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Abstract This paper has two main purposes. Firstly, we generalise Ram’s com-
binatorial construction of calibrated representations of the affine Hecke algebra to
the multi-parameter case (including the non-reduced BCn case). We then derive the
Plancherel formulae for all rank 1 and rank 2 affine Hecke algebras, using our cali-
brated representations to construct all representations involved.
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1 Introduction

In this paper, we extend Ram’s combinatorial construction of calibrated representa-
tions of affine Hecke algebras to the multi-parameter case (including the non-reduced
case), and we use these representations to derive explicit Plancherel formulae for all
rank 1 and rank 2 affine Hecke algebras, following the work of Opdam (see [18, 19]).

Let us discuss the relevance and significance of each of these objectives. Affine
Hecke algebras arise in the study of representation theory of groups G of Lie type
defined over local fields such as Fq((t)) or Qp . If I is an Iwahori subgroup of G

then complex representations of G with vectors fixed by I can be studied via corre-
sponding representations of the associated affine Hecke algebra H = Cc(I\G/I) of
continuous compactly supported I bi-invariant complex valued functions on G (see
[2, 16]). On the one hand, the representation theory of affine Hecke algebras is well
behaved (for example, the irreducible representations of these infinite dimensional
algebras are all finite dimensional), while, on the other hand, the representation the-
ory is rather delicate (for instance, see the remarkable geometric classification of the
irreducibles given in [12] using the K-theory of the flag variety).
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Affine Hecke algebras have a basis {Tw | w ∈ W } indexed by elements of an affine
Weyl group W , and depend on parameters q0, . . . , qn (one parameter for each Cox-
eter generator s0, . . . , sn of W ). The most studied case is the 1-parameter case, where
qi = q for all i. It is to this case that the geometric classification mentioned above ap-
plies. In [23], Ram introduced an explicit combinatorial construction of the class of
calibrated representations of 1-parameter affine Hecke algebras. These are the mod-
ules which have a basis of simultaneous eigenvectors for all the elements of a natural
large commutative subalgebra of the Hecke algebra. While not all representations of
an affine Hecke algebra are calibrated, the calibrated representations are of particular
interest to combinatorialists since they are the generalisation of the classical combi-
natorial constructions for Weyl groups to (one parameter) Hecke algebras. Our first
aim in this paper is to extend the construction of calibrated representations to the
multi-parameter case (see Theorem 3.6). We suspect that a full classification of cali-
brated representations, along the lines of the one parameter case, is possible, although
we defer this investigation to later work and instead the focus here is on constructing
calibrated representations. In Sect. 3.3, we give some explicit examples of our cali-
brated representations, and, in Sect. 3.4, we develop the character theory of calibrated
representations in preparation for the Plancherel Theorems.

In the second part of this paper, we derive the Plancherel Theorem for rank 1 and 2
affine Hecke algebras. The Plancherel Theorem is the spectral decomposition of the
canonical trace functional Tr : H → C with Tr(Tw) = δw,1 for w in the affine Weyl
group W . It is the analogue of the formula

Tr(a) =
∑

π∈Irrep(H )

mπχπ(a)

for finite dimensional Hecke algebras, where mπ are the generic degrees (see [8,
Chap. 11]). For affine Hecke algebras the sum becomes an integral over representa-
tions of a C∗-algebra completion of H , and the weights mπ become the Plancherel
measure.

The Plancherel Theorem has been proven in general by Heckman and Opdam
[10] and Opdam [19] in a veritable tour-de-force parallelling Harish–Chandra’s
work [9] on the Plancherel Theorem for real and p-adic Lie groups (see also Reeder
[26]). The Plancherel Theorem has been further developed by Delorme–Opdam, Op-
dam, Opdam–Solleveld, and Ciubotaru–Kato–Kato (see [4, 6, 20, 21]). Therefore,we
should explain the value of our direct calculations in ranks 1 and 2.

Firstly, while the general formulation of the Plancherel Theorem in [19] is essen-
tially complete, there are some constants that are not explicitly computed (they are
conjectured in [19, Conjecture 2.27] to be rational numbers). Thus it is desirable to
have a complete and direct calculation in ranks 1 and 2 which evaluate all constants
involved. (We note that in the case of the affine Hecke algebra of the general linear
group over a non-Archimedean local field, the Plancherel Formula is entirely known,
see [1, Remark 5.6]).

Secondly, for concrete applications of the Plancherel Theorem (for example, prob-
abilistic calculations like in [22]) one may need explicit constructions of the represen-
tations involved in the Plancherel formula. For the non-expert this may be a difficult
task to fulfil, and so we believe that the combination of both parts of this paper, with
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a very concrete matching up of representations and terms in the Plancherel Theorem,
is of value. In particular, the use of calibrated representations makes the Plancherel
Theorem accessible at a combinatorial level.

Finally, we hope that the explicit calculations may in some ways serve as an intro-
duction to the general theory, and illustrate the complexity involved in the sophisti-
cated work [4, 19]. The starting point and general philosophy for our derivation of the
Plancherel Theorems is similar to that in [19], but since we restrict to the rank 1 and 2
cases the calculations can be carried out by hand. In fact, our calculations form an ex-
tension of Matsumoto’s influential rank 1 calculations [16, §2.6], and hence provides
a companion piece to [16] (see also Kutzko and Morris [13]).

2 Definitions and setup

2.1 Root systems and Weyl groups

Let R be an irreducible (not necessarily reduced) finite crystallographic root system
with simple roots α1, . . . , αn in an n-dimensional real vector space V with inner prod-
uct 〈·, ·〉. Let R+ be the set of positive roots relative to the simple roots α1, . . . , αn. Let
W0 be the Weyl group; the subgroup of GL(V ) generated by the reflections sα , α ∈ R,
where sα(λ) = λ − 〈λ,α〉α∨ with α∨ = 2α/〈α,α〉. Thus W0 is a Coxeter group with
distinguished generators s1, . . . , sn (where si = sαi

). Let w0 be the (unique) longest
element of W0. The dual root system is R∨ = {α∨ | α ∈ R}. The coroot lattice Q and
the coweight lattice P are

Q = Z-span of R∨ and P = Zω1 ⊕ · · · ⊕Zωn,

where ω1, . . . ,ωn are the fundamental coweights defined by 〈αi,ωj 〉 = δij . The cone
of dominant coweights is P + = Z≥0ω1 ⊕· · ·⊕Z≥0ωn. Then Q ⊆ P , and W0 acts on
lattices L with Q ⊆ L ⊆ P . The affine Weyl group associated to R and L is

WL = L�W0,

where we identify λ ∈ L with the translation tλ(x) = x + λ. Let ϕ be the highest root
of R, and let s0 = tϕ∨sϕ . Let S = {s0, . . . , sn}. Then WQ = 〈S〉 is a Coxeter group,
and

WL = WQ � (L/Q), where L/Q is finite and abelian.

The length 	(w) of w ∈ WQ is the minimum 	 ≥ 0 such that w can be written as
a product of 	 generators in S. The length of w ∈ WL is defined by 	(w) = 	(w′),
where w = w′γ with w′ ∈ WQ and γ ∈ L/Q. Thus elements of L/Q have length
zero.

Write R = R1 ∪ R2 ∪ R3 with

R1 = {α ∈ R | α/2 /∈ R and 2α /∈ R}, R2 = {α ∈ R | 2α ∈ R},
R3 = {α ∈ R | α/2 ∈ R}.
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These sets are pairwise disjoint, and if R is reduced then R1 = R and R2 = R3 = ∅.
Define

R0 = R1 ∪ R2.

The inversion set of w ∈ W is R(w) = {α ∈ R+
0 | w−1α ∈ −R+

0 }. By [3, VI, §1],
we have

R(w) = {αi1, si1αi2, . . . , si1 · · · si	−1αi	} whenever w = si1 · · · si	 is reduced. (2.1)

For each rank n ≥ 1 there is exactly one irreducible non-reduced root system (up
to isomorphism). This is the BCn system, and it can be realised in R

n by

R = ±{ei − ej , ei + ej , ek,2ek | 1 ≤ i < j ≤ n and 1 ≤ k ≤ n},
where the simple roots are αi = ei −ei+1 for 1 ≤ i < n and αn = en. The coroot lattice
is spanned by α∨

1 , . . . , α∨
n−1, α

∨
n /2, and we have P = Q. Then R0 is a root system

of type Bn with simple roots α1, . . . , αn. We will always use the above conventions
for indexing the simple roots of BCn root systems, and more generally we will adopt
standard Bourbaki conventions [3] for the irreducible root systems.

2.2 Parameter systems

Let q0, q1, . . . , qn ∈C
× be such that qi = qj whenever si and sj are conjugate in WQ.

We call the sequence (qi) a parameter system. By [3, IV, §5, No. 5, Prop. 5], the
product

qw = qi1 · · ·qi	 (where w = si1 · · · si	 ∈ WQ is reduced)

does not depend on the particular reduced expression for w. If α ∈ W0αi ∩W0αj then
si and sj are conjugate in W0, and hence for α ∈ R0 we define

qα = qi if α ∈ W0αi.

Let C[L] = C-span {xλ | λ ∈ L} be the group algebra of L, with the group oper-
ation written multiplicatively as xλxμ = xλ+μ. In the field of fractions of C[L], let
(for α ∈ R0)

cα(x) =

⎧
⎪⎨

⎪⎩

1−q−1
α x−α∨

1−x−α∨ if α ∈ R1,

(1−q
−1/2
0 q

−1/2
n x−α∨/2)(1+q

1/2
0 q

−1/2
n x−α∨/2)

1−x−α∨ if α ∈ R2.

(Note that if α ∈ R2 then 2α ∈ R, and so (2α)∨ = α∨/2 is in L.) Choose relatively
prime elements nα(x) and dα(x) in C[L] so that

cα(x) = nα(x)

dα(x)
.

For example, α ∈ R2 and q
1/2
n = q

1/2
0 then nα(x) = 1 − q−1

n x−α∨/2 and dα(x) =
1 − x−α∨/2.
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Similarly, let

c′
α(x) =

⎧
⎪⎨

⎪⎩

1−q−1
α

1−x−α∨ if α ∈ R1,

1−q−1
n +q

−1/2
n (q

1/2
0 −q

−1/2
0 )x−α∨/2

1−x−α∨ if α ∈ R2.

Then, with dα(x) as above,

c′
α(x) = n′

α(x)

dα(x)

for some n′
α(x) ∈C[L] with n′

α(x) and dα(x) relatively prime.
Let

c(x) =
∏

α∈R+
0

cα(x), n(x) =
∏

α∈R+
0

nα(x), d(x) =
∏

α∈R+
0

dα(x).

The expression c(x) = n(x)/d(x) is the Macdonald c-function. We write ci(x), c′
i (x),

ni(x), n′
i (x), and di(x) for ni(x) for cαi

(x), c′
αi

(x), nαi
(x), n′

αi
(x), and dαi

(x), re-
spectively.

2.3 Affine Hecke algebras

Standard references for affine Hecke algebras include [14, 15] and [17]. With the
above notation, the affine Hecke algebra HL with parameters q0, . . . , qn is the alge-
bra over C with vector space basis {Tw | w ∈ WL} and relations

TuTv = Tuv if 	(uv) = 	(u) + 	(v),

T 2
i = 1 + (

q
1
2
i − q

− 1
2

i

)
Ti for all i = 0,1, . . . , n,

where we write Ti = Tsi .
The above presentation is the Coxeter presentation of HL. There is a second im-

portant presentation which exploits the semidirect product structure WL = L � W0.
This is the Bernstein presentation, given by (2.2)–(2.5) below. Each λ ∈ L can be
written as λ = μ − ν with μ,ν ∈ L ∩ P +, and we define

xλ = TtμT −1
tν

.

It is not hard to see that this is well defined, and in particular xλ = Ttλ if λ is dominant.
It can be shown [15] that HL has vector space basis {Twxλ | λ ∈ L,w ∈ W0} and

relations

T 2
i = 1 + (

q
1
2
i − q

− 1
2

i

)
Ti for i = 1, . . . , n, (2.2)

TiTjTi · · · = TjTiTj · · · (mij factors) for 1 ≤ i < j ≤ n, (2.3)

xλxμ = xλ+μ for all λ,μ ∈ L, (2.4)
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Tix
λ − xsiλTi = q

1
2
i c′

i (x)
(
xλ − xsiλ

)
for 1 ≤ i ≤ n and λ ∈ L. (2.5)

Thus we see a copy of the group algebra C[L] of the lattice L inside of HL. The
relation (2.5) is the Bernstein relation. Since siλ = λ − 〈λ,αi〉α∨

i and 〈λ,αi〉 ∈ Z

the “fraction” c′
i (x)(xλ − xsiλ) that appears in the Bernstein relation is actually an

element of C[L].
It is well known (see, for example, [15, (4.2.10)]) that the centre of HL is

C[L]W0 = {
f ∈ C[L] | w · f = f for all w ∈ W0

}
.

This has powerful implications for the representation theory of HL. For example, it
forces the irreducible representations to be finite dimensional (since the centre acts on
irreducible representations by scalars, and it is evident that HL is finite dimensional
over C[L]W0 ).

It is natural to seek modifications τw of Tw which satisfy a “simplified Bernstein
relation”

τwxλ = xwλτw for all w ∈ W0 and λ ∈ L. (2.6)

Define elements τ1, . . . , τn ∈ HL by

τi = di(x)Ti − q
1
2
i n′

i (x).

The Bernstein relation gives τix
λ = xsiλτi , and it can be shown (see [23, Proposi-

tion 2.7], for example) that for w ∈ W0 the product

τw = τi1 · · · τi	 is independent of the choice of reduced expression w = si1 · · · si	 .
Thus the elements τw , w ∈ W0, satisfy (2.6), and a direct calculation gives the useful
formula

τ 2
i = qi ni(x)ni

(
x−1) ∈ C[L]. (2.7)

2.4 Harmonic analysis for the affine Hecke algebra

Suppose now that q0, q1, . . . , qn > 1. Define an involution ∗ on HL and the canonical
trace functional Tr : HL → C by

( ∑

w∈WL

cwTw

)∗
=

∑

w∈WL

cwTw−1 and Tr

( ∑

w∈WL

cwTw

)
= c1.

An induction on 	(v) shows that Tr(TuT
∗
v ) = δu,v for all u,v ∈ WL, and so

Tr(h1h2) = Tr(h2h1) for all h1, h2 ∈ HL.

Thus (h1, h2) = Tr(h1h
∗
2) defines an Hermitian inner product on HL. Let ‖h‖2 =√

(h,h). The algebra HL acts on itself by left multiplication, and the corresponding
operator norm is

‖h‖ = sup
{‖hx‖2 : x ∈ HL,‖x‖2 ≤ 1

}
.
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Let HL denote the completion of HL with respect to this norm. Thus HL is a non-
commutative C∗-algebra. This algebra is ‘liminal’. Even better, all irreducible repre-
sentations of HL are finite dimensional, and so by [7, §8.8] there exists a probability
measure μ such that

Tr(h) =
∫

spec(HL)

χπ (h)dμ(π) for all h ∈ HL. (2.8)

The measure μ is the Plancherel measure. Only those representations of HL which
extend to the completion HL appear in the Plancherel Theorem. It is known [19,
Corollary 6.2] that these are the tempered representations of HL (see [19, §2.7] for
the definition).

