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Abstract

An automorphism of a spherical building is called domestic if it maps no chamber onto an
opposite chamber. This paper forms a significant part of a large project classifying domestic
automorphisms of spherical buildings of exceptional type. In previous work the classifications
for G2, F4 and E6 have been completed, and the present work provides the classification for
buildings of type E7. In many respects this case is the richest amongst all exceptional types.
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1 Introduction

The study of the geometry of fixed elements of automorphisms of spherical buildings is a well-
established and beautiful topic (see [27]). Over the past decade a complementary theory concern-
ing the “opposite geometry”, consisting of those elements mapped to opposite elements by an
automorphism of a spherical building, has been developed (see [15, 18, 22, 23, 24, 25, 33, 35, 40]).
A starting point for this theory is the fundamental result of Abramenko and Brown [1, Propo-
sition 4.2], stating that if θ is a nontrivial automorphism of a thick spherical building then the
opposite geometry Opp(θ) is necessarily nonempty. Indeed the generic situation is that Opp(θ) is
rather large, and typically contains many chambers of the building (chambers are the simplices
of maximal dimension). The more special situation is when Opp(θ) contains no chamber, in
which case θ is called domestic.
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In [24] the second and third authors initiated an intensive investigation of domestic automor-
phisms of buildings of exceptional type, with an overarching objective being to obtain a complete
classification of such automorphisms. In [24] we were able to classify all domestic automorphisms
of thick buildings of type E6, and split buildings of types F4 and G2, and in [18] Lambrecht and
the third author obtained the classification for all spherical buildings of type F4. Moreover,
partial results were obtained in [24] for buildings of types E7 and E8, including the classifica-
tion of domestic homologies of these buildings (a homology is a collineation pointwise fixing
an apartment and a panel; it fixes a full weak subbuilding), and we also exhibited examples of
unipotent domestic automorphisms.

In the present paper we provide the classification of domestic automorphisms of E7 buildings.
Both the statement of the classification, and its proof, are considerably more intricate and
involved than the E6 and (split) F4 and G2 cases, and indeed we discover new and beautiful
behaviour not present in these lower rank cases. The classification for E8 will be dealt with in
future work.

Before stating our classification theorems we first recall some preliminary notation and defini-
tions. In the sequel, we will use the Bourbaki labelling (see [4]) of the nodes in the E7 diagram:

•1 •3 •4 •5 •6 •7

•
2

An irreducible thick spherical building of rank at least 3 is called large if it contains no Fano
plane residues. By Tits’ classification of spherical buildings [37], a large building of type E7 is
any building E7(K) over a field K with at least 3 elements. By the main result of [22], each
automorphism θ of a large spherical building is capped, meaning that it satisfies the following
property: If θ maps a flag of type J1 to an opposite flag, and another flag of type J2 to an
opposite flag, then θ maps a flag of type J1 ∪ J2 to an opposite flag. Hence in a large spherical
building, in order to know the types of all flags mapped to an opposite it suffices to know the
types of the minimal ones. Since these minimal types are orbits of the induced action of the
automorphism on the Dynkin (or Coxeter) diagram, and since that action is always trivial in
the case of E7, it suffices to know the types of the vertices mapped to an opposite. Encircling
those types on the Coxeter diagram gives the opposition diagram of the automorphism. In [22],
all possible opposition diagrams are classified, and the list for E7 is given in Figure 1.

E7;0 = • • • • • •
•

E7;1 = • • • • • •
•

E7;2 = • • • • • •
•

E7;3 = • • • • • •
•

E7;4 = • • • • • •
•

E7;7 = • • • • • •
•

Figure 1: The opposition diagrams of type E7

On the other hand, the fixed element diagram of an automorphism of an E7 building is given by
encircling the types of the vertices of the building fixed by θ. We will use the same symbols E7;j

for fixed diagrams.

The opposition diagram E7;7 is the opposition diagram of any non-domestic automorphism, and
hence we shall not be concerned with it. Also, since the opposite geometry of a nontrivial auto-
morphism is never empty (by [1]), the only automorphism with opposition diagram E7;0 is the
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identity automorphism. Moreover, in [24, Theorems 1 and 4] we proved that each automorphism
with opposition diagram E7;1 is a nontrivial central collineation (and vice-versa), and that each
automorphism with opposition diagram E7;2 is the product of two nontrivial perpendicular root
elations (and vice-versa). Thus the focus of the present paper is to classify the automorphisms
with opposition diagrams E7;3 and E7;4.

In [24, Theorems 5 and 6] we provided examples of automorphisms with opposition diagrams
E7;3 and E7;4. These examples were certain products of 3 or 4 perpendicular nontrivial central
collineations, respectively, or certain homologies. In particular, all of these examples fix a
chamber of the building (equivalently, they are conjugate to members of the Borel subgroup B).
Moreover, in the case of E6, it is shown in [24, Theorem 8] that all domestic automorphisms of
a thick E6 building fix a chamber of the building.

In contrast, in the present paper we shall see that in E7 buildings there exist automorphisms
with opposition diagrams E7;3 and E7;4 fixing no chamber, provided the underlying field admits
certain extensions. The complete classification of such automorphisms is given in the following
theorem (see Remark 2.11 for the definition of equator geometries for part (iii)).

Theorem 1. Let ∆ = E7(K) with |K| > 2.

(i) For each quadratic extension L of K, there exists, up to conjugacy, a unique subgroup H of
the automorphism group of ∆ each nontrivial element of which is a domestic automorphism
with opposition diagram E7;3. Moreover, as an abstract group, H is isomorphic to L×/K×,
the fixed diagram of each nontrivial element of H is E7;4, and the fixed structure is a
building of type F4.

(ii) For each quaternion division algebra H over K, there exists, up to conjugacy, a unique
subgroup H of the automorphism group of ∆ each nontrivial element of which is a domestic
automorphism with opposition diagram E7;4. As an abstract group, H is isomorphic to
H×/K×, the fixed diagram of each nontrivial element of H is E7;3, and the fixed structure
is a building of type C3.

(iii) For each quadratic extension L of K, every member of the pointwise stabiliser of a sub-
building of type D6 obtained as equator geometry Γ = E(p1, p2) of the parapolar space
E7,1(K) acting without fixed points on the imaginary line defined by p1, p2, is a domestic
automorphism with opposition diagram E7;4.

Conversely, every domestic automorphism of ∆ fixing no chamber is conjugate to some collineation
as in (i), (ii) or (iii) above.

In Theorem 1, quadratic extensions of K are not assumed to be separable; likewise, with quater-
nion algebra over K we mean a 4-dimensional associative quadratic division algebra over K;
hence it can also be an inseparable field extension of degree 4 of a field in characteristic 2, in
which case we refer to it as an inseparable quaternion division algebra over K.

The automorphisms listed in Theorem 1 parts (i) and (ii) exhibit a particularly attractive duality
in the sense that the automorphisms with opposition diagram E7;3 have fixed diagram E7;4, and
vice-versa. This phenomenon is not random, but fits in the context of the Freudenthal-Tits
Magic Square, where this behaviour is systematic for cells lying symmetric with respect to the
main diagonal. This, and more background, is explained in [41], see in particular Section 9.4
therein.

To complete the classification of domestic automorphisms of large E7 buildings we must classify
the domestic automorphisms that fix a chamber (equivalently, that are conjugate to a member
of the Borel subgroup B). Let Φ denote the root system of type E7 with simple roots α1, . . . , α7
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(in Bourbaki labelling). For α ∈ Φ and a ∈ K let xα(a) denote the standard Chevalley generator
and for λ in the coweight lattice of Φ and c ∈ K\{0} let hλ(c) denote the standard torus elements
(see Section 8 for definitions).

We first classify the chamber fixing automorphisms with opposition diagram E7;3.

Theorem 2. An automorphism θ of the building ∆ = E7(K) with |K| > 2 has opposition diagram
E7;3 and fixes a chamber if and only if it is conjugate to

(i) the unipotent element xα2(1)xα5(1)xα7(1);
(ii) an homology whose fixed structure is a weak building with thick frame of type E6; such

elements are conjugate to hω7(c) with c ∈ K\{0, 1}.

Finally, we classify the chamber fixing automorphisms with opposition diagram E7;4. Let ΦD4 be
the sub-root system of Φ of type D4 (generated by α2, α3, α4, α5). If α = iα2 +jα4 +kα3 + lα5 ∈
ΦD4 we write xα(a) = xijkl(a) for the associated Chevalley generators (with a ∈ K).

Theorem 3. An automorphism θ of the building ∆ = E7(K) with |K| > 2 has opposition diagram
E7;4 and fixes a chamber if and only if it is conjugate to

(i) x0100(a)x1110(1)x1101(1)x0111(1) with a ∈ K\{0};
(ii) x1111(1)x0100(a)x1110(1)x1101(1)x0111(1) with a ∈ K\{0};

(iii) an homology whose fixed structure is a weak building with thick frame of type D6 or D6×A1;
such elements are conjugate to hα∨(c) with α ∈ Φ and c ∈ K\{0, 1};

(iv) xα(1)hα∨(−1) with char(K) 6= 2, for any root α ∈ Φ.

The automorphisms appearing in Theorem 2 were already known in [24] (however, of course,
the work here is proving that the classification is complete). The automorphisms appearing in
Theorem 3 parts (i) and (iii) were known from [24], however the automorphisms appearing in (ii)
and (iv) are new, and arose in the course of the classification. In particular, the automorphism
in case (iv) is interesting in that it is conjugate to neither a unipotent element nor a homology
(such elements were never domestic in the lower rank E6, F4, and G2 cases; see Proposition 8.11).

Theorems 1, 2, and 3, combined with [24, Theorems 1 and 4], gives the complete classification
of domestic automorphisms of large buildings of type E7. The unique small building of type
E7 (that is, the building ∆ = E7(F2)) behaves differently due to the existence of uncapped
automorphisms (see [23]), and the full classification of domestic automorphisms of this building
is currently unknown, and will be addressed in future work. Thus, in the present paper, we will
assume |K| > 2 throughout.

Before outlining the structure of this paper, we outline some additional motivation for study-
ing domestic automorphisms by illustrating that domesticity is intimately connected to beau-
tiful geometric and algebraic phenomena. Firstly there is a remarkable connection with the
Freudenthal-Tits Magic Square, already mentioned above (see [41, Section 9.4]). The case of
E7 is particularly interesting here since it is the only case appearing twice in the Magic Square,
both times neither split nor quasisplit, resulting in two diagrams leaving nodes uncircled (the
E7;3 and E7;4 diagrams). This allows for a rich domestic behaviour of buildings of type E7, and
the nontrivial duality between opposition and fixed diagrams seen in Theorem 1.

Secondly there is a connection with linear descent groups, that is, groups pointwise fixing a
subbuilding. Galois descent (see [27]) provides one source of such groups; but when the com-
panion field automorphisms are trivial we speak instead of linear descent. Contrary to the
Galois descent case (where the groups are small), not all linear descent groups (which are much
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larger) are classified, even when the fixed building is known. Linear descent provides a way to
see natural and rather large inclusions of buildings, explaining some of the structure of both
the ambient and embedded building. For example in the present paper, in order to understand
domesticity in building of type E7 we are led to determine the descent group in buildings of type
E6 of the (fixed) quaternion projective planes (the octonion counterpart coming from Galois
descent). The fix group will turn out to be abstractly isomorphic to the multiplicative group of
norm 1 elements of the corresponding quaternion algebra, see Subsection 5.4. Along the way, we
will show a certain rigidity result for such quaternion projective planes embedded in buildings
of type E6: they are determined up to a unique twin by any anti-flag, that is, a non-incident
point-line pair (see Subsection 5.5).

We conclude this introduction with a brief outline of the structure and strategy of the paper.
The analysis naturally divides into two cases, depending on whether the domestic automorphism
fixes a chamber of not. In the case that the automorphism does not fix a chamber (Theorem 1),
our arguments are of a geometric flavour, and the necessary background material on polar and
parapolar spaces is given in Section 2. In particular, Section 2.3 gives precise and specific
information required on various parapolar spaces of exceptional type that are required for this
paper. To prove Theorem 1 we must first introduce and classify collineations in buildings of types
Dn and E6 whose displacement spectra skips certain values (we call these kangaroo collineations).
This analysis is given in Sections 3, 4, and 5. The classification of kangaroo collineations is then
applied in Sections 6 and 7 to prove Theorem 1.

It then remains to classify domestic automorphisms fixing a chamber. Here our arguments are
more algebraic, relying on commutator relations and ultimately reducing to specific calculations
in the D4 Chevalley group. This analysis is given in Section 8. We setup the preliminary
arguments of Section 8 in sufficient generality so that they can be applied in future work on E8.

2 Preliminaries on polar and parapolar spaces

Our approach to buildings of type E7 is via their related geometries known as parapolar spaces.
Everything we say below can be found in the standard books [6] and [30]. Although we as-
sume a certain familiarity with this theory, we recall some basic definitions in order to settle
notation. We shall use the words “automorphism” and “collineation” interchangeably (with the
former more connected to the building language, and the latter more connected to the incidence
geometry language).

2.1 Abstract definitions

Let Γ = (X,L ) be a point-line geometry (if the incidence relation is not mentioned, we assume
it is induced by containment). Points x, y ∈ X contained in a common line are called collinear,
denoted as x ⊥ y; the set of all points collinear to x is denoted by x⊥, the perp of x. We will
always deal with situations where every point is contained in at least one line, so x ∈ x⊥. Also,
for S ⊆ X, we denote S⊥ := {x ∈ X | x ⊥ s for all s ∈ S}. Likewise we write S ⊥ T for subsets
S, T ⊆ X if s ⊥ t for each s ∈ S and each t ∈ T . If each line has at least three points, we call
the geometry thick.

The point graph of Γ is the graph on X with collinearity as adjacency relation. The distance
δ between two points p, q ∈ X (denoted δΓ(p, q), or δ(p, q) if no confusion is possible) is the
distance between p and q in the collinearity graph, where δ(p, q) =∞ if p and q are contained in
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distinct connected components of the point graph; If δ := δ(p, q) is finite, then a geodesic path
or a shortest path between p and q is a path between them in the point graph of length δ. The
diameter of Γ (denoted diamΓ) is the diameter of the point graph. We say that Γ is connected if
every pair of vertices is at finite distance from one another. The point-line geometry Γ is called
a partial linear space if each pair of distinct points is contained in at most one line. In this case
we usually denote the unique line containing two distinct collinear points x and y by xy.

A subspace of Γ is a subset A of X such that, if x, y ∈ A are collinear and distinct, then all lines
containing both x and y are contained in A. A subspace A is called convex if, for any pair of
points {p, q} ⊆ A, every point occurring in a geodesic between p and q is contained in A; it is
singular if δ(p, q) ≤ 1 for all p, q ∈ A. The intersection of all convex subspaces of Γ containing
a given subset B ⊆ X is called the convex subspace closure of B. A proper subspace H is called
a geometric hyperplane if each line of Γ has either one or all its points contained in H.

A full subgeometry Γ′ = (X ′,L ′) of Γ is a geometry with X ′ ⊆ X and L ′ ⊆ L . This implies that
all points of Γ on a line of Γ′ are points of Γ′ and explains the adjective ‘full’. Full subgeometries
need not be subspaces.

Now a polar space is a thick point-line geometry in which the perp of every point is a geometric
hyperplane. This forces all singular subspaces to be projective spaces. In our case the polar
spaces will have finite rank, that is, there is a natural number r ≥ 2 such all singular subspaces
(which are projective spaces) have dimension ≤ r − 1, and there exist singular subspaces of
dimension r − 1. A prominent notion in polar geometry is opposition. Two singular subspaces
U,W are opposite if no point of U ∪W is collinear to all points of U ∪W . Opposite subspaces
automatically have the same dimension. Opposite points are just non-collinear ones. The
singular subspaces of dimension r − 2 are called submaximal.

Now a parapolar space is a point-line geometry satisfying the following four axioms:

(PPS1) There is line L and a point p such that no point of L is collinear to p.
(PPS2) The geometry is connected.
(PPS3) Let x, y be two points at distance 2. Then either there is a unique point collinear to

both—and then the pair {x, y} is called special—or the convex subspace closure of {x, y}
is a polar space ξ(x, y)—and then the pair {x, y} is called a symplectic pair. Such polar
spaces are called symplecta, or symps for short.

(PPS4) Each line is contained in a symplecton.

The parapolar spaces we will encounter all have the rather peculiar property that all symps
have the same rank, which is then called the (uniform) symplectic rank of the parapolar space.
In contrast, the maximal singular subspaces (which will be projective spaces) will not all have
the same dimension. The singular ranks of a parapolar space with only projective spaces as
singular subspaces (which is automatic if the symplectic rank is at least 3) are the dimensions
of the maximal singular subspaces.

A parapolar space without special pairs is called strong.

Now let Γ = (X,L ) be a parapolar space all of whose symps have rank at least 3. Let x ∈ X.
Then we define the geometry ResΓ(x) = (Lx,Πx) as the geometry with point set the set of lines
Lx through x and set of lines the set Πp of planar line pencils with vertex x and call it the
residue at x, or the residual geometry at x.

In the present paper we will mainly deal with buildings of type Bn, Dn, E6, E7 and F4. The
parapolar spaces we will be concerned with are dual polar spaces, half spin geometries, metasym-
plectic spaces and the exceptional geometries of type E6,1, E7,1 and E7,7, which we now briefly
introduce.
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2.2 Lie incidence geometries

Let ∆ be an irreducible thick spherical building. Let n be its rank, let S be its type set and let
s ∈ S. Then we define a point-line geometry Γ = (X,L , ∗) as follows. The point set X is just
the set of vertices of ∆ of type s; the set L of lines are the flags of type s∼, where s∼ is the
set of types adjacent to s in the Coxeter diagram of ∆. If x is a vertex of type s and F a flag
of type s∼, then x ∗ F if F ∪ {x} is a flag. The geometry Γ is called a Lie incidence geometry.
For instance, if ∆ has type An, and s = 1 (remember we use Bourbaki labelling), then Γ is the
point-line geometry of a projective space. If Xn is the Coxeter type of ∆ and Γ is defined using
s ∈ S as above, then we say that Γ has type Xn,s. Another example: Geometries of type Bn,1
and Dn,1 are polar spaces.

For the classical diagrams X ∈ {A,B,D}, the geometries of type Xn,k are the projective and polar
Grassmannians. Geometries of type Bn,n are more specifically called dual polar spaces and there
is a huge literature about them. Geometries of type Dn,n are more specifically called half spin
geometries. They are in fact Grassmannians of the corresponding oriflamme geometries (see the
beginning of Section 3). Many properties of dual polar spaces and half spin geometries can be
deduced from the underlying polar spaces.

Buildings of type A,D,E are uniquely defined by their underlying field K (or skew field in the
case of A), provided the rank is at least 3. We denote the corresponding building of type Xn by
Xn(K), and the corresponding Lie incidence geometries of type Xn,k by Xn,k(K).

We now describe the Lie incidence geometries E6,1(K), E7,1(K) and E7,7(K). This is best done
by displaying the possible mutual positions of the symps, the points and, in case of E7,1(K), the
class of convex subgeometries isomorphic to E6,1(K), called paras.

2.3 Some parapolar spaces of exceptional type

2.3.1 E6,1(K)

First let ∆ = (X,L ) be the parapolar space E6,1(K), for some field K. The elements of the
corresponding building of types 1, 2, 3, 4, 5, 6, are the points, 5-spaces, lines, planes, 4-spaces and
symps, respectively. The symps are isomorphic to polar spaces D5,1(K). The hyperplanes of the
5-spaces are called 4′-spaces to distinguish them from the 4-spaces. The 4′-spaces correspond in
the building to flags of type {2, 6}. Hence every 4′-space is contained in a unique 5-space, and
also in a unique symp. All singular 3-spaces form one orbit (of Aut∆) and correspond to flags
of type {2, 5, 6}; they all arise as the intersection of a 4-space and a 4′-space, or of two 4′-spaces.

The mutual positions of the elements can be deduced from a model of an apartment of the
corresponding building, more precisely the graph on the vertices of type 1 of a Coxeter complex
of type E6, adjacent when contained in adjacent chambers. This is exactly the complement of
the point graph of the generalised quadrangle of order (2, 4) (three points per line, five lines
through each point). A concrete model is the following: Let V be the set of all pairs of the
set {1, 2, 3, 4, 5, 6}, plus two copies of the latter, denoted {1, 2, 3, 4, 5, 6} and {1′, 2′, 3′, 4′, 5′, 6′}.
Adjacency is given by {i, j} ∼ {k, `} if |{i, j, k, `}| = 3; i ∼ {j, k} ∼ i′ if i /∈ {j, k}; i ∼ i′; i ∼ j
and i′ ∼ j′ if i 6= j. As an example how to use such a model, we deduce the mutual positions of
points and 5-space. We may fix a 5-space {1, 2, 3, 4, 5, 6}. Then a point is either of the form i,
or of the form (i, j) or of the form i′. In the first case the point belongs to the 5-space; in the
second case it is collinear to a 3-space (given by the four vertices of {1, 2, 3, 4, 5, 6} distinct from
i, j); in the third case it is collinear to a unique point of the 5-space.
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We now mention all such relevant possible mutual positions, introducing some more terminology.

Fact 2.1. Let ∆ = (X,L ) be the parapolar space E6,1(K). Then the following holds.

(i) ∆ is strong and has diameter 2, that is, two distinct points either lie in a unique symplecton,
or are collinear (and then lie in many symplecta).

(ii) The geometry with point set the set of symps of ∆, and where the lines are the sets of
symps containing a fixed 4-space, is isomorphic to ∆ itself (and we denote it by E6,6(K));
this is the duality principle, which implies that two distinct symps in ∆ either intersect in
a unique point, or in a unique 4-space.

(iii) A point not contained in a symp is collinear to either no points of that symp—then we say
that the point and the symp are far—or to all points of a unique 4′-space of that symp—the
point and the symp are close.

(iv) A point not contained in a 5-space is collinear to either a unique point of that 5-space, or
to a 3-space contained in that 5-space.

(v) A symp and a 5-space intersect in either a 4′-space, a line, or the empty set.
(vi) Two 5-spaces are either disjoint or intersect in a point or plane.

For each point x ∈ X, the residual geometry Res∆(x) is isomorphic to the half spin geometry
D5,5(K).

We will need the following specific property.

Lemma 2.2. Let ξ and ξ′ be two distinct symps of E6,1(K). Then there exists a point x far from
ξ and close to ξ′ (and hence not contained in either).

Proof. The set of points close to ξ′ is precisely the union of all lines having at least one point in
common with ξ′. It follows from Section 3.2 of [11] that each point x of that set not contained
in ξ′ is contained in a line containing a point far from ξ′, and all such lines are not contained in
one single symp. The assertion now follows from applying this to a point x of ξ′ close to (so not
contained in) ξ.

2.3.2 E7,1(K)

Let ∆ be the Lie incidence geometry E7,1(K), for some field K. This is sometimes also referred
to as the long root (subgroup) geometry related to the building E7(K); the node 1 is the so-called
polar node, see [24]. Then ∆ is a parapolar space, which has diameter 3 and is non-strong.

The elements of the corresponding building of types 1, 2, 3, 4, 5, 6, 7, are the points, 6-spaces,
lines, planes, 4-spaces, symps and paras, respectively. The symps are isomorphic to polar spaces
D5,1(K), and the paras are strong parapolar spaces isomorphic to E6,1(K). The other types
are singular (projective) subspaces of ∆. Besides those, ∆ also contains singular subspaces
of dimension 5, which do not correspond to a type but each of them is the intersection of a
unique para and a unique 6-space, that is, it corresponds in the building to a flag of type {2, 7}.
The 4-dimensional subspaces contained in those 5-spaces are also singular subspaces of ∆ not
corresponding to a single type of ∆; those are referred to as 4′-spaces and correspond in the
building to flags of type {2, 6, 7}.

Again, one can deduce the possible mutual positions of points, symps and paras, etc., by consid-
ering an appropriate model of an apartment of a building of type E7. Such models are given in
[42]. We limit ourselves here to mentioning that the root system of type E7 provides a good such
model: the points of the apartment are the roots; two points are collinear if the corresponding
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roots form an angle of 60 degrees; two points are special if the corresponding roots form an
angle of 120 degrees; two points are symplectic if the corresponding roots are perpendicular; two
points are opposite if the corresponding roots are opposite. The symps are the subsystems of
type D5. The paras those of type E6.

Fact 2.3 (Point-symp relations). If p is a point and ξ a symp of ∆ with p /∈ ξ, then precisely
one of the following occurs.

(i) p is symplectic to a unique point q ∈ ξ. In this case, p and x are special for all x ∈
ξ ∩ (q⊥ \ {q}), and p and x are opposite for all x ∈ ξ \ q⊥.

(ii) p is collinear to a 4-space U of ξ; also p and ξ are contained in a unique para Π. In this
case, p and x are symplectic if x ∈ ξ \ U .

(iii) p is symplectic to each point of a 4-space U of ξ; in this case, p and x are special if
x ∈ ξ \ U .

(iv) there is a unique line L ⊆ ξ with p ⊥ L. In this case, p and x are symplectic if x ∈
ξ ∩ (L⊥ \ L) and p and x are special if x ∈ ξ \ L⊥.

(v) p is symplectic to all points of ξ. In this case, p and ξ are contained in a unique para Π,
in which they are Π-opposite.

In Cases (i), (iii) and (iv), the point p and the symp ξ are not contained in a common para.

Fact 2.4 (Point-para relations). If p is a point and Π a para of ∆ with p /∈ Π, then precisely
one of the following occurs.

(i) p is collinear to a unique 5-space W in Π. In this case, p is said to be close to Π. The
point p is symplectic or special to the points of Π \W ; it is special to x ∈ Π precisely when
x is collinear to a unique point of W .

(ii) p is not collinear to any point of Π, but it is contained in a unique para Π′ that intersects
Π in a symp. In this case, p and Π are said to be far from each other. The point p and
the symp Π ∩Π′ are opposite in Π′.

Fact 2.5 (Para-para relations). If Π and Π′ are distinct paras, then precisely one of the following
occurs.

(i) Π ∩Π′ is a symp;
(ii) Π ∩Π′ is a point;

(iii) Π∩Π′ = ∅ and each point x ∈ Π is far from Π′. Let ξx be the unique symp of Π′ contained
in a para with x, unique by Fact 2.4(ii). Then each point of Π′ \ ξx collinear to a point
of ξx is special to x, and each point in Π′ which is Π′-opposite ξx is at distance 3 from x.
The correspondence Π −→ Π′ : x 7→ ξx induces an isomorphism of π onto the dual of Π′.

Fact 2.6. Let Π be a para of ∆ and let W,W ′ be two Π-opposite singular 5-spaces of Π. Let
U and U ′ be the unique singular 6-spaces containing W and W ′, respectively. Then every point
u ∈W is collinear to a unique point θ(u) of W ′. Let u ∈ U and u′ ∈ U ′. Then

(i) u ⊥ u′ if, and only if, u ∈W and u′ = θ(u),
(ii) u ⊥⊥ u′ if, and only if, u ∈W , u′ ∈W ′ and u′ 6= θ(u),

(iii) u and u′ are special if, and only if, either u ∈ U \ W and u′ ∈ W ′, or u ∈ W and
u′ ∈ U ′ \W ′,

(iv) u is opposite u′ if, and only if, u ∈ U \W and u′ ∈ U ′ \W ′.

Conversely, let W and W ′ be two singular 5-spaces such that each point of W is collinear to
a unique point of W ′. Then W and W ′ are contained in a unique para Π, where they are
Π-opposite.

10



We also record the following property of ∆ (which in fact holds for all long root geometries
related to spherical buildings):

Fact 2.7. Let p ⊥ x ⊥ y ⊥ q be a path in ∆ with (p, y) and (q, x) special. Then p and q are
opposite, i.e., δ(p, q) = 3. Conversely, if for some points p, q, r holds p ⊥⊥ r ⊥ q, then p is never
opposite q.

For each point x ∈ X, the residual geometry Res∆(x) is isomorphic to the half spin geometry
D6,6(K).

2.3.3 E7,7(K)

Let ∆ be the long root geometry E7,1(K). We shall use the notation ∆∗ for the point-line
geometry E7,7(K) obtained from ∆ by taking as points the paras of ∆ and as lines the symps of
∆, with obvious incidence relation. We refer to ∆∗ as the dual of ∆.

