
Automorphisms and opposition in spherical buildings of classical

type

James Parkinson Hendrik Van Maldeghem

March 9, 2024

Abstract

An automorphism of a spherical building is called domestic if it maps no chamber to an
opposite chamber. In this paper we classify domestic automorphisms of spherical buildings
of classical type.

Introduction

The study of the geometry of fixed elements of automorphisms of spherical buildings is a well-
established and beautiful topic (see [14]). Recently a complementary theory concerning the
“opposite geometry” Opp(θ), consisting of those elements mapped to opposite elements by an
automorphism, has been developed (see [10, 11, 12, 13]). The generic situation is that this oppo-
site geometry is rather large, and typically contains many chambers of the building. The more
delicate and interesting situation is when the opposite geometry Opp(θ) contains no chamber, in
which case the automorphism θ is called domestic. This paper is part of series of papers directed
towards classifying, as precisely as possible, the class of domestic automorphisms of spherical
buildings, with the focus of this paper being on the buildings of classical types.

Central to the study of the domesticity and the opposite geometry is the notion of the
opposition diagram Diag(θ) of an automorphism θ, introduced in [10, 11]. This diagram encodes
the types of the simplices of the building that are mapped onto opposite simplices by θ, and one
surprising aspect of the theory is that there are relatively few permitted opposition diagrams
for a given spherical building. This opens up the possibility of classifying the class of domestic
automorphisms with each diagram. In [12] and [13] we carried out this program for split spherical
buildings of exceptional type (with the exception of the three opposition diagrams E7;3, E7;4, and
E8;4 that will be dealt with in future work), and for all Moufang hexagons. In the present paper
we carry out the program for spherical buildings of classical type (both split and non-split) of
rank at least 3.

Before stating our main results, we briefly expand on some of the above concepts (see Sec-
tion 1 for remaining concepts). Let ∆ be a thick spherical building of irreducible type (W,S)
with Coxeter diagram Γ, and let θ be an automorphism of ∆. Let π ∈ Aut(Γ) denote the auto-
morphism of Γ induced by θ (thus π = id if and only if θ is type preserving). Let π0 ∈ Aut(Γ)
be the automorphism of Γ induced by the longest element w0. The distinguished orbits are the
nontrivial subsets of S that are minimal subject to being preserved by π0 ◦ π. In particular, the
distinguished orbits are all singletons if and only if π0 ◦ π = id. The opposition diagram Diag(θ)
of θ is drawn by encircling those distinguished orbits J ⊆ S of Γ such that there exists a type J
simplex mapped onto an opposite simplex. The opposition diagram Diag(θ) is drawn “straight”
if π0 ◦ π = id, and “bent” in the usual way otherwise.
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Thus, for example, the opposition diagrams

(a) • • • • • •• (b) • • • • • ••

represent (a) a non-type preserving automorphism of a D7 building mapping type 2 and type 4
vertices to opposite vertices, and (b) a type preserving automorphism of a D7 building mapping
type 2 and 4 vertices onto opposite, and type {6, 7} simplices onto opposite simplices (recall
that the opposition relation π0 on Dn is type preserving if n is even, and interchanges types
n− 1 and n if n is odd).

In [10, 11] we showed that if θ is an automorphism of a thick irreducible spherical building
then Diag(θ) belongs to a very restricted list of possible diagrams. These diagrams are called
the admissible diagrams, and are defined by simple combinatorial rules. We will not require
the formal definition of admissible diagrams, instead the explicit list of admissible diagrams of
classical type given in Tables 1 and 2 is sufficient for the purposes of this paper (see [10] for the
formal details).

Symbol Diagram Conditions

2A1
n;i

•
•
•
•
•
•

•
•
•
•
•
•i 0 ≤ i ≤ n/2

1A2
n;(n−1)/2 • • • • • • • • • • n odd

1A1
n;n • • • • • • • • • •

1B1
n;i or 1C1

n;i
• • • • • • • • • •

i
0 ≤ i ≤ n

1B2
n;i or 1C2

n;i
• • • • • • • • • •

2i
0 ≤ i ≤ n/2

1D1
n;i

• • • • • • • • • ••i
0 ≤ i < n and i = n mod 2

1D1
n;n • • • • • • • • • ••

2D1
n;i

• • • • • • • • • ••i
0 ≤ i < n− 1 and i = n+ 1 mod 2

2D1
n;n−1 • • • • • • • • • ••

1D2
n;i

• • • • • • • • • ••2i
n even and 0 ≤ i < n/2

1D2
n;n/2 • • • • • • • • • •• n even

2D2
n;i

• • • • • • • • • ••2i
n odd and 0 ≤ i < (n− 1)/2

2D2
n;(n−1)/2 • • • • • • • • • •• n odd

Table 1: Admissible diagrams of classical type, general rank
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Symbol Diagram Symbol Diagram Symbol Diagram

2B1
2;1 or 2C1

2;1

•
•

3D2
4;1 •• ••

3D1
4;2 •• ••

Table 2: Admissible diagrams of classical type, special rank

As in the tables, each admissible diagram of classical type is denoted by a symbol tXjn;i where
(1) X ∈ {A,B,C,D} is the Coxeter type of Γ, and n is the rank;
(2) t ∈ {1, 2, 3} is the order of the automorphism π0 ◦ π of Γ (the “twisting”);
(3) i is the number of distinguished orbits encircled in the diagram; and
(4) j ∈ {1, 2} is the (graph) distance between successive encircled distinguished orbits in J .

Domestic automorphisms of generalised polygons (rank 2 buildings) are studied in [19, 9],
and domestic trialities of building of type D4 are studied in [22], and the diagrams in Table 2
are not discussed further in this paper. For the diagrams tXjn;i in Table 1 it turns out that the
twisting index t ∈ {1, 2} is determined by the indices n, i, j (and X). This is clear if X ∈ {A,B,C},
and in type D note that t ∈ {1, 2} is determined by the condition t = n+ ij + 1 mod 2. With
this in mind, it is usually convenient to omit the twisting index t from the notation tXjn;i without
risk of confusion.

An automorphism θ is called capped if whenever there exist both type J1 and J2 simplices
in Opp(θ), then there exists a type J1 ∪ J2 simplex in Opp(θ). In [10, Theorem 1] we proved
that every automorphism of a large spherical building is capped (a thick spherical building
of rank at least 3 is called large if it contains no Fano plane residues, and small otherwise).
Since automorphisms of small buildings are studied in [11] we shall, when required, restrict
attention to large spherical buildings in this paper, and by doing so we may thus assume that
all automorphisms are capped. In this case an automorphism is domestic if and only if its
opposition diagram has at least one distinguished orbit not encircled.

Domestic automorphisms of large buildings of type An have been completely classified in
previous work (see Theorem 1.5 of this paper for a summary). Thus the main focus of this paper
is on buildings of types Bn,Cn and Dn, where the situation is considerably more complicated.
Such buildings may naturally be regarded in a standard and uniform way as polar spaces Π =
(P,Ω) of rank n, where P is the set of points of Π (the type 1 vertices of the building in
standard Bourbaki labelling), and Ω is the set of singular subspaces of Π (see Section 1.6 for
more details). The singular subspaces of (projective) dimension n − 1 are called the maximal
singular subspaces.