If t ∈ Hom(L,C×) we write tλ = t (λ). The Weyl group W0 acts on Hom(L,C×)

by the formula (wt)λ = tw
−1λ. Following [18], define a function Gt : HL → C by

Gt(h) =
∑

μ∈L

t−μTr
(
xμh

)
(2.9)

whenever the series converges. From [18] we have the following (see also [19, (3.9)]).

Theorem 2.1 The series Gt(h) is absolutely convergent for all h ∈ HL whenever
|tα∨

i | < q−1
i for (R, i) �= (BCn,n) and |tα∨

n | < q−1
0 q−1

n for (R, i) = (BCn,n). More-
over,

Gt(h) = gt (h)

qw0c(t)c(t
−1)d(t)

, (2.10)

where for each fixed h the function gt (h) has a analytic continuation in the t-variable
to Hom(L,C×). Moreover, gt (h) satisfies

1. gt (h) is a polynomial in {tλ | λ ∈ L} (for fixed h ∈ HL),
2. gt (1) = d(t) for all t ∈ Hom(L,C×), and
3. gt (x

λhxμ) = tλ+μgt (h) for all λ,μ ∈ L and all h ∈ HL.

Remark 2.2 (a) Note that tλgt (τw) = gt (τwxλ) = gt (x
wλτw) = twλgt (τw), and so if

wt �= t then

gt

(
τwxλ

)= δw,1t
λ d(t).

Then, by condition 1 in the theorem, this formula holds for all t ∈ Hom(L,C×).
(b) The three conditions in the theorem completely determine gt (h). For example,

consider the Ã2 case. It is sufficient to calculate gt (Tw) for each w ∈ W0, because

gt (Twxλ) = tλgt (Tw). Write Q = q
1
2 − q− 1

2 . Applying gt to the Bernstein relation
T1x

α∨
1 = x−α∨

1 T1 + Q(1 + xα∨
1 ) gives

gt (T1) = Q
(
1 − t−α∨

1
)−1

d(t) = Q
(
1 − t−α∨

2
)(

1 − t−α∨
1 −α∨

2
)
.

Similarly, gt (T2) = Q(1 − t−α∨
1 )(1 − t−α∨

1 −α∨
2 ), gt (T1T2) = gt (T2T1) = Q2(1 −

t−α∨
1 −α∨

2 ), and gt (T1T2T1) = Q3 +Q(1− t−α∨
1 )(1− t−α∨

2 ), making (2.10) completely
explicit in type Ã2.
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Let

ft (h) = gt (h)

d(t)
. (2.11)

Note that ft (h) may have poles at points where tα
∨ = 1 for some α ∈ R0. Fix a

Z-basis λ1, . . . , λn of L. From (2.9) and (2.10) we have

Tr(h) = 1

qw0

∫

a1T

· · ·
∫

anT

ft (h)

c(t)c(t−1)
dt1 · · ·dtn, (2.12)

where ti = tλi , dti is Haar measure on the circle group T, and where a1, . . . , an > 0
are chosen such that if t ∈ Hom(L,C×) with |tλi | = ai for each i then |tα∨

i | < q−1
i

(if (R, i) �= (BCn,n)) and |tα∨
n | < q−1

0 q−1
n (if (R, i) = (BCn,n)). Formula (2.12)

appears in [19, Theorem 3.7], and is the starting point of the Plancherel Theorem.

3 Representations of affine Hecke algebras

Let M be a finite dimensional HL-module. For each t ∈ Hom(L,C×) let

Mt = {
v ∈ M | xλ · v = tλv for all λ ∈ L

}
,

M
gen
t = {

v ∈ M | for each λ ∈ L there is a k > 0 such that
(
xλ − tλ

)k · v = 0
}

be the t-weight space and the generalised t-weight space, respectively. Each finite
dimensional HL-module M decomposes into a direct sum of generalised t-weight
spaces

M =
⊕

t∈supp(M)

M
gen
t ,

where supp(M) = {t ∈ Hom(L,C×) | Mgen
t �= 0} is the support of M .

A finite dimensional HL-module M is calibrated if

M
gen
t = Mt for all t ∈ supp(M).

(In the literature, this is also refereed to as tame). The main purpose of the first half
of this paper is to construct calibrated irreducible representations of general affine
Hecke algebras. We suspect that a complete classification of calibrated representa-
tions along the lines of the 1-parameter case is possible (perhaps with some restric-
tions like Wt = W(t)), although such a classification requires detailed information
about the representation theory of rank 2 (multi-parameter) affine Hecke algebras,
and this would take us beyond the scope of the present paper (the rank 2 representa-
tion theory for the 1-parameter case is treated in [25]). Thus the focus of this paper is
on construction, and the question of classification will be pursued in later work.

The elements τi ∈ HL, considered as operators on a representation, are often
called intertwining operators because of the following fundamental and important
fact.
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Lemma 3.1 Let 1 ≤ i ≤ n. Let M be a finite dimensional HL-module, and suppose
that t ∈ supp(M). Then as operators,

τi : Mgen
t → M

gen
si t

and τi : Mgen
si t

→ M
gen
t .

Moreover, ni(t)ni(t
−1) �= 0 if and only if each operator is bijective.

Proof Let m ∈ M
gen
t . By (2.6), we compute

(
xλ − (si t)

λ
)k

τi · m = τi

(
xsiλ − t siλ

)k · m = 0

for sufficiently large k. Thus τi · m ∈ M
gen
si t

. For the final claim, note that by (2.7) the
operator τ 2

i : Mgen
t → M

gen
t is given by τ 2

i · m = qini(t)ni(t
−1)m. �

By Schur’s Lemma (see [29]), the centre C[L]W0 of HL acts on an irreducible
module M by scalars. It follows that there exists t ∈ Hom(L,C×) such that

p(x) · v = p(t)v for all p(x) ∈ C[L]W0 and all v ∈ M.

The element t is only defined up to W0 orbits. The orbit W0t is called the central
character of M , although as is customary we will usually refer to any t ′ ∈ W0t as
‘the’ central character of M . A central character t ∈ Hom(L,C×) is called regular if
tα

∨ �= 1 for all α ∈ R0.

3.1 Principal series representations

The large commutative subalgebra C[L] of HL can be used to construct finite di-
mensional representations of HL. The principal series representation with central
character t ∈ Hom(L,C×) is

M(t) = IndHL

C[L](Cvt ) = HL

⊗

C[L]
(Cvt ),

where Cvt is the 1-dimensional representation of C[L] with xλ · vt = tλvt for all
λ ∈ L. It is clear that this representation is |W0|-dimensional, and that {Tw ⊗ vt | w ∈
W0} is a basis of M(t).

For t ∈ Hom(L,C×) define

N(t) = {
α ∈ R+

0 | nα(t)n−α(t) = 0
}
,

D(t) = {
α ∈ R+

0 | dα(t) = 0
}
.

Note that N(t) and D(t) are closely related to the zeros of the numerator and denom-
inator of the Macdonald c-function, respectively.

For t ∈ Hom(L,C×), let

Wt = {w ∈ W0 | wt = t},
W(t) = 〈{

sα | α ∈ D(t)
}〉

.
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Note that W(t) is a normal subgroup of Wt (since wsαw−1 = swα). Moreover, if
L = P then necessarily W(t) = Wt (see [28, §4.2, 5.3]).

The following theorem of Kato [11, Theorem 2.2] is fundamental.

Theorem 3.2 The module M(t) is irreducible if and only if N(t) = ∅ and Wt = W(t).

The fundamental importance of the principal series representations is highlighted
by the following fact (see, for example, [23, Proposition 2.6]).

Proposition 3.3 If M is an irreducible representation of HL with central character
t then M is a quotient of M(t). In particular, dim(M) ≤ |W0|.

3.2 A combinatorial construction of irreducible calibrated HL-modules

Following [23], the calibration graph of t ∈ Hom(L,C×) is the graph Γ (t) with

vertex set {wt | w ∈ W0}, and

edges {wt, siwt} if and only if αi /∈ N(wt).

For each J ⊆ N(t) define

FJ (t) = {
w ∈ W0 | R(w−1)∩ N(t) = J and R

(
w−1)∩ D(t) = ∅}.

By the argument in [23, Theorem 2.14], if Wt = W(t) then the connected components
of Γ (t) are precisely the sets

{
wt | w ∈ FJ (t)

}
such that J ⊆ N(t) and FJ (t) �= ∅. (3.1)

Remark 3.4 We note that if Wt = W(t) then the geometric argument in [23, The-
orem 2.14] also shows that if w,v ∈ FJ (t), and if wv−1 = si1 · · · si	 is a reduced
expression, then each element

w, si1w, si2si1w, . . . , si	 · · · si2si1w = v is in FJ (t).

(Because the “smaller regions” in the proof of [23, Theorem 2.14] which correspond
to the connected components of the calibration graph are convex in the sense that they
are intersections of half spaces, and hence by [27, Proposition 2.8] all minimal length
paths between w and v are contained in this region). Thus FJ (t) is ‘geodesically
closed’ in the (dual of the) underlying Coxeter complex.

Proposition 3.5 If M is a finite dimensional HL-module then

dim
(
M

gen
t

)= dim
(
M

gen
t ′

)

whenever t and t ′ are in the same connected component of the calibration graph Γ (t).
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Proof If αi /∈ N(t) then Lemma 3.1 gives dim(M
gen
t ) = dim(M

gen
si t

). Hence the re-
sult. �

Let Rij be the rank 2 subsystem of R generated by the simple roots αi and αj .
That is, Rij is the intersection of R with the Z-span of {αi,αj }. We say that a weight

t ∈ Hom(L,C×) is (i, j)-regular if (wt)α
∨
i �= 1 and (wt)

α∨
j �= 1 for all w ∈ Wij =

〈si , sj 〉, and (i, j)-calibratable if one of the following conditions holds:

(i) The weight t is (i, j)-regular.
(ii) Rij is of type C2 (assume αi short and αj long) with

(a) qi = qj and (tα
∨
i , t

α∨
j ) = (qi, q

−1
i ) or (q−1

i , qi), or

(b) qi = q2
j and (tα

∨
i , t

α∨
j ) = (q−2

j , qj ) or (q2
j , qj ).

(iii) Rij is of type G2 (assume αi short and αj long) with
(a) qi = qj and (tα

∨
i , tα

∨
2 ) = (q−1

i , qi), (qi, q
−1
i ), (q2

i , q−1
i ), (q−2

i , qi), or

(b) qi = q3
j and (tα

∨
i , t

α∨
j ) = (q3

j , q−1
j ), (q−3

j , qj ), (q
−3
j , q2

j ), (q3
j , q−2

j ).
(iv) Rij is of type BC2 (assume αi middle-length and αj short) with

(a) qi = q0qj and (tα
∨
i , t

α∨
j /2

) = (q0qj , q
−1/2
0 q

−1/2
j ), (q−1

0 q−1
j , q

1/2
0 q

1/2
j ), or

(b) qi = q0q
−1
j or q−1

0 qj and (tα
∨
i , t

α∨
j /2

) = (q−1
0 qj ,−q

1/2
0 q

−1/2
j ), (q0q

−1
j ,

−q
−1/2
0 q

1/2
j ), or

(c) qi = q
1/2
0 q

1/2
j and (tα

∨
i , t

α∨
j /2

) = (q−1
i , qi), (qi, q

−1
i ), or

(d) qi = q
−1/2
0 q

1/2
j or q

1/2
0 q

−1/2
j and (tα

∨
i , t

α∨
j /2

) = (q−1
i ,−qi), (qi,−q−1

i ).

Conditions (i), (ii)(a) and (iii)(a) are equivalent to Ram’s definition of calibratable
in the 1-parameter case. Note that if Rij is of type BC2 then the underlying root
system R is necessarily non-reduced, and hence is of type BCn, and so 1 ≤ i ≤ n− 1
and j = n (since αj is assumed to be short).

In the following theorem, we construct a class of irreducible calibrated HL-
modules.

Theorem 3.6 Let t ∈ Hom(L,C×), and let J ⊆ N(t). Suppose that FJ (t) �= ∅ and
that each wt with w ∈ FJ (t) is (i, j)-calibratable for each pair (αi, αj ) of simple
roots of R. Let MJ (t) be the vector space over C with basis {ewt | w ∈ FJ (t)}, and
define linear operators T̃i (i = 1, . . . , n), x̃λ (λ ∈ L), on MJ (t) by linearly extending
the formulae

x̃λewt = (wt)λewt λ ∈ L, (3.2)

T̃iewt = q
1
2
i c′

i (wt)ewt + q
1
2
i ci(wt)esiwt 1 ≤ i ≤ n, (3.3)

with the convention that evt = 0 if v /∈ FJ (t). Then the map HL → End(MJ (t)) with
Ti �→ T̃i and xλ �→ x̃λ defines an irreducible calibrated representation of HL.

Proof (a) We check that the operators T̃i and x̃λ satisfy the Bernstein relation. We
have
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(
T̃i x̃

λ − x̃siλT̃i

)
ewt = (

(wt)λ − x̃siλ
)
T̃iewt

= (
(wt)λ − xsiλ

)(
q

1
2
i c′

i (wt)ewt + q
1
2
i ci(wt)esiwt

)

= (
(wt)λ − (wt)siλ

)
q

1
2
i c′

i (wt)ewt = q
1
2
i c′

i (x̃)
(
x̃λ − x̃siλ

)
ewt .

(b) We now check that the operators T̃i satisfy the quadratic relation T̃ 2
i = 1 +

(q
1
2
i − q

− 1
2

i )T̃i .

T̃ 2
i ewt = T̃i

(
q

1
2
i c′

i (wt)ewt + q
1
2
i ci(wt)esiwt

)

= qi

(
c′
i (wt)2 + ci(wt)ci(siwt)

)
ewt + qici(wt)

(
c′
i (wt) + c′

i (siwt)
)
esiwt

= (
1 + (

q
1
2
i − q

− 1
2

i

)
q

1
2
i c′

i (wt)
)
ewt + (

q
1
2
i − q

− 1
2

i

)
q

1
2
i ci(wt)esiwt

= (
1 + (

q
1
2
i − q

− 1
2

i

)
T̃i

)
ewt .