Then ∆∗ is a strong parapolar space of diameter 3; points at distance 3 are called opposite. A
maximal singular subspace has either dimension 5 (in this case occurring as an intersection of
two symps and corresponding to a type 3 element in the Dynkin diagram) or dimension 6 (type
2 in the Dynkin diagram). The 5-dimensional subspaces of a 6-space will be called 5′-spaces.
They do not correspond to a single node of the Dynkin diagram, but rather to a flag of type
{1, 2}. Each symp of ∆∗ is isomorphic to the polar space D6,1(K) (corresponding to the residue
of an element of type 1 in the underlying spherical building). Furthermore, the lines, planes,
3-dimensional singular subspaces and 4-dimensional subspaces correspond to types 6, 5, 4 and
{2, 3} in the Dynkin diagram.

We now review the point-symp and symp-symp relations. As in the previous cases, they can be
deduced by considering an appropriate model of an apartment (the “thin version”) of a building
of type E7, as given in [42]. Here, such a model can be given by the Gosset graph, which has in
turn many descriptions and constructions. One of them is as the 1-skeleton of the 321 polytope
(see [5], pages 103 and 104). A traditional construction runs as follows. The 56 vertices are the
pairs from the respective 8-sets {1, 2, . . . , 8} and {1′, 2′, . . . , 8′}. Two pairs from the same set are
adjacent if they intersect in precisely one element; two pairs {a, b} and {c′, d′} from different sets
are adjacent if {a, b} and {c, d} are disjoint. The symps correspond to cross-polytopes of size 12
(so-called hexacrosses or 6-orthoplexes) contained in the Gosset graph. There are 126 such, and
56 of these are determined by an ordered pair (i, j) with i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8}, i 6= j, and
induced on the vertices {i, k} and {j′, k′}, k /∈ {i, j}, whereas the other 70 are determined by a
4-set {i, j, k, `} ⊆ {1, 2, 3, 4, 5, 6, 7, 8} and are induced on the vertices {s, t} ⊆ {i, j, k, `}, s 6= t,
and {u′, v′} ⊆ {1′, 2′, 3′, 4′, 5′, 6′, 7′, 8′} \ {i′, j′, k′, `′}, u 6= v.

Armed with this description of the thin version, one can verify the following facts.

Fact 2.8 (Point-symp relations). If p is a point and ξ a symp of ∆∗ with p /∈ ξ, then precisely
one of the following occurs.

(i) p is collinear to a unique point q ∈ ξ. In this case, p and x are symplectic if x ∈ ξ∩(q⊥\{q})
and δ(p, x) = 3 for x ∈ ξ \ q⊥. We say that p is far from ξ.

(ii) p is collinear to a 5′-space U of ξ. In this case, x and p are symplectic if x ∈ ξ \ U . We
say that p is close to ξ.

This fact implies that on each line L, there is at least one point symplectic to a given point p
(unique when L contains at least one point opposite p). We will use this without reference.
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Fact 2.9 (Symp-symp relations). If ξ and ξ′ are two symps of ∆∗, then precisely one of the
following occurs.

(i) ξ = ξ′;
(ii) ξ ∩ ξ′ is a 5-space. We call the symps adjacent.

(iii) ξ ∩ ξ′ is a line L. Then points x ∈ ξ \L and x′ ∈ ξ′ \L are never collinear and δ(x, x′) = 3
if, and only if, x⊥ ∩ L is disjoint from x′⊥ ∩ L. We call {ξ, ξ′} symplectic.

(iv) ξ ∩ ξ′ = ∅ and there is a unique symp ξ′′ intersecting ξ in a 5-space U and intersecting ξ′

in a 5-space U ′, with U and U ′ opposite in ξ′′. All points of ξ \U are far from ξ′ and each
point of U is close to ξ′. Also, each line connecting a point of ξ with a point of ξ′ contains
a point of U ∪ U ′. We call {ξ, ξ′} special.

(v) ξ ∩ ξ′ = ∅ and every point of ξ is collinear to a unique point of ξ′. In this situation, ξ and
ξ′ are opposite. Each point of ξ is far from ξ′.

At each point x ∈ X, the residual geometry Res∆(x) is isomorphic to the geometry E6,1(K).

The following well-known property can be deduced from Propositions 4.4 and 4.7 of [14].

Fact 2.10. Let ξ1 and ξ2 be two opposite symps of ∆∗. Let L be the set of lines L that contain
a point of ξ1 and one of ξ2. Then for each point p on each member of L there exists a symp ξp
intersecting each member of L . The set of all such symps ξp forms a partition of the union of
L .

Remark 2.11. The set of symps in Fact 2.10 is called a full imaginary set of symps. Since the
type of the symps is 1 in the E7 diagram, and this is precisely the polar type, a root elation
pointwise fixes a symp ξ and stabilises all symps nondisjoint from ξ (also all points close to
ξ are fixed). The corresponding root group acts sharply transitively on each full imaginary
set of symps containing ξ, except for ξ itself, which is obviously fixed. The root groups thus
corresponding to two opposite symps ξ1, ξ2 generate a collineation group acting as PSL2(K) on
the corresponding full imaginary set of symps. Each collineation of that group pointwise fixes the
set E(ξ1, ξ2) of points close to both ξ1 and ξ2, hence close to each member of the corresponding
full imaginary set of symps. The set E(ξ1, ξ2) endowed with all lines contained in it, is called
the equator geometry (with poles ξ1 and ξ2) in [10] and [14].

2.3.4 Types F4,1 and F4,4

The Lie incidence geometries of types F4,1 and F4,4 are the main examples of the so-called
metasymplectc spaces. Buildings of type F4 are not determined by a field K alone, but they
also need a quadratic alternative division algebra A over K. The planes of type {1, 2} are then
projective planes over K, and those of type {3, 4} are projective planes over A. We denote such a
building by F4(K,A), and the related metasymplectic spaces by F4,1(K,A) and F4,4(K,A). The
latter two are dual to each other in the sense that the geometry deduced from one of them by
declaring the symps as new points, and the planes as new lines, with natural incidence, provides
the other geometry.

Let Γ = (X,L ) either be F4,1(K,A) or F4,4(K,A), for a field K and A as above. Then Γ is a
non-strong parapolar space of diameter 3. Moreover, Γ has the following properties.

Fact 2.12 (Point-symp relations). Let p be a point and ξ a symp of Γ with p /∈ ξ. Then one of
the following occurs:

(i) p⊥ ∩ ξ is line L. In this case, p and x are symplectic for all x ∈ ξ ∩ (L⊥ \ L), and p and
x are special for all x ∈ ξ \ L⊥. We say that p and ξ are close;
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(ii) p⊥ ∩ ξ is empty, but there is a unique point u of ξ symplectic to p. Then x and p are
special for all x ∈ ξ ∩ (u⊥ \ {u}), and x and p are opposite if x ∈ ξ \ u⊥. We say that p
and ξ are far.

Fact 2.13 (Symp-symp relations). The intersection of two symps is either empty, or a point,
or a plane. If two symps are opposite, then they are disjoint and every point of one symp is far
from the other symp. If two disjoint symps are not opposite, then there exists a unique third
symp intersecting both symps in planes.

At each point x ∈ X the residue ResΓ(x) is a dual polar space of rank 3.

We can be more precise about the isomorphism classes of the symps as follows. The symps
of F4,1(K,A) are all isomorphic to the polar space denoted by B3,1(K,A) and arising from the
quadric in PG(n,K) = PG(V), with n = 2r − 1 + dimK(A) and V = K2r ⊕ A, with equation

x−rxr + · · ·+ x−2x2 + x−1x1 = n(x0),

where x−r, xr, . . . , x−2, x2, x−1, x1 ∈ K, x0 ∈ A and n the natural norm form of A.

In contrast, the symps of F4,4(K,A) are all isomorphic to the polar spaces denoted by C3,1(A,K)
and arising from a symplectic polarity if K = A, or isomorphic to the unique non-embeddable
polar space over A if A is octonion (see chapter 9 of [37]), or else, arising from the pseudo-
quadratic form in PG(5,A) given by

x−3x3 + x−2x2 + x−1x1 ∈ K,

where x−3, x3, x−2, x2, x−1, x1 ∈ A and x 7→ x is the standard involution of A (this includes the
case of inseparable field extensions, where the standard involution is trivial).

Remark 2.14. For each of the Lie incidence geometries E7,1(K), E7,7(K), F4,1(K,A) and F4,4(K,A)
(and in fact, for each Lie incidence geometry arising from a spherical building in such a way
that “points” are a self-opposite type), the fact that in an apartment each point has a unique
opposite implies readily that a singular subspace U is opposite another singular subspace U ′ of
opposite type if, and only if, each point of U is opposite some point of U ′. This also holds for
symps and paras.

2.4 Quaternion and octonion Veronese varieties

We will also have to deal with Veronese varieties. Let us briefly introduce these. Let K be a
field and A ⊇ K a quadratic alternative division algebra over K. Recall that such an algebra
admits a unique involution A → A : x 7→ x such that xx ∈ K and x + x ∈ K. This involution
is called the standard involution. It is trivial if and only if A = K or A is an inseparable field
extension of K in characteristic 2. In any case, the dimension of A over K is either infinite or a
power of 2. If the standard involution is not the identity, then A is either a quadratic separable
field extension of K, a quaternion algebra, or an octonion algebra. The dimensions are then 2,4
and 8, respectively. Set d = dimKA.

The Veronese variety V (K,A) is the following set of points of PG(2 + 3d,K):

{(xx, yy, 1, y, x, xy) | x, y ∈ A} ∪ {(xx, 1, 0, 0, 0, x) | x ∈ A} ∪ {(1, 0, 0, 0, 0, 0)}.

If A is associative, this coincides with the set {(xx, yy, zz, yz, zx, xy) | x, y, z ∈ A}.
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The set of points of V (K,A) can be identified with the points of the projective plane PG(2,A)
in such a way that lines bijectively correspond to the quadrics of Witt index 1 contained in
subspaces of dimension d+1 of PG(2+3d,K). Such subspaces are called host spaces of V (K,A).

If A is a quaternion division algebra, then V (K,A) lives in PG(14,K). We call this Veronese
variety a (separable) quaternion Veronesean, or (separable) quaternion Veronese variety. We add
the adjective “separable” in order to distinguish it from the other case in which the variety spans
a 14-dimensional projective space, namely, the case where A is an inseparable field extension of
degree 4 of K. In this case, the corresponding Veronese variety will be—slightly abusively—called
an inseparable quaternion Veronesean or inseparable quaternion Veronese variety. Likewise, we
will call the corresponding algebra an inseparable quaternion algebra. A “true” quaternion
division algebra will be called a separable quaternion algebra. This (nonstandard) terminology
will add to the clarity and brevity of statements.

Similar considerations hold for the octonion case, but we will never need the inseparable case
here. However, for clarity, we will sometimes add the adjective “separable” when we deal
with octonion Veroneseans, or octonion Veronese varieties, meaning that A is a non-associative
alternative division algebra over K.

2.5 Opposition

For a given automorphism θ of a spherical building Ω, we say that a vertex v is non-domestic
(domestic) if θ maps (does not map) v to an opposite. If all vertices of type t are domestic,
we say that θ is t-domestic. We sometimes make t explicit by calling it by its geometric name,
like point-domestic if we are dealing with a certain point-line geometry related to Ω (like in
Section 2.3).

If v is non-domestic, then the automorphism θv of ResΩ(v) maps by definition each chamber
C through v to the projection of Cθ onto v; this has the property that two elements w,wθv of
ResΩ(v) are opposite in the residue if and only if w and wθ are opposite in Ω, see Proposition 3.29
of [37].

A panel is a simplex of size r − 1, where r is the rank of the building.

3 Kangaroos in oriflamme geometries

Oriflamme geometries are related to the polar spaces with the property that each submaximal
singular subspace (next-to-maximal singular subspace) is contained in exactly two maximal
subspaces; it follows that there are two natural classes of maximal singular spaces so that
adjacent ones are in a different class. The oriflamme geometry treats these two classes as elements
of different type, and ignores the submaximal subspaces, just like the corresponding building
of type Dn. The polar spaces themselves are sometimes called hyperbolic, or of hyperbolic type.
Disjoint maximal singular subspaces are opposite in the building theoretical sense. Opposite
maximal singular subspaces have the same type if and only if n is even. Maximal subspaces are
also sometimes called generators.

An automorphism of an oriflamme geometry is called an oppomorphism if its natural action on
the Dynkin diagram agrees with the opposition. Otherwise, it is called an anti-oppomorphism.

A collineation of an oriflamme geometry, or hyperbolic polar space, is called type-preserving if
it stabilises the two natural systems of generators; hence if it induces a type-preserving auto-

14



morphism of the corresponding spherical building. A collineation which is not type-preserving
is called type-interchanging.

As (anti-)oppomorphisms of polar spaces act faithfully on the point set, they are collineations
of the polar space. For hyperbolic polar spaces we have:

• oppomorphisms are type-preserving if n is even and type-interchanging if n is odd;
• anti-oppomorphisms are type-preserving if n is odd and type-interchanging if n is even.

We now introduce the notion of a kangaroo.

3.1 Kangaroos and general properties

Definition 3.1. Let θ be a non-trivial collineation of a polar space Γ = (X,L ) of type Dn,
n ≥ 2. If θ maps no point of X to another collinear point, and θ has at least one fixed point,
then we call θ a kangaroo (collineation) of Γ. If θ has at least one pointwise fixed line, we call
it lazy. If θ has no fixed lines, we call it diligent.

Although we are mainly interested in diligent kangaroos, we prove some general properties of
also lazy ones, as this helps us recognising diligent kangaroos easier.

Our first aim is to show a characterisation of kangaroos, providing alternative definitions. There-
fore, we prove the following lemmas.

We assume throughout that Γ = (X,L ) is a polar space of type Dn, n ≥ 2.

Lemma 3.2. Let θ be a kangaroo of Γ and let U be any singular subspace of Γ. Then U ∩ U θ
is fixed pointwise.

Proof. Suppose p ∈ U ∩U θ is mapped to pθ 6= p. As p ∈ U , we know that pθ ∈ U θ 3 p, but then
p ⊥ pθ, a contradiction. Hence p = pθ and the lemma follows.

Corollary 3.3. The fixed point set of a kangaroo in a generator of Γ is a singular subspace.

Lemma 3.4. The parity of the dimension of the fixed point set of a kangaroo in a generator is
the same as

• n for type-interchanging kangaroos;
• n− 1 for type-preserving kangaroos.

Proof. The dimension of the intersection of two generators has the same parity as n if and only
if they are of different type. The assertion now follows from Lemma 3.2.

Lemma 3.5. The dimension of the fixed point set of a kangaroo in a generator is the same for
every generator.

Proof. Suppose U is a generator of Γ with a fixed k-space K, where k is chosen maximal,
0 ≤ k < n. Each generator S adjacent to U also contains a fixed k-space, as S ∩ Sθ contains
the fixed (k − 1)-space S ∩ K, and due to parity and Lemma 3.4, it has to be a k-space. A
connectivity argument completes the proof.
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Since kangaroos have, by definition, at least one fixed point, it follows that kangaroos do not map
generators to disjoint ones, hence they are domestic. The following characterization shows which
domestic collineations are kangaroos. First a definition. Recall that line-domestic collineations
of generalised quadrangles are characterised by the shape of their fixed point set: either the
perp of a point is pointwise fixed, or an ovoid is pointwise fixed, or a large full subquadrangle is
pointwise fixed. The latter is a full subquadrangle that has a non-empty intersection with each
line. There is some similarity with the following definition.

Definition 3.6. A subspace Γ′ = (X ′,L ′) of Γ is called i-large, if every i-dimensional singular
subspace intersects X ′ nontrivially, and there exists an (i − 1)-dimensional singular subspace
disjoint from X ′.

We are interested in a special class of i-large subspaces, namely, the nondegenerate ones of
minimal rank. It will turn out that those can also be characterised by the counterpart for polar
subspaces of the so-called ideal subpolygons.

Definition 3.7. A subspace Γ′ = (X ′,L ′) of Γ is called ideal if the residue of each singular
subspace S of Γ′ in Γ′, where

dimS = max{dimU | U ⊆ X ′ is a singular subspace of Γ′} − 1,

is an ovoid in the corresponding residue in Γ.

We now have the following equivalences.

Proposition 3.8. Let Γ have rank at least 3. The following are equivalent.

(i) θ is a kangaroo or the identity
(ii) There exists k, 0 ≤ k ≤ n − 1 such that for every generator M , the subspace M ∩M θ is

k-dimensional and globally fixed by θ.
(iii) There exists k, 0 ≤ k ≤ n − 1 such that for every generator M , the subspace M ∩M θ is

k-dimensional and pointwise fixed by θ.
(iv) θ has at least one fixed point, maps no line to a different but coplanar line, and no line to

a disjoint but non-opposite and non-collinear one.
(v) There exists k, 0 ≤ k ≤ n − 1 such that the fixed point set of θ is an (n − k − 1)-large

nondegenerate polar subspace of rank k + 1.
(vi) The fixed point set of θ is a nonempty ideal subspace.

Proof. (ii)⇒ (iii). If k = 0, the intersections are points themselves and are thus fixed pointwise.

Now let k > 0, suppose M is a generator and U = M ∩M θ is a k-dimensional subspace, fixed
by θ. Let V be a (k − 1)-dimensional subspace of U . Suppose for a contradiction that V 6= V θ.
Thus V ∩ V θ is (k − 2)-dimensional.

Pick a complement W of U in M ; then W is (n− k− 2)-dimensional. Take a generator N 6= M
through 〈W,V 〉. We know that N ∩N θ is k-dimensional and V ∩ V θ ⊂ N ∩N θ. So there exists
a line L in N ∩ N θ disjoint from V ∩ V θ. But L is collinear with V and V θ, so L is collinear
with U . Since L is also collinear with W ⊆ M and W θ ⊆ M θ, we infer that L is collinear
with M and M θ. So it is contained in M and M θ, and hence in M ∩ M θ = U . But then
N ∩N θ = 〈V ∩ V θ, L〉 ⊆ U , a contradiction. Hence every (k − 1)-dimensional subspace of U is
stabilised, implying that U is pointwise fixed.

(i)⇒ (iii). This follows from Lemma 3.5.
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(iii)⇒ (i). Obvious.

(iii)⇒ (ii). Trivial.

(i) ⇒ (iv). If a line is mapped to a different but coplanar line, then clearly some points are
mapped onto collinear points, a contradiction. Similar argument for a line L mapped onto a
disjoint but non-opposite line Lθ. Indeed, a point x on L collinear to all points of Lθ (which
exists since L and Lθ are not opposite) is mapped onto a collinear point.

(iv)⇒ (i). Let x0 be a fixed point of θ. We first show that no point collinear to x0 is mapped
onto a collinear point. Suppose for a contradiction that some point x ⊥ x0 is mapped onto a
collinear point x′ 6= x. If x′ were not on the line xx0, then the line xx0 would be mapped onto a
coplanar but distinct line. Hence x′ ∈ xx0. Since the rank of Γ is at least 3, there exists a point
y ⊥ xx0. If y is mapped onto a collinear (or fixed) point y′, then again y′ ∈ yx0. But then the
line xy is distinct and coplanar with x′y′, a contradiction. Hence y′ = yθ is not collinear to y.
But then the line xy is mapped onto the disjoint but non-opposite and non-collinear line x′y′

(x′ ⊥ xy), the final contradiction. Hence either x = xθ or x is mapped onto an opposite point.
If there exists some point x1 ⊥ x0, x1 6= x0, fixed under θ, then the whole line x0x1 is fixed
pointwise, every point is collinear to a fixed point and the previous argument yields (i).

Hence we may assume that θ maps every point collinear to x0 to an opposite. It follows that
each generator M through x0 is mapped onto a generator M θ with |M ∩M θ| = 1. By parity,
the intersection S of any generator N with its image is never empty. By the previous paragraph,
and since each point of S is mapped onto a collinear point, S is a singleton {s}. Now suppose
for a contradiction that s 6= sθ. Let p ∈ N ∩x⊥0 be arbitrary. Then s is collinear to ps∪ pθsθ, so
ps is not opposite (ps)θ. Since p is opposite pθ by our assumption, ps is not collinear to (ps)θ

either, a contradiction. Hence s = sθ and the fixed point set is an ovoid. In any case, each point
is collinear to a fixed point and so by the first paragraph, θ is a kangaroo.

(iii)⇒ (v). Let Γ′ be the fixed point set. Every (n− k − 1)-dimensional singular subspace lies
in some generator M and hence has at least one point x in common with M ∩M θ, which has
dimension k by assumption. But x is fixed by assumption, hence Γ′ is at most n− k − 1-large.
It is exactly n− k− 1-large since a dimension argument yields in each generator an (n− k− 2)-
dimensional subspace disjoint from M ∩M θ, and hence disjoint from Γ′. Since Γ′ obviously
has rank k + 1, it remains to show that Γ′ is nondegenerate. Suppose, for a contradiction,
that x ∈ Γ′ is collinear to all points of Γ′. An arbitrary generator not through x contains a
k-dimensional subspace S pointwise fixed under θ. Then 〈x, S〉 has dimension k+1 and is fixed,
a contradiction.

(v)⇒ (vi). Let S be a submaximal singular subspace of the fixed point set Γ′, hence of dimension
k−1. Let M be a maximal singular subspace of Γ containing S. If M did not contain a singular
subspace U of Γ′ of dimension k, then it would contain a subspace W of M complementary to
S, hence of dimension n−k−1 and disjoint from Γ′. This contradicts Γ′ being (n−k−1)-large.

(vi)⇒ (v). Let Γ′ again be the fixed point set. We first show that it is a nondegenerate subspace.
Indeed, suppose for a contradiction that some point x ∈ Γ′ is collinear to all points of Γ′. Let
k ≥ 1 be the maximal dimension of singular subspaces in Γ′, and consider a subspace U ⊆ Γ′

of dimension k. Then x ∈ U . Let W ⊆ U be a subspace of dimension k − 1. By maximality
of k, the singular subspace W is contained in a unique singular subspace of dimension k of Γ′

(namely, U), contradicting the fact that these should form an ovoid in the residue. Hence Γ′

is nondegenerate of rank k + 1. We claim that every generator of Γ contains a k-dimensional
singular subspace of Γ′. Indeed, assume that some generator M of Γ intersects Γ′ in a subspace
U of dimension i < k (possibly i = −1). By the nondegeneracy of Γ′, we find a singular subspace
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S of dimension k − 1 in Γ′ containing U . Then there is a unique generator M ′ containing S
and intersecting M in a subspace S′ of dimension n − k − i containing U . By assumption M ′

contains a unique subspace K of Γ′ of dimension k containing S. A dimension argument yields
(M ∩K)\S 6= ∅, a contradiction. The claim follows. Since every singular subspace of dimension
n− k − 1 is contained in a generator, we see that Γ′ is (n− k − 1)-large.

(vi) ⇒ (i). Suppose for a contradiction that some point x is mapped onto a collinear point
x′ 6= x. Let M be a generator of Γ containing x and x′. We know from the previous paragraph
that the fixed point set Γ′ is an (n−k−1)-large nondegenerate polar subspace of rank k+1, and
hence that M contains a k-dimensional subspace S of Γ′. Let R ⊆ S be a subspace of dimension
k − 1. Considering the residue of R, it suffices to show the assertion for Γ′ an ovoid.

Now x⊥ ∩ Γ′ = x′⊥ ∩ Γ′ = (xx′)⊥ ∩ Γ′. But x⊥ ∩ Γ′ defines an ovoid in the residue of x, whereas
(xx′)⊥∩Γ′ defines an ovoid in a singular hyperplane of that residue. Hence the assertion follows
if we show that no ovoid of any polar space is contained in the perp of some point p. But this
is obviously true as there exists at least one maximal singular subspace M containing a given
submaximal singular subspace S in a maximal singular subspace through p, with S and M both
disjoint from both the ovoid and {p}.

Note that (iv) expresses kangaroo behaviour of θ in the long root geometry of Γ, that is, the line
Grassmannian geometry. In this geometry, there are five distinct mutual positions of two points:
They can be equal, collinear, symplectic, special and opposite. Now (iv) says that points can be
mapped only to itself, symplectic and opposite ones, skipping the possibilities of collinear and
special.

Whenever θ is lazy, the fixed point set is a polar space and, by the main result of [7], automatically
arises as the intersection of the corresponding hyperbolic quadric with a subspace of the ambient
projective space. We now investigate this behaviour for diligent kangaroos.

3.2 Diligent kangaroos

Suppose θ is a diligent kangaroo of a polar space Γ = (X,L ) of type Dn. We assume that Γ
is defined over a field K (hence it corresponds to a hyperbolic quadric in PG(2n − 1,K) and
hence it can be viewed as a full subgeometry of this projective space). Note that θ extends to a
collineation of PG(2n− 1,K) and as such is either linear or semi-linear, according to whether or
not the companion field automorphism of the underlying vector space automorphism is trivial.

Lemma 3.9. The fixed point set of θ is an ovoid.

Proof. This follows from Proposition 3.8(vi).

Lemma 3.10. Let Γ = (X,L ) be a full subgeometry of PG(2n− 1,K) as above, and let S be a
subspace of PG(2n− 1,K) with dimS < n. Then there exists a generator M of Γ disjoint from
S.

Proof. We prove this by induction on n.

For n = 2, we may assume that S is a line. If S belongs to Γ, then we find a disjoint line of
Γ; if S does not belong to Γ, then it intersects Γ in at most two points and we find a line of Γ
containing neither.
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Now suppose n ≥ 3. We may obviously assume that S ∩X is nonempty. For an arbitrary point
q ∈ S ∩X, we select a point p ∈ X \ S opposite q. Then S ∩ 〈p⊥〉 is a hyperplane of S and has
hence dimension at most n− 2. Let H be a hyperplane of 〈p⊥〉 not containing p. Projecting p⊥

and S ∩ 〈p⊥〉 onto H we obtain a polar space Γ′ type Dn−1 in H and a subspace S′ of H with
dimS′ < n − 1. Applying induction we find a generator M ′ of Γ′ disjoint from S′. It follows
that M = 〈p,M ′〉 is a generator of Γ disjoint from S.

A skeleton of a projective space of dimension d is a set of d + 2 points no d + 1 of which are
contained in a common hyperplane. The next lemma is proved in full generality, although we
only need it for hyperbolic polar spaces.

Lemma 3.11. Let O be an ovoid of a polar space Γ with point set X of rank at least 2, which
is a full subgeometry of PG(d,K). If |K| > 2, then O contains a skeleton of 〈O〉.

Proof. Suppose for a contradiction that O does not contain a skeleton. Then the smallest closed
substructure it is contained in is a degenerate projective space and is hence contained in two
complementary subspaces U and W . If U ∪ W contains points of Γ outside O, then after
projecting from a nonempty subspace S entirely contained in Γ maximal with respect to the
property of being contained in U ∩W and not containing a member of O, we may assume that
O = (U ∪W ) ∩X.

There are two possibilities after this reduction: either the projection performed in the previous
paragraph yields a polar space of rank 1, or is again a polar space of rank at least 2. First
suppose the latter.

Select u ∈ U ∩O and w ∈W ∩O. First suppose that the line 〈u, v〉 of PG(d,K) contains a least
one more point x ∈ X. Let M be the intersection of an arbitrary maximal singular subspace of
Γ through u and another arbitrary maximal singular subspace of Γ through w. The maximal
singular subspace 〈M,x〉 generated by M and x contains a point of O, and, without loss of
generality, we may assume it is a point u′ ∈ U . The line 〈u, u′〉 intersects 〈M,w〉 in a point
u′′ ∈ X ∩ U and hence belongs to O. Clearly u′′ ⊥ w contradicts O being an ovoid.

So we may assume that Γ is a quadric. Note that we may also assume that K is infinite, because
in the finite case |K| = q, one readily sees that O = (U ∪W ) ∩X can only happen if, for some
k, `,m with k > `,m, one has qk + 1 = (q` + 1) + (qm + 1), which is obviously impossible for
q > 2, except if k = 1, ` = m = 0 and q = 3. In the latter case Γ is hyperbolic of rank 2 and
X is a quadric in PG(3, 3). However, every ovoid of X lies in a plane, as is readily checked, and
the four points of the ovoid form a skeleton of the plane.