Since we consider thick buildings, the associated polar spaces have thick lines (meaning that
each line contains at least 3 points). We adopt the convention that buildings of type Cn are
those corresponding to symplectic polar spaces (that is, split buildings of type Cn), buildings
of type Dn are those corresponding to the non-thick polar spaces (meaning that each singular
(n− 2)-space is contained in precisely 2 maximal singular subspaces), and buildings associated
to all other polar spaces are considered to be of type Bn (however note that this convention
is somewhat non-standard as buildings of absolute type 2An are often considered as “type Cn”
elsewhere). Thus for buildings of type Bn and Cn the type i vertices (1 ≤ i ≤ n) correspond to
the singular subspaces of projective dimension i − 1. This is also true for buildings of type Dn
for 1 ≤ i ≤ n − 2, while the type n − 1 and n vertices of the building correspond to the two
types of maximal singular subspaces. Points x, y of a polar space are opposite one another if
and only if they are distinct and not collinear. Singular subspaces X,Y ∈ Ω of a polar space
are opposite one another if and only if they have the same dimension and for each point x ∈ X
there is a point y ∈ Y with x and y opposite.
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The automorphisms of spherical buildings with opposition diagrams in Table 1 are all
collineations of the associated polar space Π (however, note that in the Dn case, the auto-
morphism θ may interchange the type n− 1 and n vertices of the building). A collineation θ of
a polar space is called point-domestic if it maps no point (equivalently, no type 1 vertex of the
building) to an opposite. More generally, θ is called i-domestic (0 ≤ i ≤ n − 1) if it maps no
singular subspace of projective dimension i to an opposite (hence point-domestic is equivalent to
0-domestic). Domestic automorphisms of rank 3 polar spaces are classified in [18, Theorem 7.2],
and so, when required, we may restrict our attention to rank at least 4, and moreover, from the
comments above, we may restrict to large polar spaces.

It is convenient to divide the class of domestic collineations of a polar space into three
mutually disjoint classes, as follows.

Definition. A domestic collineation θ of a polar space is said to be:
(1) of class I if it is not point-domestic.
(2) of class II if it is point-domestic, and has a fixed point.
(3) of class III if it is point-domestic, and has no fixed points.

Note that if θ is of class I, then by the classification of admissible diagrams, we have Diag(θ) =
X1
n;i for some 1 ≤ i < n (with i < n− 1 in the X = D case). Similarly, if θ is of class II or class

III then Diag(θ) = X2
n;i for some 0 ≤ i ≤ n/2 (where X ∈ {B,C,D}).

The main results of this paper are summarised as follows (for undefined notions, see Sec-
tion 1). To begin with, consider class I collineations of a polar space Π = (P,Ω). We first show
that such automorphisms are characterised by big fixed point sets (see Definition 1.8).

Theorem 1. If θ is a class I automorphism of a large polar space Π with diagram Diag(θ) = X1
n;i

(with X ∈ {B,C,D}) then θ fixes pointwise a subspace of corank i. In particular, the fixed point
set of θ is a possibly degenerate and possibly non-thick polar space (possibly with lines of size
2). Conversely, if θ is a collineation of Π mapping at least one point to an opposite and fixing
pointwise a subspace of corank i and fixing no subspace of corank j < i, then Diag(θ) = X1

n;i

(with X ∈ {B,C,D}).

On an intuitive level, Theorem 1 says that domestic automorphisms that are not point-
domestic are i-domestic for sufficiently large i for the following reason: by fixing a subspace of
suitably high dimension it is forced that each singular subspace of suitably high dimension i
contains a fixed point, and thus is not mapped onto an opposite singular subspace.

In certain cases we are able to be more precise. For example, we prove the following (see
Definition 1.8 for the definition of elations).

Theorem 2. Let Π = Cn,1(K) be the (large) symplectic polar space over a field K with n ≥ 3
and let θ be a collineation of Π. Then:

(1) Diag(θ) = C1
n;1 if and only if θ is a central elation (that is, a long root elation).

(2) Diag(θ) = C1
n;2 if and only if θ is either

(a) a product of two nontrivial perpendicular long root elations, or
(b) a nontrivial member of the group generated by two opposite long root groups and not

conjugate to a long root elation.

In a similar way we also classify those collineations of thick non-embeddable polar spaces
with diagram C1

3;1 (see Theorem 2.4) and those of split polar spaces with diagram B1
n;1 and D1

n;1

(see Proposition 2.5, Theorem 2.6 and Remark 2.7 for the statements).
The situation for class II and class III automorphisms of polar spaces (that is, point-domestic

collineations) is more complicated, but richer. Recall that the diagrams of such (nontrivial)
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automorphisms are of the form X2
n;i with X ∈ {B,C,D} and 1 ≤ i ≤ bn/2c. The automorphisms

whose diagrams have the fewest encircled nodes (that is i = 1) admit a complete classification.

Theorem 3. Let Π = (P,Ω) be a polar space of rank n ≥ 3 and let θ be a collineation of Π.
(1) If Π is of symplectic type then θ has opposition diagram C2

n;1 if and only if θ is an axial
collineation (in the case char(K) = 2) or a specific involutive homology (if char(K) 6= 2).

(2) If Π is not of symplectic type then θ has diagram X2
n;1, X ∈ {B,D}, if and only if θ is an

axial elation (and so Π is an orthogonal polar space), or the rank is 3 and θ is an ideal
Baer collineation.

In the split case (that is, those arising from Chevalley groups over commutative fields), it
is possible to completely classify the point-domestic automorphisms with diagram not equal to
one of the “extreme diagrams” B2

n;n/2, C2
n;n/2, D2

n;n/2 (with n even) or D2
n;(n−1)/2 (with n odd).

Theorem 4. Let θ be a point-domestic collineation of a parabolic, symplectic (with character-
istic not 2), or hyperbolic polar space ∆ with opposition diagram B2

n;i, 1 ≤ i ≤ (n − 1)/2, C2
n,i,

1 ≤ i ≤ (n − 1)/2, or D2
n,i, 1 ≤ i ≤ (n − 2)/2, respectively. Then θ is the product of i pairwise

orthogonal long root elations, an (I2n−2i,−I2i)-homology, or the product of i pairwise orthogonal
long root elations, respectively. The conclusion also holds for C2

n,n/2 if it is assumed that θ fixes
at least one point.

Remarkably, when the polar space of rank n ≥ 3 is Hermitian, there is only one type of
automorphisms of class II, and they have opposition diagram B2

n;m, with 2m ∈ {n, n + 1} (for
the precise statement, we refer to Proposition 3.18).

The most beautiful situation is a domestic automorphism that fixes no points (class III).
These are very restricted, as illustrated by the following theorem. In particular, note that every
class III automorphism must have an “extreme” opposition diagram X2

n;n/2 with n even and

X ∈ {B,C,D}.

Theorem 5. Let ∆ be a spherical building of type Bn, Cn, or Dn with n ≥ 4 and let Π = (P,Ω)
be the associated polar space defined over the field K. Suppose there exists a point domestic
collineation θ of Π with no fixed points. Let Q denote the set of fixed lines of θ, and let Ω′

denote the set of fixed singular subspaces. Then
(1) n is even,
(2) Diag(θ) = X2

n;n/2 with X ∈ {B,C,D}, and

(3) the pair Π′ = (Q,Ω′) is a polar space defined over either a quadratic extension of K, or over
a quaternion division algebra H which is 2-dimensional over K (and K is 2-dimensional
over the centre of H).

In the split case we can be even more explicit.

Theorem 6. Let ∆ be a split polar space of rank n ≥ 4 over a field K. Let θ be a point-domestic
collineation of ∆ with no fixed points. Then n is even, and ∆ is either a symplectic polar space
(type Cn), or a hyperbolic polar space (type Dn), and θ has opposition diagram C2

n,n/2 or D2
n,n/2,

respectively. Moreover, the fixed element structure of θ is either
(1) a symplectic polar space over a quadratic extension of K, or
(2) a minimal Hermitian polar space, or a mixed polar space,

respectively. In each case, the points of the fixed element structure are the lines of ∆ that are
fixed by θ.

We can be more precise in each case, as follows.
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Theorem 7. Let ∆ be a symplectic polar space of rank n ≥ 4 defined over a field K. Let θ be
a point-domestic collineation of ∆ with no fixed points. Let L be the quadratic extension of K
over which the fixed element structure of θ is defined (according to Theorem 6). Then θ is an
involution, and if char(K) = 2 then L is an inseparable extension of K. Conversely, if K admits
a quadratic extension L/K, inseparable in the case char(K) = 2, then ∆ admits a point-domestic
collineation θ without fixed points as above.