(c) We verify the braid relation · · · T̃i T̃j T̃i = · · · T̃j T̃i T̃j (mij factors). Fix w ∈
FJ (t). Suppose first that wt is (i, j)-regular. Let v ∈ Wij . If evwt �= 0 then (3.3) gives

(
T̃i − q

1
2
i c′

i (vwt)
)
evwt = q

1
2
i ci(vwt)esivwt , (3.4)

and, by Remark 3.4, this formula is also true when evwt = 0 and 	(siv) > 	(v).
Consider the product (well defined by (i, j)-regularity)

Aij (wt) = · · · (T̃i − q
1
2
i c′

i (sj siwt)
)(

T̃j − q
1
2
j c′

j (siwt)
)(

T̃i − q
1
2
i c′

i (wt)
)

(mij factors).

Let v0 be the longest element of Wij . Repeatedly using (3.4) and cα(vwt) =
cv−1α(wt) gives

Aij (wt)ewt = q
1
2
v0

[
cαi

(wt)csiαj
(wt)csi sj αi

(wt)csisj siαj
(wt) · · · ]ev0wt .

By (2.1), we have {αi, siαj , sisjαi, . . .} = {αj , sjαi, sj siαj , . . .} and so Aji(wt)ewt =
Aij (wt)ewt . Each v ∈ Wij\{v0} has a unique expression as a product of simple gen-
erators, and so for v < v0 we may unambiguously define operators T̃v = T̃i1 T̃i2 · · · T̃i	

where v = si1si2 · · · si	 is the unique reduced expression for v ∈ Wij . Expanding
Aij (wt) and Aji(wt) and using the already verified quadratic relation for T̃i and
T̃j , we see that there are rational functions pv(wt) and qv(wt) in wt such that

Aij (wt)ewt = · · · T̃i T̃j T̃iewt +
∑

v<v0

pv(wt)T̃vewt ,

Aji(wt)ewt = · · · T̃j T̃i T̃j ewt +
∑

v<v0

qv(wt)T̃vewt .

One now shows that pv(wt) = qv(wt) for all v < v0. This is achieved exactly as
in [23, Proposition 2.7] by using the action of the τ -operators on principal series
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representations, and we omit the details. Thus the braid relation, in the (i, j)-regular
case, holds.

We now verify the braid relation in the case where wt is (i, j)-calibratable but
not (i, j)-regular. Consider the Rij = C2 case with qi = qj and (wt)α

∨
i = qi and

(wt)
α∨

j = q−1
i . By (3.1), we have FJ (t) = {wt}, and so the braid relation is trivially

satisfied (as MJ (t) is 1-dimensional). All other C2 cases are similar. In the G2 case
with qi = q3

j and (wt)α
∨
i = q3

j and (wt)
α∨

j = q−2
j , by (3.1) we compute FJ (t) =

{w, sjw}, and a direct calculation gives

T̃iewt = q
1
2
i ewt , T̃j ewt = 1

qj + 1

(−q
− 1

2
j ewt + q

1
2
j esj wt

)
,

T̃iesj wt = −q
− 1

2
i esj wt , T̃j esj wt = q

1
2
j

(1 − q−3
j

1 − q−2
j

ewt + 1

1 + q−1
j

esj wt

)
.

The braid relation follows by direct calculation. The remaining G2 cases are similar
(or trivial). Finally, in all BC2 cases we have FJ (t) = {wt} and so the braid relation
is trivially satisfied.

To conclude the proof, we show that the module MJ (t) is irreducible and cali-
brated. By the construction, the generalised weight spaces of MJ (t) are MJ (t)wt ,
with w ∈ FJ (t), and each generalised weight space has dimension 1. So MJ (t) is
calibrated. Furthermore, it follows that if M is a proper submodule of MJ (t) then
there is w,w′ ∈ FJ (t) with wt �= w′t such that Mwt �= 0 and Mw′t = 0, contradicting
Proposition 3.5. Thus MJ (t) is irreducible. �

We note the following subtle point: In Theorem 3.6, the basis of MJ (t) is indexed
by the set {wt | w ∈ FJ (t)}, while in the construction [24, Theorem 3.5] the basis is
indexed by FJ (t). The reason for this refinement is that we work with general lattices
Q ⊆ L ⊆ P , while in [23, 24] the lattice L = P is specified. See Examples 1 and 2
below.

Remark 3.7 Recently [5], Ram’s construction has been applied to study the repre-
sentation theory of 1-parameter rank 2 affine Hecke algebras with q a root of the
Poincaré polynomial, and analogously the above construction could be applied to the
study of such representations in the multi-parameter case.

3.3 Examples

Let us give some concrete examples of the construction from Theorem 3.6. Most of
these examples will arise in the Plancherel Theorems in the later parts of this paper
(see Sect. 4). Of interest, we see in the third and fourth examples that some non-
calibrated modules (in the single parameter case) can be constructed from calibrated
modules (of multi-parameter algebras) by making an appropriate change of basis and
taking a limit.

Example 1 Let H be a C̃2 Hecke algebra with L = P and with parameters q1
and q2 (see Sect. 4.5). Let t ∈ Hom(P,C×) be the character with tω1 = −q−1

1 and
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Fig. 1 Calibration graphs for Examples 1 and 2

tω2 = q
−1/2
1 , so that tα

∨
1 = q−1

1 and tα
∨
2 = −1. Thus N(t)∨ = {α∨

1 , α∨
1 + 2α∨

2 } and
D(t) = ∅. Thus there are 4 choices for subsets J ⊆ N(t). Let J∨

1 = ∅, J∨
2 = {α∨

1 },
J∨

3 = {α∨
1 +2α∨

2 }, and J∨
4 = {α∨

1 , α∨
1 +2α∨

2 }. We compute FJ1(t) = {1, s2}, FJ2(t) =
{s1, s2s1}, FJ3(t) = {s1s2, s2s1s2}, and FJ4(t) = {s1s2s1, s1s2s1s2}, and so the cali-
bration graph is as in Fig. 1(a). Thus by Theorem 3.6 and Proposition 3.3, there
are 4 irreducible modules with central character t , each with dimension 2. For ex-
ample, the matrices for the module MJ1(t) with respect to the basis {et , es2t } are

π(T1) = −q
−1/2
1 I , π(xω1) = −q−1

1 I , and

π(T2) = q
1/2
2

2

(
1 − q−1

2 1 + q−1
2

1 + q−1
2 1 − q−1

2

)
, π

(
xω2

)= diag
(
q

−1/2
1 ,−q

−1/2
1

)
.

Note that π(xα∨
1 ) = q−1

1 I and π(xα∨
2 ) = −I , and it follows that the restriction π |HQ

is not irreducible (indeed, π |HQ
is the direct sum of the representations π4 and π5

from Sect. 4.4). This does not contradict the irreducibility statement of Theorem 3.6,
because the calibration graph changes if we use the lattice Q instead of P (see Ex-
ample 2).

Example 2 Now let H be a C̃2 Hecke algebra with L = Q. Let t ∈ Hom(Q,C×)

be the character with tα
∨
1 = q−1

1 and tα
∨
2 = −1 (note the similarity to Example 1).

Then N(t) and D(t) are as in Example 1. Let J1, J2, J3, J4 be as in Example 1, and
then the sets FJi

(t) are as computed in Example 1. However, now s2t = t , and so
the calibration graph is as shown in Fig. 1(b). Thus Theorem 3.6 constructs 2 irre-
ducible 1-dimensional modules, and 1 irreducible 2-dimensional module with central
character t .

Example 3 Let H be a G̃2 Hecke algebra with L = Q = P and with parameters
q1 and q2 (see Sect. 4.6). Let t ∈ Hom(Q,C×) be the character with tα

∨
1 = q1

and tα
∨
2 = q

−1/2
1 q

1/2
2 . If q1 �= q2 and q1 �= q3

2 then this character is regular, and
we compute N(t)∨ = {α∨

1 , α∨
1 + 2α∨

2 }. Thus there are 4 choices for J ⊆ N(t), and
the connected components of the calibration graph are given by {wt | w ∈ FJ (t)}
for these choices of J . Consider the case J∨ = {α∨

1 + 2α∨
2 }. We compute FJ (t) =
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{s2s1s2s1, s1s2s1s2s1, s2s1s2s1s2s1}. The matrices for π = MJ (t) are

π(T1) = q
1
2
1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−q−1
1

1−q
1
2

1 q
− 3

2
2

1−q
− 3

2
1 q

3
2

2

1−q
− 1

2
1 q

3
2

2

0

1−q
− 1

2
1 q

− 3
2

2

1−q
1
2

1 q
− 3

2
2

1−q−1
1

1−q
− 1

2
1 q

3
2

2

0

0 0 −q−1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

π(T2) = q
1
2
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q−1
2 0 0

0
1−q−1

2

1−q
1
2

1 q
− 1

2
2

1−q
1
2

1 q
− 3

2
2

1−q
− 1

2
1 q

1
2

2

0
1−q

− 1
2

1 q
− 1

2
2

1−q
1
2

1 q
− 1

2
2

1−q−1
2

1−q
− 1

2
1 q

1
2

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

π
(
xα∨

1
)= diag

(
q

− 1
2

1 q
3
2
2 , q

1
2
1 q

− 3
2

2 , q−1
1

)
, π

(
xα∨

2
)= diag

(
q−1

2 , q
− 1

2
1 q

1
2
2 , q

1
2
1 q

− 1
2

2

)
.

The construction breaks down when q1 = q2 or when q1 = q3
2 . These cases can be

dealt with by a suitable change of basis in the module MJ (t). Let

A =

⎛

⎜⎜⎝

1 0 0

0 1 −q
1
2
1 q

− 1
2

2

0 −1 1

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎜⎝

1 −q
1
2
1 q

− 3
2

2 0

−1 1 0

0 0 1 − q
1
2
1 q

− 3
2

2

⎞

⎟⎟⎟⎠ .

After conjugating each representing matrix by A (resp., B) it is observed that the
resulting matrices are defined at q1 = q2 (resp., q1 = q3

2 ). Setting q1 = q2 = q

(resp., q1 = q3 with q2 = q) gives a (non-calibrated) irreducible representation of
the algebra H (q, q) (resp., the algebra H (q, q3)). For example, the matrices in the
q1 = q2 = q case become

π(T1) = q
1
2

⎛

⎜⎜⎜⎝

1 3
q−1

3
q−1

q+1
q

2q+1
q(q−1)

3
q−1

− q+1
q

− 3
q−1 − 4q−1

q(q−1)

⎞

⎟⎟⎟⎠ ,

π(T2) = q
1
2

⎛

⎜⎝
−q−1 0 0

0 1 0

0 −2q−1 −q−1

⎞

⎟⎠ ,

π
(
xα∨

1
)=

⎛

⎜⎝
q 0 0

0 −2q−1 −3q−1

0 3q−1 4q−1

⎞

⎟⎠ , π
(
xα∨

2
)=

⎛

⎝
q−1 0 0

0 3 2
0 −2 −1

⎞

⎠ .
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Example 4 Let H be a C̃2 affine Hecke algebra with either L = Q or L = P and
with parameters q1 and q2 (see Sects. 4.4 and 4.5). Let t ∈ Hom(L,C×) be a character
with tα

∨
1 = q−1

1 and tα
∨
2 = q2. If q1 �= q2 and q1 �= q2

2 then the character t is regular,

since tα
∨
1 +α∨

2 = q−1
1 q2 and tα

∨
1 +2α∨

2 = q−1
1 q2

2 . Thus we compute N(t) = {α1, α2} and
D(t) = ∅. There are 4 choices for J ⊆ N(t), namely J1 = ∅, J2 = {α1}, J3 = {α2},
and J4 = {α1, α2}. We compute

FJ1(t) = {1}, FJ2(t) = {s1, s2s1, s1s2s1},
FJ3(t) = {s2, s1s2, s2s1s2}, FJ4(t) = {s1s2s1s2}.

The sets {wt | w ∈ FJi
(t)} with i = 1,2,3,4 are the connected components of the

calibration graph of t . Thus there are 4 irreducible modules MJi
(t) (i = 1,2,3,4)

with central character t , with dimensions 1,3,3,1, respectively.
Consider the module MJ3(t) (this module will appear in the Plancherel Theorem

for C̃2). The matrices of T1, T2, x
α∨

1 and xα∨
2 relative to the basis es2t , es1s2t , es2s1s2t

are

π(T1) = q
1
2
1

⎛

⎜⎜⎜⎜⎝

1−q−1
1

1−q1q
−2
2

1−q−2
1 q2

2

1−q−1
1 q2

2
0

1−q−2
2

1−q1q
−2
2

1−q−1
1

1−q−1
1 q2

2
0

0 0 −q−1
1

⎞

⎟⎟⎟⎟⎠
,

π(T2) = q
1
2
2

⎛

⎜⎜⎜⎜⎝

−q−1
2 0 0

0
1−q−1

2

1−q1q
−1
2

1−q−1
1

1−q−1
1 q2

0
1−q1q

−2
2

1−q1q
−1
2

1−q−1
2

1−q−1
1 q2

⎞

⎟⎟⎟⎟⎠
,

π
(
xα∨

1
)= diag

(
q−1

1 q2
2 , q1q

−2
2 , q−1

1

)
, π

(
xα∨

2
)= diag

(
q−1

2 , q−1
1 q2, q1q

−1
2

)
.

If L = P then ω1 = α∨
1 + α∨

2 and ω2 = α∨
1 /2 + α∨

2 . Thus there are 2 characters

t ∈ Hom(P,C×) with tα
∨
1 = q−1

1 and tα
∨
2 = q2, specifically tω1 = q−1

1 q2 and tω2 =
±q

−1/2
1 q2. The corresponding matrices for xω1 and xω2 are

π
(
xω1

)= diag
(
q−1

1 q2, q
−1
2 , q−1

2

)
, π

(
xω2

)= ±diag
(
q

−1/2
1 , q

−1/2
1 , q

1/2
1 q−1

2

)
.

In the cases q1 = q2 or q1 = q2
2 an analogous computation to that in Example 2

can be used to construct (non-calibrated) irreducible representations of H (q, q) and
H (q, q2).

3.4 Characters

We conclude this section with some observations about characters that will be used
for the Plancherel Theorems. Let ft (h) be as in (2.11).
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Lemma 3.8 Let π be an irreducible representation of HL with central character t ,
and suppose that the character χ of π satisfies

χ
(
τwxλ

)= δw,1

∑

v∈W0

kv(vt)λ for all w ∈ W0 and λ ∈ L,

for some numbers kv ∈ C. Then, with ft as in (2.11), if t is regular we have

χ(h) =
∑

v∈W0

kvfvt (h) for all h ∈ HL.

Proof Since t is regular, each fvt (h) with v ∈ W0 and h ∈ HL is defined. From
Remark 2.2 and the hypothesis, we have χ(h) = ∑

v∈W0
kvfvt (h) for all h ∈ H ′

L,
where H ′

L is the subalgebra of HL with basis {τwxλ | w ∈ W0, λ ∈ L}. Let Δ(x) =∏
α∈R0

(1 − x−α∨
) = d(x)d(x−1). An induction using the formula (1 − x−α∨

i )Ti =
τi + ai(x) shows that Δ(x)	(w)Tw ∈ H ′

L for all w ∈ W0. Thus Δ(x)	(w)Twxλ ∈ H ′
L

for all w ∈ W0 and λ ∈ L. Since Δ(x) ∈ C[L]W0 is central and χ is irreducible, we
have

Δ(t)	(w)χ
(
Twxλ

)= χ
(
Δ(x)	(w)Twxλ

)=
∑

v∈W0

kvfvt

(
Δ(x)	(w)Twxλ

)

= Δ(t)	(w)
∑

v∈W0

kvfvt

(
Twxλ

)
.