Assume now first that Γ is not of hyperbolic type, that is, with the above notation, the singular
subspace M is contained in at least 3 (and hence infinitely many) maximal singular subspaces.
Pick an arbitrary maximal singular subspace A through M not containing u or w. As before we
may assume that there exists u′ ∈ U∩A. The plane 〈u, u′, w〉 intersects X in a conic C. Since |C|
is infinite, there exist three members c1, c2, c3 ∈ C such that the intersections di = 〈M, ci〉 ∩ O
belong either to U for all i = 1, 2, 3, or to W , for all i = 1, 2, 3. Then all subspaces 〈M, c〉,
with c ∈ C, intersect 〈d1, d2, d3〉 and hence either 〈M,u〉 intersects W nontrivially, or 〈M,w〉
intersects U nontrivially, both contradictions.

Finally we assume that X is a hyperbolic quadric. In this case, we consider a hyperplane
H of M (with notation as above). As before, we may assume that there exists three maximal
singular subspaces throughH, belonging to the same natural system (hence mutually intersecting
precisely in H) intersecting U in points (of O), say u1, u2, u3. Any other maximal singular
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subspace through H then intersects the plane 〈u1, u2, u3〉 in a point, which necessarily belongs
to O, contradicting the existence of w ∈W in one of these maximal singular subspaces.

Now suppose that the reduction in the first paragraph yields a polar space of rank 1. We initially
assume that the polar space is not hyperbolic. Then it contains at least three points. If X is
contained in a line, the assertion is trivial. So we may suppose that W has dimension at least 1.
We have X ⊆ U ∪W . Select u ∈ U and let Hu be the tangent hyperplane at u. Then Hu does
not contain any point of X ∩W , so it intersects it in a hyperplane. Pick w ∈W \Hu. then the
line 〈u,w〉 is not a tangent line and hence intersects X in at least two points, implying w ∈ X.
This of course contradicts X being of rank 1 (remember we may assume |K| > 2).

Now assume the polar space is hyperbolic. Then instead of projecting from a submaximal
singular subspace M , we project from a hyperplane of M and obtain a hyperbolic quadric X in
PG(3,K) with an ovoid O contained in either the union of two disjoint lines or the union of a
point and a plane. In the former case, the ovoid only contains four points, which implies |K| = 3,
and we noted above that in this case O spans a plane. Hence all points of O are contained in a
plane π, except for one point x. Let L be a lines of Γ through x, and set y = π∩L. Then y /∈ O
and there is a unique line of Γ through y distinct from L. Since y /∈ O, the line M contains a
point z of O not contained in π. Obviously z 6= x and we obtain a contradiction.

The assertion is proved.

We now return to our diligent kangaroo θ.

Lemma 3.12. If θ is linear, then the fixed point set O spans an n-dimensional subspace S in
PG(2n− 1,K), and O = S ∩X.

Proof. First we claim that the subspace 〈O〉 of PG(2n− 1,K) generated by O is pointwise fixed
by (the extension of) θ. Indeed, this follows from the fact that O contains a skeleton of 〈O〉 by
Lemma 3.11 if |K| > 2. If |K| = 2, then this is trivial (every collineation fixing a basis fixes
everything else). The claim follows. Then Lemma 3.10 implies that S is at least n-dimensional.
Now suppose dimS > n, then S ∩ ∆ contains lines, as generators of ∆ intersect S in at least
lines, contradicting the fact that O spanning S implies that S is pointwise fixed under the unique
extension of θ to PG(2n− 1,K).

The situation in the semilinear case is completely different, in fact, opposite. In the linear case,
the span of the ovoid has minimal dimension, in the semi-linear case it has maximal dimension.
Also, only involutions qualify!

Lemma 3.13. If θ is semilinear, then it is an involution and an anti-oppomorphism, and the
fixed point ovoid O spans PG(2n− 1,K).

Proof. We prove this statement by induction on n. First let n = 2. Let x ∈ X be a point that is
not fixed under θ. Then x⊥∩ (xθ)⊥ is fixed pointwise by θ as every line L of Γ through x carries
a fixed point pL and L = 〈x, pL〉 is mapped onto 〈xσ, pL〉. This already implies that θ is an
anti-oppomorphism. Hence (x⊥∩(xθ)⊥)⊥, which equals {x, xθ}, is preserved under the action of
θ, yielding (xθ)θ = x. We conclude that θ is an involution. Now assume that all fixed points are
contained in some plane π, in which θ then induces a Baer involution. Clearly, π intersects X
in a conic C and since O is an ovoid of Γ, we have C = O. But no conic in a Pappian projective
plane is pointwise fixed under a Baer involution. This settles the case n = 2.
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Now let n > 2. We claim that θ is involutive and that, for each point x with x 6= xσ, and for
each line L through x, there exists a point x′ ∈ L, x′ 6= x, contained in 〈O〉.

Indeed, let x be a point not fixed by θ. Set X ′ = x⊥ ∩ (xσ)⊥, and let Γ′ = (X ′,L ′) be the
corresponding hyperbolic polar space. Then X ′ spans a subspace of dimension 2n− 3. We show
first that O′ = O ∩ X ′ is an ovoid of Γ′. Let U ′ be a generator of Γ′. Then U = 〈x, U ′〉 is a
generator of Γ and so, by Proposition 3.8(iii), U ∩ Uσ is a fixed point p, which is collinear to
both x (as x, p ∈ U) and xθ (as xθ, p ∈ U θ). Hence p ∈ U ′ (as U ′ = U ∩ (xθ)⊥). This shows that
O′ is an ovoid of Γ′.

Now define the following collineation θ′ of Γ′. Let z ∈ X ′. Then zθ
′

is by definition the unique
point on 〈xθ, zθ〉 collinear to x. Since θ′ is the composition of a semilinear map and a (linear)
projection, it is a semilinear collineation of Γ′. Now O′ is exactly the set of fixed points of θ′, since
each fixed point q is collinear to qθ, which is a contradiction to θ being a kangaroo if q 6= qθ. By
induction, O′ generates 〈X ′〉. It follows that O′⊥ = {x, xθ}, and so {x, xθ}θ = {x, xθ}, implying
θ is an involution (varying x). Also, every line L ∈ L through x has a unique point x′ in
common with X ′, and that point lies in 〈O′〉 ⊆ 〈O〉. Our claim is proved.

Now suppose for a contradiction that O is contained in some hyperplane H of PG(2n − 1,K).
Obviously H contains a point x /∈ O with x⊥ 6⊆ H. Hence some line L ∈ L through x intersects
H in precisely x. But our claim above implies that L contains a point x′ ∈ 〈O〉 ⊆ H , with
x′ 6= x. Hence L = 〈x, x′〉 ⊆ H, a contradiction.

The fact that θ is an anti-oppomorphism follows from the fact that it maps each generator M
to a generator intersecting M is precisely a point, hence adjacent to an opposite generator.

Remark 3.14. Since the fixed point set of a lazy kangaroo contains full lines, a lazy kangaroo
is always linear. Similarly as above one shows that, if the fixed point set has rank k + 1 as a
polar space, it arises as the intersection of X ⊆ PG(2n − 1,K) with a subspace of dimension
n+ k. This also follows directly from Lemma 3.1.2 of [18].

Example 3.15. Let θ be a linear lazy kangaroo of D5,1(K) fixing points, lines and planes, but
no 3-spaces. The fix structure is a polar space of rank 3 embedded in a projective space of
dimension 5 + 2 = 7. Hence its equation is of the form

X−3X3 +X−2X2 +X−1X1 = X2
0 + aX0X

′
0 + bX ′20 ,

with a, b ∈ K. Since the polynomial x2 + ax + b does not have solutions in K, it defines a
quadratic extension L of K and we see that the fix structure is a polar space isomorphic to
B3,1(K,L).

4 Kangaroos in E6,1(K)

In this section we let θ be a type preserving automorphism of E6(K) mapping no point of E6,1(K)
to a collinear one, but having at least one fixed point and mapping at least one point to a point
at distance 2. We call such an automorphism a kangaroo (collineation) of E6,1(K). In order to
describe the action of such a kangaroo, it is convenient to consider the standard representation
of E6,1(K) as a full subgeometry in PG(26,K). It is also the so-called universal one, see [28],
and as such every collineation of it extends to PG(26,K). We denote it by E6(K). Our aim is to
prove the following classification.

21



Theorem 4.1. Let θ be a collineation of E6,1(K) and consider it as a collineation of PG(26,K)
stabilizing E6(K). Then θ is a kangaroo if, and only if, its fixed point structure F is a—separable
or inseparable—quaternion Veronese variety in a 14-dimensional subspace U of PG(26,K), with
F = U ∩ E6(K), or a (separable) octonion Veronese variety (and then θ is a Galois involution)
in a Baer subspace Σ ∼= PG(26,F) of PG(26,K) over a field F with K/F a quadratic Galois
extension and F = Σ ∩ E6(K).

We prove some lemmas which ultimately will culminate in a proof of the theorem. In the sequel,
∆ = (X,L ) is the parapolar space E6,1(K). Recall that the symp containing the noncollinear
points x, y is denoted by ξ(x, y).

4.1 General properties of kangaroo collineations

Lemma 4.1. The kangaroo collineation θ is also a dual kangaroo collineation.

Proof. We have to show that θ does not map any symp to an adjacent one and that θ fixes at
least one symp.

Suppose first for a contradiction that θ maps the symp ξ to an adjacent symp ξθ. Set U := ξ∩ξθ.
Then U θ is a 4-space of ξθ and so U ∩U θ 6= ∅. But any point of U ∩U θ is mapped onto a point
of U θ, hence, if not fixed, sent to a collinear one, a contradiction. Consequently U ∩ U θ is fixed
pointwise.

Pick a 3-space W ⊆ U and let V, V ′ be the unique 4′-space in ξ, ξθ, respectively, which contains
W . Fact 2.1(iv) implies that V and V ′ are contained in a common 5-space and hence all points
of V are collinear to all points of V ′. Consequently all points of V ′ ∩ V θ are fixed. But all fixed
points of ξ ∪ ξθ lie in U , hence those of V ∪ V ′ lie in W , and consequently those of V θ in W θ.
Therefore, V θ ∩ V ′ ⊆ W ∩W θ, so V θ ∩ V ′ = W ∩W θ. Hence W ∩W θ is a point or a plane
(since V ′ and V θ are both 4′-spaces of ξθ). But we violate this requirement if we choose W so
that it intersects U ∩ U θ in a subspace of codimension 1. We obtain the desired contradiction.

Now let x be a fixed point of θ and suppose no symp through x is fixed. Then, in Res(x) viewed
as a polar space, every point is mapped onto an opposite, and hence θ induces a type reversing
automorphism. This is a contradiction as types in E6(K) are preserved.

Thanks to this lemma we may from now on assume that also the dual of everything we prove,
holds.

The next lemma generates a lot of fixed points in a fixed symp.

Lemma 4.2. If a symp ξ is fixed under θ, then every generator of ξ contains a fixed point.
Moreover, θ restricted to ξ is a kangaroo.

Proof. Let U be a generator of the fixed symp ξ. Then, since θ preserves types, U ∩U θ 6= ∅ and
any point in the intersection is mapped onto a point of U θ and hence, if not fixed, to a collinear
one, contradicting the definition of a kangaroo collineation. Since θ does not map points to
collinear ones, and since there are fixed points, θ is a kangaroo by definition.

The next lemma generates a lot of fixed symps, and hence also a lot of fixed points.

Lemma 4.3. For every point x with x 6= xθ, the symp ξ(x, xθ) is fixed. Moreover, every point
is collinear to a fixed point.
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Proof. Let x be a point which is not fixed under the kangaroo collineation θ. Suppose first that
x is collinear to some fixed point p = pθ. Then the symps ξ(x, xθ) and ξ(xθ, xθ

2
) have the line

pxθ in common and hence coincide by Lemma 4.1. Hence the symp ξ(x, xθ) is fixed.

Now suppose that x is not collinear to any fixed point. Let p be any fixed point of θ and let y
be collinear to both p and x. By the previous paragraph we know that ξ := ξ(y, yθ) is fixed.
Since x ⊥ y, the intersection x⊥ ∩ ξ is a 4′-space by Fact 2.1(iii) and hence contains a fixed
point by Lemma 4.2. This contradicts the assumption that x is not collinear to a fixed point.
The lemma is proved.

We note the following direct implications of Lemmas 4.1 and 4.3.

Corollary 4.4. Each point is contained in a fixed symp and, dually, every symp contains a fixed
point.

Lemma 4.5. No two fixed points are collinear. In particular, the fixed points contained in a
fixed symp form an ovoid of the symp.

Proof. Assume for a contradiction that x and y are two collinear points with x = xθ and y = yθ.
Every symp through the line xy is fixed by Lemma 4.1. Hence Res(xy) is fixed elementwise.
Noting that points of a fixed singular subspace are either mapped to collinear ones or fixed, we
see that all points collinear to xy are fixed. By connectivity, all points are fixed and θ is the
identity, a contradiction.

Hence θ induces a diligent kangaroo in each fixed symp and the assertion follows from Lemma 3.9.

We can now define a new incidence structure (F,Φ) as follows. The point set F consists of all
points fixed under θ; the block set Φ consists of all symps fixed under θ. Incidence is natural.

Lemma 4.6. The point-block geometry (F,Φ) is a projective plane.

Proof. Since two distinct fixed points are not collinear they define a unique fixed symp. Dually,
two distinct fixed symps intersect in a unique fixed point. Since blocks contain at least three
points, the lemma follows.

4.2 Collineations of E6,1(K) that pointwise fix a quaternion Veronesean

Now let Y ⊆ X be a subset of points of the exceptional geometry E6,1(K) with the following
properties:

(VV1) Each symp ξ containing at least two points of Y intersects Y in a ovoid of ξ; we call such
an ovoid a Y -ovoid.

(VV2) Y is not contained in a symp.

Our main aim is to show that, if some collineation θ of E6,1(K) pointwise fixes Y , then it is a
kangaroo. We proceed with a series of lemmas.

We will refer to the symps that contain a Y -ovoid as a host symp.

Lemma 4.7. Two host symps intersect in a unique point, which automatically belongs to Y .
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Proof. Suppose first for a contradiction that two host symps ξ1, ξ2 have a 4-space U in common.
By (VV1), U contains a unique point y ∈ Y . Select y2 ∈ Y ∩ ξ2 \ {y}. By (VV1), y2 is not
collinear to y, so y⊥2 ∩ ξ1 is a 4′-space which does not contain y, but which, by the definition of
ovoid, contains another point y1 ∈ Y . Now any symp containing the collinear points y1, y2 ∈ Y
violates (VV1). Hence ξ1 ∩ ξ2 = {p}, for some point p ∈ X. Suppose for a contradiction dat
p /∈ Y . Then there exists x1 ∈ ξ1 ∩ Y collinear to p, and x2 ∈ ξ2 ∩ x⊥1 ∩ Y (by (VV1)). Again
any symp containing the collinear points x1, x2 ∈ Y violates (VV1).

Let Ψ be the set of all host spaces.

Lemma 4.8. The incidence structure (Y,Ψ), with natural incidence, is a projective plane.

Proof. This follows from (VV1) and Lemma 4.7.

We now also have:

Lemma 4.9. The set Ψ satisfies (VV1) in the dual E6,6(K) of E6,1(K).

Proof. Let y ∈ Y and select ξ ∈ Ψ with y /∈ ξ (this exists by Lemma 4.8). The members of
Ψ through y are given by the symps ξ(y, x), with x ∈ ξ ∩ Y . Since ξ ∩ Y is an ovoid of ξ, the
assertion follows.

Now comes the crux of the argument.

Lemma 4.10. Every point x of E6,1(K) belongs to some host symp, unique if x /∈ Y .

Proof. We apply approximately the same technique as in the proof of Lemma 4.3. So suppose
first that x ⊥ y ∈ Y . By Lemma 4.9, there is a unique member ξ ∈ Ψ containing the line xy (in
the residue of y, the line xy is a 4-space of E6,6(K)). Hence we may assume x is not collinear to
any member of Y . Let y ∈ Y be arbitrary and select z ∈ x⊥ ∩ y⊥. Then z is contained in a host
symp ξ by the foregoing. But x⊥∩ ξ is a 4′-space, and so contains a member of Y , contradicting
our hypothesis. The lemma is proved, taking into account Lemma 4.7..

We can now show:

Proposition 4.11. The collineation θ is a kangaroo.

Proof. Let x ∈ X be arbitrary. By Lemma 4.10, x belongs to a symp ξ ∈ Ψ. Since ξ contains
at least two non-collinear fixed points, it is fixed by θ. Then Proposition 3.8 implies that θ
restricted to ξ is a kangaroo. So xθ 6⊥ x.

We have now everything in place to prove Theorem 4.1.
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4.3 Proof of Theorem 4.1

Since E6(K) is, by [28], the so-called universal embedding of E6,1(K), the collineation θ extends
to a collineation of PG(26,K). We distinguish between two cases.

Case 1: Suppose θ is a linear collineation. By Lemmas 3.12, 4.2 and 4.5, each member of Φ
is a quadric of Witt index 1 in some 5-space of PG(26,K). Since different such 5-spaces are
contained in distinct symps, they pairwise intersect in unique points; also, each such 5-space
intersects X in that quadric of Witt index 1. Hence Main Result 4.3 of [13] implies that (F,Φ)
is a quaternion Veronese variety in a 14-dimensional subspace U of PG(26,K). Since θ fixes U
pointwise, no other point of X is contained in U and so F = U ∩ E6(K).

Now, conversely, suppose some collineation θ pointwise fixes a quaternion Veronese variety on
E6(K) arising as intersection with a subspace U . Then Proposition 4.11 implies that θ is a
kangaroo.

Remark 4.12. We will classify all linear kangaroo collineations in Section 5, that is, we will
show that such a collineation exists whenever the field K admits a quaternion division algebra,
or an inseparable extension of degree 4, hence whenever there exists a separabale or inseparable
quaternion Veronesean over K (and then, there also exists one inside E6,1(K), and it will turn
out that isomorphic quaternion algebras give rise to projectively equivalent Veroneseans and
conjugate collineations). Moreover, we will also determine the abstract isomorphism type of the
group pointwise fixing a given quaternion Veronesean.

Case 2: Now let θ be a semilinear kangaroo collineation. By Lemmas 3.13, 4.2 and 4.5, the
restriction of θ to each subspace 〈ξ〉 of PG(26,K), with ξ ∈ Φ, is a Baer involution whose fixed
point set intersects ξ in an ovoid spanning the 9-space 〈ξ〉. Let x be any point of X. Lemma 4.3
(for xθ 6= x) and the dual of Lemma 4.5 (for xθ = x) imply that x is contained in a fixed symp
ξ. In the latter, θ induces an involution, hence xθ

2
= x, implying that θ is a Baer involution in

PG(26,K), say fixing the projective space PG(26,F), with K/F quadratic. It follows that F is
the intersection of X with PG(26,F), that each intersection ξ∩PG(26.F) is a quadric Qξ of Witt
index 1 in some 9-space, that, for each pair of such distinct quadrics Qξ and Qζ , the intersection
〈Qξ〉 ∩ 〈Qζ〉 is a singleton, and that each quadric Qξ has trivial nucleus. Main Result 4.3 of [13]
again implies that (F,Φ) is a (separable) octonion Veronese variety in PG(26,F). The converse
again follows from Proposition 4.11.

5 Existence and uniqueness of quaternion Veroneseans in E6,1(K)

In this section we show a kind of converse, or rather ‘addition’ to Theorem 4.1, see also Re-
mark 4.12. Roughly, our aim is to prove that every equivalence class of norm forms of a quater-
nion algebra over the field K gives rise to a projectively unique quaternion Veronese variety
contained in E6(K) (via E6,1(K)) and also in a subspace of dimension 14 in PG(26,K). Also, we
determine the pointwise stabiliser, both as a subgroup of the automorphism group of E6,1(K)
and as an abstract group. We start with the case of a separable quaternion Veronese variety.

Form here on, it is convenient to use the letter X for elements of a quaternion algebra over K,
and not anymore for the point set of E6,1(K). This will cause no confusion.
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5.1 Linear ovoids of polar spaces of type D5

We have seen that a linear kangaroo collineation of E6,1(K) pointwise fixes a quaternion verone-
sean subvariety V (K,H) of E6(K), with H a quaternion algebra over K. Recall the notion of
host spaces of V (K,H) from Section 2.4, which are 5-dimensional subspaces of PG(26,K) here.
Let PG(5,K) be an arbitrary host space of V (K,H) with corresponding quadric O. Then we can
choose coordinates in such a way that points are labeled with (x1, x2, X) ∈ K × K × H and O
has equation x1x2 = XX. Let O′ be the split octonion algebra obtained by the Cayley-Dickson
doubling process applied to H with primitive element 1, that is, a generic element of O′ is a pair
(a, b) of quaternions, with multiplication (a, b) · (c, d) = (ac + db, ad + cb), where x 7→ x is the
standard involution in H. Consider the bilinear form β : O′ × O′ → K : (X,Y ) 7→ XY + Y X,
where (a, b) = (a,−b), for all a, b ∈ H. Then β is associated to—or is the linearization of—the
quadratic form q : O′ 7→ K : X 7→ XX, which is a split form. Hence coordinatizing PG(9,K)
as (x1, x2, X) ∈ K × K × O′, the equation x1x2 = XX describes a hyperbolic polar space Q
isomorphic to D5,1(K). Clearly O is contained in Q in a standard way. By the free choice of
coordinates we see that the embedding of O in Q is unique up to a collineation of Q.

5.2 A construction of E6(K)

Let V be a 27-dimensional vector space over the field K, and write V as V = K×K×K×O′×
O′ × O′. Write a generic vector in V as (x1, x2, x3;X1, X2, X3). Then, by the last section of
[12], the following equations determine 27 (degenerate) quadrics in PG(V ), whose intersection
is precisely E6(K):

x2x3 = X1X1, X2X3 = x1X1,

x3x1 = X2X2, X3X1 = x2X2, (∗)
x1x2 = X3X3, X1X2 = x3X3.

We also use the notation E6(K) for the set of vectors of V whose coordinates satisfy the 27
quadratic equations. It is shown in [12] for |K| > 2 that E6(K) is the projective closure of the
image of the (split octonion) Veronese map ρ′ : O′×O′ → V : (X,Y ) 7→ (XX,Y Y , 1, Y,X,XY ),
that is, it is the smallest point set with the property that, whenever all points except possibly
one of a line is contained in the point set, then all points of that line are contained in it. (This
can also easily be seen directly: the given vectors satisfy the above equation, as can be checked
by simple calculations, and since the E6(K) is projectively closed, the image of ρ′ is contained
in E6(K); a vector with coordinates (∗, ∗, 1, Y,X, ∗) satisfying the above equations (∗) is readily
seen to have coordinates (XX,Y Y , 1, Y,X,XY ).)

Restricting O′ to H, we now see that the image V (K,H) of the quaternion Veronesean map
ρ : H × H × H → V : (x, y, z) 7→ (xx, yy, zz, yz, zx, xy) is fully contained in E6(K). Our goal
is to show that this containment is projectively unique and that it is pointwise fixed by a non-
trivial group of automorphisms isomorphic to the multiplicative group H×. We refer to this
containment as a standard inclusion of the quaternion Veronese variety in E6,1(K). Since it
depends on the given representation of E6,1(K), the projective uniqueness is not obvious.

5.3 Collineations fixing O1 and p1

As a first step we determine the group of collineations of E6(K) fixing three points of a fixed
ovoid O1 of V (K,H) and an additional point p1 of V (K,H) \O1. We may choose O1 to be the
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image {ρ(0, y, z) | y, z ∈ H}, the three points to be ρ(0, 1, 0), ρ(0, 0, 1) and ρ(0, 1, 1), and p1 to
be the point (1, 0, 0, 0, 0, 0). Then a general collineation of E6(K) fixing these four points can
be written as (x, y, z,X, Y, Z) 7→ (kx, y, z,Xθ1 , Y θ2 , Zθ3), with k ∈ K and θ1, θ2, θ3 linear maps
acting on O′ (as a vector space over K). In addition, θ1 stabilises H ⊆ O′ and fixes 1 ∈ H. Since
the bilinear form β must be preserved, up to a scalar, we can write (a, b)θ1 = (aθ, bθ

∗
). Then (∗)

yields

Y θ2Zθ3 = k(Y Z)θ1 , for all Y,Z ∈ O′. (5.1)

By the Principle of Triality and its consequences, see Theorem 3.2.1 and Lemma 3.3.2 of [31],
as soon as the first three equalities of (∗) are preserved, all equalities are preserved.

Setting subsequently Y = 1 and Z = 1 yields Y θ2 = Y
θ1C2 and Zθ3 = C3Z

θ1 , for all Y, Z ∈ O′,
and some constants C2 = k(1θ3)−1, C3 = k(1θ2)−1 ∈ O′. Setting Y = Z = 1 we achieve
C2C3 = k. We obtain, replacing Z with Z and Y with Y in Equation 5.1, and setting C3 = C,

(ZY )θ1 = (Zθ1C)(C−1Y θ1), for all Y,Z ∈ O′.

Set C = (c1, c2), c1, c2 ∈ H. Suppose first Z = (z, 0) ∈ H and Y = (y, 0) ∈ H. Then

(zy)θ(c1c1 − c2c2, 0) = (zθc1, zθc2)(c1y
θ,−yθc2), for all y, z ∈ H,

which yields

(zy)θ(c1c1 − c2c2) = zθyθc1c2 − yθzθc2c2, (5.2)

c1(zθyθ − yθzθ)c2 = 0, (5.3)

for all y, z ∈ H. Clearly, since H× is not commutative, Equation 5.3 implies either c1 = 0
or c2 = 0. If c2 = 0, then θ1 is an automorphism of H and both θ2 and θ3 preserve H. If
c1 = 0, then θ is an anti-automorphism and both θ2 and θ3 interchange {(x, 0) | x ∈ H}
and {(0, x) | x ∈ H}. Setting c2 = k = 1, c1 = 0 and Xθ = X, for all X ∈ O′, we see
that we do obtain an automorphism of E6(K) preserving O1 ∪ {p1} and mapping the ovoid
O2 = {ρ((x, 0), 0, (z, 0)) | x, z ∈ H} to O′2 = {ρ((0, x), 0, (0, z)) | x, z ∈ H}. We denote the
corresponding quaternion Veronesean by V (K,H)′.

5.4 Quaternion Veroneseans on E6(K) that contain O1 and p1

Next we show that there are precisely two quaternion Veronesean varieties contained in E6(K)
that contain O1 and p1. One contains O2 and the other one O′2. Denote the symps of E6(K)
determined by O1, O2, O3 by ξ1, ξ2, ξ3, respectively (with O3 = {ρ((x, 0), (y, 0), 0) | x, y ∈ H}).
Also, for a point p far from two symps ζ1, ζ2, we call the map ζ1 → ζ2 : q 7→ ξ(p, q) ∩ ζ2 the
projection (of ζ1) from p onto ζ2.

Indeed, we first claim that, if a quaternion Veronesean variety H contained in E6(K) and
containing itself O1 ∪ {p1}, contains any point p of O2 \ {p1, p3} (with p3 = ρ(0, 0, 1)), then
H = V (K,H) as defined earlier. Likewise, if H contains a point of O′2 \ {p1, p3}, then H =
V (K,H)′. Indeed, for each point q ∈ O1, the symp ξ(p, q) intersects ξ3 in a unique point of H
that belongs to O3, and varying q, all points of O3 are obtained. Likewise, all points of O2 are
also contained in H . An arbitrary point r ∈H \ (O1 ∪O2 ∪O3) is the intersection of ξ(p1, q1)
and ξ(p2, q2), with qi ∈ Oi, i = 1, 2, such that r ∈ ξ(pi, qi). But then r ∈ V (K,H). The claim
follows.
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By the previous claim, it suffices to show that no point t2 of ξ2 \ (O2 ∪ O′2 ∪ p⊥1 ∪ p⊥3 ) lies in
a quaternion Veronesean of E6(K) together with O1 and p1. Such a point t2 can be written as
(Y Y , 0, 1, 0, Y , 0), with Y ∈ O′ invertible. On the other hand, a generic point t1 of ξ1 \ (p⊥2 ∪p⊥3 )
can be written as (0, 1, XX,X, 0, 0), with X ∈ O′ invertible. We now seek Z ∈ O′ such that
t1, t2 and t3 = (1, ZZ, 0, 0, 0, Z) are contained in the same symp.

Consider the cubic form C on V given by

C(x1, x2, x3, X1, X2, X3) = x1x2x3 − x1X1X1 − x2X2X2 − x3X3X3 + (X1X2)X3 +X3(X2X1).