Theorem 8. Let ∆ be a hyperbolic polar space of rank n ≥ 4 defined over a field K. Let θ
be a point-domestic collineation of ∆ with no fixed points. Let PG(2n − 1,K) be the ambient
projective space. Then θ naturally extends to PG(2n− 1,K) pointwise fixing a spread S which
defines a projective space PG(n−1,L) over a quadratic extension L of K, and every collineation
of PG(2n − 1,K) which pointwise fixes S is a point-domestic collineation of ∆ without fixed
points. Moreover:

(1) If L/K is separable then the fixed element polar space (c.f. Theorem 6) is minimal Her-
mitian.

(2) If L/K is inseparable then the fixed element polar space is the subspace of the symplectic
polar space over L obtained by restricting the long root elations to K.

Conversely, if K admits a quadratic extension L/K then there exists a point-domestic collineation
of ∆ without fixed points as above.

For non-split polar spaces the situation depends highly on the underlying field and the form
defining the polar space. The neatest case is as follows.

Theorem 9. Let ∆ be a minimal Hermitian polar space of rank n ≥ 4 defined over a field
K, with corresponding field involution σ and field extension K/F. Let θ be a point-domestic
collineation of ∆ with no fixed points. Let PG(2n−1,K) be the ambient projective space. Then θ
is an involution and naturally extends to PG(2n−1,K) pointwise fixing a spread S which defines
a projective space PG(n − 1,H) over a quaternion division algebra H over its centre F, with K
a 2-dimensional subalgebra of H. The only nontrivial collineation of ∆ fixing every member of
S in ∆ is θ. The fixed element polar space is a minimal quaternion polar space related to a
non-standard involution of H pointwise fixing a 3-dimensional subalgebra over F.

Conversely, if K admits a quaternion extension H such that the centre F of H is a subfield of
K and K/F is a separable quadratic field extension, then there exists a point-domestic collineation
of ∆ without fixed points as above.

The remaining cases are orthogonal and Hermitian polar spaces whose standard form has
nontrivial anisotropic forms. Since these contain the hyperbolic and minimal Hermitian polar
spaces fixed under the given point-domestic collineation, the previous two theorems give nec-
essary conditions for the existence of collineations of class III. We provide examples, and some
instances where such collineations do not exist (see Section 3.3).

In this paper we shall also classify those admissible diagrams that can be obtained as the
opposition diagram of a unipotent element of a split spherical building (that is, an element
conjugate to an element of U+), extending the corresponding result [12, Theorem 5] for buildings
of exceptional type. In [12] we introduced a combinatorial notion of an admissible diagram being
polar closed. See Section 1.4 for the definition, however for now we note that in the classical
case all admissible diagrams other than A2

n;(n−1)/2 (n odd), A1
n;n, B1

n;i or D1
n;i (with i odd and

1 ≤ i < n), C2
n;i (with 1 ≤ i ≤ n/2), and those in Table 2 turn out to be polar closed. The

classification of admissible diagrams arising as the opposition diagram of a unipotent element is
then as follows.
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Theorem 10. Let ∆ be a split irreducible spherical building with Dynkin diagram Γ. The
admissible Dynkin diagrams of type Γ that can be obtained as opposition diagrams of a unipotent
element are precisely the polar closed diagrams.

In particular, Theorem 10 shows that all polar closed admissible diagrams (of classical type)
occur as the opposition diagram of some automorphism of the respective split building (over any
field). We will prove the following theorem, completing the proof of [12, Corollary 10], showing
that the list of admissible diagrams contains no redundancies.

Theorem 11. Let ∆ be a split spherical building of irreducible type Xn (with the underlying field
assumed to be perfect in the case of Bn, Cn or F4 in characteristic 2 and G2 in characteristic 3).
Every admissible diagram with underlying Dynkin diagram Xn arises as the opposition diagram
of some automorphism of ∆.

We conclude this introduction with a summary of the structure of this paper. Section 1
provides background on spherical buildings, domestic automorphisms, and polar spaces. The
main theorems are proved in Sections 2–4. More precisely, Theorem 1 is proved at the begin-
ning of Section 2, Theorem 2 follows from Theorems 2.2 and 2.3, and Theorem 3 follows from
Theorem 3.7 and Proposition 3.11. Theorem 4 follows from Theorems 3.13 and 3.14, Theorem 5
follows from Corollaries 3.4, 3.6, and 3.21. Theorems 6, 7, 8 and 9 are proved in Theorem 3.22,
Proposition 3.23, Proposition 3.24, and Proposition 3.25, respectively. Theorems 10 and 11 are
proved in Section 4.

1 Background and definitions

This section contains background on Coxeter groups, spherical buildings, domestic automor-
phisms, opposition diagrams, Chevalley groups, projective spaces, and polar spaces.

1.1 Coxeter groups and spherical buildings

Let (W,S) be a spherical Coxeter system with Coxeter diagram Γ = Γ(W,S). For J ⊆ S let WJ

be the parabolic subgroup generated by J , and let ΓJ = Γ(WJ , J) be the associated subgraph
of Γ. For each J ⊆ S let wJ be the longest element of WJ , and write w0 = wS . For each
J ⊆ S the element wJ induces an automorphism πJ of ΓJ by πJ(s) = wJsw

−1
J for s ∈ J . Write

π0 = πS .
Let ∆ be a thick spherical building of type (W,S), regarded as a simplicial complex, with

chamber set C = C (∆) and W -distance function δ : C × C → W . Let τ : ∆ → 2S be a fixed
type map on the simplicial complex ∆ (we adopt Bourbaki [3] conventions for the indexing of
the generators of spherical Coxeter systems). Our main references for the theory of buildings
are [1, 20], and we assume that the reader is already acquainted with the theory.

Chambers A,B ∈ C are opposite if they are at maximum distance in the chamber graph,
or equivalently if δ(A,B) = w0. Simplices α, β of ∆ are opposite if τ(β) = π0(τ(α)) and there
exists a chamber A containing α and a chamber B containing β such that A and B are opposite.

The residue of a simplex α of ∆ is the set of all simplices of ∆ which contain α, together
with the order relation induced by that on ∆. Then Res(α) is a building whose Coxeter diagram
is obtained from the Coxeter diagram of ∆ by removing all nodes which belong to τ(α).

Let α be a simplex of ∆. The projection onto α is the map projα : ∆ → Res(α) defined as
follows (see [20, Section 3]). For β a simplex of ∆, we set projα(β) to be the unique simplex γ
of Res(α) which is maximal subject to the property that every minimal length gallery from a
chamber of Res(β) to Res(α) ends in a chamber containing γ.
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We call the thick irreducible spherical buildings of rank at least 3 with no Fano plane residues
large buildings, and those containing at least one Fano plane residue are called small buildings.

1.2 Automorphisms and opposition diagrams

An automorphism of ∆ is a simplicial complex automorphism θ : ∆→ ∆. Note that θ does not
necessarily preserve types. Indeed, each automorphism θ : ∆→ ∆ induces an automorphism πθ
of Γ by δ(A,B) = s if and only if δ(Aθ, Bθ) = πθ(s).

Let θ be an automorphism of ∆. The opposite geometry of θ is

Opp(θ) = {α ∈ ∆ | α is opposite αθ},

and the type Typ(θ) of θ is the union of all subsets J ⊆ S such that there is a type J simplex in
Opp(θ).

The following fundamental theorem, due to Leeb [8] and Abramenko and Brown [2], shows
that Opp(θ) is empty if and only if θ is the identity.

Theorem 1.1 ([8, 2]). Every nontrivial automorphism of a thick spherical buildings maps some
simplex onto an opposite simplex.