We can divide through by Δ(t)	(w) since t is regular. �

Proposition 3.9 Let χt be the character of the principal series representation M(t)

of HL with central character t . Then

χt (h) =
∑

w∈W0

fwt (h) for all h ∈ HL, (3.5)

where the right hand side has an analytic continuation (for fixed h ∈ HL) to all
t ∈ Hom(L,C×).

Proof Suppose first that D(t) = ∅ and that M(t) is irreducible (see Theorem 3.2).
Since D(t) = ∅ the module M(t) has basis {τw ⊗ vt | w ∈ W0}. To see this note that
if w = si1 · · · si	 is reduced then the Bernstein relation gives

τw ⊗ vt =
[ ∏

α∈R(w−1)

(
1 − tα

∨)
]
(Tw ⊗ vt ) + lower terms,

where ‘lower terms’ is a linear combination of terms Tv ⊗ vt with v < w in Bruhat
order. Thus if D(t) = ∅ then each basis element Tw ⊗ vt of M(t) can be written in
terms of the elements {τw ⊗ vt | w ∈ W0}.
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From (2.7) we see that the diagonal entries of the matrix for τw are all 0. The
matrix for xλ is diagonal with entries (wt)λ (w ∈ W0) on the diagonal. Therefore,

χt

(
τwxλ

)= δw,1

∑

v∈W0

(vt)λ for all w ∈ W0 and λ ∈ L.

Hence Lemma 3.8 gives (3.5).
The cases where D(t) �= ∅ or M(t) is not irreducible are obtained as follows.

For fixed h ∈ H the character χt (h) is, by construction, a linear combination of
{tλ | λ ∈ L} and is defined for all t ∈ Hom(L,C×). The right hand side of (3.5) is a
rational function in t . Thus the singularities of this rational function are removable
singularities (even though each individual summand may have singularities). �

Proposition 3.10 Suppose that t is a regular character. Let J ⊆ N(t), and let MJ (t)

be the module constructed in Theorem 3.6. Then

χ(h) =
∑

w∈FJ (t)

fwt (h) for all h ∈ H .

Proof Since τi · ewt = q
1/2
i ni(t) esiwt , we see that the diagonal entries of the matrix

for τw are 0. Since the matrix representing xλ is diagonal, it follows that

χ
(
τvx

λ
)= δv,1

∑

w∈FJ (t)

(wt)λ for all v ∈ W0 and λ ∈ L,

and the result follows from Lemma 3.8. �

Lemma 3.11 Let π be a 1-dimensional representation of HL with regular central
character t . Then

χ(h) = ft (h) for all h ∈ HL,

unless HL is of type C̃n with π(xα∨
n ) = −1. In this case there is a 1-dimensional

representation π ′ defined by π ′(xλ) = π(xλ) for all λ ∈ L, π ′(Ti) = π(Ti) for all
i �= n, and π ′(Tn) = q

1/2
n (resp., −q

−1/2
n ) if π(Tn) = −q

−1/2
n (resp., q

1/2
n ). Then

χ(h) + χ ′(h)

2
= ft (h) for all h ∈ HL.

Proof By direct analysis of the defining relations (2.2)–(2.5), one sees that the central
character t of a 1-dimensional representation necessarily has ni(t)ni(t

−1) = 0, except
in the C̃n case with π(xα∨

n ) = −1. Excluding this case for the moment, it follows from
(2.7) that π(τi) = 0 and hence π(τwxλ) = δw,1t

λ for all w ∈ W0 and λ ∈ L. Since t

is assumed to be regular, Lemma 3.8 gives χ(h) = ft (h) for all h ∈ HL.
Now consider the C̃2 case with π(xα∨

n ) = −1. Let π ′ be the companion represen-
tation defined in the statement of the lemma. The proof of Lemma 3.8 applied to the
representation π ⊕ π ′ proves the result. The fact that π ⊕ π ′ is not irreducible does
not effect the proof of Lemma 3.8 because the centre C[L]W0 of HL acts by the same
scalar on each of π and π ′. �
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Remark 3.12 In Proposition 3.10 and Lemma 3.11, we assumed that t is a regular
central character. In general, these results are false for non-regular central charac-
ters, even if each term ft (h) is defined. For example, consider the G̃2 case with
t ∈ Hom(Q,C×) given by tα

∨
1 = q1, tα

∨
2 = q−1

2 . If q1 �= q2 and q1 �= q2
2 and q2

1 �= q3
2

and q1 �= q3
2 then this central character is regular, and, by Lemma 3.11, we have

ft (h) = χ4(h) for all h ∈ H , where χ4 is the 1-dimensional representation of
H listed in Sect. 4.6. Suppose that q1 = q2 = q . A calculation similar to Re-
mark 2.2 shows that ft (h) is defined for all h ∈ H , and that ft (T1T2T1) = q1/2.
But χ4(T1T2T1) = −q1/2.

4 The Plancherel Theorem

In this section, we state and prove the Plancherel Theorem for each irreducible affine
Hecke algebra of rank 1 or rank 2. In each case, we give the generators and rela-
tions for the algebra, and construct the representations that appear in the Plancherel
Theorem (see the Appendix for some explicit matrices). We then state the Plancherel
Theorem, and give a proof starting from the trace generating function formula (2.12).
The proof consists of performing a series of contour shifts and Proposition 3.9 to
write (2.12) as

Tr(h) = 1

|W0|qw0

∫

Tn

χt (h)

|c(t)|2 dt + lower terms, (4.1)

where the lower order terms are integrals over lower dimensional tori. Then the lower
terms are matched up with lower dimensional representations of the Hecke algebra
using Proposition 3.10 and Lemma 3.11.

Throughout this section, we assume that q0, q1, . . . , qn > 1. The possible pairs
(R,L) with R an irreducible rank 2 root system and L a Z-lattice with Q ⊆ L ⊆ P

are (R,L) = (A2,Q), (A2,P ), (C2,Q), (C2,P ), (G2,Q), and (BC2,Q).

4.1 The rank 1 algebras

(i) The Ã1(q), L = Q, algebra has generators T = T1 and x = xα∨
1 with relations

T 2 = 1 + (
q

1
2 − q− 1

2
)
T , T x = x−1T + (

q
1
2 − q− 1

2
)
(1 + x).

Let πt = IndH
C[Q](Cvt ) be the principal series representation with central char-

acter t ∈ C
×, where x · vt = tvt . Let π be the 1-dimensional representation of

H with

π(T ) = −q− 1
2 and π(x) = q−1.

Let χt be the character of πt and let χ be the character of π .
(ii) The Ã1(q), L = P , algebra has generators T = T1 and x = xω1 with relations

T 2 = 1 + (
q

1
2 − q− 1

2
)
T , T x = x−1T + (

q
1
2 − q− 1

2
)
x.



350 J Algebr Comb (2014) 40:331–371

Let πt = IndH
C[P ](Cvt ) be the principal series representation with central char-

acter t ∈ C
×, where x · vt = tvt . Let π1 and π2 be the 1-dimensional represen-

tations of H with

π1(T ) = −q− 1
2 , π1(x) = q− 1

2 , and π2(T ) = −q− 1
2 ,

π2(x) = −q− 1
2 .

Let χt , χ1, and χ2 be the characters of πt , π1, and π2, respectively.
(iii) The ˜BC1(q0, q1), L = Q, algebra has generators T = T1, x = xα∨

1 /2 with rela-
tions

T 2 = 1 + (
q

1
2
1 − q

− 1
2

1

)
T , T x = x−1T + (

q
1
2
1 − q

− 1
2

1

)
x + (

q
1
2
0 − q

− 1
2

0

)
.

Let πt = IndH
C[Q](Cvt ) be the principal series representation with central char-

acter t ∈C
×, where x · vt = tvt . Let π1, π2 and π3 be the 1-dimensional repre-

sentations of H with

π1(T ) = −q
− 1

2
1 , π2(T ) = −q

− 1
2

1 , π3(T ) = q
1
2
1 ,

π1(x) = q
− 1

2
0 q

− 1
2

1 , π2(x) = −q
1
2
0 q

− 1
2

1 , π3(x) = −q
− 1

2
0 q

1
2
1 .

Let χt , χ1, χ2, and χ3 be the characters of πt , π1, π2, and π3, respectively.

Theorem 4.1 Let h ∈ H . In the cases (i), (ii) and (iii) above, we have, respectively:

Tr(h) = 1

2q

∫

T

χt (h)

|c(t)|2 dt + q − 1

q + 1
χ(h),

Tr(h) = 1

2q

∫

T

χt (h)

|c(t)|2 dt + q − 1

2(q + 1)

(
χ1(h) + χ2(h)

)
,

Tr(h) = 1

2q1

∫

T

χt (h)

|c(t)|2 dt + q0q1 − 1

(q0 + 1)(q1 + 1)
χ1(h) + |q0 − q1|

(q0 + 1)(q1 + 1)

×
{

χ2(h) if q0 < q1,

χ3(h) if q1 < q0,

where the c-functions are respectively

c(t) = 1 − q−1t−1

1 − t−1
, c(t) = 1 − q−1t−2

1 − t−2
,

c(t) = (1 − q
− 1

2
0 q

− 1
2

1 t−1)(1 + q
1
2
0 q

− 1
2

1 t−1)

1 − t−2
.
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Proof Let us prove the ˜BC1(q0, q1) case. If q0 = q1 there is some simplification, so
suppose that q0 �= q1. Write g(t) = gt (h) and f (t) = ft (h). From (2.12) we have

Tr(h) = 1

q1

∫

q
− 1

2
0 q

− 1
2

1 aT

f (t)

c(t)c(t−1)
dt,

where 0 < a < 1. Note that the integrand has at most removable singularities on t ∈ T,

and that the poles of the integrand that lie between the contours q
− 1

2
0 q

− 1
2

1 aT and T

are at t = q
− 1

2
0 q

− 1
2

1 , t = −q
1
2
0 q

− 1
2

1 (in the case that q0 < q1) and t = −q
− 1

2
0 q

1
2
1 (in the

case that q1 < q0). Computing residues (using dt = 1
2π

dθ = 1
2πi

dz
z

) gives

Tr(h) = 1

q1

∫

T

f (t)

|c(t)|2 dt + q0q1 − 1

(q0 + 1)(q1 + 1)
f
(
q

− 1
2

0 q
− 1

2
1

)

+ |q0 − q1|
(q0 + 1)(q1 + 1)

·

⎧
⎪⎨

⎪⎩

f (−q
1
2
0 q

− 1
2

1 ) if q0 < q1,

f (−q
− 1

2
0 q

1
2
1 ) if q1 < q0.

Using Proposition 3.9, we have

1

q1

∫

T

f (t)

|c(t)|2 dt = 1

2q1

∫

T

f (t) + f (t−1)

|c(t)|2 dt = 1

2q1

∫

T

χt (h)

|c(t)|2 dt,

and Lemma 3.11 gives f (q
− 1

2
0 q

− 1
2

1 ) = χ1(h), f (−q
1
2
0 q

− 1
2

1 ) = χ2(h), and

f (−q
− 1

2
0 q

1
2
1 ) = χ3(h). �

4.2 The Ã2(q) algebras with L = Q

This case is treated in [22], and so we will just state the result here. The coroot system
is R = ±{α∨

1 , α∨
2 , α∨

1 + α∨
2 }. The affine Hecke algebra has generators T1, T2, x1 =

xα∨
1 , x2 = xα∨

2 and relations

T 2
1 = 1 + (

q
1
2 − q− 1

2
)
T1, T1x1 = x−1

1 T1 + (
q

1
2 − q− 1

2
)
(1 + x1),

T1T2T1 = T2T1T2, T 2
2 = 1 + (

q
1
2 − q− 1

2
)
T2,

T2x2 = x−1
2 T2 + (

q
1
2 − q− 1

2
)
(1 + x2), x1x2 = x2x1,

T1x2 = x1x2T
−1
1 , T2x1 = x1x2T

−1
2 .

Let πt = IndH
C[Q](Cvt ) be the principal series representation of the affine Hecke al-

gebra H with central character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional
representation of C[Q] with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra of H generated by T1, x1 and x2. Let s ∈ C
× and let

Cus be the 1-dimensional representation of H1 with

T1 · us = −q− 1
2 us, x1 · us = q−1us, x2 · us = q

1
2 sus.



352 J Algebr Comb (2014) 40:331–371

Let π1
s = IndH

H1
(Cus) be the induced representation of H .

Let π2 be the 1-dimensional representation of H with

π2(T1) = −q− 1
2 , π2(T2) = −q− 1

2 , π2(x1) = q−1, π2(x2) = q−1.

Let χt , χ1
s , and χ2 be the characters of πt , π1

s , and π2, respectively.

Theorem 4.2 For all h ∈ H we have

Tr(h) = 1

6q3

∫

T2

χt (h)

|c(t)|2 dt + (q − 1)2

q2(q2 − 1)

∫

T

χ1
s (h)

|c1(s)|2 ds + (q − 1)3

q3 − 1
χ2(h),

where

c(t) = (1 − q−1t−1
1 )(1 − q−1t−1

2 )(1 − q−1t−1
1 t−1

2 )

(1 − t−1
1 )(1 − t−1

2 )(1 − t−1
1 t−1

2 )
, c1(s) = 1 − q− 3

2 s−1

1 − q
1
2 s−1

.

4.3 The Ã2(q) algebras with L = P

The root system is as in Sect. 4.2. The fundamental coweights are ω1 = 2
3α∨

1 + 1
3α∨

2
and ω2 = 1

3α∨
1 + 2

3α∨
2 , and the coweight lattice is P = Zω1 +Zω2. The affine Hecke

algebra is generated by T1, T2, x1 = xω1 and x2 = xω2 with relations

T 2
1 = 1 + (

q
1
2 − q− 1

2
)
T1, T1x1 = x−1

1 x2T1 + (
q

1
2 − q− 1

2
)
x1,

T1T2T1 = T2T1T2, T 2
2 = 1 + (

q
1
2 − q− 1

2
)
T2,

T2x2 = x1x
−1
2 T2 + (

q
1
2 − q− 1

2
)
x2, x1x2 = x2x1,

T1x2 = x2T1, T2x1 = x1T2.