A tedious calculation shows that the linear combination of any pair of images under ρ′ vanishes
under C. Taking projective closure, this implies that C is the cubic form associated to E6(K)
(see [2] and [43]), as E6(K) is determined by its host spaces. One checks that, for a triple of non-
collinear points r1, r2, r3 of E6(K), the symps ξ(r1, r2), ξ(r2, r3) and ξ(r1, r3) have a nontrivial
common intersection if and only if C(r1 + r2 + r3) = 0. Applying this to t1, t2, t3, we obtain,
after an elementary calculation,

C(t1 + t2 + t3) = 0⇐⇒ 1 +XX.Y Y .ZZ + (XY )Z + Z(Y X) = 0,

which is equivalent to (1 + Z(Y X))(1 + Z(Y X)) = 0. It follows that the set of points of ξ3

collinear to t3, but not to p2, is given by

{(1, ZZ, 0, 0, 0, Z) | ∃N ∈ O′, NN = 0, Z = (N − 1)X−1Y −1}.

One sees that the point with N = 0, namely (1, ZZ, 0, 0, 0, Z) with Z = −X−1Y −1, is collinear
to all others of that set, and so t3 = (1, ZZ, 0, 0, 0, Z), with Z = −X−1Y −1. Note that also
the “cyclically obtained” conditions hold: Y = −Z−1X−1 and X = −Y −1Z−1 (each one is
equivalent to ZY X = −1).

It follows that the projection O∗3 of O1 from t2 onto ξ3 consists of the set of points

{(1, (Y Y xx)−1, 0, 0, 0,−Y −1
x−1) | x ∈ H×} ∪ {(p1, p2}.

Now we project O∗3 from each point of O1 back on ξ2. We obtain the set of points

O∗2 = {Y Y xx(x′x′)−1, 0, 1, 0, x′−1(xY ), 0) | x, x′ ∈ H×} ∪ {p1, p3}.

Setting Y = (y1, y2) ∈ H×H we easily compute x′−1(xY ) = (x′−1x y1,−x′−1xy2).

If y2 6= 0, then setting x′ = 1, we see that the second component of each point of O∗2 determines
the first one. However, now taking arbitrary x′, we have the O∗3-points (x′−1x y1,−x′−1xy2)
and, setting x′ = 1 again and replacing x by x′−1x, we also have the point (xx′−1y1,−x′−1xy2),
which must hence coincide with (x′−1x y1,−x′−1xy2). This is only possible if y1 = 0. But then
O∗2 = O′2. If y2 = 0, then O∗2 = O2. We have shown that there are exactly two quaternion
Veroneseans in E6(K) containing O1 and p1, and that they are mutually projectively equivalent.

5.5 Collineations of E6(K) that pointwise fix V (K,H)

If a collineation pointwise fixes V (K,H), then, using the notation of Paragraph 5.3, the associ-
ated linear map θ on H is the identity. Then Equation 5.2 yields c2 = 0. We also have that both
θ2 and θ3 pointwise fix H. In particular, they both fix 1, and so C2 = C3 = k = 1. We easily
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deduce now θ1 = θ2 = θ3. By linearity of θ1, Equation 5.1 implies that θ1 is an automorphism
of O′. Hence we have, still with the notation of Paragraph 5.3, ac + db = ac + dθ

∗
bθ∗ and

(ad+ cb)θ
∗

= adθ
∗

+ cbθ
∗
. We readily deduce that xθ

∗
= xa, with aa = 1, a ∈ H. Conversely, ev-

ery such automorphism pointwise fixes V (K,H). Hence the group that pointwise fixes V (K,H)
inside E6(K) is isomorphic to the multiplicative group of norm 1 elements of H.

Now we turn to the case where the fixed point structure is a Veronesean over an inseparable
extension of degree 4.

5.6 The inseparable case: Embedding into a split Cayley algebra

The split Cayley algebra O′ over K can be defined with Zorn’s matrices as follows. Write a
generic element X of the 8-dimensional vector space O′ and its conjugate X in matrix form as
follows (with xi ∈ K, i = 0, 1, . . . , 7).

X =


x0

x4

x5

x6


x1

x2

x3

 x7

 , X =


x7

−x4

−x5

−x6


−x1

−x2

−x3

 x0

 .

We denote X by (x0, [x1, x2, x3], [x4, x5, x6], x7).

Suppose K is a non-perfect field of characteristic 2. Choose an element `1 ∈ K that is not a
square and suppose that K2 + `1K2 6= K. Select an element `2 ∈ K \ (K2 + `1K2). Then the
quadruplets (x0, x1, x2, x3) ∈ K×K×K×K, with componentwise addition and multiplication
as follows, form an inseparable 4-dimensional extension H of K:

(x0, x1, x2, x3) · (y0, y1, y2, y3) =

(x0y0 + `1x1y1 + `2x2y2 + `1`2x3y3, x0y1 + x1y0 + `2x2y3 + `2x3y2,

x0y2 + x2y0 + `1x1y3 + `1x3y1, x0y3 + x1y2 + x2y1 + x3y0).

In this structure, conjugation (the “standard involution”) is the identity, and the norm is given
by n(x0, x1, x2, x3) = x2

0 + `1x
2
1 + `2x

2
2 + `1`2x

2
3 = (x0, x1, x2, x3)2.

Using the matrix representation, we can embed H in O ′ as follows.

H ↪→ O′ : (x0, x1, x2, x3) 7→


x0

 x1

x2

`1`2x3


`1x1

`2x2

x3

 x0

 .

Note that the restriction of the standard involution of O′ indeed acts trivially on H. Now the
inseparable Veronese map ρ is defined as follows:

ρ : H×H×H→ K15 : (X,Y, Z) 7→ (X2, Y 2, Z2, Y Z, ZX,XY ).

The image of ρ in PG(14,K) is an inseparable Veronese variety V (K,H). It embeds in E6,1(K)
just like the (inseparable) quaternion Veronese variety above.
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Again, we want to determine all the automorphisms θ of E6(K) that fix the inseparable quaternion
Veronese variety V (K,H) pointwise. As with the separable case, one first shows that this
is equivalent to finding the group of linear transformations of O′ (as a vector space over K)
pointwise fixing H and acting as automorphisms of O′. This can be done with elementary
though tiresome calculations. Expressing that a general invertible 8 × 8 matrix A with entries
in K pointwise fixes H and preserves multiplication in O′, we obtain the following expression
for A:

A =



1 + a `1b `2c d b c `1`2d a

b 1 + a `2d `−1
1 c `−1

1 a d `2c b

c `1d 1 + a `−1
2 b d `−1

2 a `1b c
`1`2d `1`2c `1`2b 1 + a `2c `1b `1`2a `1`2d
`1b `1a `1`2d c 1 + a `1d `1`2c `1b
`2c `1`2d `2a b d2d 1 + a `1`2b `2c

d c b `−1
1 `−1

2 a `−1
1 c `−1

2 b 1 + a d
a `1b `2c d b c `1`2d 1 + a


with a, b, c, d ∈ K and with a + a2 + `1b

2 + `2c
2 + `1`2d

2 = 0. We will use the notation
A(a, b, c, d) for this matrix, where we consider the quadruple (a, b, c, d) as a member of H.
Conversely, every such matrix belongs to an automorphism of O′ pointwise fixing H. Let G be
the group of all such automorphisms. It is easily calculated that A(a1, b1, c1, d1)A(a2, b2, c2, d2) =
A((a1, b1, c1, d1) + (a2, b2, c2, d2)). Hence G is isomorphic to an additive subgroup of H. Let us
call an element (a, b, c, d) of H admissible if a+a2+`1b

2+`2c
2+`1`2d

2 = 0, that is, a = (a, b, c, d)2,
and note that the square is the norm, which we denote by n(a, b, c, d). Then we can be more
specific about the group G (in paricular, prove that it is not trivial):

Proposition 5.1. The set of admissible elements of H equals {0} ∪ {(1, b, c, d)−1 | b, c, d ∈ K}.

Proof. Suppose first that (a, b, c, d) is admissible and distinct from 0. Then

0 = a−2(a+ a2 + `1b
2 + `2c

2 + `1`2d
2) = a−1 + (1 + `1b

′2 + `2c
′2 + `1`2d

′2),

with b′ = ba−1, c′ = ca−1 and d′ = da−1. Hence on the one hand a = n(a, b, c, d), and on the
other hand a = n(1, b′, c′, d′)−1. Since the norm is just squaring, we obtain

(a, b, c, d) = (1, b′, c′, d′)−1.

Conversely, for all b, c, d ∈ K, on can write (1, b, c, d)−1 = (n−1, bn−1, cn−1, dn−1), with n =
n(1, b, c, d). Then clearly

n(n−1, bn−1, cn−1, dn−1) = n−2n = n−1,

which implies that (n−1, bn−1, cn−1, dn−1), and hence (1, b, c, d)−1, is admissible.

So the group G is a subgroup of H each element of which depends on three free variables over K.
Compare this with the separable quaternion case, where G was the subgroup of H× of elements
of norm 1, hence in a certain sense also has dimension 3.

It remains to show that all Veronesean varieties isomorphic to V (K,H) and contained in E6(K)
are mutually equivalent. In fact we will show that there is a unique V (K,H) containing a given
ovoid O of a given symp ξ of E6(K) arising from the inclusion H ⊆ O′, and a given point p of
E6(K) opposite ξ.
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5.7 The projective uniqueness of V (K,H) in E6(K) in the inseparable case

As in the separable quaternion case above, we are looking for elements Y ∈ O′ such that
SY := {xY | x ∈ H} = {x′(xY ) | x′, x ∈ H} =: S∗Y . This time we will show that Y itself has to
belong to H, which implies that V (K,H) inside E6(K) is determined by the points in one symp
(containing at least two points of V (K,H)) and an extra point.

In order to do so, it is rather convenient to use the following form of O′. Let L be the split
(separable) extension K(t) of K defined by the element t with t2 = t. Then the corresponding
natural involution x 7→ x, x ∈ L, interchanges t with t + 1. Now we apply to L the Cayley-
Dickson process twice: first using `1 as a primitive element, the second time using `2. Then we
obtain O′ as L× L× L× L with the following explicit form of the multiplication:

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1y1 + `1x2y2 + `2x3y3 + `1`2x4y4,

x1y2 + x2y1 + `2x3y4 + `2x4y3,

x1y3 + `1x2y4 + x3y1 + `1x4y2,

x1y4 + x2y3 + x3y2 + x4y1),

for all x1, . . . , x4, y1, . . . , y4 ∈ L. The embedding H ⊆ O′ is via H = K×K×K×K. It follows
that,

(0, 1, 0, 0)((0, 0, 1, 0)(y1, y2, y3, y4)) = (0, 0, 0, 1)(y1, y2, y3, y4),

and so, by the additivity of SY (by its very definition), we see that

(y1 + y1, y2 + y2, y3 + y3, y4 + y4) ∈ SY .

Hence (SY ∩ H) \ {0} 6= ∅, say 0 6= u ∈ SY ∩ H, implying the existence of x ∈ H× such that
xY = u. Since x is invertible, this yields Y = x−1u ∈ H and we are done.

Taking everything together we have proved:

Proposition 5.2. Suppose the field K either admits a —separable or inseparable— quaternion
division algebra H. Then any standard inclusion of the Veronese variety V ∼= V (K,H) in
E6,1(K) is projectively unique and admits a nontrivial group of linear kangaroo collineations
each nontrivial element of which pointwise fixes exactly V .

Remark 5.3. The results of Section 5.4 show that, whenever a quaternion veronesean is em-
bedded in E6,1(K) in such a way that each of its quadrics is contained in a symp as a classical
ovoid (that is, the intersection of the symp with a subspace in its ambient projective space),
and each point off a quadric is far from the corresponding symp of E6,1(K), then it is a standard
inclusion.

6 Collineations with opposition diagram E7;4 fixing no chamber

We now apply the results of the previous sections to the classification of all domestic collineations
of E7(K) with opposition diagram E7;4 fixing no chamber. To that aim, we argue in this sec-
tion within the parapolar space ∆ := E7,7(K). We first describe two classes of point-domestic
collineations which have opposition diagram E7;4. Then we show that these are the only domes-
tic collineations of ∆ fixing no chamber with that opposition diagram. Since we are interested
in large buildings, we assume |K| > 2 throughout.
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6.1 Two classes of examples fixing no chamber

There will be two classes of such domestic automorphisms; one related to every quadratic field
extension of K and one related to every quaternion division algebra over K.

First, let I be a full imaginary set of symps of ∆ (see Fact 2.10 and Remark 2.11). Then by
Remark 2.11 the group PSL2(K) acts on I pointwise fixing the equator geometry defined by
any two members of I . Let θ be a collineation of ∆ belonging to that group and acting fixed
point freely on I . Then we claim that θ is a point-domestic collineation.

Indeed, if a point x is collinear to some 5-space U of a member ξ of I , then the 6-space generated
by x and U contains a point of E , and so x is collinear to a fixed point and is mapped by θ to a
point at most at distance 2 from x. If x is collinear to unique points zi of two members ξi ∈ I ,
i = 1, 2, then, if z1 is not collinear to z2, they determine a unique symp ζ containing x and fixed
under θ. So x, xθ ∈ ζ. If z1 ⊥ z2, then both x and xθ are collinear to z1z2 = (z1z2)θ, and hence
the distance between x and xθ is again at most 2.

Note that a collineation like the previous one can only be found if K admits a quadratic extension,
since it requires the existence of a member of PSL2(K) acting fixed point freely in PG(1,K); hence
it yields a 2×2 matrix with imaginary eigenvalues, that is, eigenvalues in a quadratic extension.

Now let H be a separable or inseparable quaternion division algebra over K and denote by
C3,3(K,H) the dual polar space arising from the polar space C3,1(H,K) by taking as points the
singular planes of C3,3(H,K) and as lines the (full) plane pencils (all singular planes through a
given line). Suppose C3,3(H,K) is a full subgeometry of E7,7(K) in such a way that the lines of
C3,3(H,K) through a given point x of C3,3(H,K) form a quaternion Veronesean in Res∆(x) as in
Section 5. We call this full subgeometry a dual polar quaternion Veronesean. Suppose also that
θ is a collineation of E7,7(K) with fixed point set a polar quaternion Veronesean V , that is, θ
only has fixed points, fixed lines and fixed symps, and every fixed line belongs to V (hence is
pointwise fixed) and every fixed symp contains a pointwise fixed full subgeometry isomorphic to
a B2,1(K,H) (which is by definition isomorphic to any point residual in B3,1(K,H), and which
we will refer to as a quaternion generalised quadrangle). The existence of such a collineation
whenever K admits a quaternion division algebra H shall be proved in Section 6.5.

We claim that every point x of ∆ is collinear to at least one fixed point. Indeed, let ξ be any
fixed symp. Then the fixed points in ξ form a full subgeometry isomorphic to a generalised
quadrangle. Hence, since x is collinear to at least one point of ξ, there exists a fixed point f at
distance at most 2 from x. Hence there exists a symp ξ containing x and the fixed point f . In
Res∆(f), every symp contains at least one fixed point; hence ξ contains a line with all points
fixed and so there is at least one fixed point collinear to x.

Hence no point of ∆ is mapped onto an opposite point and so θ is point-domestic. Since
collineations with opposition diagram E7;1 or E7;2 always fix at least one chamber of ∆, the
opposition diagram of θ is necessarily E7;4.

Note also the following consequence (which is also used in [21]).

Corollary 6.1. If a point p is not fixed, then p and pθ are contained in a unique symp which is
fixed under θ.

Proof. Let x be point fixed by θ and collinear with p. In the residue of x, the symp determined
by p and pθ is fixed by Lemma 4.3.

Hence we have shown:
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Proposition 6.2. Let θ be a nontrivial collineation of E7,7(K) pointwise fixing a polar quaternion
Veronesean. Then θ is point-domestic with opposition diagram E7;4. More exactly, each point
not fixed by θ is collinear to at least one fixed point.

Now we turn to the classification. Before we make an assumption on the opposition diagram,
we prove a general result which we will apply for both opposition diagrams E7;3 and E7;4.

The next lemma is also useful for the opposition diagram E7;3 and hence will be stated in more
general terms.

Lemma 6.3. If θ is a collineation of ∆ with at least one fixed point, and with the property that
for every point x ⊥ xθ 6= x the line xxθ is fixed under θ, then every fixed line contains at least
one fixed point.

Proof. Let L be a fixed line and let x be a fixed point. If a unique point on L is either incident,
collinear or symplectic to x, then it is fixed and we are fine. If all points on L are collinear with
x, then θ fixes the plane π generated by x and L. Pick u ∈ π \ (L ∪ {x}). If u is fixed, then so
is L ∩ ux; if u is not fixed then uuθ ∩ L is fixed.

At last assume that all points on L are symplectic to x. Let y1, y2 ∈ L, y1 6= y2, and set
ξi := ξ(x, yi), i = 1, 2. Then ξ1 and ξ2 have a line M in common and since ξ1 6= ξ2 (as otherwise
some point of L would be collinear to x), y1 and y2 are collinear to the same point u ∈ M .
Then y2 is collinear to the line uy1 of ξ1 and so it is collinear to a 5-space of ξ1 which spans
together with y2 a 6-space W . Also, x is collinear to a 4-space U ⊆W . Clearly, U is contained
in every symp through x and a point of L, and so the 5-space V spanned by U and x is the
intersection of all such symps, proving it is uniquely determined by x and L and hence fixed
by θ. Now W is the unique 6-space through L intersecting V in a 4-space. Hence W is also
fixed, and consequently also U is fixed. Now the combination of Proposition 3.3 of [25] and our
assumption yields a point u ∈ U fixed by θ. Since u is collinear to L, we are reduced to the
situation of the previous paragraph, completing the proof of the lemma.

Now we let θ be an automorphism of the building E7(K) and we consider θ as a collineation of
∆. We assume that θ does not fix any chamber and that it has opposition diagram E7;4. We
begin with some general properties until we make a case distinction each leading to a class of
examples.

6.2 General properties

Lemma 6.4. If a symp is mapped onto a symplectic one, then the intersection line is pointwise
fixed. Consequently, there exist lines which are pointwise fixed.

Proof. Let ξ be a symp with ξθ ∩ ξ = M , with M a line. Suppose for a contradiction that some
point x on M is not fixed by θ. Then we can find a point y ∈ ξ \M collinear to x but not
collinear to xθ

−1
. Then yθ is not collinear to x, and so, by Fact 2.9(iii) the points y and yθ are

opposite, a contradiction to the opposition diagram. Hence all points of M are fixed.

Now we use some notation and terminology from Section 2.5. Let L be a non-domestic line.
Then θL is 3-space- and 4-space-domestic. Hence Theorem 6.1 of [34] yields a symp ξ through
L with {ξ, ξθ} symplectic.
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Lemma 6.5. If a line is fixed, but not all points on it are fixed, then there exists a fixed panel of
type {1, 2, 3, 4, 5, 6} containing the line. Consequently if a fixed line has at least one fixed point,
then all of its points are fixed.

Proof. Let L be fixed, but not pointwise. By Lemma 6.4, no symp ξ through L has the property
that ξ ∩ ξθ = L. Hence the map induced by θ on the irreducible factor of type D5 of Res∆(L)
is point-domestic (when viewed as a polar space of type D5, hence of odd rank 5). Lemma 3.16
of [25] now completes the proof of the first assertion of the lemma. The second one now follows
since, if at least one point of a fixed line was fixed, but not all of them, then θ would fix a
chamber.

Lemma 6.6. If a point x is mapped onto a collinear point, then either the line xxθ is fixed,
or xθ

2
is collinear to x and each symp through the plane π containing x, xθ and xθ

2
is fixed (in

particular π is fixed).

Proof. Suppose that the point x is mapped onto a collinear one, and suppose that the line xxθ

is not fixed under θ. We first claim that x ⊥ xθ
2
. Indeed, suppose not, then the lines xxθ and

xθxθ
2

correspond to two noncollinear points p, p′, respectively, of the residual geometry Res∆(xθ)
of type E6,1. Select in Res∆(xθ) a symp ξ containing p and opposite p′. Then ξ intersects ξθ

in a unique point. This means that, if ξ corresponds to the symp ζ of ∆, then ζ ∩ ζθ is a line
L through xθ. Lemma 6.4 implies that L is fixed pointwise, including xθ, a contradiction. The
claim is proved. Hence x, xθ, xθ

2
define a unique plane π.

We claim that all symps of ∆ containing π are fixed by θ. Indeed, we again consider Res∆(xθ),
which is isomorphic to E6,1(K), and p, p′ as defined above. This time p ⊥ p′. If some symp ξ of
Res∆(xθ) through p is mapped onto a symp ξθ through p′ such that ξ ∩ ξθ is a singleton, then
the same argument as above yields a line through xθ fixed pointwise, a contradiction. Hence
every symp through p is mapped onto an adjacent symp through p′. It is convenient to dualise.
Dually, p and p′ correspond to adjacent symps ξ and ξ′ in E6,6(K), intersecting in a 4-space U ,
and we have to show that each point of U is fixed, knowing that each point of ξ is mapped onto
a collinear point in ξ′. Let z be a point of ξ \ ξ′ and set Uz = 〈z, z⊥ ∩U〉. Let Wz be the unique
5-space containing Uz. Then Wz ∩ ξ′ is a 4′-space U ′z through U ∩ z⊥. Each point of ξ′ collinear
to some point of Uz \ U is contained in U ′z. Hence, since Uz \ U generates Uz, the subspace Uz
is mapped onto U ′z. If u ∈ ξ \ Uz, then Uu ∩ Uz ⊆ U is mapped onto U ′z ∩ U ′u ⊆ U . It follows
that z⊥ ∩U is mapped onto itself. Hence all 3-spaces of U are stabilised and consequently so is
each point of U . The claim and the lemma follow.

Lemma 6.6 permits a case distinction. Either for all points x ⊥ xθ 6= x the line xxθ is fixed (the
“quaternion case”), or there exists a point z ⊥ zθ 6= z with zθ

2
/∈ zzθ (the “quadratic case”).

6.3 The quaternion case

In this subsection we assume that for all points x ⊥ xθ 6= x the line xxθ is fixed.

We begin with proving that this in fact implies that no point is mapped onto a collinear one.

Lemma 6.7. No point is mapped onto a collinear one. Hence every fixed singular subspace (in
particular, line) is pointwise fixed.
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Proof. Suppose for a contradiction that some point x is mapped onto a collinear one. Then, by
the main assumption of this subsection, the line xxθ is fixed. Lemma 6.3 yields a fixed point on
L. Now Lemma 6.5 implies that θ fixed each point on xxθ, hence also x, a contradiction.

Now define the geometry (F,LF ), with F the set of fixed points of θ and LF the set of fixed
lines of θ. By Lemma 6.7, F is a subspace, hence LF is just the set of lines all points of which
are contained in F .

Lemma 6.8. The geometry (F,LF ) is connected.

Proof. By Lemma 6.4 there is at least one line L that is pointwise fixed. We show that every
point of F is contained in the same connected component as L. Let f ∈ F be arbitrary. Pick
x ∈ L arbitrary and consider the induced action of θ in Res∆(x). By Lemma 6.7, no point is
mapped onto a collinear one. If also no point is mapped onto a point at distance 2, then θ
induces the identity on Res∆(x), and so it fixes a chamber, a contradiction. Finally, θ fixes the
point corresponding to the line L in Res∆(x). So θ induces a kangaroo collineation in Res∆(x).
In particular, θ fixes some symp ξ containing L. If f ∈ ξ, then any line in ξ joining f with a
point of L is pointwise fixed. If there is a unique point f ′ ∈ ξ collinear to f , then f ′ ∈ F and ff ′

is fixed pointwise (by Lemma 6.7), and by the foregoing, f ′ is connected to L inside F , hence
so is f . Finally, if f is collinear to a unique 5-space U of ξ, then U is fixed, and hence it is fixed
pointwise by Lemma 6.7. This contradicts Theorem 4.1.

Lemma 6.9. The fixed point structure induced in any fixed symp is a (quaternion) generalised
quadrangle.

Proof. Let ξ be a fixed symp. We first claim that ξ ∩ F 6= ∅. Indeed, let f ∈ F arbitrary. If
f ∈ ξ, then the claim follows. If f⊥ ∩ ξ is a singleton, then the claim also follows. So suppose
that f⊥∩ξ = U is a 5-space of ξ. Then U is pointwise fixed by Lemma 6.7 and the claim follows.

Next we claim that, for each f ∈ F , the collineation θ induces in Res∆(f) is a kangaroo
collineation θf . Indeed, we already noted that θf does not map points to collinear ones. If
θf were the identity, then θ would fix a chamber of ∆, a contradiction. Hence it remains to show
that θf fixes at least one point. But Lemmas 6.4 and 6.8 yield a pointwise fixed line through f ,
hence the claim. Note also that, since θ fixes lines pointwise, θf is a linear kangaroo collineation.

Hence Theorem 4.1 implies that, if f ∈ F ∩ξ, then the set of fixed points in f⊥∩ξ is a cone over
a quadric of Witt index 0 in a 5-dimensional projective space (when viewing ξ as a hyperbolic
quadric in PG(11,K)); so the cone spans a 6-dimensional projective space. This holds for every
point of F ∩ ξ. Hence F ∩ ξ is a full subgeometry of ξ isomorphic to a generalised quadrangle.
Since, by the above, the tangent spaces are 6-spaces, F ∩ ξ spans a 7-space Uξ and it is not
difficult to see that F ∩ ξ = Uξ ∩ ξ. Since the perp of two noncollinear points is a quadric of
Witt index 0 and stems from a quaternion Veronesean (see Theorem 4.1), F ∩ ξ is a quaternion
quadrangle.

Now let (Ξθ,LF ) be the point-line geometry with point set the set Ξθ of fixed symps of θ and
line set LF , with natural incidence relation. If we show that (Ξθ,LF ) is a polar space, then
(F,LF ) is a quaternion dual polar space.

Proposition 6.10. The geometry (Ξθ,LF ) is a polar space.
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Proof. It suffices to show that (i) no point is collinear to all others, and that (ii) for a given
point-line pair, either all points on the line are collinear to the given point, or exactly one is.

(i) Let ξ ∈ Ξθ and let L ∈ LF with L ⊆ ξ. By considering the residue Res∆(x), for any x ∈ L,
we see that there exists ξ′ ∈ Ξθ with ξ ∩ ξ′ = L. By Lemma 6.9, there is a line L′ ∈ LF in ξ′

opposite L (opposite in the sense of polar spaces). Again we can select ξ′′ ∈ Ξθ with ξ′∩ξ′′ = L′.
Then ξ and ξ′′ are opposite in ∆, and so ξ is not collinear to all points of Ξθ.

(ii) Now let (ξ, L) ∈ Ξθ×LF . If L ⊆ ξ, then the assertion is trivial. Now suppose L∩ ξ = {x},
with x ∈ F . Every symp ξ′ ∈ Ξθ containing L intersects ξ in a fixed line M (use Res∆(x) to see
this). Hence ξ′ ⊥ ξ in (Ξθ,LF ).

Finally assume L∩ ξ = ∅. Since no 5-space of ξ is fixed, every point of L is collinear to a unique
point of ξ. This yields a unique fixed symp ξ′ containing L and intersecting ξ in a fixed line.

We record an interesting consequence.

Corollary 6.11. No symp is mapped onto an adjacent symp.

Proof. Suppose the symps ξ and ξθ are adjacent and let U = ξ ∩ ξθ. If U is stabilised, then
it is fixed pointwise, contradicting the fact that no subspace larger than a line is contained
in a quaternion dual polar space. Hence some point of U is moved by θ, implying that it is
mapped onto a symplectic point (by Lemma 6.7). But now by Corollary 6.1, ξθ is fixed, a
contradiction.

6.4 The quadratic case

Here we assume that there is a point z ⊥ zθ 6= z such that zθ
2
/∈ zzθ. By Lemma 6.6, zθ

2 ⊥ z
and the plane π generated by z, zθ, zθ

2
is fixed by θ, as well as every symp containing π.

Lemma 6.12. (i) Every singular subspace containing π is fixed.
(ii) The collineation θ fixes a unique line L ⊆ π and a unique point f ∈ π \ L.

(iii) Every singular k-space U containing π contains a pointwise fixed (k − 2)-dimensional
subspace U ′ disjoint from L.

(iv) Every symp containing L is fixed under θ.

Proof. (i) By Lemma 6.6 every symp containing π is fixed, hence by taking intersections, every
singular subspace containing π is fixed.

