, so q is not a square. Let q′ 6= 0 be its square-free
part. Also by Proposition 5.3, if q′ does not divide |θ| (the order of θ), then
θ admits at least one absolute point. Hence we may assume from now on
that q′ divides |θ|. Now we claim that |θ| can be written as 2q′r, r ∈ N.
Indeed, if q′ is odd, this follows from the fact that θ is a duality. If q′ is
even, then by Proposition 5.3, |θ| is a multiple of 8 and the claim follows.

Let θ′ = θq
′r, so θ′ is an involution. We now divide our arguments in

three cases.
Case 1: q′r is even and q is even. In this case θ′ is a collineation (a

type-preserving automorphism). Now we will use the fact that there are only
three possible types of collineations of order 2 of a projective plane of order
q: homologies, elations, and Baer involutions, see Theorems 4.3 and 4.4 of
[10]. They are characterised by their set of fixed points and lines. A Baer
involution happens only for q a perfect square and it pointwise fixes a Baer
subplane (a projective plane of order

√
q). Homologies and elations happen

when q is odd and even, respectively, and they are central collineations: they
have a unique centre (all lines through the centre are fixed), and a unique
axis (all points on the axis are fixed). For homologies the centre is not on
the axis, for elations it is.

Hence in our present situation, θ′ is an elation with axis L and centre
x, where x ∈ L. Since θ centralizes θ′, θ acts on the set of fixed points
and fixed lines of θ′, and hence must fix the flag {x, L}. Therefore x is an
absolute point for θ, a contradiction.

Case 2: q′r is even and q is odd. In this case θ′ is again a collineation of
order 2, but since q is odd, θ′ is a homology with axis L and centre x, where
x /∈ L. Since θ centralizes θ′, θ must interchange x and L, and preserve the
set F of flags {y, yx} where y ∈ L and xy denotes the line containing x and
y. Since q is odd, so is q′. Pick a prime p dividing q′ and write |θ| = ph`,
where ` is not divisible by p. Note that ` is even. Let θ′′ = θ`. It has order
ph and is a collineation. Since θ′′ centralises θ′, it fixes both x and L, and
preserves the set F . All the orbits of θ′′ have size 1 or a power of p. Since
F has size q+ 1, which is congruent to 1 modulo p, θ′′ must fix at least one
flag of F . If there were only one such flag, then it follows from the fact that
θ centralises θ′′ that θ would fix that flag, and hence the point of that flag
is absolute, a contradiction.

Let P be the set of fixed points of θ′′ and let L be the set of lines of
∆ intersecting P in at least two points. We claim that ∆′ = (P,L) is a
projective plane. By definition, two points are on one line, and since the
intersection of two lines with two fixed points each is also fixed, two lines in
L meet in a point of P. The only remaining axiom to check is that (P,L)
contains a quadrangle. Let {zi,Mi}, i = 1, 2, be two distinct flags of F fixed
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by θ′′. Since θ′′ fixes at least two points of Mi, namely x and zi and all
θ′′-orbits have size 1 or a power of p, there are at least p + 1 points of Mi

in P. Let yi be a point of Mi distinct from x and zi, in P (i = 1, 2). Then
{y1, z1, y2, z2} forms a quadrangle. Hence ∆′ = (P,L) is a projective plane.
Since θ′′ is not the identity, P is strictly contained in the pointset of ∆.

Since θ centralises θ′′, θ acts on the projective plane ∆′, also without
absolute points. This contradicts the fact that ∆ was a smallest counter-
example.

Case 3: q′r is odd. In this case θ′ is a duality of order 2, i.e., a polarity,
of a projective plane with non-square order q. Baer showed [3] that the
number of absolute points of θ′ is exactly q+1. Moreover, for q even, all the
absolute points are collinear; for q odd, not more than two absolute points
lie on a given line. Note that the point x is absolute for θ′ if and only if
{x, xθ′} is a flag fixed by θ′. Let F be the set of flags fixed by θ′; this set
has size q + 1.

Pick a prime p dividing q′ and write |θ| = ph`, where ` is not a multiple
of p (note that p is odd and ` is even). Let θ′′ = θ`. It has order ph and is a
collineation. Since θ′′ centralises θ′, it preserves the set F . All the orbits of
θ′′ have size 1 or a power of p. Since F has size q+ 1, which is congruent to
1 modulo p, θ′′ must fix at least one flag of F . If there were only one such
flag, then it follows from the fact that θ centralises θ′′ that θ would fix that
flag too, and then the point of that flag would be an absolute point for θ, a
contradiction. Hence θ′′ must fix at least p+ 1 ≥ 4 flags of F .