Let πt = IndH
C[P ](Cvt ) be the principal series representation of the affine Hecke al-

gebra H with central character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional
representation of C[P ] with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra generated by T1, x1 and x2. Let s ∈ C
×, and let

π1
s = H

⊗
H1

(Cus) be the 3-dimensional representation of H induced from the
1-dimensional representation Cus of H1 given by

T1 · us = −q− 1
2 us, x1 · us = q− 1

2 sus, x2 · us = s2us.

The module π1
s has basis {1 ⊗ us, T2 ⊗ us, T1T2 ⊗ us} and support suppπ1

s =
{t, s2t, s1s2t}, where t ∈ Hom(P,C×) is the character with (tω1, tω2) = (q−1/2s, s2).
It is not hard to show (see the proof of Lemma 4.4) that the character of π1

s satisfies

χs(h) = ft (h) + fs2t (h) + fs1s2t (h) for all s ∈ C
× and all h ∈ H . (4.2)
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Let π2, π3 and π4 be the 1-dimensional representations of H given by (where
ω = e2πi/3)

π2(T1) = −q− 1
2 , π2(T2) = −q− 1

2 , π2(x1) = q−1, π2(x2) = q−1,

π3(T1) = −q− 1
2 , π3(T2) = −q− 1

2 , π3(x1) = ωq−1, π3(x2) = ω−1q−1,

π4(T1) = −q− 1
2 , π4(T2) = −q− 1

2 , π4(x1) = ω−1q−1, π4(x2) = ωq−1.

Let χt , χ1
s , χ2, χ3 and χ4 be the characters of πt , π1

s , π2, π3, and π4, respectively.

Theorem 4.3 For all h ∈ H we have

τ(h) = 1

6q3

∫

T2

χt (h)

|c(t)|2 dt + (q − 1)2

q2(q2 − 1)

∫

T

χ1
s (h)

|c1(s)|2 ds

+ (q − 1)3

3(q3 − 1)

(
χ2(h) + χ3(h) + χ4(h)

)
,

where

c(t) = (1 − q−1t−2
1 t2)(1 − q−1t1t

−2
2 )(1 − q−1t−1

1 t−1
2 )

(1 − t−2
1 t2)(1 − t1t

−2
2 )(1 − t−1

1 t−1
2 )

, c1(s) = 1 − q− 3
2 s−3

1 − q
1
2 s−3

.

Proof The series Gt(h) converges whenever |tα∨
1 |, |tα∨

2 | < q−1, and hence the series
converges whenever |t1|, |t2| < q−1, where t1 = tω1 and t2 = tω2 . Fix h ∈ H , and
write ft (h) = f (t). Therefore,

Tr(h) = 1

q3

∫

q−1aT

∫

q−1bT

f (t)

c(t)c(t−1)
dt1 dt2,

where 0 < a,b < 1. Fix a number 0 < c < 1 very close to 1. Consider the inner
integral. The t1-poles of the integrand lying between the contours q−1aT and cT are
at the points where t2

1 = q−1t2. We compute the residues (using dt1 = 1
2πi

dz1
z1

) to be

Res
t1=±q−1/2t

1/2
2

f (t)

c(t)c(t−1)
= −q(q − 1)2

2(q2 − 1)

f (±q− 1
2 t

1/2
2 , t2)

c1(∓t
1/2
2 )c1(∓t

−1/2
2 )

.

Using 1
2

∫
rT

(f (t1/2) + f (−t1/2)) dt = ∫
r1/2T

f (t) dt it follows that

Tr(h) = 1

q3

∫

q−1aT

∫

cT

f (t)

c(t)c(t−1)
dt1 dt2 + (q − 1)2

q2(q2 − 1)

∫

q
− 1

2 a
1
2 T

f (q− 1
2 s, s2)

c1(s)c1(s−1)
ds.

Interchange the order of integration in the double integral. The t2-poles of the inte-
grand between the contours q−1aT to T are at the points where t2

2 = q−1
1 t1 and where

t2 = q−1t−1
1 . Computing residues gives

Tr(h) = 1

q3

∫

cT

∫

T

f (t)

|c(t)|2 dt2 dt1 + (q − 1)2

q2(q2 − 1)
(I1 + I2 + I3),
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where

I1 =
∫

q
− 1

2 a
1
2 T

f (q− 1
2 s, s2)

c1(s)c1(s−1)
ds, I2 =

∫

c
1
2 T

f (s2, q− 1
2 s)

c1(s)c1(s−1)
ds,

I3 =
∫

q
1
2 cT

f (q− 1
2 s, q− 1

2 s−1)

c1(s)c1(s−1)
ds

and we have set s = t
1/2
1 in I2 and s = q

1
2 t1 in I3. The t1-contour in the double

integral can be shifted to T without encountering any poles.
The plan is to shift each of the contours in I1, I2 and I3 to the unit contour T.

However, we need to be careful with the possible singularities of f (t). Therefore, we
write f (t) = g(t)/d(t), with g(t) analytic. Then the integrands of the integrals I1, I2
and I3 are

f (q− 1
2 s, s2)

c1(s)c1(s−1)
= (1 − q

1
2 s3)g(q− 1

2 s, s2)

(1 − s−2)(1 − q
1
2 s−1)(1 − q− 3

2 s−3)(1 − q− 3
2 s3)

,

f (s2, q− 1
2 s)

c1(s)c1(s−1)
= (1 − q

1
2 s3)g(s2, q− 1

2 s)

(1 − s−2)(1 − q
1
2 s−1)(1 − q− 3

2 s−3)(1 − q− 3
2 s3)

,

f (q− 1
2 s, q− 1

2 s−1)

c1(s)c1(s−1)
= (1 − q

1
2 s−3)(1 − q

1
2 s3)g(q− 1

2 s, q− 1
2 s−1)

(1 − q)(1 − q− 3
2 s−3)(1 − q− 3

2 s3)(1 − q
1
2 s−1)(1 − q

1
2 s)

.

In particular, the integrands of I1 and I2 have singularities on T. So instead we shift
all contours to cT. For the integrals I2 and I3, we encounter no poles, and so the shift

is for free. For the integral I1, we pick up simple residues at the points s3 = q− 3
2 , and

computing residues gives

I1 =
∫

cT

f (q− 1
2 s, s2)

c1(s)c1(s−1)
ds + q2(q − 1)(q2 − 1)

3(q3 − 1)

× (
f
(
q−1, q−1)+ f

(
ωq−1,ω−1q−1)+ f

(
ω−1q−1,ωq−1)).

Therefore,

Tr(h) = 1

q3

∫

T2

f (t)

|c(t)|2 dt

+ (q − 1)2

q2(q2 − 1)

∫

cT

f (q− 1
2 s, s2) + f (s2, q− 1

2 s) + f (q− 1
2 s, q− 1

2 s−1)

c1(s)c1(s−1)
ds

+ (q − 1)3

3(q3 − 1)

(
f
(
q−1, q−1)+ f

(
ωq−1,ω−1q−1)+ f

(
ω−1q−1,ωq−1)).

By (4.2), the numerator of the single integral is χs(h), and is therefore defined on T

and so the contour of the single integral can be shifted to T. Proposition 3.9 deals
with the double integral, and Lemma 3.11 deals with the 3 constant terms. �
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4.4 The C̃2(q1, q2) algebras with L = Q

The dual root system is R∨ = ±{α∨
1 , α∨

2 , α∨
1 +α∨

2 , α∨
1 +2α∨

2 }. Writing x1 = xα∨
1 and

x2 = xα∨
2 , the Hecke algebra has generators T1, T2, x1, x2 with relations

T 2
1 = 1 + (

q
1
2
1 − q

− 1
2

1

)
T1, T1x1 = x−1

1 T1 + (
q

1
2
1 − q

− 1
2

1

)
(1 + x1),

T1T2T1T2 = T2T1T2T1, T 2
2 = 1 + (

q
1
2
2 − q

− 1
2

2

)
T2,

T2x2 = x−1
2 T2 + (

q
1
2
2 − q

− 1
2

2

)
(1 + x2), x1x2 = x2x1,

T1x2 = x1x2T
−1
1 , T2x1 = x1x

2
2T −1

2 − (
q

1
2
2 − q

− 1
2

2

)
x1x2.

Let πt = IndH
C[Q](Cvt ) be the principal series representation of H with cen-

tral character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional representation
of C[Q] with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra generated by T1, x1, x2 and let H2 be the subalgebra
generated by T2, x1, x2. Let s ∈C

×, and let π1
s = IndH

H1
(Cu1

s ) and π2
s = IndH

H2
(Cu2

s )

be the 4-dimensional representations induced from the 1-dimensional representation
Cu1

s of H1 and the 1-dimensional representation Cu2
s of H2 given by

T1 · u1
s = −q

− 1
2

1 u1
s , x1 · u1

s = q−1
1 u1

s , x2 · u1
s = q

1
2
1 su1

s ,

T2 · u2
s = −q

− 1
2

2 u2
s , x1 · u2

s = q2su
2
s , x2 · u2

s = q−1
2 u2

s .

Let πj (j = 3,4,5,6,7) be the 1-dimensional representations of H with

π3(T1) = −q
− 1

2
1 , π3(T2) = −q

− 1
2

2 , π3(x1) = q−1
1 , π3(x2) = q−1

2 ,

π4(T1) = −q
− 1

2
1 , π4(T2) = −q

− 1
2

2 , π4(x1) = q−1
1 , π4(x2) = −1,

π5(T1) = −q
− 1

2
1 , π5(T2) = q

1
2
2 , π5(x1) = q−1

1 , π5(x2) = −1,

π6(T1) = q
1
2
1 , π6(T2) = −q

− 1
2

2 , π6(x1) = q1, π6(x2) = q−1
2 ,

π7(T1) = −q
− 1

2
1 , π7(T2) = q

1
2
2 , π7(x1) = q−1

1 , π7(x2) = q2.

Suppose that q1 �= q2 and q1 �= q2
2 . Let π8 = MJ (t) be the representation with

(
tα

∨
1 , tα

∨
2
)= (

q−1
1 , q2

)
, J∨ = {

α∨
2

}
, FJ (t) = {s2, s1s2, s2s1s2}

(since q1 �= q2 and q1 �= q2
2 , we compute N(t)∨ = {α∨

1 , α∨
2 } and D(t)∨ = ∅). The

matrices for π8 are given in Example 3 of Sect. 3.3.
Let χt , χ1

s , χ2
s , and χj be the characters of πt , π1

s , π2
s , and πj , respectively

(j = 3, . . . ,8).
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Lemma 4.4 Let t, u ∈ Hom(Q,C×) be (tα
∨
1 , tα

∨
2 ) = (q−1

1 , q
1
2
1 s) and (uα∨

1 , uα∨
2 ) =

(q2s, q
−1
2 ) where s ∈C

×. For all h ∈ H and all s ∈C
×, we have

χ1
s (h) = ft (h) + fs2t (h) + fs1s2t (h) + fs2s1s2t (h), (4.3)

χ2
s (h) = fu(h) + fs1u(h) + fs2s1u(h) + fs1s2s1u(h). (4.4)

Proof Let us prove (4.3) ((4.4) is similar). Suppose that s ∈ C
× is not one of the

isolated points of C× which give tα
∨ = 1 for some α ∈ R+

0 . Then π1
s is irreducible

(for example, it can be constructed using Theorem 3.6 in these cases) and each fvt (h)

is defined (for v ∈ W0 and h ∈ H ). Moreover, π1
s has basis {1 ⊗ u1

s , τ2 ⊗ u1
s , τ1τ2 ⊗

u1
s , τ2τ1τ2 ⊗u1

s } (this is proved in a similar way to the corresponding statement in the
proof of Proposition 3.9).

The diagonal entries of each matrix π1
s (τw) relative to this basis are 0. This is eas-

ily seen once it is observed that τ1 ⊗u1
s = 0 (which can be seen by direct calculation,

or by (2.7)). Since

π1
s

(
xλ
)= diag

(
tλ, (s2t)

λ, (s1s2t)
λ, (s2s1s2t)

λ
)

for all λ ∈ Q,

it follows that

χ1
s

(
τwxλ

)= δw,1
(
tλ + (s2t)

λ + (s1s2t)
λ + (s2s1s2t)

λ
)

for all w ∈ W0 and λ ∈ Q.

Thus Lemma 3.8 gives (4.3), provided s is not one of the isolated points of C× that
gives tα

∨ = 1 for some α ∈ R+
0 . But by construction, χ1

s (h) is a polynomial in s and
s−1 (for fixed h ∈ H ) and the right-hand side of (4.3) is a rational function in s.
Hence the result. �

Theorem 4.5 For all h ∈ H we have

Tr(h) = 1

8q2
1q2

2

∫∫

T2

χt (h)

|c(t)|2 dt + q1 − 1

2q1q
2
2 (q1 + 1)

∫

T

χ1
s (h)

|c1(s)|2 ds

+ q2 − 1

2q2
1q2(q2 + 1)

∫

T

χ2
s (h)

|c2(s)|2 ds

+ Aχ3(h) + B
(
χ4(h) + χ5(h)

)+ |C| ×

⎧
⎪⎪⎨

⎪⎪⎩

χ6(h) if q1 < q2,

χ8(h) if q2 < q1 < q2
2 ,

χ7(h) if q2
2 < q1,

where c(t), c1(s), c2(s), A, B , and C are as in Appendix A.1. If q1 = q2 or q1 = q2
2

then the final term in the Plancherel Theorem is 0.

Proof The trace functional is given by

Tr(h) = 1

q2
1q2

2

∫

q−1
1 aT

∫

q−1
2 bT

f (t)

c(t)c(t−1)
dt2 dt1, (4.5)
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where 0 < a,b < 1 and where f (t) = ft (h). Choose a with a < q1q
−1
2 .

Step 1: Shifting the t2-contour. Let 0 < c < 1 with c2 > q−1
1 , c > q−1

2 , c > q1q
−1
2 (if

q1 < q2) and c > q−1
1 q2 (if q2 < q1). We will shift the t2-contour from q−1

2 bT to cT.
The integrand has exactly one t2-pole between these contours, at t2 = q−1

2 . Thus

Tr(h) = 1

q2
1q2

2

∫

q−1
1 aT

∫

cT

f (t)

c(t)c(t−1)
dt2 dt1 + I1, where

I1 = − 1

q2
1q2

2

∫

q−1
1 aT

Res
t2=q−1

2

f (t)

c(t)c(t−1)
dt.

Step 2: Shifting the t1-contour. Interchange the order of integration in the double
integral. We will shift the t1-contour from q−1

1 aT to T. By the conditions on a and c,
the t1-poles of the integrand between these contours are at t1 = q−1

1 , t1 = q−1
1 t−2

2 ,
and t1 = q−1

2 t−1
2 . Therefore,

Tr(h) = 1

q2
1q2

2

∫

cT

∫

T

f (t)

c(t)c(t−1)
dt1 dt2 + I1 + I2 + I3 + I4,

where

Ij = − 1

q2
1q2

2

∫

cT

Res
t1=zj

f (t)

c(t)c(t−1)
dt2 for j = 2,3,4,

with z2 = q−1
1 , z3 = q−1

1 t−2
2 , and z4 = q−1

2 t−1
2 . In the double integral, we may now

revert back to the original order of integration, and shift the t2-contour to T without
encountering any poles.