(ii) First note that θ does not fix an incident point-line pair in π, as (i) would lead to a fixed
chamber. Consider now a singular 3-space U of ∆ containing π and pick any point u ∈ U \ π
not fixed under θ (if θ fixes all points of U \ π, then also all points of π, a contradiction). Then
either θ fixes uuθ, and hence also the point f := uuθ ∩ π, or it fixes the plane α spanned by
u, uθ, uθ

2
, and hence the line L := π ∩ α.

We now claim that, if a linear collineation σ in the projective plane PG(2,K) fixes a line, then
it fixes a point. Indeed, we may assume, up to duality, that σ fixes the line L without fixed
points. Choose coordinates so that (1, 0, 0), (0, 1, 0) ∈ L and let (0, 0, 1)σ = (x1, x2, x2), xi ∈ K,
i = 1, 2, 3. Then the associated matrix M of σ can be written as a b 0

c d 0
x1 x2 x3

 ,
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where λ2− (a+ d)λ+ (ad− bc) = 0 has no K-solutions. Hence x3 is the only K-eigenvalue of M
and consequently σ fixes a unique point. The claim is proved.

The previous claim now implies that θ fixes an antiflag (f, L) in π.

(iii) Let U be a singular k-space containing π, 3 ≤ k ≤ 6. Then U θ = U . Pick any point
u ∈ U \ π and note that the 3-space Σ spanned by u and π is fixed by θ. As before, we may
assume that u 6= uθ. If for all choices of u, the points f, u, uθ are aligned, then f is a center and
hence there is an axis (of fixed points), which intersects π in a line, a contradiction. So we may
assume that uuθ ∩ π 6= {f}. It follows by the uniqueness of f that u, uθ, uθ

2
determine a plane

π′ which, by uniqueness of L, intersects π in L. As before, L is the unique fixed line of π′ and
hence there is a unique fixed point f ′ /∈ L in π′. By Lemma 6.5, the line ff ′ is fixed pointwise.
So every 3-space in U containing π contains a unique line pointwise fixed. Since by Lemma 6.5,
the set of fixed points in U is a subspace, we see that all these lines generate a (k− 2)-space U ′

of U pointwise fixed.

(iv) Let ξ be any symp containing L. Then f , being collinear to all points of L, is collinear to
all points of a certain 5-space W of ξ, and the singular subspace defined by f and W contains
π. Then (iii) implies that θ fixes every plane α in W containing L. Also, α contains a unique
fixed point fα /∈ L. It follows easily that for every point v ∈ α\ (L∪{fα}), the line vvθ does not
contain vθ

2
. Hence we can let α play the role of π; in particular θ fixes each symp containing α,

and so ξθ = ξ.

Lemma 6.13. Let ξ be a symp containing L. Then ξ pointwise fixes a subpolar space Q ⊆ L⊥

of type D4; also θ fixes all members of the system of generators of the grid Q⊥ which contains
L.

Proof. Let U,U ′ be two singular 5-spaces in ξ with U ∩U ′ = L. By Lemma 6.12(iii), U and U ′

contain 3-spaces S, S′, respectively, pointwise fixed under θ, and disjoint from L. Then S and
S′ are opposite in ξ. Every point lying on a line which intersects S ∪ S′ in at least two points is
fixed, according to Lemma 6.5. All such points together form a subspace Q of type D4. Now θ
does not fix any other points, as otherwise it would fix a point of the grid Q⊥, which contains
L; hence θ would fix a point on L, a contradiction. Hence the first assertion is proved.

Now let Q′ be a subspace of ξ of type D3 containing Q⊥. Then Q ∩ Q′ contains exactly two
points. Applying inverse Klein correspondence to Q′, we obtain a map, which we shall also
denote by θ, of PG(3,K) fixing exactly two disjoint lines K1,K2, acting without fixed points on
K1 and fixing at least one point a on K2. For each line N , either N θ is disjoint from N , or θ
fixes the intersection N ∩N θ or the span 〈N,N θ〉.
Assume for a contradiction that θ does not fix some point z2 ∈ K2. Pick any point z1 ∈ K1 and
pick any point z ∈ 〈z1, z2〉. Then 〈zθ1 , zθ2〉 is disjoint from 〈z1, z2〉 because otherwise both K1

and K2 would be contained in the plane spanned by z1, z2, z
θ
1 , z

θ
2 . For a similar reason 〈z, zθ〉

is disjoint from both K1 and K2. Now we claim that 〈z, zθ〉θ is distinct from 〈z, zθ〉. Indeed,
if 〈z, zθ〉 was fixed, then so would be the unique line A through a intersecting 〈z, zθ〉 and K1

nontrivially, and hence also A ∩K1, contradicting the fact that θ acts without fixed points on
K1. The claim is proved. Since the intersection zθ = 〈z, zθ〉 ∩ 〈z, zθ〉θ is not fixed, the plane
〈z, zθ, zθ2〉 is fixed (this follows from applying Lemma 6.6 to the intersection point of the planes
of Q′ corresponding under the Klein correspondence to z and zθ). But since 〈z, zθ〉 is disjoint
from K1, this plane does not contain K1 and hence intersects it in a unique point, which is then
fixed, a contradiction.

We conclude that θ fixes each point of K2. Translate back to Q′, this proves the second assertion.
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We can now pin down θ.

Proposition 6.14. The collineation θ pointwise fixes the equator geometry defined by two op-
posite symps ξ, ξ′. Also, θ acts fixed point freely on the full imaginary set I of symps defined
by ξ and ξ′ and fixes every line intersecting every member of I .

Proof. Let ζ be any symp containing the line L; then ζθ = ζ by Lemma 6.12(iv). By Lemma 6.13,
we find another line L′ in ζ fixed under θ, containing no fixed points, and such that L′ is contained
in a plane containing exactly one fixed point. Hence everything that holds for L also holds for
L′. We can then consider a symp ζ ′ with ζ ∩ ζ ′ = L′. We again find a line L′′ in ζ ′ with similar
properties as L. Note that L′′ is ζ ′-opposite L′. It follows that L and L′′ are opposite in ∆.
Pick any point x ∈ L and let x′′ be the unique point on L′′ not opposite x. Set ξ := ξ(x, x′′) and
ξ′ = ξθ. Clearly, θ acts fixed point freely on the imaginary set I of symps defined by ξ and ξ′.

Let y be any point in x⊥ ∩x′′⊥. Let ζ be the symp defined by xy and L, and let ζ ′′ be the symp
defined by x′′y and L′′. Since L and L′′ are opposite, the symps ζ and ζ ′′ are symplectic and
intersect in a unique line Ly, with y ∈ Ly. Every point y′0 of Ly is collinear to a point y0 ∈ L and
a point y′′0 ∈ L′′; since y0 and y′′0 are not opposite, they are contained in the same member of I .
Hence Ly intersects each member of I . Note that by Lemma 6.12(iv) the symps ζ and ζ ′′ are

fixed, and hence so is Ly. It follows that θξ pointwise fixes x⊥ ∩ x′′⊥, and also x and x′′. This
implies that every singular subspace of ξ of dimension at least 2 is domestic. Since θ belongs to
the opposition diagram E7;4, θξ is also point-domestic. Consequently θξ has opposition diagram
D2
6;1 unless it is the identity. By Proposition 3.11 of [25], θξ is either identity or pointwise fixes

the perp of a line. he latter contradicts the fixed points of θξ already found. So θξ is the identity.

Now let p be any point of the equator geometry defined by I . Then p is collinear to singular
5-spaces in the members of I . By the previous paragraph, all these 5-spaces are mapped onto
each other by θ, and hence p is fixed. Hence θ fixes pointwise the equator geometry defined by
the two opposite symps ξ, ξ′.

6.5 Existence and uniqueness of the quaternion case

Let H be a—separable or inseparable—quaternion division algebra over K, with standard in-
volution x 7→ x. Let us call a polar space isomorphic to C3,1(H,K) a quaternionic polar space.
Recall it is defined by the pseudo-quadratic form

X−3X3 +X−2X2 +X−1X1 ∈ K

and lives in PG(5,H). The quads of the corresponding dual polar space are isomorphic to the
polar space B2,1(K,H) of rank 2 arising from the quadric Q(H) in PG(7,K) with equation

X−1X−2 +X−3X−4 = n(X0, X1, X2, X3),

with n the norm mapping in H. This quadric arises as the intersection of the hyperbolic quadric
Q ∼= D6,1(K) in PG(11,K) with equation X−1X−2+X−3X−4−X0X7+X1X4+X2X5+X3X6 = 0
with a 7-dimensional subspace S having equations

X4 = `1X1, X6 = −`1`2X3, X7 = X0 +X1, X5 = `2(X2 +X6)

in the separable case, and

X0 = X7, X4 = `1X1, X5 = `2X2, X6 = `1`2X3
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in the inseparable case. This follows from the explicit expressions of the norm form above.

Now let p−3 and p−4 be the points with only nonzero coordinate X−3 and X−4, respectively.
Then both points belong to Q(H). Let Q0(H) and Q0 be the quadrics contained in Q(H) and Q,
respectively, consisting of the points of Q(H) and Q, respectively, collinear to both p−3 and p−4

(hence, Q0(H) = p⊥−3 ∩ p⊥−4, with ⊥ the collinearity relation in Q(H), and Q0 = p⊥
′
−3 ∩ p⊥

′
−4, with

⊥′ the collinearity relation in Q). Then U := 〈Q0〉 is a 9-dimensional subspace of PG(11,K).
With this notation, we have the following lemma.

Lemma 6.15. Let ϕ0 be a collineation of U stabilizing Q0 and fixing Q0(H) pointwise. Then
there exists a unique collineation ϕ of PG(11,K) stabilizing Q, fixing Q(H) pointwise and such
that ϕ coincides with ϕ0 over U .

Proof. The collineation ϕ fixes the subspace 〈Q(H)〉 pointwise and is determined on the subspace
U by ϕ0. Since 〈U,Q(H)〉 = PG(11,K) and U ∩ 〈Q(H)〉 = 〈Q0(H)〉, we deduce that ϕ is unique,
if it exists.

Now since ϕ0 fixes 〈Q0(H)〉 pointwise, ϕ0 stems from a linear transformation of the underlying
vector space fixing the vectors corresponding to 〈Q0(H)〉. Extending ϕ0 by declaring the basis
vectors corresponding to p−3 and p−4 to be fixed, the obtained collineation ϕ satisfies all the
stated requirements.

We also need the following result.

Lemma 6.16. Let {p, L, ξ} be a flag of ∆ ∼= E7,7(K), with p a point, L a line and ξ a symp. Let
q be a point in ξ symplectic to p. Let r be a point collinear to q such that the line rq is opposite
ξ in the point residual at q. Let ζ be a symp containing r opposite rq in the point residual at r,
and let R be any line in ζ containing r and not containing a point that is not opposite all points
of L. Then p and r are opposite, L and R are opposite, and ξ and ζ are opposite.

Proof. The choice of r immediately implies that r is far from ξ, hence {q} = r⊥∩ξ and so Fact 2.8
implies that p and r are opposite. Suppose now that ξ and ζ intersect nontrivially. Then the
intersection contains a line M which, by assumption, does not contain q. Then r⊥M ⊆ ξ is
nonempty, contradicting r being far from ξ. Assume that ξ ∩ ζ is empty but that they are not
opposite. Then by Fact 2.9, and since r is far from ξ, the point q is close to ζ, contradicting the
choice of ζ as opposite rq in the point residual at r. Hence ξ and ζ are opposite. Finally, R and
L are opposite by the assumptions on R.

Recall that we denote the dual polar space corresponding to the quaternion polar space by
C3,3(H,K). The corresponding building is denoted by C3(H,K). The rest of this section is
dedicated to the proof of the following existence result.

Proposition 6.17. Suppose the field K admits a (separable or inseparable) quaternion division
algebra H. Then C3,3(H,K) is a full subgeometry of E7,7(K), unique up to projectivity, such
that every point residual of C3,3(H,K) is a standard inclusion of V (K,H) in the corresponding
point residual of E7,7(K). Also, this embedding arises as the fixed point set of each nontrivial
collineation of a group of collineations isomorphic to the group G above.

Proof. Let ∆ be a parapolar space isomorphic to E7,7(K) and let Γ be a dual polar space
isomorphic to C3,3(H,K).
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Select a chamber of ∆, that is, a set C consisting of a point p, a line L, a plane π, a solid Σ, a
maximal 5-space W , a maximal 6-space U and a symp ξ. The fact that these subspaces form
a chamber translates in the conditions p ∈ L ⊆ π ⊆ Σ ⊆ W ⊆ ξ and dim(U ∩W ) = 4. These
conditions imply that U ∩ ξ is a 5-space. We have represented C on the Coxeter diagram of ∆,
using Bourbaki labelling, see Figure 2.

•
7

p
•
6

L
•
5

π
•
4

Σ
•
3

W
•
1

ξ

•
2
U

Figure 2: The Dynkin diagram of ∆ showing the chamber C

The residue Res∆(p) of p in ∆ is a parapolar space isomorphic to E6,1(K). By Proposition 5.2 we
may select an arbitrary linear kangaroo collineation θ1 of Res∆(p) pointwise fixing a quaternion
Veronese variety V (K,H), and such that both L and ξ are fixed by θ1. Let G be the pointwise
stabiliser of V (K,H) in Res∆(p). This now implies that the action of θ1 on ξ satisfies the
assumptions of Lemma 6.15 and so there is a unique collineation θ2 of Res∆(ξ), which we
identify with the symp ξ itself, such that the action of θ2 on Resξ(p) coincides with the action
of θ1 on Res∆({p, ξ}). Denote by θ3 the union of θ1 and θ2 (which is a well defined function
since θ1 and θ2 coincide over the intersection of their domains). Then the domain of definition
of θ3 contains the union E2(C) of the rank 2 residues defined by the flags in C of size 5. Set
C ′ = θ3(C). Then θ3 : E2(C)→ E2(C ′) is adjacency preserving.

Set F = {p, L, ξ} ⊆ C. Select a line M through p in ξ fixed under θ3, with M not collinear to all
points of L. Select a point q in ξ not collinear to p and fixed under θ2. Finally, select a line K
through p, fixed under θ1 and opposite ξ in Res∆(p). Considering any apartment A1 containing
K,M,L, q (which exists by grouping these elements together as flags {K, ξ′} and {q, L′, ξ}, with
ξ′ the symp determined by K and M , and L′ the line in ξ through q meeting L nontrivially, and
noting that ξ∩ξ′ = M), we can select a point r collinear to the unique point q of ξ, and opposite
p. In A1, there is a unique line R (containing r) opposite L and a unique symp ζ ⊇ R opposite
ξ. Denote by H the flag {r,R, ζ}. We claim that there is a unique apartment A containing
C, θ3(C) and H. Indeed, first we notice that, since θ1 is a kangaroo, the flag C \ F is opposite
the flag θ3(C) \ F in Res∆(F ). Hence, by Proposition 3.29 of [37], the projection D of C onto
H is opposite θ3(C). Let A be an apartment determined by D and θ3(C). Then A is unique
and contains C, since C is the projection of D onto F (reversing the roles of F and H). The
claim follows.

Now, similarly, there is a unique apartment A ′ containing θ3(C), θ2
3(C) and H. Since both A

and A ′ contain L,M and q, which are all fixed under θ3, the intersections of A and A ′ with ξ
are independent of the choice of H and this implies that the image under θ3 of A ∩ ξ is exactly
A ′ ∩ ξ. Similarly for Res∆(p). We can therefore extend θ3 to A as the unique isomorphism
(or adjacency-preserving map) A → A ′ extending the action of θ3. Note that θ3 then fixes H
elementwise.

Hence we have everything in place to apply Proposition 4.16 of [37]. We obtain that θ3 is the
restriction of a collineation θ globally defined on ∆ and coinciding with θ3 over E2(C)∪A . Now
θ3 pointwise fixes the complex arising as the convex closure of F and H, which is a Coxeter
complex of type C3. Also, the fixed point structures of θ3 in ξ and Res∆(p) imply that the global
fixed point structure Γ of θ is a building of type C3 isomorphic to C3(H,K).

We show that Γ is a full subgeometry. All points of ∆ on the line L are fixed by θ. If L′ is a line
of Γ opposite L (so L′ is fixed under θ), then each point of L′ is the unique point not opposite
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a certain point of L, hence fixed by θ. So all points of L′ belong to Γ. Now each line of Γ is
opposite some line opposite L, so the same argument shows the assertion.

Note that Γ is the convex hull of (E1(C) ∪ Σ) ∩ Γ (by the arguments in §4.3 of [37]), so that
we would obtain the same building Γ if we replaced θ1 with any other nontrivial member of G.
This shows the last assertion of the Proposition.

Finally, we prove that Γ is unique up to projectivity. Let Γ′ ∼= Γ be another full subgeometry
with the property that every point residual of Γ′ is a standard inclusion of V (K,H) in the
corresponding point residual of E7,7(K). By the projective uniqueness of the point residuals,
we may assume that p belongs to Γ′ and that the point residuals at p coincide. We may also
assume (using Lemma 6.15) that respective symps of Γ and Γ′ in ξ coincide. In the above
arguments, we then skip the selection of A1 and instead choose the point r0 arbitrary on a line
of Γ′ through q, choose ζ0 through r0 such that it hosts a symp of Γ′ not containing the line
r0q, and choose R0 any line of Γ′ through r0 in ζ0 and Γ′-opposite L. Our assumption on the
point residuals being standard embeddings and Lemma 6.16 imply that the distance of points
of Γ′ measured in Γ′ is the same as the distance measured in ∆. Then Lemma 6.16 implies
that H0 := {r0, R0, ζ0} and {p, L, ξ} are opposite. Let A0 be the apartment containing C, θ(C)
and H. There exists a collineation ϕ fixing E2(C) pointwise and mapping A to A0 (use again
Proposition 4.16 of [37]). Then E2(F ) in Γ coincides with E2(F ) in ϕ(Γ) and in Γ′. Since H
represents a chamber of both ϕ(Γ) and Γ′, Proposition 4.1.1 of [37] implies that ϕ(Γ) and Γ′

coincide. Whence the assertion.

We now provide a more or less direct construction of the group G of Proposition 6.17 by explicitly
establishing it (but without detailed proof). To that aim, we recall the following construction
of E7,7(K). Let V be a vector space of dimension 56 over K. Then we define the mapping
ν : K×K×K×O′ ×O′ ×O′ → V : (`1, `2, `3, X1, X2, X3) 7→

(1, `1, `2, `3, X1, X2, X3,

X1X1 − `2`3, X2X2 − `3`1, X3X3 − `1`2,
`1X1 −X2X3, `2X2 −X3X1, `3X3 −X1X2,

`1X1X1 + `2X2X2 + `3X3X3 −X3(X2X1)− (X1X2)X3 − `1`2`3),

and call this the dual polar affine octonion Veronese map. Its image A V (K,O′) is contained in
and spans PG(V ) ∼= PG(55,K). For |K| > 2, let V (K,O′) be the projective closure of A V (K,O′)
(see Section 5.2 for the definition). We then have

Proposition 6.18 (see [12]). For |K| > 2, the full subgeometry V (K,O′), endowed with all
projective lines contained in it, is isomorphic to E7,7(K).

Now let σ be an automorphism of O′ fixing the center K pointwise (so that XX = XσX
σ

and
X +X = Xσ +X

σ
). Then clearly the following linear map

ϕσ : V → V : (x, x1, x2, x3, X1, X2, X3, y1, y2, y3, Y1, Y2, Y3, y) 7→
(x, x1, x2, x3, X

σ
1 , X

σ
2 , X

σ
3 , y1, y2, y3, Y

σ
1 , Y

σ
2 , Y

σ
3 , y),

with x, xi, y, yi ∈ K, Xi, Yi ∈ O′, i = 1, 2, 3, defines an automorphism, which we also denote by
ϕσ, of A V (K,O′), and hence of V (K,O′). Now we have the following proposition, the proof of
which is left to the reader.

Proposition 6.19. Suppose that σ is an automorphism of O′ the fixed point structure of which is
a separable or inseparable quaternion division subalgebra H. Then the fix structure in V (K,O′)
of the collineation ϕσ is a full subgeometry of V (K,O′) ∼= E7,7(K) isomorphic to the dual polar
space C3,3(H,K).
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7 Collineations with opposition diagram E7;3 fixing no chamber

7.1 The examples

By Proposition 5.7 of [10], each quadratic extension L of K yields a subbuilding B of E7(K)
isomorphic to F4(K,L) with the following properties.

(i) The associated Lie incidence geometry Γ∗ := F4,1(K,L) is a full subgeometry of the Lie
incidence geometry ∆∗ := E7,1(K).

(ii) Each symp of Γ∗ is embedded in a unique symp of ∆.
(iii) The embedding is isometric, that is, a pair of points p, q in Γ∗ is collinear, symplectic,

special or opposite in Γ∗ if, and only if, it is collinear, symplectic, special or opposite,
respectively, in ∆∗.

(iv) There is a group G isomorphic to L×/K× of automorphisms of ∆∗ each nontrivial member
of which has Γ∗ as fix structure. If some automorphism of ∆∗ pointwise fixes Γ∗, then it
belongs to G.

Conversely, if, for some quadratic extension L of K, the Lie incidence geometry ∆∗ contains a
full subgeometry isomorphic to the Lie incidence geometry F4,1(K,L), then, up to a projectivity,
it is precisely the corresponding point-line geometry of B. Note that L/K is allowed to be an
inseparable extension and also |K| = 2 is allowed.

We now show the following proposition.

Proposition 7.1. Given a full subgeometry of ∆∗ isomorphic to the Lie incidence geometry Γ∗

with corresponding group G as above, then every nontrivial member θ of G is domestic and has
opposition diagram E7;3.

It is convenient to consider the “dual” situation, that is, to consider Γ = F4,4(K,L) inside
∆ = E7,7,(K). Then it follows from [10] that the fixdiagram of θ is E7;4 and that the collineation
induced by θ in any fixed symp of ∆ is point-domestic and does not fix a chamber. We state
this and some consequences as a lemma for further reference.

Lemma 7.2. Let ξ be a symp of ∆ fixed by θ. Then θ induces a point-domestic collineation in
ξ without fixed points. It has both fixdiagram and opposition diagram D2

6;3. Also,

(i) The set of fixed lines is a spread of ξ;
(ii) Two fixed lines of ξ are either contained in a common (fixed) 3-space, or are ξ-opposite.

(iii) All 5-spaces of ξ that are maximal singular subspaces of ∆ that contain a fixed 3-space,
are fixed themselves by θ.

(iv) A 5′-space U of ξ is mapped to a 5′-space U θ that is either disjoint from U or intersects
U in a fixed 3-space.

(v) No 5-space of ξ is mapped onto a disjoint one.

Proof. First note that fixed 5-dimensional singular subspaces of ξ are maximal singular subspaces
(hence 5-spaces and not 5′-spaces) since they are contained in at least two fixed symps (by
assumption of the fix structure).

Now we note that (i) follows from point-domesticity and Proposition 3.1 of [25]. Heading for
(ii), let L1 and L2 be two arbitrary fixed lines of ξ and assume L1 is not opposite L2. Then
some point p1 ∈ L1 is collinear to all points of L2. Then also pθ1 is collinear to all points of L2,
and so L1 and L2 are contained in an automatically fixed 3-space, proving (ii).
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Now assume that a 5-dimensional subspace U containing a fixed 3-space S is not fixed. Let
p ∈ U \ S. Since U is not fixed, pθ /∈ U . But 〈S, p, pθ〉 is a fixed 5-space, intersecting U in the
4-space 〈S, p〉. Hence U is not maximal in ∆, proving (iii).

Now we prove (iv). By (i), the collineation θ induces a line-spread in ξ. Suppose first that U
does not contain a line of this spread, then U and U θ are disjoint, as θ has no fixed points. Thus
we can suppose that U contains a line R of the spread. Choose an arbitrary point p ∈ U \R, let
L be the line of the spread that contains p. Since p and R lie in a singular subspace, it follows
from (ii) that L and R are collinear and thus span a 3-space S, that is fixed by θ.

If L and thus also S lie in U , then U ∩ U θ contains S, a fixed 3-space. Thus suppose L does
not lie in U . Then we consider the singular 5-space W spanned by S and the points of U that
are collinear to all points of S. This is a 5-space that intersects U in a 4-space, thus W is a
maximal singular subspace that contains S. It now follows from (iii) that W is a fixed space.

Since W and U intersect in a hyperplane, it suffices to show that every 4-space A of W contains
a fixed 3-space. One verifies that A ∩Aθ is fixed, proving (iv).

In order to prove (v) we consider two opposite fixed 5-spaces U and U ′. It is easy to find a plane
α ⊆ U containing no fixed line. Then α and αθ are disjoint and the 5′-space spanned by α and
α⊥ ∩U ′ is mapped onto an opposite. By the opposition diagram, no 5-space is mapped onto an
opposite.

Lemma 7.3. For every point p of ∆, there is a symp ξ of ∆ close to p fixed by θ.

Proof. Choose an arbitrary fixed symp ζ and suppose p is collinear to a unique point x in ζ
(otherwise, by Fact 2.8, there is nothing to prove). In ζ there is a fixed 5-space U through x
and all symps through U are fixed by θ. We claim that one of these symps contains a 5-space
collinear to p.

To prove this, we look at the residue Res∆(x) at x: in this geometry of type E6,1, we have a
point p and a 4-space U such that p is not collinear to any point of U , and we have to prove
that there exists a symp through U that is close to p. Because this residue is self-dual, it suffices
to show the dual of this: if we have a symp P ′ and a line U ′, there exists a point on U ′ that is
close to P ′. Each line is contained in a symp and every two symps intersect in at least a point,
thus we find a symp ξ through U ′ that intersects P ′. The point y in this intersection is collinear
to a point q of U ′, thus q has to be close to P ′.

Lemma 7.4. A point p of ∆ is either mapped to an opposite point, or to a collinear point. As
a consequence, no point of ∆ is mapped to a point at distance 2.

Proof. From Lemma 7.3 we know that p is collinear to a 5-space U of a fixed symp ξ. From
lemma 7.2(iv) follows that U ∩ U θ is a fixed 3-space S or U is opposite U θ.

Suppose first that U ∩U θ = S, then p and pθ are both collinear to S. Thus p and pθ can not be
opposite. If p and pθ are symplectic, then the symp ξ(p, pθ) determined by p and pθ intersects ξ
in a 5-space that contains S. Since Γ∗ is a full subgeometry of ∆∗, this 5-space through a fixed
3-space has to be fixed, and the symp ξ(p, pθ) through this fixed 5-space also has to be fixed.
Thus θ induces a spread in ξ(p, pθ) and every point of this symp has to be mapped to a collinear
point. Hence p and pθ can not be symplectic. It follows that p and pθ are collinear.

Suppose now that U and U θ are disjoint. Then it is easy to see that p and pθ can not be collinear
(a symp through p and a point of U θ then has disjoint 4-spaces lying in U ∪U θ in common with
ξ, a contradiction). Suppose they are symplectic and consider a point q that is collinear to both
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p and pθ (note q does not lie in ξ). The point q has to be collinear to at least one point y of
ξ. If y /∈ U , then p and y determine a symp that contains q and a 4-space of U . So, either q
is collinear to a unique point y of ξ that lies in U , or q is collinear to a 3-space in U . We can
repeat this reasoning with U θ instead of U . We conclude that q should be collinear to a 3-space
in U and a 3-space in U θ. This is a contradiction, q can only be collinear to a 5-space of ξ. Thus
p and pθ are opposite.

Lemma 7.5. In every plane α of ∆, there is a point that is mapped to a collinear point. In
particular, no plane is mapped to an opposite plane by θ.

Proof. Choosing a point p in α, we can suppose that p and pθ are opposite. Lemma 7.3 yields
a fixed symp ξ1 close to p and U := p⊥ ∩ ξ1 is disjoint from U θ. Now choose a point q 6= p in
α. Then one verifies that q is either collinear to a 5-space of ξ1 that intersects U in a 3-space,
or q is collinear to a unique point x of ξ1 that lies in U . In the first case we set ξ2 := ξ1, in the
second case we find ξ2 as follows. Choose a point y in U that is collinear to xθ. Then x, y, xθ

span a plane and thus, by Lemma 7.2(ii), the points x, xθ, y, yθ span a fixed 3-space S.

Choose a fixed 5-space through S. From the proof of Lemma 7.3, we know that there is a fixed
symp ξ2 through this 5-space such that q is collinear with a 5-space of ξ2. Also the point p is
collinear to a 5-space of ξ2, as p is collinear to the line 〈x, y〉 in S, which is contained in ξ2. In
both cases we now have a symp ξ2 such that p and q are collinear to 5-spaces in ξ2. Because p
and q are collinear, these 5-spaces intersect in a 3-space A.