The opposition diagram Diag(θ) of θ is the triple (Γ,Typ(θ), πθ), where Γ is the Coxeter
diagram of ∆. Less formally, the opposition diagram of θ is depicted by drawing Γ and encircling
the nodes of Typ(θ), where we encircle nodes in minimal subsets invariant under π0◦πθ. We draw
the diagram “bent” (in the standard way) if π0 ◦ πθ 6= 1 (see the examples in the introduction).
An opposition diagram is empty if no nodes are encircled (that is, Typ(θ) = ∅), and full if all
nodes are encircled (that is, Typ(θ) = S). Note that Diag(θ) is empty if and only if θ is the
identity (by Theorem 1.1).

Definition 1.2. Let ∆ be a spherical building of type (W,S). Let θ be a nontrivial automor-
phism of ∆, and let J ⊆ S be stable under the diagram automorphism π0 ◦ πθ. Then θ is
called:

(1) capped if there exists a type Typ(θ) simplex in Opp(θ), and uncapped otherwise.
(2) domestic if Opp(θ) contains no chamber.
(3) J-domestic if Opp(θ) contains no type J-simplex.

A simplex α ∈ ∆ is said to be domestic for θ if it is not mapped onto an opposite simplex by θ,
and is non-domestic for θ otherwise. If the automorphism θ is clear from context, we will often
simply say α is domestic (or non-domestic).

The requirement that J be stable under π0 ◦πθ in the above definition is to avoid trivialities.
For if J is not stable under π0 ◦ πθ then necessarily there is no type J-simplex mapped to an
opposite by θ (see [10, Lemma 1.3]).

The main result of [10] is the following useful fact.

Theorem 1.3 ([10, Theorem 1]). Every automorphism of a large spherical building is capped.

Let θ be an automorphism of ∆, and suppose that α ∈ Opp(θ). It follows from [20, The-
orem 3.28] that the map projα : Res(αθ) → Res(α) is an isomorphism, and hence we have an
isomorphism

θα : Res(α)
∼−→ Res(α) given by θα = projα ◦ θ.

If πθ is the automorphism of Γ induced by θ, and if J = τ(α), then the automorphism of ΓS\J
induced by θα is πθα = πS\J ◦π0 ◦πθ (see [10, Proposition 1.11]). There is a very useful relation-
ship between domesticity of θ and domesticity of θα, as follows (in particular, this relationship
facilitates inductive arguments).
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Lemma 1.4 ([10, Proposition 1.13]). Let θ be an automorphism of a spherical building ∆ and
let α ∈ Opp(θ). If β ∈ Res(α) then β is opposite βθ in the building ∆ if and only if β is opposite
βθα in the building Res(α).

An admissible diagram X = (Γ, J, π) is called type preserving if π = id (these are the
opposition diagrams of type preserving automorphisms). For example, the type preserving
diagrams of type D are precisely the diagrams D1

n;i with n and i both even, D1
n;i with n odd and

i even, and all diagrams D2
n,i.

1.3 Root systems and Chevalley groups

The split irreducible spherical buildings are those arising from Chevalley groups over a commu-
tative field K. In this case there is an associated irreducible crystallographic root system Φ. Let
α1, . . . , αn be a fixed system of simple roots, and let Φ+ denote the associated positive roots.
Adopting standard notation (from [4, 16]) we write xα(a) (α ∈ Φ and a ∈ K) for the unipotent
generators of the Chevalley group G = GΦ(K). Write Uα = 〈xα(a) | a ∈ K〉 for the root group
of α ∈ Φ, and

U = 〈Uα | α ∈ Φ+〉.

By a unipotent element we shall mean an element of G conjugate to a member of U .
Let Γ = Γ(Φ) be the Dynkin diagram (with the convention that the arrow points towards

the short root in the case of double or triple bonds). The height of a root α = k1α1 + · · ·+knαn
is ht(α) = k1 + · · ·+ kn, and there is a unique root ϕ of maximal height (the highest root of Φ).
The polar type of Φ is the subset ℘ ⊆ {1, 2, . . . , n} given by

℘ = {1 ≤ i ≤ n | 〈αi, ϕ〉 6= 0}.

Thus, in standard Bourbaki labelling, the polar types of An,Bn,Cn,Dn are {1, n}, {2}, {1}, {2},
respectively (a simple way to remember these is to note that the polar type is the set of nodes of
Γ to which the additional generator is joined when constructing the associated affine diagram).
In the case that ℘ = {p} is a singleton set, we refer to p as the polar node.

The dual polar type of a Dynkin diagram is the subset ℘′ corresponding to the polar node of
the dual diagram. Thus ℘′ = ℘ in the An and Dn cases, while ℘′ = {1} for Bn, and ℘′ = {2} for
Cn. If ℘′ = {p′} we refer to p′ as the dual polar node.

1.4 Polar closed admissible diagrams

The definition of admissible diagrams naturally extends to admissible Dynkin diagrams (with
the additional condition that π preserves arrows on the Dynkin diagram). Let X be an admissible
Dynkin diagram, and let X = X0,X1, . . . be subdiagrams such that, for j ≥ 1, the diagram Xj is
obtained from Xj−1 by removing an encircled polar type from one of the connected components
of Xj−1. This process terminates at some step j = k (that is, Xk has no polar types encircled).
We say that X is polar closed if Xk is an empty diagram (that is, has no nodes encircled).

For example, the following sequence X0,X1,X2,X3,X4 shows that B1
5;4 is polar closed

• • • • • 7→ • × • • • 7→ • • • 7→ • × • 7→ •

while B1
5;3 is not polar closed because

X0 = • • • • • 7→ X1 = • × • • • 7→ X2 = • • •
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where X2 is a non-empty diagram with no polar node encircled. In fact, by inspection of the
list of diagrams, the admissible Dynkin diagrams of classical type that are not polar closed are
precisely the diagrams listed in the introduction.

Suppose that X is polar closed, and let X = X0,X1, . . . ,Xk be a sequence of subdiagrams
obtained by successively removing encircled polar nodes with Xk empty (as in the definition of
polar closed). Let ϕ1, . . . , ϕk ∈ Φ+ be the highest roots associated to the polar nodes that are
removed at each step. For example, the sequence of highest roots corresponding to the above
sequence for B1

5;4 is (in the basis of simple roots)

ϕB5 = (12222) 7→ ϕA1 = (10000) 7→ ϕB3 = (00122) 7→ ϕA1 = (00100).

Note that the sequence X0, . . . ,Xk is not unique (for example, in the B1
5;4 sequence given above

we may remove the polar node of the B3 diagram at the second step instead of the A1 polar
node), however it is clear that the set {ϕ1, . . . , ϕk} of highest roots is independent of the choices
made. Moreover, note that the roots ϕ1, . . . , ϕk are mutually perpendicular (by the definition
of the polar type), and hence the group

U(X) = 〈Uϕ1 , . . . , Uϕk〉

generated by the associated positive root groups is abelian. We call an element g ∈ U(X) generic
if g = xϕ1(a1) · · ·xϕk(ak) with a1, . . . , ak 6= 0.

1.5 Projective spaces

Buildings of type An are equivalent to projective spaces in a well known way, with type 1 vertices
of the building corresponding to points of the projective space, type 2 vertices corresponding
to lines, and so on, with type n vertices corresponding to hyperplanes. An automorphism of a
projective space is a collineation (respectively, duality) if the corresponding automorphism of
the building of type An is type preserving (respectively, interchanges types i and n − i + 1 for
i = 1, . . . , n).

We denote by PG(n,K) the projective space over K of dimension n over a (possibly noncom-
mutative) field K. The points, lines, etc, are the 1-spaces, 2-spaces, etc of the vector space Kn+1.