Step 3: Shifting the contours in the integrals Ij . Straightforward calculations give

I1 = (q2 − 1)2

q2
1q2(q

2
2 − 1)

∫

q−1
1 q−1

2 aT

f (q2s, q
−1
2 )

c2(s)c2(s−1)
ds,

I2 = (q1 − 1)2

q1q
2
2 (q2

1 − 1)

∫

q
− 1

2
1 cT

f (q−1
1 , q

1
2
1 s)

c1(s)c1(s−1)
ds,

I3 = (q1 − 1)2

q1q
2
2 (q2

1 − 1)

∫

q
1
2

1 cT

f (s−2, q
− 1

2
1 s)

c1(s)c1(s−1)
ds,

I4 = (q2 − 1)2

q2
1q2(q

2
2 − 1)

∫

cT

f (q−1
2 s−1, s)

c2(s)c2(s−1)
ds,

where we have set s = q−1
2 t1 in I1, s = q

− 1
2

1 t2 in I2, s = q
1
2
1 t2 in I3, and s = t2 in I4.

We now shift each contour to T. As in the Ã2 case, we need to be a little care-
ful with possible singularities of f (t). Thus we write f (t) = g(t)/d(t). Then the
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integrands of I1, I2, I3 and I4 are

f (q2s, q
−1
2 )

c2(s)c2(s−1)
= q2s(1 − s)g(q2s, q

−1
2 )

(q2 − 1)n2(s)n2(s−1)
,

f (q−1
1 , q

1
2
1 s)

c1(s)c1(s−1)
= q

1
2
1 s(1 − s2)g(q−1

1 , q
1
2
1 s)

(q1 − 1)n1(s)n1(s−1)
,

f (s−2, q
− 1

2
1 s)

c1(s)c1(s−1)
= (1 − s−2)g(s−2, q

− 1
2

1 s)

(1 − q1)n1(s)n1(s−1)
,

f (q−1
2 s−1, s)

c2(s)c2(s−1)
= (1 − s)g(q−1

2 s−1, s)

(1 − q2)n2(s)n2(s−1)
,

where n1(s) and n2(s) are the numerators of c1(s) and c2(s). Each integrand is non-
singular on T (with removable singularities in the cases q1 = q2 or q1 = q2

2 ).
The poles of the integrand of I1 which lie between the contours q−1

1 q−1
2 aT and T

are at s = q−1
1 q−1

2 , s = q−1
1 q2 (if q2 < q1) and at s = q1q

−1
2 (if q1 < q2). Calculating

residues gives

I1 = (q2 − 1)2

q2
1q2(q

2
2 − 1)

∫

T

f (q2s, q
−1
2 )

|c2(s)|2 ds + Af
(
q−1

1 , q−1
2

)

+ C ×
⎧
⎨

⎩
f (q−1

1 q2
2 , q−1

2 ) if q2 < q1,

−f (q1, q
−1
2 ) if q1 < q2.

The poles of the integrand of I2 which lie between the contours q
− 1

2
1 bT and T are

at s = −q
− 1

2
1 , s = q

1
2
1 q−1

2 (if q2 < q1 < q2
2 ), and s = q

− 1
2

1 q2 (if q2
2 < q1). Calculating

residues gives

I2 = (q1 − 1)2

q1q
2
2 (q2

1 − 1)

∫

T

f (q−1
1 , q

1
2
1 s)

c1(s)c1(s−1)
ds + 2Bf

(
q−1

1 ,−1
)

+ C ×
⎧
⎨

⎩
f (q−1

1 , q1q
−1
2 ) if q2 < q1 < q2

2 ,

−f (q−1
1 , q2) if q2

2 < q1.

The poles of the integrand of I3 which lie between the contours q
1
2
1 cT and T are

at s = q
− 1

2
1 q2 (if q2 < q1 < q2

2 ) and s = q
1
2
1 q−1

2 (if q2
2 < q1). Noting that T is inside

q
1
2
1 cT gives

I3 = (q1 − 1)2

q1q
2
2 (q2

1 − 1)

∫

T

f (s−2, q
− 1

2
1 s)

c1(s)c1(s−1)
ds+C×

⎧
⎨

⎩
f (q1q

−2
2 , q−1

1 q2) if q2 < q1 < q2
2 ,

−f (q−1
1 q2

2 , q−1
2 ) if q2

2 < q1.
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The integrand of I4 has no poles between cT and T. Therefore,

Tr(h) = 1

q2
1q2

2

∫∫

T2

f (t)

|c(t)|2 dt + (q1 − 1)2

q1q
2
2 (q2

1 − 1)

∫

T

f (q−1
1 , q

1
2
1 s) + f (s−2, q

− 1
2

1 s)

|c1(s)|2 ds

+ (q2 − 1)2

q2
1q2(q

2
2 − 1)

∫

T

f (q2s, q
−1
2 ) + f (q−1

2 s−1, s)

|c2(s)|2 ds + Af
(
q−1

1 , q−1
2

)

+ 2Bf
(
q−1

1 ,−1
)+ |C|

×

⎧
⎪⎪⎨

⎪⎪⎩

f (q1, q
−1
2 ) if q1 < q2,

f (q−1
1 q2

2 , q−1
2 ) + f (q−1

1 , q1q
−1
2 ) + f (q1q

−2
2 , q−1

1 q2) if q2 < q1 < q2
2,

f (q−1
1 , q2) if q2

2 < q1.

Step 4: Matching with the representations. By Proposition 3.9, the double integral in
the above formula is

∫

T2

f (t)

|c(t)|2 dt = 1

8

∫

T2

χt (h)

|c(t)|2 dt.

The first single integral is

1

2

∫

T

f (q−1
1 , q

1
2
1 s) + f (s−2, q

− 1
2

1 s) + f (q−1
1 , q

1
2
1 s−1) + f (s2, q

− 1
2

1 s−1)

|c1(s)|2 ds

= 1

2

∫

T

χ1
s (h)

|c1(s)|2 ds,

where we have used Lemma 4.4. A similar analysis applies to the second single inte-
gral. Using Lemma 3.11, we have f (q−1

1 , q−1
2 ) = χ3(h) and 2f (q−1

1 ,−1) = χ4(h)+
χ5(h). Furthermore, for parameters q1 < q2 the central character (t1, t2) = (q1, q

−1
2 )

is regular (for tα
∨
1 +α∨

2 = q1q
−1
2 < 1 and tα

∨
1 +2α∨

2 = q1q
−2
2 < 1), and so Lemma 3.11

gives f (q1, q
−1
2 ) = χ6(h). Similarly, we have f (q−1

1 , q2) = χ7(h) for parameters
q2

2 < q1. Finally, by Proposition 3.10, we have

f
(
q−1

1 q2
2 , q−1

2

)+ f
(
q−1

1 , q1q
−1
2

)+ f
(
q1q

−2
2 , q−1

1 q2
)= χ8(h)

for all parameters in the range q2 < q1 < q2
2 (as the central character is regular). �

4.5 The C̃2(q1, q2) algebras with L = P

The root system is as in Sect. 4.4, and the fundamental coweights are given by ω1 =
α∨

1 +α∨
2 and ω2 = 1

2α∨
1 +α∨

2 . Writing x1 = xω1 and x2 = xω2 , the Hecke algebra has
presentation given by generators T1, T2, x1, x2 with relations

T 2
1 = 1 + (

q
1
2
1 − q

− 1
2

1

)
T1, T1x1 = x−1

1 x2
2T1 + (

q
1
2
1 − q

− 1
2

1

)
x1,

T1T2T1T2 = T2T1T2T1, T 2
2 = 1 + (

q
1
2
2 − q

− 1
2

2

)
T2,
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T2x2 = x1x
−1
2 T2 + (

q
1
2
2 − q

− 1
2

2

)
x2, x1x2 = x2x1,

T1x2 = x2T1, T2x1 = x1T2.

The representation theory of H is closely related to the representation theory of the
Hecke algebra from Sect. 4.4.

Let πt = IndH
C[P ](Cvt ) be the principal series representation of H with central

character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional representation of C[P ]
with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra generated by T1, x1, x2. Let s ∈ C
×, and let π±

s =
IndH

H1
(Cu±

s ) be the 4-dimensional representations of H induced from the repre-
sentations Cu±

s of H1 with

T1 · u±
s = −q

− 1
2

1 u±
s , x1 · u±

s = q
− 1

2
1 su±

s , x2 · u±
s = ±su±

s .

Let H2 be the subalgebra generated by T2, x1, x2. Let s ∈ C
×, and let π2

s =
IndH

H2
(Cu2

s ) be the 4-dimensional representation of H induced from the representa-

tion Cu2
s of H2 with

T2 · u2
s = −q

− 1
2

2 u2
s , x1 · u2

s = s2u2
s , x2 · u2

s = q
− 1

2
2 su2

s .

Let π
j
± (j = 3,4,5) be the 1-dimensional representations

π3±(T1) = −q
− 1

2
1 , π3±(T2) = −q

− 1
2

2 , π3±(x1) = q−1
1 q−1

2 ,

π3±(x2) = ±q
− 1

2
1 q−1

2 , π4±(T1) = q
1
2
1 , π4±(T2) = −q

− 1
2

2 ,

π4±(x1) = q1q
−1
2 , π4±(x2) = ±q

1
2
1 q−1

2 , π5±(T1) = −q
− 1

2
1 ,

π5±(T2) = q
1
2
2 , π5±(x1) = q−1

1 q2, π5±(x2) = ±q
− 1

2
1 q2.

Let π6 = MJ (t) be the 2-dimensional representation with

(
tω1, tω2

)= (−q−1
1 , q

− 1
2

1

)
, J∨ = ∅, FJ (t) = {1, s2}

(we have N(t)∨ = {α∨
1 , α∨

1 +2α∨
2 } and D(t)∨ = ∅). Coincidentally, π6 ∼= IndH

HQ
(Cu)

where HQ is the algebra from Sect. 4.4 and where Cu is the 1-dimensional repre-

sentation of HQ with T1 · u = −q
−1/2
1 u, T2 · u = −q

−1/2
2 u, xα∨

1 · u = q−1
1 u, and

xα∨
2 · u = −u. The matrices for π6 are given in Example 1 of Sect. 3.3.
Suppose that q1 �= q2 and q1 �= q2

2 . Let π7± = MJ (t±) be the 3-dimensional repre-
sentations with

(
t
ω1± , t

ω2±
)= (

q−1
1 q2,±q

− 1
2

1 q2
)
, J∨ = {

α∨
2

}
, FJ (t±) = {s2, s1s2, s2s1s2}

(we calculate N(t±)∨ = {α∨
1 , α∨

2 } and D(t)∨ = ∅).
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Theorem 4.6 For all h ∈ H we have

Tr(h) = 1

8q2
1q2

2

∫∫

T2

χt (h)

|c(t)|2 dt + (q1 − 1)2

4q1q
2
2 (q2

1 − 1)

∫

T

χ+
s (h) + χ−

s (h)

|c1(s)|2 ds

+ (q2 − 1)2

2q2
1q2(q

2
2 − 1)

∫

T

χ2
s (h)

|c2(s)|2 ds

+ A

2

(
χ3+(h) + χ3−(h)

)+ Bχ6(h)

+ |C|
2

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χ4+(h) + χ4−(h) if q1 < q2,

χ7+(h) + χ7−(h) if q2 < q1 < q2
2 ,

χ5+(h) + χ5−(h) if q2
2 < q1,

where c(t), c1(s), c2(s) are as in Appendix A.2 and A,B,C are as in Appendix A.1.
If q1 = q2 or q1 = q2

2 then the final term in the Plancherel Theorem is 0.

Proof The series Gt(h) converges for |tα∨
1 | < q−1

1 and |tα∨
2 | < q−1

2 . Since α∨
1 =

2ω1 − 2ω2 and α∨
2 = −ω1 + 2ω2, the series converges whenever |t2

1 t−2
2 | < q−1

1 and

|t−1
1 t2

2 | < q−1
2 . Thus, writing |t1| = q−1

1 q−1
2 a and |t2| = q

−1/2
1 q−1

2 b, the series con-
verges for b2 < a < b < 1, and so

Tr(h) = 1

q2
1q2

2

∫

q−1
1 q−1

2 aT

∫

q
−1/2
1 q−1

2 bT

f (t)

c(t)c(t−1)
dt2 dt1.

From here one can either perform the contour shifts as in the L = Q case, or change
variables t1 = u1u2 and t2

2 = u1u
2
2 to transform the above integral into 1

2 times the
L = Q integral (4.5) with the numerator of its integrand replaced by f ′(u1, u2) =
f (u1u2, u

1/2
1 u2) + f (u1u2,−u

1/2
1 u2). We omit the details. �

4.6 The G̃2(q1, q2) algebras with L = Q

The coroot system is R∨ = ±{α∨
1 ,2α∨

1 + 3α∨
2 , α∨

1 + 3α∨
2 , α∨

2 , α∨
1 + 2α∨

2 , α∨
1 + α∨

2 },
and the reflections s1 and s2 are given by s1(α

∨
2 ) = α∨

1 +α∨
2 and s2(α

∨
1 ) = α∨

1 +3α∨
2 .

Writing x1 = xα∨
1 and x2 = xα∨

2 , the Hecke algebra H has generators T1, T2, x1 and
x2 with relations

T 2
1 = 1 + (

q
1
2
1 − q

− 1
2

1

)
T1, T1x1 = x−1

1 T1 + (
q

1
2
1 − q

− 1
2

1

)
(1 + x1),

T 2
2 = 1 + (

q
1
2
2 − q

− 1
2

2

)
T2, T2x2 = x−1

2 T2 + (
q

1
2
2 − q

− 1
2

2

)
(1 + x2),

T1T2T1T2T1T2 = T2T1T2T1T2T1, T2x1 = x1x
3
2T −1

2 − (
q

1
2
2 − q

− 1
2

2

)
x1x2(1 + x2),

x1x2 = x2x1, T1x2 = x1x2T
−1
1 .



362 J Algebr Comb (2014) 40:331–371

Let πt = IndH
C[Q](Cvt ) be the principal series representation of H with cen-

tral character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional representation
of C[Q] with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra of H generated by T1, x1, x2, and let H2 be the sub-
algebra generated by T2, x1, x2. Let s ∈ C

×, and let π1
s = IndH

H1
(Cu1

s ) and π2
s =

IndH
H2

(Cu2
s ) be the 6-dimensional representations induced from the 1-dimensional

representation Cu1
s of H1 and the 1-dimensional representation Cu2

s of H2 given by

T1 · u1
s = −q

− 1
2

1 u1
s , x1 · u1

s = q−1
1 u1

s , x2 · u1
s = q

1
2
1 su1

s ,

T2 · u2
s = −q

− 1
2

2 u2
s , x1 · u2

s = q
3
2
2 su2

s , x2 · u2
s = q−1

2 u2
s .