Consider a third point r on the plane α, that does not lie on the line pq. If r is collinear to a
5-space R in ξ2 then we set ξ3 := ξ2. We can now suppose that r is collinear to a unique point
of ξ2, which has to belong to A. Choose a point b in A \ a that is collinear to aθ. Now we find a
fixed 3-space F spanned by a, b, aθ, bθ as before. We choose an arbitrary fixed 5-space through
F and again as in the proof of Lemma 7.3 we find a fixed symp ξ3 through this 5-space, such
that r is collinear to a 5-space of ξ3. The points p and q are collinear to the line 〈a, b〉, thus they
are also collinear to a 5-space of ξ3.

We now have a fixed symp ξ3 such that p, q and r are all collinear to a 5-space (P , Q and R,
respectively) in ξ3. The 5-space R intersects both P and Q in a 3-space distinct from P ∩Q, since
otherwise we have two different 6-spaces—the one spanned by p and P and the one spanned by
α and P ∩Q—intersecting in a 4-space, contradicting Fact 2.1(vi) in Res∆(p).

Consequently we may suppose that there exists a point a ∈ (P ∪ Q) \ R. The symp ξ(a, r)
contains p, q, r and a 4-space of R. The points p and q are collinear to at least a common plane
of that 4-space, and so we conclude with the previous paragraph that P ∩ Q ∩ R is a plane β
and P ∩Q, Q ∩R and R ∩ P span a 5-space W containing β.

Now each point of the plane α is collinear to a 5′-space containing β, that intersects W in a
4-space, an conversely, every 5′-space containing β and intersecting W in a 4-space is collinear
to a point of α.

If β and βθ had a point in common, then every point of α would go to a collinear point. Thus
we suppose β and βθ are disjoint.

Now W ∩W θ is nonempty by Lemma 7.2(v). Let x ∈ W ∩W θ. Then xθ ∈ W θ and xθ
−1 ∈ W ,

hence L := xxθ
−1

= xxθ ⊆ W ∩ W θ. Since L and β generate at most a 4-space, we find a
5′-space Z containing β and L, hence intersecting W in at least a 3-space (as L and β generate
at least a 3-space—indeed, L is not contained in β by the previous paragraph). Consequently
there is a point z ∈ α collinear to Z. Since L ⊆ Z ∩Zθ, the point z is not opposite zθ and hence
z ⊥ zθ by Lemma 7.4.
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It now follows that θ has opposition diagram E7;3 since the previous lemma implies that θ is
domestic, and since we know that θ maps some point to an opposite point (namely, any point in
a 6-space containing a 5-space U in a fixed symp with the property that U and U θ are disjoint).
Proposition 7.1 is proved.

Remark 7.6. Note that, in the above proofs, we only used the hypotheses that there are no
fixed even-dimensional subspaces, that there are fixed lines, that every maximal 5-space and
every symp through a fixed 3-space is also fixed, and that the collineation induced in a fixed
symp is point-domestic.

7.2 The characterisation

In this section, let θ be a collineation of ∆ = E7,7(K) with opposition diagram E7;3 fixing no
chamber (however some lemmas below are independent of the latter condition). Again, since we
restrict to large buildings we may assume that |K| > 2.

Our aim is to show that the fix structure of θ is a subbuilding F4(K,L), with L a quadratic
extension of K, such that the corresponding geometry F4,1(K,L) is a full subgeometry of E7,1(K).

Lemma 7.7. For each symp ξ of ∆, the pair {ξ, ξθ} is not special.

Proof. Suppose for a contradiction that {ξ, ξθ} is a special pair of symps. Let U ⊆ ξ and U ′ ⊆ ξθ
be the unique 5-spaces contained in a common symp. Select a 5-space W in ξ disjoint from both

U and U ′θ
−1

(this exists by Proposition 3.30 of [37]). Then W θ is disjoint from U ′ and hence
is not contained in the perp of any point of U ′. It follows from Fact 2.9(iv) combined with
Fact 2.8(i) that each point of W is opposite some point of W θ. Hence, by Remark 2.14, W is
opposite W θ, contradicting the opposition diagram.

Lemma 7.8. If a point x is mapped onto a collinear point xθ, then the line xxθ is fixed.

Proof. Suppose not. By the dual of Lemma 2.2, there is a symp ξθ locally opposite the line
xθxθ

2
at xθ and locally close to the line xxθ at xθ. It follows that ξ is locally opposite xxθ at x.

We claim that {ξ, ξθ} is special.

Since ξθ is locally close to xxθ at xθ, the perp x⊥ intersects ξθ in a maximal singular subspace.
Since x ∈ ξ, this implies that ξ and ξθ are not opposite. Now suppose that ξ and ξθ are not
disjoint. Then, by Fact 2.8, they share at least a line, and there exists some point p ∈ ξ ∩ ξθ
collinear to xθ. Hence p ⊥ x and xxθ and xp are collinear points in Res∆(x), contradicting the
fact that xxθ is far from ξ in Res∆(x). This shows the claim.

But now we run against a contradiction to Lemma 7.7.

Lemma 7.9. If for a symp ξ the pair {ξ, ξθ} is symplectic, then the line ξ ∩ ξθ is fixed.

Proof. Set ξ ∩ ξθ =: L.

We show first that we may assume that some point x ∈ ξ is mapped onto an opposite. Assume
for a contradiction that no point of ξ is mapped onto an opposite one; then the set Y of points
of ξ collinear to a point y ∈ L but not in L⊥ is mapped into the set of points of ξθ collinear
to y, but also into the set of points of ξθ collinear to yθ, hence into the set Y ′ of points of ξθ

collinear to both y and yθ. If y and yθ are not collinear, then Y contains some affine part of a
5-space, whereas Y ′ does not, a contradiction. If y ⊥ yθ, with y 6= yθ, then Y ′ does not contain
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pairs of such affine 5-spaces the projective completion of which intersects precisely in a point
(they always contain the line yyθ), whereas Y does (in the perp of y one finds 5-spaces only
intersecting in y). It follows that y = yθ, hence L is fixed pointwise.

So we may assume that there exists a non-domestic point x ∈ ξ. If M is the line in ξ through x
intersecting L nontrivially (say, in the point u), then ξθx = M . Lemma 4.18 of [22] implies that
the line K through u intersecting M θ nontrivially is fixed. Since K ⊆ ξθ, we have K = Kθ−1 ⊆ ξ,
and so K = L.

Lemma 7.10. Suppose at least one fixed point exists. If a symp ξ is non-domestic, then it does
not contain points x with {x, xθ} symplectic.

Proof. Let ξ be opposite ξθ. The opposition diagram of θξ is a “subset” of the residue of a node
of type 1 in E7;3, that is, D6;0, D

1
6;1, D

2
6;1 or D1

6;2. Then Theorem 6.1 of [34] yields noncollinear

fixed points x1, x2 of θξ. The lines x1x
θ
1 and x2x

θ
2 are fixed lines by Lemma 7.8; Lemma 6.3

yields a fixed point p1 on x1x
θ
1. The unique symp ξ′ through p1 intersecting x2x

θ
2 nontrivially

(see Fact 2.10) is itself fixed and hence intersects x2x
θ
2 in a fixed point p2. Moreover, if x is any

point of ξ fixed under θξ, then the unique point x′ of ξ′ collinear to x is fixed under θ. Hence
the fixed point structures of θξ and of θ in ξ′ are isomorphic. Now suppose, for a contradiction,
that some point y ∈ ξ′ is mapped onto a collinear but distinct point yθ. Let U be a 5-space
containing yyθ. Theorem 6.1 of [34] yields a 3-space S ⊆ U pointwise fixed by θ. Lemma 6.3
asserts that yyθ is stabilised and Lemma 7.8 yeilds a fixed point z ∈ yyθ. If z ∈ S, then 〈S, y〉
is a fixed 4-space and U a fixed 5-space. This easily yields a fixed chamber, a contradiction. If
z /∈ S, then 〈S, z〉 is a fixed 4-space and this leads to the same contradiction. Hence no point
of ξ′ is mapped to a collinear one, meaning that for each point x ∈ ξ, the pair {x, xθ} is either
collinear or opposite, but not symplectic.

Lemma 7.11. If a fixed line L contains a fixed point p, then all points on L are fixed.

Proof. Suppose some point x ∈ L is not fixed. Assume for a contradiction that some symp ξ
through L intersects ξθ precisely in L. Let y be a point in ξ collinear to x but not to p. Then
y is non-domestic. Let M be a line in ξ through y not contained in x⊥. Then M contains a
point u mapped to a point at distance 2 (namely, the point on M collinear to p). Now θy is a
domestic duality in Res∆(y); by the main result of [40] and Section 3.2 of [11], there exists some
symp ζ through M mapped to an opposite ζθ. But u ∈ ζ, contradicting Lemma 7.10.

Hence the map induced on Res∆(L) is point-domestic on the irreducible component of type D5,
viewed as polar space D5,1(K). Lemma 3.16 of [25] implies that some chamber C of that residue
is fixed. But now C ∪ {p, L} is a fixed chamber of ∆, a contradiction.

We are now ready to show that there are no fixed points.

Lemma 7.12. There are no fixed points.

Proof. The opposition diagram ensures that some symp ξ is mapped onto an opposite. Then,
as in the proof of Lemma 7.10, Theorem 6.1 of [34] yields at least one fixed point of θξ. Hence
we find a point p mapped to a collinear point and the line ppθ is fixed by Lemma 7.8. If there
was some fixed point of θ, then Lemma 6.3 would yield a fixed point on the line ppθ, and the
latter is then fixed pointwise by Lemma 7.11. Clearly, this contradicts p not being fixed.

We now prepare for proving Lemma 7.10 without the condition of the existence of a fixed point.
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Lemma 7.13. If a symp ξ is fixed, then θ acts point-domestically on it.

Proof. Suppose for a contradiction that p is a point of ξ mapped onto a point at distance 2. Let
σ be the restriction of θ to ξ. Then we claim that σp has no fixed points.

Indeed, if L through p is mapped onto Lσ through pσ with L ∩ Lσ = x, then x is mapped onto
a point of Lσ (remember σ has no fixed points by Lemma 7.12). But then Lemma 7.8 implies
that Lθ = xxθ is fixed, a contradiction.

Next, we claim that each line through p in ξ is mapped onto an opposite line in ξ. Indeed,
suppose not, let L be a line through p not mapped onto an opposite in ξ and consider a symp
ζ which intersects ξ in just L. Then ζθ intersects ξ in just Lθ. Since some point of L ⊆ ζ is
collinear to all points of Lθ ⊆ ζθ, the pair {ζ, ζθ} is not opposite. It is not special either by

Lemma 7.7, and is not an adjacent pair since this would imply that p⊥∩pθ⊥ contains a plane in
ζ∩ζθ∩ξ. Hence they are symplectic and ζ∩ζθ = M is a line. If p ⊥M , then also pθ ⊥M θ = M

(by Lemma 7.9) and p⊥ ∩ pθ⊥ contains a line in ζ ∩ ζθ ∩ ξ, which then necessarily coincides with
L and Lθ, a contradiction. Hence p is collinear to a unique point of L, which is not fixed by
Lemma 7.12. This implies that p is opposite pθ in ∆, a contradiction. The claim is proved.

Now let U be an arbitrary 5-space in ξ containing p. Suppose for a contradiction that U ∩ U θ
contains a point u. Then u is collinear to (pu)θ, contradicting the previous claim. Hence U is
disjoint from U θ. Let ζ be a symp intersecting ξ in U . Then {ζ, ζθ} is not opposite, adjacent or
symplectic—a point in the intersection would have to be collinear to the span of two 4-spaces
(one in each of U and U θ) of ξ, clearly impossible. We conclude that {ζ, ζθ} is special, but this
contradicts Lemma 7.7.

This completes the proof of the lemma.

Lemma 7.14. If a symp ξ is non-domestic, then it does not contain points x with {x, xθ}
symplectic.

Proof. Let ξ be a non-domestic symp. Suppose for a contradiction that θξ maps a point x to a
collinear (distinct) point x′. We first claim that xx′ is stabilised by θξ. If xx′ contains a fixed
point, then this is obvious. If not, then consider two 5-spaces U,U ′ through xx′ intersecting
precisely in xx′. By the opposition diagram, θξ is plane-domestic and solid-domestic (solids
being singular 3-spaces), hence Theorem 6.1 of [34] yields pointwise fixed solids S ⊆ U and
S′ ⊆ U ′, which, by assumption, are disjoint from xx′. Since θξ is type preserving, it stabilised
both U and U ′ and hence xx′. The claim is proved.

Next we claim that xx′ contains a fixed point. Indeed, let π be any plane through xx′. Theorem
6.1 of [34] yields a fixed point f ∈ π. If there is a second fixed point f ′ in π \xx′, then ff ′ ∩xx′
is a fixed point p for θξ. If there is no further fixed point in π \ xx′, then for an arbitrary point
y ∈ π \ (xx′ ∪ {f}) the line yyθ is fixed (applying the previous with y in place of x) and so
yyθ ∩ xx′ again defines a fixed point p on xx′. The claim is proved.

Now the symp ξ(xθ, p) = ξ(x, pθ) is fixed under θ (as pθ
2

is contained in ppθ by Lemma 7.8).
But this now contradicts Lemma 7.13.

Lemma 7.15. If x is a point, then {x, xθ} is not symplectic.

Proof. Suppose for a contradiction that x is mapped onto a point at distance 2 from x. Let ξx
be the symp through x, xθ. We select a symp ξθ through xθ such that in Res(xθ), the symp ξθ
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is far from an arbitrary line through xθ in ξx ∩ ξθx; then ξ and ξx intersect in precisely a line L
just like ξθ and ξx also just intersect in some line M .

Now since ξ 6= ξx, we have ξ 6= ξθ; also the pair {ξ, ξθ} is not opposite by Lemma 7.14, it is
not special by Lemma 7.7, and it is not adjacent since otherwise each of ξ and ξθ shares the

subspace x⊥ ∩ xθ⊥ ∩ ξ ∩ ξθ of dimension at least 3 with ξx, a contradiction to our choice of ξ.
Hence ξ and ξθ share exactly a line K, which is preserved under θ by Lemma 7.9. Assume for
a contradiction that x is collinear to a unique point of K. By Lemma 7.12, xθ is not collinear
to that point and so {x, xθ} is, by Fact 2.9(iii), an opposite pair, a contradiction. Hence both
x and xθ are collinear to all points of K. This yields K ⊆ ξx ∩ ξ ∩ ξθ, implying K = L = M ,
which is clearly a contradiction.

We exhausted all possibilities for {ξ, ξθ} and each one led to a contradiction. This proves the
lemma.

Lemma 7.16. If ξ is a symp, then ξ is not adjacent to ξθ.

Proof. Suppose for a contradiction that the symp ξ is mapped onto an adjacent one and set
U := ξ∩ξθ. By Lemma 7.15, each point x of U is mapped to a collinear point and by Lemma 7.8,
the line xxθ is fixed, implying xxθ ⊆ U . Hence U θ = U . Let S be an arbitrary 4-space of U
and let W be the unique 5′-space of ξ containing S. The set W \ S, is mapped into the unique
5′-space W ′ of ξθ containing S, since the only points in ξθ collinear to a point of W \ S are
contained in W ′. Hence W ′ \ S = W θ \ Sθ. Since W ′ \ S generates W , and likewise W θ \ Sθ
generates W θ, this implies W ′ = W θ. Hence S = Sθ. Since S was arbitrary in U , this easily
implies that U is fixed pointwise by θ. This, however, contradicts Lemma 7.12.

Lemma 7.17. There are no fixed even-dimensional singular subspaces. In particular, θ does
not fix elements of types 2, 5 or 7.

Proof. There are no fixed points by Lemma 7.12. Suppose a subspace W of even dimension
d > 0 is fixed. Pick a point p0 ∈ W . Then pθ0 6= p0 and p0p

θ
0 is a fixed line, so d ≥ 2. Pick

p1 ∈ W \ p0p
θ
0. If d = 2, then p0p

θ
0 ∩ p1p

θ
1 is a fixed point, a contradiction. Hence d ≥ 4 and

S := 〈p0p
θ
0, p1, p

θ
1〉 is a fixed 3-space. Pick p2 ∈W \ S. If d = 4, then S ∩ p2p

θ
2 is a fixed point, a

contradiction. Hence d = 6. But then p3p
θ
3 ∩ 〈S, p2, p

θ
2〉 is a fixed point, for p3 ∈W \ 〈S, p2, p

θ
2〉,

the final contradiction.

Proposition 7.18. The set of fixed elements of θ, that is, the fixed lines, 3-spaces, 5-spaces
and symps, form a geometry F of type F4,1 related to a building F4(K,L), with L a quadratic
extension of K.

Proof. The opposition diagram ensures that there is a non-domestic symp ξ. Then by Theorem
6.1 of [34], θξ fixes at least two collinear points p, q. This implies that the lines ppθ and qqθ are
fixed. Now, since p ⊥ pθ ⊥ qθ ⊥ q ⊥ p, the pair {p, qθ} is symplectic and so there is a unique
symp ζ containing p, pθ, q and qθ. Since θ fixed ppθ and qqθ, also ζ is fixed by θ. Then, by
Lemma 7.13, θ acts point-domestically on ζ. Since by Lemma 7.12, θ does not admit any fixed
point, Theorem 8 of [25] implies the fixed point structure of θ consists of lines, 3-spaces and
5-spaces, which, declaring the lines as points, form a polar space C3,1(L,K), with L a (separable
or inseparable) quadratic extension of K. Every point of ζ lies on a fixed line.

Now consider a fixed line L. We claim that L is contained in a fixed symp. Indeed, if L ⊆ ζ,
then the claim is trivial. Otherwise, let p ∈ L be arbitrary. If p is far from ζ, then so is pθ and
the points p, pθ, p⊥ ∩ ζ and (pθ)⊥ ∩ ζ define a fixed symp containing L. If p and ζ are close,
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then so are pθ and ζ. If p⊥ ∩ ζ = (pθ)⊥ ∩ ζ, then the line L is contained in the unique 6-space
containing p⊥ ∩ ζ and hence intersects ζ in a fixed point, contradicting Lemma 7.12. Hence we
can select a point x ∈ (p⊥ ∩ ζ) \ (pθ)⊥. The symp through pθ and x contains p and xθ and is
hence fixed.

Dualizing the situation to ∆∗ = E7,1(K), we find, using Lemma 7.16, that θ induces in the
symp ξL corresponding to L a kangaroo fixing points, lines and planes (use Lemma 7.17 to see
that no other subspaces are fixed). Example 3.15 shows that this corresponds to a polar space
B3,1(K,L), for some quadratic extension L of K. (We use the same notation for L as before
since they will turn out to be the same in the next paragraph.)

We have shown, viewing the fixed symps in ∆ as points, that F is a thick full subgeometry of
type F4 of ∆∗ with irreducible rank 3 residues isomorphic to C3,1(L,K) and B3,1(K,L) (L still
depends on the given residue). Hence all irreducible spherical residues of rank 3 are buildings
and so F is quotient of a building of type F4. However, it is easily verified that F satisfies
the conditions of Proposition 9 of [38]. Hence F defines a building Γ of type F4, obviously
isomorphic to F4(K,L), for some quadratic extension L of K, when the fixed points in ∆∗ are
viewed as the type 1 elements of Γ.

7.3 An alternative characterization of collineations with opposition diagram E7;3

We now show that the necessary conditions for a collineation to have opposition diagram E7;3

proved in Lemmas 7.12 and 7.15 are also sufficient. This can be considered an analogue of the
kangaroo collineation classification in buildings of type E6, or various alternative characteriza-
tions of domestic dualities and trialities in buildings of type An, D4 and E6.

So, henceforth, let θ be a collineation of E7,7(K) mapping no point to a symplectic one, fixing
no point (these two requirements are equivalent to saying that θ is a {0, 2}-kangaroo), and
mapping at least one point to a collinear one (clearly, due to the classification in [36] there exist
anisotropic collineations, that is, collineations mapping every point to an opposite).

We begin with the analogue of Lemma 7.8, but the arguments are inspired by the proof of
Proposition 3.1 of [25].

Proposition 7.19. For every point p in ∆ with pθ ⊥ p, the line 〈p, pθ〉 is fixed under θ.

Proof. Suppose for a contradiction that there exists a point p with pθ ⊥ p and 〈p, pθ〉 not fixed
under θ. Pick x ∈ 〈p, pθ〉 \ {p, pθ}. Then xθ ∈ 〈pθ, pθ2〉 \ {pθ, pθ2}. Because pθ is collinear with
both x and xθ, x is collinear to xθ and thus to all points of 〈pθ, pθ2〉. This implies that p, pθ, pθ

2

are contained in a plane π of ∆, which they span. Let α be a plane containing 〈p, pθ〉 and
so that α and π are not contained in a common singular subspace of ∆. Pick q ∈ α \ π and
r ∈ 〈q, pθ〉 \ {q, pθ} and note that q is not collinear to pθ

2
. Since r ⊥ p (both are contained in α),

we have rθ ⊥ pθ and so r ⊥ rθ. So rθ is collinear to all points of 〈r, pθ〉. Likewise, qθ is collinear
to all points of 〈q, pθ〉 = 〈r, pθ〉. Hence all points of 〈qθ, rθ〉 (in particular, pθ

2
) are collinear to

all points of 〈q, pθ〉 (in particular, q). This contradiction concludes the proof.

Since at least one point is mapped to a collinear point, there is at least one fixed line.

Lemma 7.20. The collineation θ fixes no singular spaces of even dimension in ∆.

Proof. If a singular space U of ∆ is fixed by θ, then every point of this space is mapped to a
collinear point. As there are no fixed points, we can, in view of Proposition 7.19, copy the proof
of Lemma 7.17.
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Lemma 7.21. There are 3-spaces in ∆ that are fixed by θ. Every maximal 5-space through a
fixed 3-space is fixed.

Proof. Let L be a fixed line and p a point that is collinear to all points on L. Then pθ is also
collinear to all points on L and so p has to be collinear to pθ, as they are not opposite. Thus
M := 〈p, pθ〉 is a fixed line, that can not intersect L because there are no fixed points. Obviously
M and L span a fixed singular space of dimension 3.

Let S be a fixed 3-space and D an arbitrary 4-space through S, p a point in D \ S. The point
p is collinear to the fixed 3-space S, thus p ⊥ pθ and pθ ⊥ S. Thus S, p and pθ span a 5-space
U that has to be fixed because S and 〈p, pθ〉 are fixed. If U would lie in a 6-space W , then
W ∩W θ = U , because a 6-space can not be fixed by Lemma 7.20. But considering Res∆(x) for a
point x ∈ U , this contradicts Fact 2.1(vi). We conclude that U is a maximal singular subspace.

There is exactly one maximal 5-space through each 4-space in ∆, so, by the arbitrariness of D,
we have proved that all maximal 5-spaces through a fixed 3-space are fixed.

Lemma 7.22. Every symp through a fixed 3-space, or through a fixed 5-space in ∆ is fixed.

Proof. Since every fixed 5-space contains a fixed 3-space spanned by two fixed lines obtained
by applying Proposition 7.19 to two suitable points of the 5-space, it suffices to show that each
symp through a fixed 3-space U is fixed itself. But this follows from Lemma 7.21 as each symp
through U is determined by any two maximal 5-spaces sharing U .

In view of Remark 7.6, we have shown:

Theorem 7.1. Let θ be an automorphism of the building E7(K). Then the following are equiv-
alent.

(1) θ does not fix any chamber and has opposition diagram E7;3.
(2) The fixed point structure of θ induced in E7,1(K) is a full subgeometry isomorphic to

F4,1(K,L), for some quadratic extension L of K, isometrically embedded.
(3) The collineation induced in E7,7(K) does not map any point to a point at even distance

and maps at least one point to a collinear one.

8 Domestic collineations of E7(K) fixing a chamber

In this section we give an explicit classification of all domestic automorphisms of a large E7

building fixing a chamber. The simpler cases of opposition diagrams E7;1 and E7;2 are dealt with
in [24], and so here we focus on the remaining more involved cases E7;3 and E7;4. There is a
growing complexity of examples as one moves through the diagrams E7;k with k = 0, 1, 2, 3, 4
(for both chamber-fixing, and non-chamber fixing examples).

8.1 Preliminary results

We begin with the following general setup. Let G0 be an adjoint Chevalley group of arbitrary
irreducible (spherical) type over a commutative field K. We adopt the notation and conventions
outlined in [24, Section 1.1], and so in particular Φ is the root system of G0, with simple roots
α1, . . . , αn and (W,S) is the associated Coxeter system. The fundamental coweights of Φ are

50



denoted ω1, . . . , ωn, and the coweight lattice of Φ is P = Zω1 + · · ·+ Zωn. The highest root of
Φ is ϕ. The polar type of Φ is the subset ℘ ⊆ {1, 2, . . . , n} given by

℘ = {1 ≤ i ≤ n | 〈αi, ϕ〉 6= 0}.

Let G = GΦ(K) be the subgroup of Aut(G0) generated by the inner automorphisms of G0 and
the diagonal automorphisms, as in [17, 32], and let xα(a), sα(t), and hλ(t) be the elements of G
described in [24, Section 1.1] (with α ∈ Φ, λ ∈ P , a ∈ K, and t ∈ K×). In particular, we have
the relation

sα(t) = xα(t)x−α(−t−1)xα(t) (8.1)

for α ∈ Φ and t ∈ K×.

For each α ∈ Φ let Uα be the subgroup of G generated by the elements xα(a) with a ∈ K. For
A ⊆ Φ let UA be the subgroup generated by the groups Uα, α ∈ A, and let U+ = UΦ+ . Let H
be the subgroup generated by the diagonal elements hλ(t) with λ ∈ P and t ∈ K×. Let B be
the subgroup of G generated by U+ and H.

Let ∆ = ∆Φ(K) be the standard split spherical building associated to G. Thus ∆ has chamber
set G/B and Weyl distance function δ(gB, hB) = w if and only if g−1h ∈ BwB.

Suppose that X is a polar closed type preserving admissible Dynkin diagram (see [24, §3] or [25,
§1.4] for the definition), let J be the set of encircled nodes, and let ϕ1, . . . , ϕN be the associated
highest roots. The relevant examples for this paper are X = E7;3 (in which case J = {1, 6, 7} and
ϕ1 = ϕE7 , ϕ2 = ϕD6 , and ϕ3 = α7) and X = E7;4 (in which case J = {1, 3, 4, 6} and ϕ1 = ϕE7 ,
ϕ2 = ϕD6 , ϕ3 = ϕD4 , and ϕ4 = α3). Define

ΨJ = {β ∈ Φ | 〈α, β〉 = 0 for all α ∈ ΦS\J}, (8.2)

and let Ψ+
J = ΨJ ∩ Φ+. Note that ϕ1, . . . , ϕN ∈ ΨJ .

The following theorem severely restricts the form of automorphisms of ∆ with an opposition
diagram X. While we expect that a version of the theorem holds for non-simply laced buildings
(and indeed for non-split buildings), we shall only require the theorem in the simply laced case,
and hence we restrict to this simpler setting (in particular step 4 of the proof is simplified in
this setting).

Theorem 8.1. Let ∆ = ∆Φ(K) be the split spherical simply laced building associated to G =
GΦ(K) with |K| > 2. Let θ be a type preserving automorphism of ∆, and suppose that θ has polar
closed opposition diagram X with highest root sequence ϕ1, . . . , ϕN and encircled nodes J ⊆ S.
Then θ is linear (that is, θ does not involve a field automorphism), and θ is conjugate in G to
an element of the form

x−ϕ1(1) · · ·x−ϕN (1)uh

where u ∈ U+
ΨJ

and h ∈ HJ , where HJ is the subgroup of H generated by the elements hωj (t)
with j ∈ J and t ∈ K×

Proof. By [24, Lemma 3.5] we have sϕ1 · · · sϕN = wS\Jw0. Since θ is capped (as |K| > 2)
it follows from [25, Theorem 5] that there exists a chamber of ∆ mapped to Weyl distance
sϕ1 · · · sϕN by θ. Since G acts strongly transitively on ∆ we may (up to conjugation) assume
that the chamber B is mapped to Weyl distance sϕ1 · · · sϕN , and hence θB ∈ Bsϕ1 · · · sϕNB.
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Moreover, since the stabiliser of B is transitive on each w-sphere {gB | gB ⊆ BwB} we may
assume, up to conjugation, that

θB = xϕ1(1) · · ·xϕN (1)sϕ1 · · · sϕNB.