If F is a subfield of K, with K 2-dimensional over F, then the natural inclusion of PG(n,F)
in PG(n,K) is called a Baer subspace (however note that Baer subspaces are not “subspaces”
in the technical sense of point-line geometry). A Baer collineation of PG(n,K) is a collineation
that pointwise fixes a Baer subspace.

A symplectic polarity of PG(n,K) is a duality θ of the form U θ = {v ∈ Kn+1 | (u, v) =
0 for all u ∈ U}, where (·, ·) is a non-degenerate symplectic form on Kn+1 (necessarily n is odd
and K is commutative; and here U is a subspace).

An (In−i,−Ii)-homology of PG(n − 1,K), K a commutative field, is a collineation arising
from a linear map in the underlying vector space with diagonal matrix containing n− i times 1
and i times −1.

Domesticity in buildings of type An is well understood (see Theorem 1.5 below).

Theorem 1.5 ([17, Theorem 3.1, 4.3] and [10, Theorem 3.5]). Let ∆ be the building An(K),
regarded as the projective space PG(n,K), with K a possibly non-commutative field and n ≥ 2.

(1) A collineation θ of ∆ has opposition diagram Diag(θ) = A1
n;i (with 0 ≤ i ≤ n/2) if and

only if θ pointwise fixes a unique subspace of projective dimension n − i but does not fix
any subspace of larger projective dimension pointwise.
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(2) If |K| > 2 then ∆ admits domestic dualities if and only if n is odd and K is commutative.
In this case, every domestic duality is a symplectic polarity (that is, θ is induced from a
non-degenerate symplectic form on Kn+1), with opposition diagram Diag(θ) = A2

n;(n−1)/2.

Thus the focus of this paper is on buildings of types Bn, Cn, and Dn.

1.6 Polar spaces

Building of type Bn, Cn, and Dn may all be considered as polar spaces Π, where the points of Π
are the type 1 vertices of the building. We recall the basic definitions below.

Definition 1.6 (See [6, Chapter 7]). Let n > 0. A polar space of rank n is a pair Π = (P,Ω)
consisting of a set P (the points) and a set Ω of subsets of P (the singular subspaces) satisfying
the following axioms:

(1) A singular subspace X ∈ Ω together with the singular subspaces contained in it define a
(possibly reducible) d-dimensional projective space for some d ∈ {−1, 0, . . . , n − 1} (then
d = dim(X) is the dimension of X).

(2) The intersection of any two singular subspaces is again a singular subspace.
(3) If X is an (n−1)-dimensional singular subspace and if p ∈P\X then there exists a unique

(n− 1)-dimensional singular subspace Y containing p such that dim(X ∩ Y ) = n− 2. The
singular subspace X ∩ Y consists of those points q of X for which {p, q} is contained in
some singular subspace of dimension 1.

(4) There exist two disjoint singular subspaces of dimension n− 1.

Let Π = (P,Ω) be a polar space of rank n. The singular subspaces of dimension 1 (re-
spectively 2) are called lines (respectively planes). The singular subspaces of dimension n − 1
(respectively n−2) are called maximal (respectively submaximal) singular subspaces. A singular
subspace of dimension i will be called a singular i-space. Points p, q ∈ P are collinear if they
are contained in a line, and note that if two distinct points are contained in a singular subspace
then they are collinear by the first axiom. The (unique) line determined by two distinct points
x, y will be denoted 〈x, y〉. The symbol 〈·〉 will be used throughout and will have the obvious
meaning of generation.

Let L denote the set of lines of Π = (P,Ω). Taking incidence to be containment, one may
regard Π as a point line geometry Π′ = (P,L ). Indeed, there is an equivalent set of axioms,
due to Buekenhout & Shult, that characterise polar spaces in terms of this incidence structure
(see [6, §7.2]). In particular, Π′ satisfies the following condition (the Buekenhout-Shult one-or-all
axiom): If p ∈ P and L ∈ L are not incident, then either one or all points of L are collinear
with p.

The set Ω can be recovered from the point line geometry Π′ = (P,L ) as the set of all
X ⊆ P that are subspaces of Π′ (that is, every line that has at least two distinct points in X
has all of its points in X) and singular (that is, X consists of mutually collinear points). Thus
we will identify Π and Π′.

We write p ⊥ q to indicate that points p and q are collinear and we write p⊥ for the set of
all points collinear to p (including p itself). If X ⊆P then we write X⊥ =

⋂
p∈X p

⊥.
Points x, y ∈ P are opposite (in the building theoretic sense) one another if and only if

they are not collinear. More generally, opposition of singular subspaces is given by the following
obvious lemma.

Lemma 1.7. Singular spaces X,Y ∈ Ω are opposite if and only if they have the same dimension,
are disjoint, and for each point x ∈ X there is a point y ∈ Y such that x and y are opposite. In
particular, maximal singular subspaces X,Y are opposite if and only if they are disjoint.
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We recall the following definitions.

Definition 1.8. Let Π be a polar space of rank n.
(1) A subspace of corank t, 0 ≤ t ≤ n − 1, of a polar space of rank n is a subspace having

non-empty intersection with every singular subspace of dimension t, and such that it is
disjoint from at least one singular subspace of dimension t− 1.

(2) A geometric hyperplane is a subspace of corank 1, that is, a subspace with the property
that every line contains at least one point of the subspace, and at least one line contains
exactly one point of it. It is called singular if it coincides with p⊥ for some point p;
otherwise it is called non-degenerate, and then the point line geometry induced in it is a
polar space.

(3) A subspace of corank 2 will also be called a geometric subhyperplane.
(4) A collineation of Π is a permutation of the point set P that preserves the line set L .
(5) A central collineation (with centre p ∈P) is a collineation that fixes every point collinear

to p.
(6) An axial collineation (with axis L ∈ L ) is a collineation θ that stabilises each line that

intersects L. Necessarily θ fixes each point collinear with all points of L.
(7) Central collineations θi (i = 1, 2) with centres pi (i = 1, 2) are perpendicular if p1 and p2

are collinear.
(8) Axial collineations θi (i = 1, 2) with centres Li (i = 1, 2) are perpendicular if either L1 and

L2 intersect in a point and are not coplanar (we call these of the first kind), or L1 and L2

are contained in the same 3-space and do not intersect (we call these of the second kind).
(9) Two central collineations, or two axial collineations, are opposite if their centres are oppo-

site.
(10) An ideal Baer collneation of polar space of rank 3 is a collineation that has at least one

fixed line, induces a Baer collineation in every fixed plane, and fixes every plane through
each fixed line.

We will always assume, unless explicitly stated otherwise, that polar spaces have thick lines.
That is, every line contains at least 3 points. We call a polar space of rank n non-thick if every
(n − 2)-dimensional singular subspace is contained in exactly two maximal singular subspaces
(of dimension n − 1), and thick otherwise. Thick polar spaces correspond to buildings of type
Bn and Cn (the chambers of the building are maximal flags of singular subspaces in the polar
space, and in this way the type i + 1 vertices of the building correspond to singular subspaces
of dimension i for 0 ≤ i ≤ n − 1). In the non-thick case every (n − 2)-dimensional singular
subspace is contained in exactly two maximal singular subspaces, and there are two types of
maximal singular subspaces (members of the same type intersect each other in subspaces of even
codimension). The so called “oriflamme complex” of such a polar space is then a thick building
of type Dn.

We may regard an automorphism θ of a building ∆ of type Bn, Cn, or Dn as an automorphism,
also denoted θ, of the associated polar space Π = (P,Ω). Since neither dualities of B2/C2

buildings nor trialities of D4 buildings play a role in this work, all such automorphisms will be
collineations of the polar space Π (however, note that in the Dn case, the automorphism θ may
interchange the type n− 1 and n vertices of the building).