Let π3,π4 and π5 be the 1-dimensional representations of H with

π3(T1) = −q
− 1

2
1 , π3(T2) = −q

− 1
2

2 , π3(x1) = q−1
1 , π3(x2) = q−1

2 ,

π4(T1) = q
1
2
1 , π4(T2) = −q

− 1
2

2 , π4(x1) = q1, π4(x2) = q−1
2 ,

π5(T1) = −q
− 1

2
1 , π5(T2) = q

1
2
2 , π5(x1) = q−1

1 , π5(x2) = q2.

Suppose that q1 �= q2, q1 �= q2
2 , q2

1 �= q3
2 , q1 �= q3

2 . Let π6 = MJ (t) the 5-dimen-
sional representation with

(
tα

∨
1 , tα

∨
2
)= (

q−1
1 , q2

)
, J∨ = {

α∨
2

}
,

FJ (t) = {s2, s1s2, s2s1s2, s1s2s1s2, s2s1s2s1s2}.
Let π7± = MJ (t±) be the 3-dimensional representations with

(
t
α∨

1± , t
α∨

2±
)= (

q1,±q
− 1

2
1 q

1
2
2

)
, J∨ = {

α∨
1 + 2α∨

2

}
,

FJ (t±) = {s2s1s2s1, s1s2s1s2s1, s2s1s2s1s2s1},
where we assume that q1 �= q2 and q1 �= q3

2 for MJ (t+). When q1 = q2 or q1 = q3
2 ,

we define π7+ differently, as explained in Example 2 of Sect. 3.3.
Let π8 = MJ (t) be the 2-dimensional representation with

(
tα

∨
1 , tα

∨
2
)= (q1,ω), J∨ = {

α∨
1 + 3α∨

2

}
,

FJ (t) = {s1s2s1s2s1, s2s1s2s1s2s1}.
Let χt , χ1

s , χ2
s , χ3, χ4, χ5, χ6, χ7±, and χ8 be the characters of the above repre-

sentations.

Theorem 4.7 For all h ∈ H we have

Tr(h) = 1

12q3
1q3

2

∫∫

T2

χt (h)

|c(t)|2 dt + (q1 − 1)2

2q1q
3
2 (q2

1 − 1)

∫

T

χ1
s (h)

|c1(s)|2 ds

+ (q2 − 1)2

2q3
1q2

2 (q2
2 − 1)

∫

T

χ2
s (h)

|c2(s)|2 ds
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+ Aχ3(h) + B+χ7+(h) + B−χ7−(h) + Cχ8(h)

+ |D| ×

⎧
⎪⎪⎨

⎪⎪⎩

χ4(h) if q1 < q
3/2
2 ,

χ6(h) if q
3/2
2 < q1 < q2

2 ,

χ5(h) if q2
2 < q1,

where c(t), c1(s), c2(s),A,B±,C,D are as in Appendix A.3. If q1 = q
3/2
2 or q1 = q2

2
then the final term in the Plancherel Theorem is 0.

Proof Writing f (t) = ft (h), the trace functional is given by

Tr(h) = 1

q3
1q3

2

∫

q−1
1 aT

∫

q−1
2 bT

f (t)

c(t)c(t−1)
dt2 dt1

with 0 < a,b < 1. Choose 0 < a,b < 1 both very close to 0. Let 0 < c < 1 be very
close to 1. Consider the inner integral. The integrand has exactly one t2-pole between
the contours q−1

2 bT and cT, at t2 = q−1
2 . Thus we can shift the t2-contour to cT at

the cost of including this residue contribution. Now interchange the order of integra-
tion in the double integral. Since |t2| = c, we see that the t1-poles of the integrand
between the contours q−1

1 aT and T are at the points where t1 = q−1
1 , t1 = q−1

1 t−3
2 ,

t1 = q−1
2 t−2

2 , t1 = q−1
2 t−1

2 and t2
1 = q−1

1 t−3
2 . After shifting the t1-contour to T, we

interchange the order of integration again, and since there are no t2-poles between cT

and T we shift the t2-contour to T. Thus

Tr(h) = 1

q3
1q3

2

∫∫

T2

f (t)

|c(t)|2 dt + I1 + I2 + I3 + I4 + I5 + I+
6 + I−

6 ,

where

I1 = − 1

q3
1q3

2

∫

q−1
1 aT

Res
t2=z1

f (t)

c(t)c(t−1)
dt1, I±

6 = − 1

q3
1q3

2

∫

cT

Res
t1=±z6

f (t)

c(t)c(t−1)
dt2,

Ij = − 1

q3
1q3

2

∫

cT

Res
t1=zj

f (t)

c(t)c(t−1)
dt2 (j = 2,3,4,5),

where z1 = q−1
2 , z2 = q−1

1 , z3 = q−1
1 t−3

2 , z4 = q−1
2 t−2

2 , z5 = q−1
2 t−1

2 , and z6 =
q

− 1
2

1 t
− 3

2
2 .

Use 1
2

∫
rT

(f (t1/2) + f (−t1/2)) dt = ∫
r1/2T

f (t) dt to write I+
6 + I−

6 = I6 as a
single integral. Straightforward calculations give

I1 = (q2 − 1)2

q3
1q2

2 (q2
2 − 1)

∫

q−1
1 q

− 3
2

2 aT

f (q
3
2
2 s, q−1

2 )

c2(s)c2(s−1)
ds,

I2 = (q1 − 1)2

q1q
3
2 (q2

1 − 1)

∫

q
− 1

2
1 cT

f (q−1
1 , q

1
2
1 s)

c1(s)c1(s−1)
ds,
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I3 = (q1 − 1)2

q1q
3
2 (q2

1 − 1)

∫

q
1
2

1 cT

f (q
1
2
1 s−3, q

− 1
2

1 s)

c1(s)c1(s−1)
ds,

I4 = (q2 − 1)2

q3
1q2

2 (q2
2 − 1)

∫

q
1
2

2 cT

f (s−2, q
− 1

2
2 s)

c2(s)c2(s−1)
ds,

I5 = (q2 − 1)2

q3
1q2

2 (q2
2 − 1)

∫

q
− 1

2
2 cT

f (q
− 3

2
2 s−1, q

1
2
2 s)

c2(s)c2(s−1)
ds,

I6 = (q1 − 1)2

q1q
3
2 (q2

1 − 1)

∫

c
1
2 T

f (q
− 1

2
1 s−3, s2)

c1(s)c1(s−1)
ds,

where we have put s = q
− 3

2
2 t1, q

− 1
2

1 t2, q
1
2
1 t2, q

1
2
2 t2, q

− 1
2

2 t2, and t2 in I1, I2, I3, I4, I5,
and I6, respectively.

One now shifts each contour to T. As we discuss below, some complications arise
when q1 = q2 or q1 = q3

2 , and so suppose for now that q1 �= q2 and q1 �= q3
2 . As in the

C̃2, L = Q, case the integrands of I1, . . . , I6 are all nonsingular on T. Moreover, as-
suming that q1 �= q2 and q1 �= q3

2 , all singularities are simple poles, and at the special
values q2

1 = q3
2 or q1 = q2

2 there are some removable singularities. Write Iu
1 , . . . , I u

6
for the integrals over the contour T. A lengthy analysis (using the fact that a is close
to 0 and c is close to 1) gives

Tr(h) = 1

q3
1q3

2

∫∫

T2

f (t)

|c(t)|2 dt + Iu
1 + · · · + Iu

6 + Af
(
q−1

1 , q−1
2

)+ B+σ+ + B−σ−

+ C
(
f
(
q−1

1 ,ω
)+ f

(
q−1

1 ,ω−1))

+ |D| ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (q1, q
−1
2 ) if q1 < q

3/2
2 ,

σ if q
3/2
2 < q1 < q2

2 ,

f (q−1
1 , q2) if q2

2 < q1,

where σ± = f (±q
−1/2
1 q

3/2
2 , q−1

2 ) + f (q−1
1 ,±q

1/2
1 q

−1/2
2 ) + f (±q

1/2
1 q

−3/2
2 ,

±q
−1/2
1 q

1/2
2 ) and

σ = f
(
q−1

1 q3
2 , q−1

2

)+ f
(
q−1

1 , q1q
−1
2

)+ f
(
q2

1q−3
2 , q−1

1 q2
)+ f

(
q−2

1 q3
2 , q1q

−2
2

)

+ f
(
q1q

−3
2 , q−1

1 q2
2

)
.

As in the previous sections, it is easy to show that

Iu
1 + · · · + Iu

6 = (q1 − 1)2

2q1q
3
2 (q2

1 − 1)

∫

T

χ1
s (h)

|c1(s)|2 ds + (q2 − 1)2

2q3
1q2

2 (q2
2 − 1)

∫

T

χ2
s (h)

|c2(s)|2 ds.
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Proposition 3.10 gives f (q−1
1 ,ω) + f (q−1

1 ,ω−1) = π8(h) and σ = π6(h) (note that

π6 only occurs for parameters q
3/2
2 < q1 < q2

2 , and in this range π6 is defined and has
regular central character). We also have σ± = π7±(h). For π7+ it is important that q1 �=
q2 and q1 �= q3

2 , for otherwise π7+ does not have a regular central character and things
become complicated (see below). Lemma 3.11 gives f (q−1

1 , q−1
2 ) = χ3(h). Since we

exclude q1 = q2, the representation π4 has regular central character for parameters
q1 < q

3/2
2 , and so Lemma 3.11 gives f (q1, q

−1
2 ) = χ4(h). Similarly, f (q−1

1 , q2) =
χ5(h) for all q2

2 < q1 with q1 �= q3
2 .

It remains to discuss the cases q1 = q2 and q1 = q3
2 . Let us briefly outline the work

involved. Consider the q1 = q2 case (the q1 = q3
2 case is similar). The integrands of

I1, . . . , I6 are still nonsingular on T, and the contours in the integrals I3, I4 and I6

can all be shifted to T without encountering any poles. This leaves I1, I2 and I5 to
consider. Writing f (t) = g(t)/d(t) the integrands of I1, I2 and I5 are respectively

qs2(1 − s2)g(q
3
2 s, q−1)

(1 − q)(1 − q− 1
2 s−1)2(1 + q− 1

2 s−1)(1 − q− 5
2 s−1)(1 − q− 1

2 s)2(1 + q− 1
2 s)(1 − q− 5

2 s)

,

s4(1 − s2)g(q−1, q
1
2 s)

(1 − q)(1 − q− 3
2 s−3)(1 − q−1s−2)(1 − q− 3

2 s−1)(1 − q− 3
2 s3)(1 − q−1s2)(1 − q− 3

2 s)

,

q− 1
2 s(1 − s2)g(q− 3

2 s−1, q
1
2 s)

(q − 1)(1 − q− 1
2 s−1)2(1 + q− 1

2 s−1)(1 − q− 5
2 s−1)(1 − q− 1

2 s)2(1 + q− 1
2 s)(1 − q− 5

2 s)

.

The relevant poles are at s = q− 1
2 (a double pole for I1, I2, and I5), s = q− 1

2 (a single

pole for I1, I2, and I5), s = ω±1q− 1
2 (single poles for I2 only), and s = q− 5

2 (a single

pole for I1 only). The residue contributions from s = −q− 1
2 make up the χ7−(h) term,

the contributions from s = ω±1q− 1
2 give the χ8(h) term, and the contribution from

s = q− 5
2 gives the χ3(h) term. All that remains is to analyse the contribution from

the double poles of each integral at s = q− 1
2 .

We claim that the combined residue contribution from the point s = q− 1
2 is

R1 + R2 + R5 = q(q − 1)3

6(q + 1)2(q3 − 1)

(
χ7+(h) + 2χ4(h)

)
. (4.6)

We do not have a conceptual proof of this fact, but it can be obtained by direct cal-
culation as follows. As in Remark 2.2, the functions g(t) = gt (h) can be explic-
itly computed (since one only needs to know the values gt (Tw) for w ∈ W0, as
gt (Twxλ) = tλgt (Tw)). Then the residue contributions can be explicitly calculated
(making 12 separate calculations, one for each h = Twxλ with w ∈ W0). On the other
hand, using the explicit matrices (Example 2 of Sect. 3.3) for the representations π7+
and π4 one can compute the expression χ7+(Twxλ) + 2χ4(Twxλ) and compare. This
completes the proof. �
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4.7 The ˜BC2(q0, q1, q2) algebras with L = Q

The root system is R = ±{α1, α2, α1 + α2, α1 + 2α2,2α2,2(α1 + α2)}, giving dual
root system R∨ = ±{α∨

1 , α∨
2 , α∨

1 + α∨
2 ,2α∨

1 + α∨
2 , α∨

2 /2, α∨
1 + α∨

2 /2}. The affine

Hecke algebra has generators T1, T2, x1 = xα∨
1 and x2 = xα∨

2 /2 with relations

T 2
1 = 1 + (

q
1
2
1 − q

− 1
2

1

)
T1, T1x1 = x−1

1 T1 + (
q

1
2
1 − q

− 1
2

1

)
(1 + x1),

T 2
2 = 1 + (

q
1
2
2 − q

− 1
2

2

)
T2, T2x2 = x−1

2 T2 + (
q

1
2
2 − q

− 1
2

2

)
x2 + (

q
1
2
0 − q

− 1
2

0

)
,

T1T2T1T2 = T2T1T2T1, T2x1 = x1x
2
2T −1

2 − (
q

1
2
0 − q

− 1
2

0

)
x1x2,

x1x2 = x2x1, T1x2 = x1x2T
−1
1 .

Let πt = IndH
C[Q](Cvt ) be the principal series representation of H with cen-

tral character t = (t1, t2) ∈ (C×)2, where Cvt is the 1-dimensional representation
of C[Q] with x1 · vt = t1vt and x2 · vt = t2vt .

Let H1 be the subalgebra generated by T1, x1, x2 and let H2 be the subalgebra
generated by T2, x1, x2. Let s ∈C

×, and let π1
s = IndH

H1
(Cu1

s ) and π
j
s = IndH

H2
(Cu

j
s )

(j = 2,3,4) be the 4-dimensional representations induced from the 1-dimensional
representation Cu1

s of H1 and the 1-dimensional representations Cu
j
s (j = 2,3,4) of

H2 given by

T1 · u1
s = −q

− 1
2

1 u1
s , x1 · u1

s = q−1
1 u1

s , x2 · u1
s = q

1
2
1 su1

s ,

T2 · u2
s = −q

− 1
2

2 u2
s , x1 · u2

s = q
1
2
0 q

1
2
2 su2

s , x2 · u2
s = q

− 1
2

0 q
− 1

2
2 u2

s ,

T2 · u3
s = −q

− 1
2

2 u3
s , x1 · u3

s = q
− 1

2
0 q

1
2
2 su3

s , x2 · u3
s = −q

1
2
0 q

− 1
2

2 u3
s ,

T2 · u4
s = q

1
2
2 u4

s , x1 · u4
s = q

1
2
0 q

− 1
2

2 su4
s , x2 · u4

s = −q
− 1

2
0 q

1
2
2 u4

s .