Let M = `(sϕ1 · · · sϕN ). By [25, Theorem 5] we have `(δ(gB, θgB)) ≤ M with equality if and
only if δ(gB, θgB) = sϕ1 · · · sϕN .

By (8.1) and the fact that ϕ1, . . . , ϕN are mutually perpendicular we have

xϕ1(1) · · ·xϕN (1)sϕ1 · · · sϕNB = x−ϕ1(1) · · ·x−ϕN (1)B,

and hence

θ = x−ϕ1(1) · · ·x−ϕN (1)uhf for some u ∈ U+, h ∈ H, and f ∈ Aut(K).

If g ∈ G then the chamber gB is mapped to Weyl distance w, where g−1θg ∈ BwBf . The
strategy to restrict u, h, f is as follows: If u, h, f do not satisfy certain conditions, then we
will exhibit elements g ∈ G with g−1θg ∈ BwBf and `(w) > M , yielding a contradiction as
δ(gB, θgB) = w. It is helpful to note that if v ∈WS\J then `(sϕ1 · · · sϕN v) = `(sϕ1 · · · sϕN )+`(v).

Claim 1: We have u ∈ UΦ+\ΦS\J . Write u = u1u2 with u1 ∈ UΦ+
S\J

and u2 ∈ UΦ+\ΦS\J . Then

w−1
S\JθwS\J = x−ϕ1(±1) · · ·x−ϕN (±1)u−1 u

′
2h
′f,

where u−1 = w−1
S\Ju1wS\J ∈ UΦ−

S\J
, u′2 ∈ UΦ+\ΦS\J , and h′ ∈ H. Since u−1 ∈ BWS\JB we have

u−1 ∈ BvB for some v ∈WS\J . But then

w−1
S\JθwS\J ∈ Bsϕ1 · · · sϕNB ·BvBf = Bsϕ1 · · · sϕN vBf.

This forces v = e, and so u−1 ∈ B ∩ UΦ−
S\J

, giving u−1 = 1, hence u1 = 1.

Claim 2: We have h ∈ HJ . Write h =
∏
j∈S hωj (tj) with tj ∈ K×. Suppose that j ∈ S\J . Then

x−αj (−1)θx−αj (1) = x−ϕ1(1) · · ·x−ϕN (1)x−αj (−1)ux−αj (t
−1
j )hf

= x−ϕ1(1) · · ·x−ϕN (1)x−αj (t
−1
j − 1)u′hf,

with u′ ∈ U+ (here we have used the fact, from Claim 1, that xαj (a) does not appear as a factor
in u). Thus, if tj 6= 1, relation (8.1) gives

x−αj (−1)θx−αj (1) ∈ Bsϕ1 · · · sϕNB ·BsjBf = Bsϕ1 · · · sϕN sjBf,

a contradiction (as j ∈ S\J). Hence tj = 1 for all j ∈ S\J and so h ∈ HJ .

Claim 3: We have f = id. The arguments of Claims 1 and 2 prove the following: If θ′ =
x−ϕ1(a1) · · ·x−ϕN (aN )uhf has opposition diagram X, where a1, . . . , aN 6= 0, u ∈ U+, h ∈ H,
and f ∈ Aut(K), then u ∈ UΦ+\ΦS\J and h ∈ HJ . Let j ∈ S\J and t ∈ K×, and consider the
element

θ′ = hωj (t)
−1θhωj (t) = x−ϕ1(t〈ϕ1,ωj〉) · · ·x−ϕN (t〈ϕN ,ωj〉)u′hhωj (t

f t−1)f,

where u′ ∈ UΦ+\ΦS\J and h ∈ HJ (by Claims 1 and 2). But θ′ has opposition diagram X (as it

is a conjugate of θ) and hence by Claim 2 we have tf t−1 = 1. Since t ∈ K× was arbitrary we
have f = id.
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Claim 4: We have u ∈ U+
ΨJ

. Let Q+
S\J be the Z≥0-span of Φ+

S\J , and define

ΩJ = {β ∈ Φ+ | (β −Q+
S\J) ∩ Φ = {β}}.

Note that {ϕ1, . . . , ϕN} ⊆ Ψ+
J ⊆ ΩJ .

So far we have shown that, up to conjugation, θ = x−ϕ1(1) · · ·x−ϕN (1)uh with u ∈ U+
Φ\ΦS\J

and

h ∈ HJ . Write u = u1u2 with u1 ∈ U+
ΨJ

and u2 ∈ U+
Φ\(ΦS\J∪ΨJ ). We must show that u2 = 1.

Suppose, for a contradiction, that u2 6= 1.

Note that if α ∈ ΦS\J then the root subgroup Uα commutes with u1 and x−ϕ1(1) · · ·x−ϕN (1)
(by definition of ΨJ), and also it commutes with h (as h ∈ HJ). Thus by conjugating θ by an
element of U−ΦS\J

we may assume that u2 = · · ·xβ(a) with the product in decreasing root height,

with β ∈ ΩJ and a 6= 0, and there is j ∈ S\J with β + αj ∈ Φ (see the proof of Claim 4 in [24,
Theorem 2.4] for a similar argument). Now conjugate θ by x−β−αj

(z), with z ∈ K yet to be
chosen. We have, for some λ 6= 0,

x−β−αj
(−z)u2hx−β−αj

(z) = x−β−αj
(−z)u2x−β−αj

(λz)h.

Writing u2 = u′2xβ+αj
(b)xβ(a) we have

x−β−αj
(−z)u2hx−β−αj

(z) = x−β−αj
(−z)u′2xβ+αj

(b)xβ(a)x−β−αj
(λz)

= x−β−αj
(−z)u′2xβ+αj

(b)x−β−αj
(λz)x−αj (±λaz)xβ(a).

Recall the identity, for all α ∈ Φ,

xα(a)x−α(b) = x−α(b(1 + ab)−1)xα(a(1 + ab))hα∨((1 + ab)−1)

whenever 1 + ab 6= 0 (this relation is easiest verified using matrices in SL2(K)). Thus, choosing
z ∈ K such that 1 + λbz 6= 0 (here we use |K| > 2) we have

x−β−αj
(−z)u2hx−β−αj

(z) ∈ x−β−αj
(−z)u′2x−β−αj

(λz(1 + λbz)−1)xβ+αj
(b(1 + λbz))x−αj (±λaz)B

⊆ x−β−αj
(−z)u′2x−β−αj

(λz(1 + λbz)−1)x−αj (±λaz)B
⊆ x−β−αj

(−z + λz(1 + λbz)−1)u′′2x−αj (±λaz)B,

where u′′2 ∈ U+ (by the assumption that β is of minimal height in the expression for u2). Thus,
writing µ = λz(1 + λbz)−1 we have

x−β−αj
(−z)u2hx−β−αj

(z) ∈ x−β−αj
(−z + µ)BsjB.

Write θ′ = x−β−αj
(−z)θx−β−αj

(z). It follows that

θ′ ∈ x−β−αj
(−z)x−ϕ1(1) · · ·x−ϕN (1)u1x−β−αj

(µ)BsjB.

Since the highest roots pairwise commute, and since ϕ1, . . . , ϕN ∈ ΨJ , it follows that

θ′ ∈ U−β−αj
U+

ΨJ
sϕ1 · · · sϕNUϕ1 · · ·UϕNU−β−αj

BsjB.

We claim that

U−β−αj
U+

ΨJ
sϕ1 · · · sϕNUϕ1 · · ·UϕNU−β−αj

⊆ BwS\Jw0B. (8.3)
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Before proving (8.3), note that the theorem follows from this equation, because it implies that

θ′ ∈ BwS\Jw0B ·BsjB = BwS\Jw0sjB,

and since `(wS\Jw0sj) = `(wS\Jw0) + 1 we arrive at the desired contradiction.

We now prove (8.3). First note that sϕ1 · · · sϕN = wS\Jw0 = w0wS\J (the fact that these longest
elements commute follows from the fact that J is stable under opposition). Moreover, note the
following:

(1) If β ∈ ΩJ then wS\Jw0β < 0 (this is because β ∈ Φ+\ΦS\J = Φ(wS\Jw0)).
(2) If j ∈ S\J then wS\Jw0αj = αj (to see this, note that by the list of diagrams in [22], if

X = (Γ, J, σ) is the opposition diagram of a type preserving automorphism, then w0 and
wS\J induce the same permutation of S\J).

(3) Suppose γ ∈ Ψ+
J is such that γ−β−αj is a root (with β ∈ ΩJ and j ∈ S\J such that β+αj

is a root). Then either γ−β−αj is positive, or wS\Jw0(γ−β−αj) is positive. For if γ−β−αj
is negative, then γ−β is a nonpositive linear combination of roots. Moreover, γ−β /∈ QS\J
(as β /∈ ΦS\J) and so 〈γ−β, ωk〉 < 0 for some k ∈ J . Let k′ ∈ J be given by w0ωk = −ωk′ .
Then 〈wS\Jw0(γ − β), ωk′〉 = 〈γ − β,w0wS\Jωk′〉 = 〈γ − β,w0ωk′〉 = −〈γ − β, ωk〉 > 0.
Then, by (2), wS\Jw0(γ − β − αj) = wS\Jw0(γ − β) − αj has positive coefficient of αk′ ,
and hence is positive.

It follows that

Uϕ1 · · ·UϕNU−β−αj
= U−β−αj

Y Uϕ1 · · ·UϕNX ⊆ U−β−αj
Y B,

with Y a product of negative roots of the form ϕi − β − αj for some i, and X a product of
positive roots of the form ϕi − β − αj for some i.

Similarly, we have
U−β−αj

U+
ΨJ

= X ′U+
ΨJ
Y ′U−β−αj

⊆ BY ′U−β−αj

where X ′ (respectively Y ′) is a product of positive (respectively negative) roots of the form
γ − β − αj with γ ∈ Ψ+

J . Thus

U−β−αj
U+

ΨJ
sϕ1 · · · sϕNUϕ1 · · ·UϕNU−β−αj

⊆ BY ′U−β−αj
wS\Jw0U−β−αj

Y B

The strategy is now as follows. First the terms Y ′U−β−αj
are sent to the right, where they

will ultimately be absorbed into B. Then the terms U−β−αj
Y , along with any negative roots

generated by sending Y ′U−β−αj
to the right, are sent to the left, where they are absorbed into B.

The details are as follows. The terms in Y ′U−β−αj
are of the form γ−β−αj with γ ∈ {0}∪Ψ+

J

and γ − β − αj ∈ −Φ+. We have

Uγ−β−αj
wS\Jw0U−β−αj

Y B = wS\Jw0UwS\Jw0(γ−β)−αj
U−β−αj

Y B

Note that the root wS\Jw0(γ − β)− αj is necessarily positive (by the observations above), and
it is not equal to the negative of any root appearing in U−β−αj

Y . To verify this, if wS\Jw0(γ −
β)− αj = −(γ′ − β − αj) for some γ′ ∈ {0} ∪Ψ+

J then for all k ∈ S\J it follows that

〈γ − β, αk〉 − 〈αj , αk〉 = −〈γ′ − β, αk〉+ 〈αj , αk〉,

and hence (since 〈γ, αk〉 = 〈γ′, αk〉 = 0) we have 2〈β + αj , αk〉 = 0. Thus β + αj ∈ ΨJ , a
contradiction (as sjβ = β + αj).
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Therefore commutator relations can be used to move the positive root subgroup UwS\Jw0(γ−β)−αj

to the right, past U−β−αj
Y , where it is absorbed into B. It follows that

BY ′U−β−αj
wS\Jw0U−β−αj

Y B ⊆ BwS\Jw0U−β−αj
Y Y ′′B,

where Y ′′ consists of any negative roots resulting from the commutator relations (any positive
roots are absorbed into B). One now moves the terms U−β−αj

Y Y ′′ across to the left, past
wS\Jw0, where they become positive roots and are absorbed into B, and (8.3), and hence the
theorem, follows.

The following elementary lemma is useful for studying domestic automorphisms that fix a cham-
ber.

Lemma 8.2. Let ∆ be a building and let R be a residue. Suppose that θ is an automorphism
of ∆ stabilising R. Then θ fixes a chamber of ∆ if and only if θ|R fixes a chamber of R.

Proof. Suppose a chamber C of ∆ is fixed. Since R is stabilised, the projection projR(C) is
fixed. The converse is clear (as each chamber of R is also a chamber of ∆).

8.2 The E7 case

We now specialise to the case of E7. We will use standard Bourbaki [4] root system conventions,
and when explicit calculations are required we adopt the sign conventions for root subgroups in
the Chevalley group E7(K) used in MAGMA [8, 3]. The list of positive roots of E7 are listed in
[24, Appendix] for reference.

The following lemma records basic facts about the system ΨJ from (8.2) for the diagrams E7;3

and E7;4. For brevity, we sometimes write i in place of si (for example, s1s2s7s4 = 1274).

Lemma 8.3. We have the following.

(1) Let X = E7;3. Then ΨJ is of type A1 × A1 × A1 with simple roots γ1 = ϕE7, γ2 = ϕD6,
γ3 = α7. The element u = 134265423143765423143546 has the property u−1γ1 = α7,
u−1γ2 = α5, and u−1γ3 = α2, and thus conjugates the system ΨJ to the A1 × A1 × A1

system generated by {α7, α5, α2}.
(2) Let X = E7;4. Then ΨJ is of type D4 with simple system γ1 = ϕD6, γ2 = α1, γ3 = ϕD4,

and γ4 = α3. The element u = 431543654231435465765431 satisfies u−1γ1 = α2, u−1γ2 =
α4, u−1γ3 = α3, and u−1γ4 = α5, and thus conjugates ΨJ to the standard D4 parabolic
subsystem.

Proof. This is verified by direct calculation.

8.2.1 The E7;3 diagram

We now consider the E7;3 diagram.

Theorem 8.4. Let θ be be an automorphism of the E7(K) building with Diag(θ) = E7;3, where
|K| > 2. Then θ is conjugate to an element of the form

xϕ1(t−1
1 t−1

2 a)xϕ2(t−1
2 a)xϕ3(a)s−1

ϕ1
s−1
ϕ2
s−1
ϕ3
hω1(t1)hω6(t2)hω7(t3) (8.4)

with a ∈ K and t1, t2, t3 ∈ K×, and where ϕ1 = ϕE7, ϕ2 = ϕD6, and ϕ3 = α7. Moreover,
θ fixes a chamber (and hence is conjugate to a member of B) if and only if the polynomial
p(Y ) = Y 2 + aY + t−1

3 has a root y ∈ K. If y ∈ K is a root of p(Y ) then:
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(1) If t3y
2 = 1 then θ is conjugate to the unipotent element xϕ1(t1t2t3y)xϕ2(t2t3y)xϕ3(t3y).

(2) If t3y
2 6= 1 then θ is conjugate to the homology hω7(t−1

3 y−2).

Proof. Let J = {1, 6, 7}. We have Ψ+
J = {ϕ1, ϕ2, ϕ3} (a system of type A1 ×A1 ×A1), and thus

by Theorem 8.1 we may assume, up to conjugation, that

θ = x−ϕ1(1)x−ϕ2(1)x−ϕ3(1)uh

where u = xϕ1(a1)xϕ2(a2)xϕ3(a3) and h = hω1(t1)hω6(t2)hω7(t3), with a1, a2, a3 ∈ K and
t1, t2, t3 ∈ K×. Using (8.1), and the fact that s−1

ϕi
xϕj (1)sϕi = xϕj (1) for i 6= j, it follows

that

θ1 = xϕ1(1)xϕ2(1)xϕ3(1)s−1
ϕ1
s−1
ϕ2
s−1
ϕ3
xϕ1(a′1)xϕ2(a′2)xϕ3(a′3)hω1(t1)hω6(t2)hω7(t3)

= xϕ1(1)xϕ2(1)xϕ3(1)s−1
ϕ1
s−1
ϕ2
s−1
ϕ3
hω1(t1)hω6(t2)hω7(t3)xϕ1(t−2

1 t−2
2 t−1

3 a′1)xϕ2(t−2
2 t−1

3 a′2)xϕ3(t−1
3 a′3),

where a′i = ai + 1 for i = 1, 2, 3. If follows that θ is conjugate to

θ′ = xϕ1(b1)xϕ2(b2)xϕ3(b3)s−1
ϕ1
s−1
ϕ2
s−1
ϕ3
hω1(t1)hω6(t2)hω7(t3),

where b1 = 1 + t−2
1 t−2

2 t−1
3 a′1, b2 = 1 + t−2

2 t−1
3 a′2, and b3 = 1 + t−1

3 a′3.

Let α = (1010000) and β = (1234321). A direct calculation shows that if t1b1 − b2 6= 0 then

x−β(−1)x−α(−1)θ′x−α(1)x−β(1) ∈ Bsϕ1sϕ2sϕ3s3B,

contradicting the fact that θ has opposition diagram E7;3. Similarly, writing γ = (0000110) and
δ = (0112211) we see that if t2b2−b3 6= 0 then x−δ(−1)x−γ(−1)θ′x−γ(1)x−δ(1) ∈ Bsϕ1sϕ2sϕ3s5B,
again a contradiction. Writing a = b3 it follows that b2 = t−1

2 a and b1 = t−1
1 t−1

2 a, and (8.4) is
proved.

We claim that if there exists y ∈ K with y2 + ay + t−1
3 = 0 then θ is conjugate to

θ′′ = xϕ1(t1t2t3y)xϕ2(t2t3y)xϕ3(t3y)hω7(t−1
3 y−2). (8.5)

The equation y2 + ay + t−1
3 = 0 gives a = −y − t−1

3 y−1. A direct calculation shows that
the chamber g1B is fixed by θ′, where g1 = xϕ1(−t−1

1 t−1
2 y)xϕ2(−t−1

2 y)xϕ3(−y)sϕ1sϕ2sϕ3 . We
compute g−1

1 θ′g1 = xϕ1(t1t2t3y)xϕ2(t2t3y)xϕ3(t3y)hω7(t−1
3 y−2) as required.

Next we claim that if y2 + ay + t−1
3 = 0 then statements (1) and (2) in the statement of the

theorem hold. Indeed statement (1) is immediate from (8.5). For (2), note that if t3y
2 6= 1 then

a direct calculation shows that θ′′ fixes the chamber g2B, where

g2 = xϕ1(t1t2t
2
3y

3(t3y
2 − 1)−1)xϕ2(t2t

2
3y

3(t3y
2 − 1)−1)xϕ3(t23y

3(t3y
2 − 1)−1)sϕ1sϕ2sϕ3 .

Direct calculation gives g−1
2 θ′′g2 = hω7(t−1

3 y−2) as required.

Finally, we claim that if p(Y ) = Y 2 + aY + t−1
3 is irreducible over K then θ does not fix any

chamber. With u as in Lemma 8.3, and with θ′ as above, we have

θ′′′ = u−1θ′u = xα7(t−1
1 t−1

2 a)xα5(t−1
2 a)xα2(a)s−1

7 s−1
5 s−1

2 hα7(t1)hα5+α7(t2)h 1
2

(α2+α5+α7)(t3)

(note that 1
2(α2 + α5 + α7) ∈ P ). In particular, θ′′′ stabilises the residue R of type {2, 5, 7}

containing the base chamber B. Thus by Lemma 8.2 θ′′′ fixes a chamber of ∆ if and only if it
fixes a chamber of R, and a simple calculation shows that this occurs if and only if p(Y ) splits
over K.
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We now prove Theorem 2, which we restate for convenience.

Theorem 8.5. An automorphism θ of the building E7(K) with |K| > 2 has opposition diagram
E7;3 and fixes a chamber if and only if θ is conjugate to one of the following elements

(1) xϕ1(1)xϕ2(1)xϕ3(1);
(2) hω7(t) with t 6= 0, 1.

Proof. If θ fixes a chamber and has opposition diagram E7;3 then, by Theorem 8.4 θ is conjugate
to either an element of the form θ1 = xϕ1(a)xϕ2(b)xϕ3(c) with a, b, c 6= 0, or θ2 = hω7(t) with
t 6= 0, 1. The element θ1 is in turn conjugate (by an element of H) to xϕ1(1)xϕ2(1)xϕ3(1).

Conversely, by [24, Theorem 3.1 and Lemma 4.5] the elements of the form θ1 and θ2 are domestic
with opposition diagram E7;3.

8.2.2 The E7;4 diagram

We now turn our attention to the E7;4 diagram. This case is considerably more involved than
the E7;3 case. Let ΦD4 be the D4 subsystem of the E7 root system Φ. To fix conventions, we
identify the simple roots α2, α3, α4, α5 of the E7 root system with simple roots α′1, α

′
3, α
′
2, α
′
4,

respectively, of the D4 system. For example, the root α = (0101000) of E7 is identified with the
root (1100) of D4. Thus, for example, we shall write x1100(a) and x0101000(a) interchangeably.
Moreover, we adopt the standard realisation of the simple roots of D4 in R4, with α′1 = e1 − e2,
α′2 = e2 − e3, α′3 = e3 − e4, and α′4 = e3 + e4.

Let GD4 be the subgroup of the E7 Chevalley group G generated by the root subgroups Uα with
α in the D4 subsystem. Let wD4 be the longest element of the D4 Coxeter group. In the theorem
below, we shall see that all automorphisms of the E7 building with opposition diagram E7;4 can
be conjugated into GD4 , allowing us to make explicit matrix calculations in the GD4 group by
realising it as a subgroup of GL8(K). We shall use the sign conventions in D4 that are inherited
from the sign choices in MAGMA for the E7 system (see the Groups of Lie Type package [8]).
With these conventions, explicit 8 × 8 matrices for the standard representation of the GD4 are
as follows:

xe1−e2(a) = I + aE21 − aE87 xe1+e2(a) = I + aE71 − aE82

xe2−e3(a) = I + aE32 − aE76 xe2+e3(a) = I + aE62 − aE73

xe3−e4(a) = I + aE43 − aE65 xe3+e4(a) = I + aE53 − aE64

xe1−e3(a) = I − aE31 + aE86 xe1+e3(a) = I − aE61 + aE83

xe1−e4(a) = I − aE41 + aE85 xe1+e4(a) = I + aE51 − aE84

xe2−e4(a) = I + aE42 − aE75 xe2+e4(a) = I − aE52 + aE74.

The group GD4 acts on V = R8 on the right, and this action preserves the bilinear form

(X,Y ) = X1Y8 +X2Y7 +X3Y6 +X4Y5 +X5Y4 +X6Y3 +X7Y2 +X8Y1.

Writing f(X) = X1X8 +X2X7 +X3X6 +X4X5, a vector X is isotropic if f(X) = 0. A subspace
V ′ is singular if (X,Y ) = 0 for all X,Y ∈ V ′. Then the associated D4 building is realised as the
oriflamme complex in the usual way.
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Theorem 8.6. Let θ be be an automorphism of the E7(K) building with Diag(θ) = E7;4, where
|K| > 2. Then θ is conjugate to an element of GD4 of the form θ = uhwD4 , where u, h ∈ GD4

are of the form

u = x1000(t2t3t4a)x1100(−t1t2t3t4b)x1101(t1t2t3t4c)x1111(−t1t22t23t4b)x1211(t1t
2
2t

2
3t4a)x0010(t2t3a)

x0110(−t1t2t3b)x0111(t1t2t3c)x0001(t2a)x1110(−t1t2t23t4c)x0101(t1t2b)x0100(t1c)

h = h1000(t1t
2
2t

3
3t

2
4)h0100(t21t

3
2t

4
3t

2
4)h0010(t1t

2
2t

3
3t4)h0001(t1t

2
2t

2
3t4)

with a, b, c ∈ K and t1, t2, t3, t4 ∈ K×. Moreover, if the automorphism θ fixes a chamber of E7(K)
then the polynomial

p(Y ) = Y 2 − (t2a
2 + t1t2b

2 + t1c
2 − t1t2abc− 2)Y + 1

splits over K.

Proof. By Theorem 8.1, and following the initial paragraph of the proof of Theorem 8.4, if θ has
opposition diagram E7;4 then θ is conjugate to an element of the form

θ′ = u′s−1
ϕ1
s−1
ϕ2
s−1
ϕ3
s−1
ϕ4
hω1(t1)hω3(t2)hω4(t3)hω6(t4),

where u′ ∈ ΨJ (with J = {1, 3, 4, 6}, and ϕ1 = ϕE7 , ϕ2 = ϕD6 , ϕ3 = ϕD4 , and ϕ4 = α3).

We will now make explicit calculations to further restrict u′. Write

u′ = x0112221(a1)x01112221(a2)x1122221(a3)x1234321(a4)x2234321(a5)x0112100(a6)x1112100(a7)

× x1122100(a8)x0010000(a9)x1224321(a10)x1010000(a11)x1000000(a12)

(the roots appearing here are the twelve roots of ΨJ). We consider the element v ∈W given by

Bx−β(−1)x−α(−1)θ′x−α(1)x−β(1)B = BvB

for various choices of α and β. Since v = δ(x−α(1)x−β(1)B, θ′x−α(1)x−β(1)B), if `(v) >
`(wS\Jw0) = 60 then we have a contradiction with the fact that θ has opposition diagram E7;4.
By computation (using MAGMA [8]), if α = (0101000) and β = (0111100) and a9 6= t3a6 then
v = s5s7w0, a contradiction. Thus a9 = t3a6. Similarly, taking α = (0101000) and β = (1111100)
forces a11 = t3a7 (otherwise again v = s5s7w0). Taking α = (0101000) and β = (1223321) gives
a10 = t−1

3 a3 (otherwise again v = s5s7w0). Taking α = (0000110) and β = (0112211) forces
a6 = t4a1 (otherwise v = s2s7w0). Taking α = (0000110) and β = (1112211) forces a7 = t4a2

(otherwise v = s2s7w0). Taking α = (0000110) and β = (1122211) forces a8 = t4a3 (other-
wise v = s2s7w0). Taking α = (0111000) and β = (1111100) forces a12 = t2t3t4a3 (otherwise
v = s5s7w0). Taking α = (1111000) and β = (1223321) forces a5 = t−1

1 t−1
2 t−1

3 a1 (otherwise
v = s5s7w0). Finally, taking α = (0111000) and β = (1223321) forces a4 = −t−1

2 t−1
3 a2 (other-

wise v = s5s7w0).

Conjugating by the element u from Lemma 8.3 it follows that θ is conjugate to an element of
the form θ′′ = u′′wD4h, where h ∈ HD4 is as in the statement of the theorem, and u′′ ∈ U+

D4
is of

the form

u′′ = x1000(a1)x1100(−a2)x1101(a3)x1111(−t−1
2 t−1

3 a2)x1211(t−1
1 t−1

2 t−1
3 a1)x0010(t4a1)

× x0110(−t4a2)x0111(t4a3)x0001(t3t4a1)x1110(−t−1
3 a3)x0101(t3t4a2)x0100(t2t3t4a3).

Finally, replacing θ′′ by h−1θ′′h, and setting a = t3t4a1, b = t3t4a2, and c = t2t3t4a3 we see that
θ is conjugate to uhwD4 , with u and h as in the statement of the theorem.
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Now, if θ = uhwD4 fixes a chamber of E7 then by Lemma 8.2 it also fixes a chamber of the D4

residue. Thus θ can be conjugated (in GD4) into the standard Borel subgroup of GD4 consisting
of lower triangular matrices (lower triangular due to the right action). Thus all eigenvalues of
the 8 × 8 matrix representing θ lie in K. Direct calculation, using the matrices listed above,
gives

det(θ − λI) = (λ− 1)4p(λ)2,

where p(λ) = λ2 − (t2a
2 + t1t2b

2 + t1c
2 − t1t2abc− 2)λ+ 1, hence the result.

Remark 8.7. In fact, θ fixes a chamber of E7(K) if and only if the polynomial p(Y ) splits
over K. The converse will be proved in the theorem below, where we will show that if z ∈ K
satisfies p(z) = 0 then θ can be conjugated into the standard Borel of GD4 , and hence fixes a
chamber of the D4 residue (and hence the E7 building).

The following lemmas will be used.

Lemma 8.8. Let A = {α ∈ Φ+
D4
| α ≥ α2} = Φ+

D4
\{α1, α3, α4} (a closed sets of roots). Suppose

that θ ∈ UA with θ /∈ UA\{α2}. Then θ is conjugate to an element of the form

θ′ = x1111(b0)x0100(b1)x1110(b2)x1101(b3)x0111(b4)x1211(b5).