All thick polar spaces, with the exception of one class in rank 3, are embeddable in projective
space. More precisely, they arise as the isotropic geometry of non-degenerate quadratic forms,
alternating forms, and Hermitian forms, or are a subspace thereof (see [20]); in the latter case
the underlying field is non-commutative and has characteristic 2 and they are described by a
pseudo-quadratic form, but we will not need this in this work, since, for example, we will prove
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results that exclude non-commutative fields, such as Proposition 3.15. The polar spaces related
to quadratic forms are called orthogonal polar spaces and arise as non-degenerate quadrics in
projective space.

The split spherical buildings of type Dn correspond to hyperbolic quadrics (with standard
equation X−2nX2n + X−2n+1X2n−1 + · · · + X−1X1 = 0), and those of type Bn correspond to
the parabolic quadrics (with standard equation X−2nX2n+X−2n+1X2n−1 + · · ·+X−1X1 = X2

0 ).
The split buildings of type Cn are related to a non-degenerate alternating form in standard form
X−2nY2n − X2nY−2n + X−2n+1Y2n−1 − X2n−1Y−2n+1 + · · · + X−1Y1 − X1Y−1. Note that these
arise as the fixed point geometry of symplectic polarities in projective space. It is well-known
that, if the field K is perfect of characteristic 2, then the polar spaces of type Bn and Cn are
isomorphic; if the field is not perfect (but still has characteristic 2), then the polar space of type
Bn is a polar subspace of the one of type Cn. For ease of formulation, we will call a symplectic
polar space in characteristic distinct from 2 a proper symplectic polar space.

Polar spaces associated to a non-degenerate σ-Hermtitian form, with σ an involution of the
underlying field K, are called Hermitian polar spaces. They are called minimal Hermitian if
the dimension of the projective space is 2n − 1, where n is the rank of the polar space. The
standard equation of a minimal Hermitian polar space is Xσ

−2nX2n+Xσ
2nX−2n+Xσ

−2n+1X2n−1 +
Xσ

2n−1X−2n+1 + · · ·+Xσ
−1X1 +Xσ

1X−1 = 0.
In the language of polar spaces it is convenient to use “(projective) dimension as a singular

subspace” rather than “type of a vertex of the building”, and therefore there is a shift of indexing.
If θ is an automorphism of Π we say that θ is i-domestic if θ maps no singular subspace of
dimension i to an opposite. Thus i-domesticity means domestic on type i + 1 vertices of the
building. There is an exception in non-thick polar spaces, where there are two types of maximal
singular subspaces. These both have projective dimension n− 1, and we will call them (n− 1)′-
spaces and (n− 1)-spaces, and these correspond to the vertices of types n− 1 and n in the Dn
building. The expressions point-domestic and line-domestic, etc, have the obvious meanings.

2 Class I collineations

Recall that the class I collineations of a polar space are those domestic collineations that map
at least one point to an opposite point. Thus the opposition diagram of a class I collineation
is X1

n;i for some 0 ≤ i < n (where X ∈ {B,C,D}). Theorem 1 (proved below) shows that these
collineations are characterised by large structured fixed point sets.

Lemma 2.1. Let Π be a polar space of rank n and let 0 ≤ i ≤ n−1. Suppose that θ is i-domestic.
Moreover,

(1) if i < n− 1 suppose that θ is (i+ 1)-domestic, and
(2) if i > 0 suppose that θ is not (i− 1)-domestic.

Then θ fixes pointwise a geometric subspace of corank i.

Proof. The statement in the case i < n − 1 is precisely [18, Theorem 6.1]. If i = n − 1 then
we follow the ideas of the proof of [18, Theorem 6.1]. Only the first step of the proof in [18,
Theorem 6.1] uses the fact that there exist singular subspaces of dimension i + 1. Since here
i = n − 1 (and so no such singular subspaces exist), we provide a different argument for this
step of the proof for this case.

Let U be a non-domestic submaximal singular subspace and let M be any maximal singular
subspace containing U . By (n − 1)-domesticity, M θ intersects M in a point p. We now claim
that pθ = p. Suppose for a contradiction that pθ 6= p and choose a submaximal singular subspace
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U0 contained in M , with p ∈ U0 and pθ
−1

/∈ U0. Then U θ0 contains pθ but not p. Let M0 be
any maximal singular subspace containing U0, but distinct from M . Then M0 and M θ

0 have a
point p0 in common (by (n − 1)-domesticity). Clearly, p0 /∈ M θ. But p0 is collinear with all
points of U θ0 (since it belongs to M θ

0 ) and also to p (as it belongs to M0), which implies that p0

is collinear to all points of M θ, a contradiction. This proves the claim.
It follows that U⊥ ∩ (U θ)⊥ is fixed pointwise, and the remainder of the proof of [18, Theo-

rem 6.1] now applies verbatim.

We can now prove Theorem 1.

Proof of Theorem 1. Let θ be a nontrivial domestic collineation of a polar space Π with oppo-
sition diagram X1

n;i with X ∈ {B,C,D}, n ≥ 2, and 1 ≤ i ≤ n. Since we assume that Π is large
the collineation θ is capped, and so since θ is domestic we have i < n. Thus θ is domestic on
type i + 1 vertices of the associated building, that is, θ is i-domestic (recall the index shift for
projective dimension). Then the hypothesis of Lemma 2.1 holds, and hence θ fixes pointwise a
geometric subspace of corank i.

For the converse, we assume that θ maps at least one point to an opposite point, fixes a
geometric subspace of corank i, and fixes no geometric subspace of any smaller corank. If θ
maps no singular (i − 1)-space to opposite then θ has diagram X1

n;j for some j < i (by the
classification of admissible diagrams, and the fact that a point is mapped to opposite). Thus by
the previous paragraph θ fixes a geometric subspace of corank j < i, a contradiction. It remains
to show that θ does not map any singular i-space to opposite. This is clear from the definition
of subspaces of corank i: the fixed structure intersects every singular i-space, hence no such
singular subspace is mapped to an opposite.

The simplest situation occurs with opposition diagram X1
n;1, since this is equivalent to a

collineation pointwise fixing exactly a geometric hyperplane. It then depends on the structure
of the possible geometric hyperplanes whether or not some general statements can be made
about such collineations. In particular, if the polar space is split or non-embeddable, we can
nail them all down. If the polar space is orthogonal (arises from a quadric) in characteristic
distinct from 2, then the geometric hyperplane must be non-degenerate. In the next paragraphs,
we give more precise details for these cases. We start with symplectic polar spaces, where we can
completely classify the collineations with diagrams C1

n;1 and C1
n;2. Consider first the case C1

n;1.

Theorem 2.2. Every collineation θ of the symplectic polar space ∆ = Cn,1(K) with polar oppo-
sition diagram (that is, Diag(θ) = C1

n;1) is a central elation.

Proof. By [18, Theorem 5.1] the collineation θ fixes pointwise a geometric hyperplane H. If H
spans the whole ambient (2n−1)-dimensional projective space, then θ is the identity (since every
colineation of Cn,1(K) is inherited from a collineation of the ambient projective space). Hence
H is contained in a projective hyperplane of the ambient projective space, and hence coincides
with the perp of some point p. Since θ fixes p⊥ pointwise, dually, θ fixes p subspace-wise, that
is, θ fixes all subspaces through p. Hence θ is the central collineation with center p (and axis p⊥

in the ambient projective space).

The opposition diagram C1
n;2 is the polar-copolar diagram of type Cn (extending the termi-

nology from [12]). In this case we have the following classification.

Theorem 2.3. Let n ≥ 3. A collineation θ of the symplectic polar space ∆ = Cn,1(K) with
|K| ≥ 3 has opposition diagram Diag(θ) = C1

n;2 if and only it θ is either
(1) a product of two nontrivial perpendicular long root elations, or
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(2) a nontrivial member of the group generated by two opposite long root groups and not
conjugate to a long root elation.

In particular, if char(K) 6= 2 then all nontrivial short root elations have opposition diagram C1
n;2.