Let πj (j = 5, . . . ,11) be the 1-dimensional representations of H with

π5 = (−q
− 1

2
1 ,−q

− 1
2

2 , q−1
1 , q

− 1
2

0 q
− 1

2
2

)
, π6 = (−q

− 1
2

1 ,−q
− 1

2
2 , q−1

1 ,−q
1
2
0 q

− 1
2

2

)
,

π7 = (
q

1
2
1 ,−q

− 1
2

2 , q1, q
− 1

2
0 q

− 1
2

2

)
, π8 = (

q
1
2
1 ,−q

− 1
2

2 , q1,−q
1
2
0 q

− 1
2

2

)
,

π9 = (−q
− 1

2
1 , q

1
2
2 , q−1

1 , q
1
2
0 q

1
2
2

)
, π10 = (−q

− 1
2

1 , q
1
2
2 , q−1

1 ,−q
− 1

2
0 q

1
2
2

)
,

π11 = (
q

1
2
1 , q

1
2
2 , q1,−q

− 1
2

0 q
1
2
2

)
,

where in each case we list the quadruples (πj (T1),π
j (T2),π

j (x1),π
j (x2)).

Let π12 = MJ (s), π13 = MJ (t), and π14 = MJ (u) be the 3-dimensional repre-
sentations with

(
sα∨

1 , sα∨
2 /2)= (

q−1
1 , q

1
2
0 q

1
2
2

)
,

(
tα

∨
1 , tα

∨
2 /2)= (

q−1
1 ,−q

− 1
2

0 q
1
2
2

)
,

(
uα∨

1 , uα∨
2 /2)= (

q−1
1 ,−q

1
2
0 q

− 1
2

2

)
,
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and J = {α2}. We assume that q1 �= q0q2 and q2
1 �= q0q2 for π12, that q1 �= q−1

0 q2 and
q2

1 �= q−1
0 q2 for π13, and that q1 �= q0q

−1
2 and q2

1 �= q0q
−1
2 for π14, so that N(s) =

N(t) = N(u) = {α1, α2} and D(s) = D(t) = D(u) = ∅, and hence FJ (s) = FJ (t) =
FJ (u) = {s2, s1s2, s2s1s2}.

Finally, let π15 = MJ (t) and π16 = MJ (u) be the 2-dimensional representations
with

(
tα

∨
1 , tα

∨
2 /2)= (−q0, q

− 1
2

0 q
− 1

2
2

)
,

(
uα∨

1 , uα∨
2 /2)= (−q2, q

− 1
2

0 q
− 1

2
2

)
, J = ∅.

Theorem 4.8 For all h ∈ H we have

Tr(h) = 1

8q2
1q2

2

∫∫

T2

χt (h)

|c(t)|2 dt + C6

∫

T

χ1
s (h)

|c1(s)|2 ds + C7

∫

T

χ2
s (h)

|c2(s)|2 ds

+ C8

∫

T

χ(h)

|c3(s)|2 ds + C1χ
5(h)

+ |C2| ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π7(h) if q1 < q
1
2
0 q

1
2
2 ,

π12(h) if q
1
2
0 q

1
2
2 < q1 < q0q2,

π9(h) if q0q2 < q1

+
⎧
⎨

⎩
X1 if q0 < q2,

X2 if q2 < q0,

where χ(h) = χ3
s (h) if q0 < q2 and χ(h) = χ4

s (h) if q2 < q0, and where

X1 = |C3|χ15(h) + |C4|χ6(h) + |C5| ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ8(h) if q1 < q
− 1

2
0 q

1
2
2 ,

χ13(h) if q
− 1

2
0 q

1
2
2 < q1 < q−1

0 q2,

π10(h) if q−1
0 q2 < q1,

X2 = |C3|χ16(h) + |C5|π10(h) + |C4| ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π11(h) if q1 < q
1
2
0 q

− 1
2

2 ,

π14(h) if q
1
2
0 q

− 1
2

2 < q1 < q0q
−1
2 ,

π6(h) if q0q
−1
2 < q1,

with c(t), c1(s), c2(s), c3(s),C1, . . . ,C8 as in Appendix A.4.

Proof The series Gt(h) converges for |t1| < q−1
1 and |t2| < q

− 1
2

0 q
− 1

2
2 , and so writing

f (t) = ft (h) we have

Tr(h) = 1

q2
1q2

2

∫

q−1
1 aT

∫

q
− 1

2
0 q

− 1
2

2 bT

f (t)

c(t)c(t−1)
dt2 dt1

whenever 0 < a,b < 1. We choose a and b both very close to 0, and choose 0 < c < 1

very close to 1. The t2-poles of the integrand between the contour q
− 1

2
0 q

− 1
2

2 bT and
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cT are at t2 = q
− 1

2
0 q

− 1
2

2 , at t2 = −q
1
2
0 q

− 1
2

2 (if q0 < q2) and at t2 = −q
− 1

2
0 q

1
2
2 (if q2 <

q1). Thus we can shift the t2-contour to cT at the cost of residue contributions from
the above points. Now interchange the order of integration in the double integral.
The t1-poles of the integrand between q−1

1 aT and T are at t1 = q−1
1 , t1 = q−1

1 t−2
2 ,

t1 = q
− 1

2
0 q

− 1
2

2 t−1
2 , t1 = −q

1
2
0 q

− 1
2

2 t−1
2 (if q0 < q2) and t1 = −q

− 1
2

0 q
1
2
2 t−1

2 (if q2 < q0).
Computing the associated residues gives

Tr(h) = 1

q2
1q2

2

∫

T2

f (t)

|c(t)|2 dt + I1 + I2 + I3 + I4 +
⎧
⎨

⎩
I5 + I6 if q0 < q2,

I ′
5 + I ′

6 if q2 < q0,

where

I1 = q0q2 − 1

q2
1q2(q0 + 1)(q2 + 1)

∫

q
− 1

2
0 q−1

1 q
− 1

2
2 aT

f (q
1
2
0 q

1
2
2 s, q

− 1
2

0 q
− 1

2
2 )

c2(s)c2(s−1)
ds,

where s = q
− 1

2
0 q

− 1
2

2 t1,

I2 = q1 − 1

q1q
2
2 (q1 + 1)

∫

q
− 1

2
1 cT

f (q−1
1 , q

1
2
1 s)

c1(s)c1(s−1)
ds, where s = q

− 1
2

1 t2,

I3 = q1 − 1

q1q
2
2 (q1 + 1)

∫

q
1
2

1 cT

f (s−2, q
− 1

2
1 s)

c1(s)c1(s−1)
ds, where s = q

1
2
1 t2,

I4 = q0q2 − 1

q2
1q2(q0 + 1)(q2 + 1)

∫

cT

f (q
− 1

2
0 q

− 1
2

2 s−1, s)

c2(s)c2(s−1)
ds, where s = t2,

I5 = q2 − q0

q2
1q2(q0 + 1)(q2 + 1)

∫

q
1
2

0 q−1
1 q

− 1
2

2 aT

f (q
− 1

2
0 q

1
2
2 s,−q

1
2
0 q

− 1
2

2 )

c3(s)c3(s−1)
ds,

where s = q
1
2
0 q

− 1
2

2 t1,

I ′
5 = q0 − q2

q2
1q2(q0 + 1)(q2 + 1)

∫

q
− 1

2
0 q−1

1 q
1
2

2 aT

f (q
1
2
0 q

− 1
2

2 s,−q
− 1

2
0 q

1
2
2 )

c3(s)c3(s−1)
ds,

where s = q
− 1

2
0 q

1
2
2 t1,

I6 = q2 − q0

q2
1q2(q0 + 1)(q2 + 1)

∫

cT

f (q
1
2
0 q

− 1
2

2 s−1,−s)

c3(s)c3(s−1)
ds, where s = −t2,

I ′
6 = q0 − q2

q2
1q2(q0 + 1)(q2 + 1)

∫

cT

f (q
− 1

2
0 q

1
2
2 s−1,−s)

c3(s)c3(s−1)
ds, where s = −t2.

Now shift the contours in all integrals Ij , I ′
j to T. We omit the details of this long

calculation. �
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Appendix: Constants and c-functions

We write σ1(x) = 1 + x and σ2(x) = 1 + x + x2.

A.1 C̃2(q1, q2) algebras with L = Q

c(t) = (1 − q−1
1 t−1

1 )(1 − q−1
1 t−1

1 t−2
2 )(1 − q−1

2 t−1
2 )(1 − q−1

2 t−1
1 t−1

2 )

(1 − t−1
1 )(1 − t−1

1 t−2
2 )(1 − t−1

2 )(1 − t−1
1 t−1

2 )
,

c1(s) = (1 + q
− 1

2
1 s−1)(1 − q

− 1
2

1 q−1
2 s−1)(1 − q

1
2
1 q−1

2 s−1)

(1 − s−2)(1 − q
1
2
1 s−1)

,

c2(s) = (1 − q−1
1 q−1

2 s−1)(1 − q−1
1 q2s

−1)

(1 − s−1)(1 − q2s−1)
,

A = (q1q2 − 1)(q1q
2
2 − 1)

σ1(q1)σ1(q2)2σ1(q1q2)
, B = 2q2(q1 − 1)2

σ1(q2)2σ1(q1q
−1
2 )σ1(q1q2)

,

C = (q1q
−1
2 − 1)(1 − q1q

−2
2 )

σ1(q1)σ1(q
−1
2 )2σ1(q1q

−1
2 )

.

A.2 C̃2(q1, q2) algebras with L = P

c(t) = (1 − q−1
1 t−2

1 t2
2 )(1 − q−1

1 t−2
2 )(1 − q−1

2 t1t
−2
2 )(1 − q−1

2 t−1
1 )

(1 − t−2
1 t2

2 )(1 − t−2
2 )(1 − t1t

−2
2 )(1 − t−1

1 )
,

c1(s) = (1 + q
− 1

2
1 s−1)(1 − q

− 1
2

1 q−1
2 s−1)(1 − q

1
2
1 q−1

2 s−1)

(1 − s−2)(1 − q
1
2
1 s−1)

,

c2(s) = (1 − q−1
1 q−1

2 s−2)(1 − q−1
1 q2s

−2)

(1 − s−2)(1 − q2s−2)
.

A.3 G̃2(q1, q2) algebras with L = Q

c(t) =
(
(1 − q−1

1 t−1
1 )(1 − q−1

1 t−2
1 t−3

2 )(1 − q−1
1 t−1

1 t−3
2 )(1 − q−1

2 t−1
2 )

× (1 − q−1
2 t−1

1 t−2
2 )(1 − q−1

2 t−1
1 t−1

2 )
)(

(1 − t−1
1 )(1 − t−2

1 t−3
2 )(1 − t−1

1 t−3
2 )

× (1 − t−1
2 )(1 − t−1

1 t−2
2 )(1 − t−1

1 t−1
2 )

)−1
,



370 J Algebr Comb (2014) 40:331–371

c1(s) = (1 − q
− 1

2
1 ωs−1)(1 − q

− 1
2

1 ω−1s−1)(1 − q−1
2 s−2)(1 − q

− 1
2

1 q−1
2 s−1)(1 − q

1
2

1 q−1
2 s−1)

(1 − s−2)(1 − q
− 1

2
1 s−1)(1 − q

1
2

1 s−3)

,

c2(s) = (1 − q−1
1 s−2)(1 − q−1

1 q
− 3

2
2 s−1)(1 − q−1

1 q
3
2
2 s−1)

(1 − s−2)(1 − q
3
2
2 s−1)(1 − q

1
2
2 s−1)

,

A = (q1q
2
2 − 1)(q2

1q3
2 − 1)

σ1(q1)σ1(q2)σ2(q2)σ2(q1q2)
,

B± = q1(q1 − 1)(q2 − 1)

2σ1(q1)σ1(q2)σ2(±√
q1/q2)σ2(±√

q1q2)
,

C = q2(q1 − 1)(q3
1 − 1)

σ2(q2)σ2(q1q
−1
2 )σ2(q1q2)

, D = (1 − q1q
−2
2 )(q2

1q−3
2 − 1)

σ1(q1)σ1(q
−1
2 )σ2(q

−1
2 )σ2(q1q

−1
2 )

.

A.4 ˜BC2(q0, q1, q2) algebras with L = Q

c(t) = (1 − q−1
1 t−1

1 )(1 − q−1
1 t−1

1 t−2
2 )(1 − a−1t−1

1 t−1
2 )(1 + b−1t−1

1 t−1
2 )(1−a−1t−1

2 )(1+b−1t−1
2 )

(1 − t−1
1 )(1 − t−1

1 t−2
2 )(1 − t−2

1 t−2
2 )(1 − t−2

2 )
,

c1(s) = (1 − q
− 1

2
0 q

− 1
2

1 q
− 1

2
2 s−1)(1 + q

1
2

0 q
− 1

2
1 q

− 1
2

2 s−1)(1 − q
− 1

2
0 q

1
2

1 q
− 1

2
2 s−1)(1 + q

1
2

0 q
1
2

1 q
− 1

2
2 s−1)

(1 − s−2)(1 − q1s−2)
,

c2(s) = (1 + q
1
2
0 q

− 1
2

2 s−1)(1 − q
− 1

2
0 q−1

1 q
− 1

2
2 s−1)(1 − q

1
2
0 q−1

1 q
1
2
2 s−1)

(1 − s−2)(1 − q
1
2
0 q

1
2
2 s−1)

,

c3(s) = (1 + q
− 1

2
0 q

− 1
2

2 s−1)(1 − q
1
2
0 q−1

1 q
− 1

2
2 s−1)(1 − q

− 1
2

0 q−1
1 q

1
2
2 s−1)

(1 − s−2)(1 − q
− 1

2
0 q

1
2
2 s−1)

,

where a = q
1
2
0 q

1
2
2 and b = q

− 1
2

0 q
1
2
2 .

C1 = (q0q1q2 − 1)(q0q
2
1q2 − 1)

σ1(q0)σ1(q1)σ1(q2)σ1(q0q1)σ1(q1q2)
,

C3 = (q2 − q0)(q0q2 − 1)

σ1(q0q
−1
1 )σ1(q

−1
1 q2)σ1(q0q1)σ1(q1q2)

,

and C2 = −C1(q
−1
0 , q1, q

−1
2 ), C4 = C1(q

−1
0 , q1, q2) and C5 = −C1(q0, q1, q

−1
2 ). Fi-

nally,

C6 = q1 − 1

2q1q
2
2 (q1 + 1)

, C7 = q0q2 − 1

2q2
1q2(q0 + 1)(q2 + 1)

,

C8 = |q2 − q0|
2q2

1q2(q0 + 1)(q2 + 1)
.
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