If b0, b1, b2, b3, b4 6= 0 then θ′ is conjugate to

θ′′ = x1111(1)x0100(−b20b1b−1
2 b−1

3 b−1
4 )x1110(1)x1101(1)x0111(1).

Proof. Write θ =
∏
α∈A xα(aα) (with the product taken in any fixed order). Since θ /∈ UA\{α2}

we have a0100 6= 0. Conjugating θ by g = x1(±a1100/a0100)x3(±a0110/a0100)x4(±a0101/a0100) for
an appropriate choice of signs shows that θ ∼ θ′. If b0, b1, b2, b3, b4 6= 0 then conjugating θ′ by

hα∨2 (b0)hω1(b4)hω2(b−1
2 b−1

3 b−1
4 )hω3(b3)hω4(b2)x0100(±b5/b0)

for an appropriate sign shows that θ′ ∼ θ′′.

Lemma 8.9. Let β1, β2, β3, β4 ∈ Φ+
D4

be mutually perpendicular roots of the D4 root system. If
θ = xβ1(a1)xβ2(a2)xβ3(a3)xβ4(a4) with b1, b2, b3, b4 6= 0 then θ is conjugate to an element of the
form x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0.

Proof. The sets of 4 mutually perpendicular roots of Φ+
D4

areX1 = {(1000), (0010), (0001), (1211)},
X2 = {(1100), (0110), (0101), (1111)}, and X3 = {(0100), (1110), (0111), (1101)}. Then s2 con-
jugates X1 to X2, and s1 conjugates X2 to X3, and it follows that θ is conjugate to an element of
the form x0100(±a1)x1110(±a2)x1101(±a3)x0111(±a4). One can now conjugate by an appropriate
element of H.

We now prove Theorem 3, which we restate below.

Theorem 8.10. An automorphism θ of the building E7(K) with |K| > 2 has opposition diagram
E7;4 and fixes a chamber if and only if θ is conjugate to one of the following elements

(1) x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0;
(2) x1111(1)x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0;
(3) hϕ∨(c) with c 6= 0, 1;
(4) xϕ(1)hϕ∨(−1) (with char(K) 6= 2).
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Proof. Suppose that θ fixes a chamber and has opposition diagram E7;4. Then by Theorem 8.6
we may assume (up to conjugation) that θ = uhwD4 , where u, h ∈ GD4 are as in Theorem 8.6,
and moreover the polynomial p(Y ) = Y 2 − (t2a

2 + t1t2b
2 + t1c

2 − t1t2abc− 2)Y + 1 has a root
z ∈ K. Then z−1 ∈ K is also a root of p(Y ).

We shall now explicitly conjugate θ into the standard Borel (the subgroup of lower triangular
matrices in GD4). The working depends on various cases for z, z−1.

Case: z = 1. The equation p(1) = 0 gives the equation

t2a
2 + t1t2b

2 + t1c
2 − t1t2abc− 4 = 0, (8.6)

and we make frequent use of this relation in the calculations below for this case. Let (ρ, V )
be the standard 8-dimensional representation of D4. By a standard basis of V we shall mean a
basis {v1, v2, . . . , v8} of V with f(vi) = 0 for 1 ≤ i ≤ 8, and (vi, v8−i+1) = 1 for 1 ≤ i ≤ 4, and
(vi, vj) = 0 for all other pairs i, j.

Subcase: q = t2b
2 − c2 6= 0 and r = t1c

2 − 4 6= 0. Let

v1 = (−t1t22t33t24c, t1t22t23t4b, −t22t23t4a, 2t2t3t4, 2t2t
2
3t4, t2t3t4a, t2t3t4(ac− b), c)

v2 = (−2t1t
2
2t

3
3t

2
4, t1t

2
2t

2
3t4a, t1t

2
2t

2
3t4(b− ac), t1t2t3t4c, t1t2t23t4c, t1t2t3t4b, t2t3t4a, 2)

v3 = (0, 0, 0, 0, t1t2t
2
3t4c, t1t2t3t4b, t2t3t4a, 2)

v4 = (t1t2t
2
3t4c, −t1t2t3b, t2t3a, −2, 0, 0, 0, 0).

Then f(vi) = 0 for 1 ≤ i ≤ 4 and (vi, vj) = 0 for 1 ≤ i, j ≤ 4. Moreover v1, v2, v3, v4 are linearly
independent (using the assumption q 6= 0). Recalling that ρ(θ) acts on (row) vectors on the
right, we note that v1 and v2 are 1-eigenvectors of θ. Thus the points Pi = 〈vi〉 for 1 ≤ i ≤ 4
generate a 3-space stabilised by θ (with P1 and P2 generating a line full of fixed points).

We now extend v1, v2, v3, v4 to a standard basis v1, . . . , v8. There is considerable choice in doing
this, however fixing the shape

v5 = (0, 0, ∗, ∗, 0, 0, ∗, ∗)
v6 = (0, 0, ∗, ∗, 0, 0, ∗, ∗)
v7 = (0, 0, 0, 0, 0, 0, ∗, ∗)
v8 = (0, 0, ∗, ∗, 0, 0, 0, 0)

makes the choice unique (here the condition r 6= 0 is required to ensure the normalisation
condition (vi, v8−i+1) = 1). Thus, assuming q, r 6= 0, the chamber

〈v1〉 ≤ 〈v1, v2〉 ≤
〈v1, v2, v3, v4〉
〈v1, v2, v3, v5〉

of the D4 oriflamme complex is fixed by θ. Writing g for the matrix with rows v1, . . . , v8, the
element gθg−1 is necessarily in B. Calculation shows that gθg−1 ∈ UA with A as in Lemma 8.8.
Carrying through the conjugations outlined in Lemma 8.8, it turns out that θ is conjugate to

x1111(1)x0100(−t1c2)x1110(1)x1101(1)x0111(1),

and element of the form (2).
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Subcase: q = 0. Suppose that q = 0. Then t2 = t20 for some t0 ∈ K, and b = t−1
0 c. Equation (8.6)

implies that either a = 2t−1
0 of a = t−1

0 (t1c
2−2), and we consider these cases in turn. If a = 2t−1

0

we define a standard basis by

v1 = (−t40t1t33t24, t30t1t23t4, 0, 0, 0, 0, t0t3t4, 1) v2 = (0, 0,−t20t3, t0, t0t3, 1, 0, 0)

v3 = (0, 0, 0, 0, t0t3, 1, 0, 0) v4 = (0, 0, 0, 0, 0, 0, t0t3t4, 1)

v5 = (1, 0, 0, 0, 0, 0,−t−3
0 t−1

1 t−2
3 t−1

4 , 0) v6 = (0, 0, 1, 0,−t−1
0 , 0, 0, 0)

v7 = (0, 0, 0, 0, t−1
0 , 0, 0, 0) v8 = (0, 0, 0, 0, 0, 0, t−3

0 t−1
1 t−2

3 t−1
4 , 0).

Note that v1 and v2 are 1-eigenvectors, and again we have a fixed chamber. Writing g for the
matrix with rows v1, . . . , v8 we have (by calculation)

gθg−1 = x0101(−ct30t23t4)x0111(t−2
0 t−1

3 )x1101(t−4
0 t−1

1 t−3
3 t−2

4 )x1211(ct−3
0 t−2

3 t−1
4 )x1110(−1)x0100(1).

Carrying through the conjugations outlined in Lemma 8.8 we see that θ is conjugate to

x1111(1)x0100(−t1c2)x1110(1)x1101(1)x0111(1),

again an element of the form (2) (this time note that t1c
2 = 4 is permitted).

Now suppose that a = t−1
0 (t1c

2 − 2). We take v1 and v2 as in the q, r 6= 0 case (these two fixed
vectors remain linearly independent). If r = 0 then a = 2t−1

0 , and this case was dealt with in the
above paragraph. Similarly if c = 0 then a = −2t−1

0 , which is also dealt with above (replacing
t0 by −t0). Thus we assume r 6= 0 and c 6= 0. Let

v3 = (−t0t1t3t4c, 0, 1, t−1
0 t−1

3 , 0, 0, 0, 0) v4 = (−t0t3t4(t1c
2 − 1), 1, 0, t−1

0 t−1
3 c, 0, 0, 0, 0)

v5 = (−t30t1t23t4(t1c
2 − 1), 0, t20t1t3c, 0, 0, 0, 1, 0) v6 = (t30t1t

2
3t4c(t1c

2 − 2),−t20t1t3c, 0,−t0, 0, 1, 0, 0)

v7 = (−2r−1, 0, 0, t−2
0 t−2

3 t−1
4 cr−1, 0, 0, 0, 0) v8 = (t1cr

−1, 0, 0,−2t−2
0 t−2

3 t−1
4 r−1, 0, 0, 0, 0).

Then v1, . . . , v8 is a standard basis, and hence we again have a fixed chamber. Writing g
for the matrix with rows v1, . . . , v8 calculation shows that gθg−1 ∈ UA, and carrying out the
conjugations outlined in Lemma 8.8 gives

θ ∼ x1111(1)x0100(t1c
2 − 4)x1110(1)x1101(1)x0111(1),

which is again of the form (2).

Subcase: r = 0. If r = 0 then t1 = t′20 for some t′0 ∈ K, and c = 2t′−1
0 . Equation (8.6) then gives

b = t′−1
0 a. The following gives a standard basis

v1 = (−t′0t2t23t4, 0, 0, 1, t3, a, t′−1
0 a, t′−1

0 t−1
2 t−1

3 t−1
4 ) v2 = (0, t′0,−1, 0, 0,−t−1

2 t−1
3 ,−t′−1

0 t−1
2 t−1

3 , 0)

v3 = (0, 0, 0, 0, t′0t2t
2
3t4, 0, 0, 1) v4 = (0, 0, 0, 0, 0, t′0, 1, 0)

v5 = (0, 1, 0, 0,−t′−1
0 a,−t′−1

0 t−1
2 t−1

3 , 0, 0) v6 = (1, 0, 0, 0,−t′−1
0 t−1

2 t−1
3 t−1

4 , 0, 0, 0)

v7 = (0, 0, 0, 0, 0,−1, 0, 0) v8 = (0, 0, 0, 0, 1, 0, 0, 0),

with v1 and v2 fixed vectors. Writing g for the matrix with rows v1, . . . , v8 we again have
gθg−1 ∈ UA. If a = 0 then θ ∈ UA\{α2}, specifically

gθg−1 = x0101(t′−1
0 )x1111(−t′−1

0 t−1
2 t−2

3 t−1
4 )x0110(−t′0t2t3)x1100(−t′0t2t3t4).

By Lemma 8.9 this is conjugate to an element of the form (1).
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If a 6= 0 then gθg−1 /∈ UA\{α2}, and carrying through the first conjugation described in
Lemma 8.8 we see that θ is conjugate to

θ′ = x1111(−(t2a
2 − 2)a−2t′−1

0 t−2
2 t−2

3 t−1
4 )x0100(at′0t

2
2t

2
3t4)x1110(−t′0a−1)

× x1101(t′−1
0 t−1

2 t−1
3 a−1)x0111(t′−1

0 t−1
2 t−1

3 t−1
4 a−1)x1211(−(t2a

2 − 1)a−1).

If t2a
2 = 2 then

θ′ = x0100(at′0t
2
2t

2
3t4)x1110(−t′0a−1)x1101(t′−1

0 t−1
2 t−1

3 a−1)x0111(t′−1
0 t−1

2 t−1
3 t−1

4 a−1)x1211(−a−1).

One can now conjugate by an element x1100(∗) to remove the x1211(∗) term, giving a product of
4 mutually perpendicular root elations, which is hence of form (1) by Lemma 8.9.

If t2a
2 6= 2 then carrying through the second conjugation described in Lemma 8.8 we see that θ

is conjugate to

x1111(1)x0100(−(t2a
2 − 2)2)x1110(1)x1101(1)x0111(1).

Case: z = −1. We will assume char(K) 6= 2 (otherwise we are in the previous case). If z = −1
(that is, z = z−1, as z 6= 1) then the equation p(−1) = 0 gives

t2a
2 + t1t2b

2 + t1c
2 − t1t2abc = 0.

Let s = t2b
2 + c2. Define isotropic vectors

v1 = (−t1t2t23t4c, t1t2t3b,−t2t3a, 0, 0, a, ac− b, t−1
2 t−1

3 t−1
4 c)

v2 = (0, t−1
3 t−1

4 a, t−1
3 t−1

4 (b− ac), t−1
2 t−2

3 t−1
4 c,−t−1

2 t−1
3 t−1

4 c,−t−1
2 t−2

3 t−1
4 b,−t−1

1 t−1
2 t−2

3 t−1
4 a, 0)

v3 = (t3t4sc,−sb, t−1
1 sa, 0, 0, t−1

1 t−1
2 t−1

3 sa, t−1
1 t−1

2 t−1
3 s(ac− b), t−1

1 t−2
2 t−2

3 t−1
4 sc)

v4 = (0, s,−t−1
1 t2ab− c3, t−1

3 bc2 − t−1
1 t−1

3 ac, bc2 − t−1
1 ac, t−1

3 b2c− t−1
1 t−1

3 ab, t−1
1 t−1

2 t−1
3 s, 0).

Then v1 and v2 are 1-eigenvectors of θ, and v3, v4 are (−1)-eigenvectors of θ. Assuming s 6= 0
and c 6= 0, there is a unique extension to a standard basis v1, . . . , v8 of the form

v5 = (0, 0, 0, ∗, 0, 0, ∗, ∗) v6 = (0, 0, ∗, ∗, 0, 0, 0, ∗)
v7 = (0, 0, 0, ∗, 0, 0, ∗, ∗) v8 = (0, 0, ∗, ∗, 0, 0, 0, ∗).

Writing g for the matrix with rows v1, . . . , v8 we see that gθg−1 is of the form

gθg−1 = x0001(∗)x0101(∗)x0111(∗)x1101(∗)x1111(∗)h0001(−1).

Conjugating by an appropriate element x1000(∗)x0010(∗) we see that θ is conjugate to

x0001(t1t
2
2t3ac

−1s−2/2)x0101(−t22t23t4ac−2s−1/2)x1111(t−1
1 t22(t1bc− a)2s−3/2)h0001(−1)

Conjugating by x0101(t22t
2
3t4ac

−2s−1/4)x1111(−t−1
1 t22(t1bc− a)2s−3/4) we see that θ is conjugate

to

θ′ = x0001(t1t
2
2t3ac

−1s−2/2)h0001(−1)

If a 6= 0 then conjugating by a suitable diagonal matrix we see that θ is conjugate to the
element x0001(1)h0001(−1) (which is conjugate to the element of form (4)), and if a = 0 then θ
is conjugate to h0001(−1) (which is of form (3)). The cases where either c = 0 or s = 0 require
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minor modifications (analogous to the z = 1 case), however no new conjugacy classes for θ are
obtained.

Case: z 6= ±1. Then z 6= z−1. We have dim(ker(θ − I)) = 4, and the vectors

v1 = (−t1t22t33t24c, t1t22t23t4b,−t22t23t4a, t2t3t4y, t2t23t4y′, t2t3t4a, t2t3t4(ac− b), c)
v2 = (−t1t22t33t24c, t1t22t23t4b,−t22t23t4a, t2t3t4y′, t2t23t4y, t2t3t4a, t2t3t4(ac− b), c)
v3 = (−t1t22t33t24y, t1t22t23t4a, t1t22t23t4(b− ac), t1t2t3t4c, ct1t2t23t4z, t1t2t3t4bz, t2t3t4az, y)

v4 = (−t1t22t33t24y′, t1t22t23t4a, t1t22t23t4(b− ac), t1t2t3t4c, ct1t2t23t4z−1, t1t2t3t4bz
−1, t2t3t4az

−1, y′)

(with y = z + 1 and y′ = z−1 + 1) are linearly independent isotropic elements of ker(θ − I),
with (v1, v4) = (v2, v3) = 0 (that is, ker(θ− I) contains two lines full of fixed points). Moreover,
ker(θ − zI) and ker(θ − z−1I) are both 2-dimensional, each consisting precisely of a line of the
polar space, and if v ∈ ker(θ − I) and v′ ∈ ker(θ − zI) ∪ ker(θ − z−1I) then (v, v′) = 0.

Thus one can then choose (necessarily isotropic) vectors v′1 ∈ 〈v1, v4〉, v′2 ∈ ker(θ − z−1I),
v′3 ∈ 〈v2, v3〉, v′4 ∈ ker(θ − zI), v′5 ∈ ker(θ − z−1I), v′6 ∈ 〈v1, v4〉, v′7 ∈ ker(θ − zI), v′8 ∈ 〈v2, v3〉
such that v′1, . . . , v

′
8 forms a standard basis with respect to the bilinear form. It follows that θ

is conjugate in D4 to the matrix

diag(1, z−1, 1, z, z−1, 1, z, 1)

and this is in turn conjugate to hα∨(z) for any positive root α, and hence is of form (3).

Converse: We must now show that all elements of the forms (1), (2), (3), and (4) have opposi-
tion diagram E7;4. Reversing the analysis above, it follows that each such element is conjugate
to an element of the form θ = uhwD4 that we started with, and by Theorem 8.6 such θ is conju-
gate to an element of Bsϕ1sϕ2sϕ3sϕ4B = Bs2s5s7w0B, and hence this conjugate maps the base
chamber B to Weyl distance s2s5s7w0. This shows that θ maps some type {1, 3, 4, 6} simplex
to an opposite, and hence θ either has diagram E7;4, or θ is not domestic. Thus it is sufficient
to prove that the elements of the form (1), (2), (3), and (4) are domestic.

Consider the element θ = x0100(a)x1110(1)x1101(1)x0111(1) of form (1). By Lemma 8.9 this
element is conjugate to an element of the form θ′ = x1211(a′)x1000(1)x0010(1)x0001(1) with a′ 6= 0.
Then, with u as in Lemma 8.3 we have uθ′u−1 = xϕ1(a′)xϕ2(1)xϕ3(1)xϕ4(1), with ϕ1 = ϕE7 ,
ϕ2 = ϕD6 , ϕ3 = ϕD4 , and ϕ4 = α3, which has opposition diagram E7;4 by [24, Theorem 3.1].

Consider the element θ = x1111(1)x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0. Then

uθu−1 = x1234321(±1)x1000000(±a)x1224321(±1)x1122221(±1)x1122100(±1),

and thus by [24, Lemma 3.4(2)(c)] we have Disp(θ) ≤ 60.

The element hϕ∨(c), with c 6= 0, 1, is proved to be domestic (with diagram E7;4) in [24,
Lemma 4.5] (note that ω1 = ϕ∨).

Finally, it remains to prove that elements of the form xϕ(1)hϕ∨(−1), with char(K) 6= 2, are
domestic. Such elements have not arisen explicitly in our previous work, and so we will give a
general analysis below, which completes the proof of the theorem.

As noted above, to complete the proof of Theorem 8.10 we must show that the automorphism
of E7(K) given by θ = xϕ(1)hϕ∨(−1) has opposition diagram E7;4 (for char(K) 6= 2). We give an
analysis of automorphisms of this form in general type, for later reference.
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Proposition 8.11. Let ∆ be the split building of a Chevalley group of irreducible type Φ over
a field K of characteristic not 2. Let θ = xϕ(1)hϕ∨(−1) and θ′ = xϕ′(1)hϕ′∨(−1), with ϕ and ϕ′

the highest root and highest short root of Φ (with θ′ = θ in the simply laced case).

(1) If Φ = An with n ≥ 5 then θ is domestic with opposition digram 2An;2.
(2) If Φ = Bn then θ (respectively θ′) is domestic for n ≥ 5 (respectively n ≥ 3) with opposition

diagram B1
n;4 (respectively B1

n;2).
(3) If Φ = Cn then θ (respectively θ′) is domestic for n ≥ 3 (respectively n ≥ 5) with opposition

diagram C1
n;2 (respectively C1

n;4).

(4) If Φ = Dn with n ≥ 6 then θ is domestic with opposition diagram D1
n;4.

(5) If Φ = En with n = 7, 8 then θ is domestic with opposition diagram En;4.

In all other cases, neither θ nor θ′ are domestic.

Proof. The An case follows from [25, Theorem 1.5(1)] and the statement for θ for type Cn follows
from [25, Theorem 2(2)(b)]. The remaining statements for classical types Bn, Cn and Dn are
easily obtained using the explicit matrix realisations of these groups and making calculations
analogous to those in [25, Proposition 4.4], and we omit the details.

Domestic collineations of split buildings of types F4, E6, and G2 are classified in [24, Theorems 7,
8, and 9] and it follows that neither θ nor θ′ are domestic in these cases. Collineations of E7 and
E8 buildings with opposition diagrams E7;1, E7;2, E8;1, or E8;2 are classified in [24], and combining
this with the classification of collineations of E7 buildings with diagram E7;3 fixing a chamber
from Theorem 8.5 and the classification of admissible diagrams we see that if θ is domestic in
an En building (n = 7, 8) then it necessarily has opposition diagram En;4.

It remains to prove that θ is domestic in types E7 and E8. Thus suppose that Φ = E7 or
Φ = E8. Let ℘ = {p} be the polar type (so p = 1 for E7, and p = 8 for E8). By [4, VI, §1.8]
we have 〈ϕ∨, α〉 = 0, 1, 2 for α ∈ Φ+

S\℘, α ∈ Φ+\(ΦS\℘ ∪ {ϕ}), and α = ϕ (respectively), and it

follows that the coefficient of αp in any positive root α is either 0, 1, or 2 (respectively). Thus
if α, β ∈ Φ+\ΦS\℘ and α + β is a root then α + β = ϕ, and so xα(a)xβ(b) = xβ(b)xα(a), or
xα(a)xβ(b) = xβ(b)xα(a)xϕ(±ab).

Consider gB = uw0B with u ∈ U+. Write u = u1u2 with u1 ∈ U+
ΦS\℘

and u2 ∈ U+
Φ\ΦS\℘

. Since

xϕ(1) is central in U+, and since hϕ∨(−1)xα(a)hϕ∨(−1) = xα((−1)〈ϕ
∨,α〉a) we see that θ and u1

commute. It follows from the above observations that

g−1θg = w−1
0 u−1

2 xϕ(1)hϕ∨(−1)u2w0 ∈ BUw0β1 · · ·Uw0βkB,

where β1, . . . , βk are the roots of Φ+\ΦS\℘. By [24, Proposition 1.8], if there exists w1 ∈W with
w1w0βj > 0 for all j = 1, . . . , k, then Disp(θ) ≤ 2`(w1) − 1. In particular, taking w1 = wS\℘w0

(note that Φ(wS\℘) = Φ+
S\℘) we have

Disp(θ) ≤ 2`(w0)− 2`(wS\℘)− 1.

If Φ = E8 then `(w0) = 120 and `(wS\℘) = 63, and so Disp(θ) ≤ 113 < 120, and so θ is domestic
as required. If Φ = E7 then the inequality only yields Disp(θ) ≤ 65, which is not sufficient to
prove domesticity. However in this case we apply Case (2)(c) of [24, Lemma 3.4], showing that
θ is domestic.

Remark 8.12. The element θ = xα(1)hα∨(−1) is not conjugate to an element of H or U+.
To see this, consider the SL2(K) generated by Uα and U−α. The matrix of θ is −xϕ(1) which
shows that it is neither unipotent (eigenvalues distinct from 1) nor a homology (as it is not
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diagonalisable). Thus in sufficiently high rank this automorphism gives a simple example of a
chamber fixing domestic automorphism that is neither unipotent nor a homology. In contrast,
note that if c 6= 0,−1 then xα(1)hα∨(c) is conjugate to a homology as it is diagaonlisable
in SL2(K).

Remark 8.13. For 1 ≤ k ≤ 8 let Pk denote the set of all sets of three mutually perpendicular
positive roots of E7. The Weyl group W acts on Pk in the natural way, and it is not hard to
see that for k = 1, 2, 3, 4 there are 1, 1, 2, 4 orbits for this action (respectively). Indeed, for any
simply laced irreducible diagram, representatives for the action of W on Pk can be found by
running the following algorithm up to step k: At each step, choose a connected component of the
diagram, and modify the diagram by removing the nodes of the polar type of this component.
The set of highest roots associated to the sequence of connected components chosen is a set of k
mutually perpendicular positive roots, and running the algorithm in all possible ways generates
a set of representatives for the action of W on Pk. For example, for E7;4 the 4 representatives
are obtained by:

• • • • • •
•

7→ • • • • •
•

7→ • • • •
•

7→ • • •
•

along with the variations with any one of the other nodes encircled at the fourth stage. Thus
the representatives for the action of W on P4 are {ϕE7 , ϕD6 , ϕD4 , α2}, {ϕE7 , ϕD6 , ϕD4 , α3},
{ϕE7 , ϕD6 , ϕD4 , α5}, and {ϕE7 , ϕD6 , ϕD4 , α7} (note that one could also run the algorithm by
picking the A1 component at the third stage, and then the D4 component is forced at the fourth
stage, but this results in the set {ϕE7 , ϕD6 , α7, ϕD4} which was already found).

Similarly, representatives for the action of W on P3 are {ϕE7 , ϕD6 , α7} and {ϕE7 , ϕD6 , ϕD4}.
By Theorem 8.5, only the first orbit gives rise to automorphisms with diagram E7;3. For
the second orbit, elements of the form xϕE7

(a)xϕD6
(b)xϕD4

(c) with a, b, c 6= 0 are conjugate
to x1110(1)x1101(1)x0111(1), and it turns out that this element is conjugate to

x1111(1)x0100(−4)x1110(1)x1101(1)x0111(1).

Thus, by Theorem 8.6, the automorphisms θ = xϕE7
(a)xϕD6

(b)xϕD4
(c) with a, b, c 6= 0 have

opposition diagram E7;4. Furthermore, by Theorem 8.6 we see that only one orbit of the action
of W on P4 gives rise to automorphisms with diagram E7;4, and it turns out that for all other
orbits the associated automorphisms are not domestic.

References

[1] P. Abramenko & K. Brown, Automorphisms of non-spherical buildings have unbounded
displacement, Innov. Incid. Geom. 10 (2009), 1–13.

[2] M. Aschbacher, The 27-dimensional module for E6, I., Invent. Math. 89 (1987), 159–195.

[3] W. Bosma, J. Cannon, and C. Playoust, The magma algebra system I: The user language,
J. Symbolic Comput. 24 (1997), 235–265.

[4] N. Bourbaki. Lie groups and Lie algebras, Chapters 4–6. Elements of Mathematics. Springer-
Verlag, 2002.

[5] A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-Regular Graphs, Springer-Verlag,
Berlin, New York, 1989.

65



[6] F. Buekenhout and A. M. Cohen, Diagram Geometry, Related to Classical Groups and Build-
ings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 57, Springer, 2013.

[7] I. Cardinali, L. Giuzzi and A. Pasini. Nearly all subspaces of a classical polar space arise
from its universal embedding, Lin. Alg. Appl. 627 (2021), 287–207.

[8] A. M. Cohen, S. H. Murray, and D. E. Taylor, Computing in groups of Lie type, Mathematics
of Computation 73 (2004), 1477–1498.

[9] A. De Schepper, N. S. N. Sastry & H. Van Maldeghem, Split buildings of type F4 in buildings
of type E6, Abh. Math. Sem. Univ. Hamburg 88 (2018), 97–160.

[10] A. De Schepper, N. S. N. Sastry & H. Van Maldeghem, Buildings of exceptional type in
buildings of type E7, Dissertationes Math. 573 (2022), 1–80.

[11] A. De Schepper, J. Schillewaert & H. Van Maldeghem, A uniform characterisation of the
varieties of the second row of the Freudenthal-Tits magic square, J. Combin. Algebra 7
(2023), 227–282.

[12] A. De Schepper, J. Schillewaert, H. Van Maldeghem & M. Victoor, Construction and char-
acterization of the varieties of the third row of the Freudenthal-Tits magic square, to appear
in Geom. Dedicata.

[13] A. De Schepper & H. Van Maldeghem, Veronese representation of projective Hjelmslev
planes over some quadratic alternative algebras, Res. Math. 75 (2020), paper No 9, 51pp.

[14] A. De Schepper & H. Van Maldeghem, On inclusions of exceptional long root geometries
of type E, Innov. Incidence Geom. 20 (2023), 247–293.

[15] A. Devillers, J. Parkinson & H. Van Maldeghem, Automorphisms and opposition in twin
buildings, J. Aust. Math. Soc. 94 (2013), 189–201.

[16] K. J. Dienst, Verallgemeinerte Vierecke in Pappusschen projektiven Räumen, Geom. Dedi-
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