Proof. Suppose that θ has opposition diagram C1
n;2. Since |K| ≥ 3 the polar space is large,

and so by Theorem 1 the collineation θ pointwise fixes a subspace S of corank 2. We claim
that in the ambient projective space PG(2n − 1,K), S is a subspace, necessarily of dimension
2n− 3. Indeed, since S is a subspace and is fixed pointwise, the projective subspace it generates
in PG(2n − 1,K) is fixed pointwise by θ and we may assume it coincides with S (otherwise we
replace S by it). If dimS = 2n− 2, then S is a hyperplane and θ is line-domestic (as every line
contains a fixed point), a contradiction. Now assume for a contradiction that dimS ≤ 2n − 4.
Since θ is not line-domestic, there exists a singular plane π of ∆ intersecting S in just a point
p. Let L be any line in π not through p. Then every singular plane through L intersects S, so
L⊥ ⊆ 〈L, S〉. This yields dimS ∈ {2n − 4, 2n − 5}. If dimS = 2n − 5, then L⊥ = 〈L, S〉, and
considering another line M ⊆ π not through p, we obtain M⊥ ⊆ 〈M,S〉 = 〈L, S〉 and hence
comparing dimensions, we see L⊥ = M⊥, a contradiction. This shows dimS = 2n − 4, hence
dim〈L, S〉 = 2n− 2 and there is a unique point x on L such that x⊥ = 〈L, S〉 = 〈π, S〉. Varying
L in π appropriately, this implies x⊥ = y⊥ for at least two points of π, a contradiction. Hence
dimS = 2n− 3.

So S = p⊥∩q⊥, for two points p, q of ∆. Suppose first that p and q are not collinear. Then the
matrix MA of θ can be written as a block diagonal matrix with blocks the (2n− 2)× (2n− 2)-
identity matrix and one 2 × 2 block A preserving a non-degenerate 2-dimensional symplectic
form. Hence A has determinant 1. But then, A, and hence θ, is generated by the unipotent
upper triangular and lower triangular matrices, hence by opposite long root elations.

Suppose now that p and q are collinear. We consider the symplectic form x1y2 − x2y1 +
x3y4 − x4y3 + · · · + x2n−1y2n − x2ny2n−1 and we may assume without loss of generality that
p = (1, 0, 0, . . . , 0), q = (0, 0, 1, 0, . . . , 0). Then one easily calculates that the matrix of θ is block
diagonal, with all trivial blocks except the first 4× 4 block, which equals

1 a 0 c
0 1 0 0
0 c 1 b
0 0 0 1

 ,

for some a, b, c ∈ K. If we denote the corresponding collineation of ∆ by θ(a, b, c), then we see
that θ(a, b, c) = θ(a, 0, 0)θ(0, b, 0)θ(0, 0, c), where the first two are long root elations and the third
one is a short root elation. Also, one calculates that, if a 6= 0, then θ(a, c2/a, c) is a long root
elation with center (a, 0, c, 0, 0, . . . , 0), and θ(a, b, c) = θ(a, c2/a, c)θ(0, b− c2/a, 0) is the product
of two perpendicular long root elations. Similarly if b 6= 0. Hence we may assume that (a, b) =
(0, 0). In this case θ = θ(0, 0, c) is a short root elation. If char(K) = 2, then θ is a long root elation
in the corresponding building of type Bn and hence has opposition diagram B2

n;1 = C2
n;1 (by [12,

Theorem 2.1]). Suppose now char(K) 6= 2. Then θ(0, 0, c) = θ(c/2, c/2, c/2)θ(−c/2,−c/2, c/2),
with θ(±d,±d, d) a central long root elation with center (1, 0,±1, 0, . . . , 0) (using respective
signs).

Thus we have shown that every collineation with diagram C1
n;2 is either as in (1) or (2). The

converse is a direct calculation (see the proof of Proposition 4.4, for example).

Quite similar to symplectic polar space is the result for thick non-embeddable polar spaces.
We use C1

3;1 for the opposition diagrams here since these polar spaces behave like symplectic

15



ones (and their Dynkin type is morally C3 in view of the underlying root system in the algebraic
group sense, made apparent by the commutation relations of their root groups).

Theorem 2.4. Every collineation θ of a thick non-embeddable polar space ∆ with polar opposi-
tion diagram (that is, Diag(θ) = C1

3;1) is a central elation.

Proof. According to [5], the only geometric hyperplanes are the singular ones, that is, all points
collinear with a given fixed point p. Let x be an arbitrary point not collinear to p. Then x⊥∩p⊥
is pointwise fixed, and so xθ is contained in {p, x}⊥⊥. But then θ coincides with the unique
central elation with centre p mapping x to xθ. For an explicit expression of such central elation
(showing it really exists), see [7, Proposition 4.13].

A similar argument shows:

Proposition 2.5. Every collineation θ of an orthogonal polar space ∆ over a field of character-
istic not 2, with opposition diagram Diag(θ) = B1

n;1 pointwise fixes a non-degenerate geometric
hyperplane. Also, θ is an involution.

Proof. Since the characteristic of the field is not 2 the polar space is large, and so by Theorem 1
the collineation θ fixes a geometric hyperplane H pointwise. Suppose that H s singular, that is,
H = p⊥ for some point p of ∆. Since θ commutes with the non-degenerate polarity ρ arising from
the symmetric bilinear form that defines ∆, and since θ fixes all points in pρ = 〈p⊥〉 (generation
in the ambient projective space), it has to stabilise all hyperplanes through p, hence also all
lines through p. But each such line outside H intersects ∆ in one further point x, hence xθ = x,
for each point outside H. This shows the first assertion.

A similar argument shows that θ is a homology in the ambient projective space with axis
〈H〉 and center c := 〈H〉ρ. Since lines through c intersect ∆ in at most two points, θ is an
involution.

Next we consider split polar spaces of type Bn, n ≥ 3, and Dn, n ≥ 4. For type Bn, there
is not anything we can say on top of Proposition 2.5. However, for type Dn, we can be slightly
more specific. Indeed, the opposition diagram D1

n,1 characterises the unique involution pointwise
fixing a polar subspace of split type Bn−1, and it fixes no chamber.

Theorem 2.6. Every collineation θ of a polar space ∆ of type Dn, n ≥ 4, with opposition
diagram D1

n;1 is an involution pointwise fixing a polar subspace of type Bn−1. It follows that θ is
automatically type-rotating.

Proof. This follows from the fact that there are no non-degenerate quadrics in PG(2n− 2,K) of
Witt index n (since every pair of maximal subspaces would have to intersect nontrivially), and
there is a unique quadric in PG(2n+ 1,K) with Witt index n, and it is a parabolic one.

Remark 2.7. Note that, if char(K) = 2, then Bn,1(K) is a subspace of Cn,1(K) (with equality
if K is perfect). In the non-perfect case there exist line-domestic collineations distinct from
central collineations, whereas in the perfect case, we can rely on Theorem 2.2 to deduce that we
always have a central collineation. A counterexample for the non-perfect case is given by the
collineations of PG(2n− 1,K) with action

(x−n, x−n+1, . . . , x−1, x1, . . . , xn) 7→ (x−n, x−n+1, . . . , x−2, ax1, a
−1x−1, x2, . . . , xn),

with a a non-square, with respect to the (standard) form x−nxn + · · · + x−1x1 ∈ K2. (If this
was a central collineation, then the point with coordinates all 0 except (x−1, x1) = (a, 1) would
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be the centre, but this point does not belong to the polar space.) In fact one can choose the
coordinates so that the fixed subspace is the above one, that is, has equation X−1 = aX1, and
then a generic collineation pointwise fixing that geometric hyperplane is given by

(x−n, . . . , x−1, x1, . . . , xn) 7→ (x−n, . . . , (ab+ 1)x−1 + a2bx1, bx−1 + (ab+ 1)x1, . . . , xn),

with ab2 + b ∈ K2.