Let P be the set of fixed points of θ′′ and let L be the set of lines of
∆ intersecting P in at least two points. We claim that ∆′ = (P,L) is
a projective plane. As above, the only significant axiom to check is that
(P,L) contains a quadrangle. If q is odd, then the flags {x, xθ′} of F are
such that no three of the absolute points are on a given line, and since there
are at least 4 such flags, (P,L) contains a quadrangle.

So assume now that q is even. Then, as noticed above, all the absolute
points of θ′ form a line, say L. In other words, all the points of the flags
of F lie on L, and there are at least p + 1 ≥ 4 such points which are in P.
Since L is the image by θ′ of at most one of them (namely Lθ

′
, if it is an

absolute point), there are at least two points x1, x2 of P which are on L,
and such that xθ

′
i 6= L and {xi, xθ

′
i } ∈ F is fixed by θ′′, i = 1, 2. Hence θ′′

fixes y := xθ
′

1 ∩xθ
′

2 . Since θ′′ fixes at least two points of xθ
′
i , namely xi and y

and all θ′′-orbits have size 1 or a power of p, there are at least p+ 1 points
of xθ

′
i in P. Let yi be a point of xθ

′
i distinct from xi and y, in P (i = 1, 2).

Then {x1, y1, x2, y2} forms a quadrangle.
Hence, in all cases, ∆′ := (P,L) is a projective plane. Since θ′′ is not

the identity, P is strictly contained in the pointset of ∆.
Since θ centralises θ′′, θ acts on the projective plane ∆′ and as above it

has no absolute points, contradicting the fact that ∆ was a smallest counter-
example.
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We now give the proof of Theorem 5.1 (and hence Theorem 1.2).

Proof (Proof of Theorem 5.1). Suppose that θ : ∆ → ∆ maps all
S\J-residues to opposites. Then by Theorem 1.3, θ is type preserving and
maps all chambers to opposites. Let R be a non-exotic rank 2 residue
of ∆. Then (R,Rθ) forms a twin building with codistance induced by the
codistance of ∆. Since R is of spherical type we can see this twin building as
a (single) spherical building R in the usual way. The induced automorphism
θ̃ : R → R is a duality if R is a projective plane, and a collineation for
generalised quadrangles, hexagons, and octagons. This automorphism maps
all chambers to opposites, contradicting Propositions 5.2 and 5.4.

We conclude with some applications of Theorem 5.1. Our first applica-
tion is to involutions of spherical buildings.

Corollary 5.5. An involution θ of a spherical building ∆ either maps
every chamber to an opposite or fixes at least one simplex. In particular,
every involution of a finite irreducible thick spherical building of rank at least
3 fixes some simplex.

Proof. Suppose that θ does not map every chamber to an opposite and
let C be a chamber such that Cθ is not opposite C. Suppose C 6= Cθ.
Choose an apartment A through C and Cθ and let θ′ be the unique type
preserving isomorphism Aθ → A fixing C and Cθ. Then θθ′ restricted to A
is an involution A→ A, as (θθ′)2 fixes C and Cθ but θθ′ switches them.

Let Σ be the geometric realisation (on a sphere) of A as a Coxeter com-
plex. Consider the geodesic joining the barycentres of the chambers C and
Cθ. Since C and Cθ are not opposite, this geodesic is unique. In this case
θθ′ fixes the midpoint of the geodesic, and since θ′ acts as the identity on
the convex closure of C and Cθ, this implies that θ fixes some simplex.

If ∆ is a finite thick spherical building of rank at least 3, then all rank 2
residues are non-exotic (as we noted in the beginning of this section). By
Theorem 1.2 the involution θ : ∆ → ∆ cannot map all chambers to oppo-
sites, and hence fixes a simplex by the above argument.

We conclude with a group theoretic application. Following [4, Defini-
tion 1.1], we say that a group G with a twin BN -pair (see [1, §6.3.3]) admits
a generalised Iwasawa decomposition if there exists an automorphism θ of G
such that (B+)θ = B− and G = GθB

+, where Gθ is the centraliser of θ in G.
(For the motivations behind Iwasawa decompositions, see the introduction
to [4]).

Corollary 5.6. Let G be an irreducible 2-spherical locally finite Kac-
Moody group of rank at least 3. Then no generalised Iwasawa decomposition
of G can exist.
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Proof. Let (∆+,∆−, δ∗) be the twin building associated to G (see
[1, Definition 6.82]). The codistance between chambers gB+ ∈ ∆+ and
hB− ∈ ∆− is given by δ∗(gB+, hB−) = w if and only if g−1hB− ⊆ B+wB−.
Suppose that there is an automorphism θ of G with (B+)θ = B− and
G = GθB

+. Then each chamber of ∆+ can be written as gB+ for some
g ∈ Gθ, and since g−1gθB− = B− ⊆ B+B− we have δ∗(gB+, (gB−)θ) = 1.
Hence each chamber of ∆+ is mapped to an opposite chamber under θ,
contradicting Theorem 1.2.
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