3 Point-domestic collineations of a polar space

In this section we prove Theorems 3–9, dealing with point-domestic collineations. We begin with
preliminary observations, before dividing the analysis into collineations of class II and class III.
Note that by [11, Theorem 1] all point-domestic collineations of a polar space are capped.

3.1 Preliminary observations

Here is the first basic observation.

Proposition 3.1. Let ∆ be a polar space of rank at least 2. Let θ be an automorphism of ∆
and suppose that θ is point-domestic. Then for every point p with pθ 6= p, the line 〈p, pθ〉 is fixed
under θ.

Proof. Suppose for a contradiction that there exists a point p with pθ 6= p and 〈p, pθ〉 not fixed
under θ. Pick x ∈ 〈p, pθ〉 \ {p, pθ}. Then xθ ∈ 〈pθ, pθ2〉 \ {pθ, pθ2}. By point-domesticity, x is
collinear to all points of 〈pθ, pθ2〉, and so p, pθ, pθ

2
are contained in a plane π of ∆, which they

span. Let α be a plane containing 〈p, pθ〉 and so that α and π are not contained in a common
singular subspace of ∆. Pick q ∈ α \π and r ∈ 〈q, pθ〉 \ {q, pθ} and note that q is not collinear to
pθ

2
. We then have r ⊥ rθ and pθ ⊥ rθ (as p ⊥ r, both are in α). So rθ is collinear to all points

of 〈r, pθ〉. Likewise, qθ is collinear to all points of 〈q, pθ〉 = 〈r, pθ〉. Hence all points of 〈qθ, rθ〉
(in particular, pθ

2
) are collinear to all points of 〈q, pθ〉 (in particular, q). This contradiction

concludes the proof.

We note an immediate consequence of Proposition 3.1.

Corollary 3.2. If θ is a point-domestic collineation of some polar space ∆, then every member
of 〈θ〉 is point-domestic.

Proof. Let x be any point of ∆. If x = xθ, then x is fixed by every member of 〈θ〉; if x 6= xθ

then θ stabilises 〈x, xθ〉 and so does every member of 〈θ〉.

The above proposition prompts the following question: Which collineations of a projective
space have the property that each line joining a non-fixed point and its image is fixed? The
answer is in the following proposition.

Proposition 3.3. Let Σ be a finite-dimensional projective space with dimension at least 2 and
θ a collineation with the property that each point of Σ is contained in at least one fixed line (or,
equivalently, the line 〈x, xθ〉 is fixed for every point x 6= xθ). Then exactly one of the following
holds.

(i) There are no fixed points and the set of fixed lines forms a line spread of Σ. The projective
dimension of Σ is odd, say 2n + 1, and the fixed subspaces form a projective space of
dimension n.
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(ii) The set of fixed points forms a Baer subspace B of Σ.
(iii) The set of fixed points is the union of two complementary subspaces U, V of Σ and θ is a

(U, V )-homology, i.e., θ fixes all subspaces in U ∪ V and all subspaces containing one of
U, V .

(iv) The set of fixed points is a subspace U of dimension `, with 2` + 1 ≥ dim Σ, and the
intersection of all fixed hyperplanes is a subspace V ⊆ U of dimension dim Σ− `−1. Then
θ is a (U, V )-elation, i.e., θ fixes every subspace of U and every subspace containing V .

Proof. If θ has no fixed points, then clearly (i) holds. So from now on we may assume that there
is at least one fixed point. The proof is divided into the following steps.

Step 1. Suppose first dim Σ = 2. If all lines are fixed, then θ is the identity and (iv) holds with
` = 2. Hence we may assume that some line L is not fixed. We claim that x = L ∩ Lθ is fixed.
Indeed, if not then x 6= xθ ∈ Lθ. Since xθ also belongs to every line through x that is fixed
under θ, we obtain the contradiction that Lθ is fixed. The claim is proved. We obtain a second
fixed point y by intersecting the fixed lines through two distinct points of L \ {x}.

Suppose first that no point off xy is fixed. Let z ∈ xy be arbitrary and choose a line M 3 z,
with M 6= L. If M = M θ, then z = M ∩ xy is fixed; if M 6= M θ, then M ∩M θ is fixed and it is
necessarily z as otherwise it lies off xy, contrary to our assumption. We have proved that each
point of xy is fixed and therefore θ is axial and hence central, so (iv) holds with ` = 1.

Suppose now a point z off xy is fixed, but no quadrangle is fixed. Let K be a line disjoint
from {x, y, z}. If K is fixed, then the intersection of the lines joining x and yz ∩K, and y and
xz∩K, respectively, is fixed and forms a quadrangle with x, y, z, a contradiction. Hence K 6= Kθ

and since K ∩Kθ is fixed, it lies on one of the lines xy, yx, xz, say xy. Using a similar argument
as above, one shows that for every line M disjoint from {x, y, z}, the image M θ intersects M on
xy. Hence we conclude that xy is fixed pointwise and (iii) holds.

Finally suppose θ fixes some quadrangle. Then the fixed point structure is a subplane π.
Every point is contained in at least one line of π (by the assumption on θ), and every line N is
either fixed, and hence contains many fixed points, or is not fixed and contains the fixed point
N ∩N θ. So (ii) holds.

Step 2. We note that, if some subspace U is fixed, then the restriction θ|U of θ to U satisfies the
assumptions of the proposition for Σ replaced by U .

Step 3. Suppose dim Σ ≥ 3 and the fixed point set P does not generate Σ. We first claim that
P is a subspace. Indeed, let x, y ∈ P and let z ∈ Σ \ 〈P 〉. Then the line L = 〈z, zθ〉 is fixed, and
hence the plane α = 〈L, x〉 is fixed. Hence steps 1 and 2, and the choice of z outside 〈P 〉 implies
that α ∩ P is a full line M through x. We may assume y /∈ M , as otherwise the claim follows.
Then u = L ∩M is fixed and so is the plane 〈y, z, u〉. Again steps 1 and 2 and the choice of
z implies that all points of the line 〈y, u〉 are fixed. Then the fixed plane 〈x, y, u〉 contains two
lines all of whose points are fixed, and the claim follows from steps 1 and 2.

Note that the previous argument also shows that, whenever z ∈ Σ \ P , then 〈z, zθ〉 contains
a unique fixed point. Let Q be the set of all points q ∈ P such that some line through q not in
P is fixed. We claim that Q is a subspace. Indeed, let q, r ∈ Q. Then the definition of Q implies
that there exist points x, y ∈ Σ \ P with q ∈ 〈x, xθ〉 and r ∈ 〈y, yθ〉. Clearly X = 〈x, y, q, r〉 is
3-dimensional, and X ∩ P = 〈q, r〉. Hence the line L = 〈x, y〉 does not intersect P . This implies
that L∩Lθ = ∅. Let s ∈ 〈q, r〉 arbitrary. Let z ∈ L and z′ ∈ Lθ be such that s ∈ 〈z, z′〉. Then z′

is the unique point on Lθ such that 〈z, z′〉 intersects P . We deduce that z′ = zθ and so s ∈ Q.
The claim is proved.

Next we claim that Q is the intersection of all fixed hyperplanes. Indeed, first let H be
a hyperplane containing Q. Pick z ∈ H \ P . Then 〈z, zθ〉 intersects Q ⊆ H, hence zθ ∈ H.
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Consequently H is fixed. Now let H be a hyperplane not containing Q. Select x ∈ Q \H. Let
z ∈ Σ \P be such that x ∈ 〈z, zθ〉. Since x /∈ H, we may assume z ∈ H (a hyperplane intersects
every line nontrivially). But then zθ /∈ H and so H 6= Hθ. The claim is proved.

Now notice that in the dual of Σ, the roles of P and Q are interchanged. Hence, up to
duality, we may assume k = dimQ ≤ 1

2(n− 2) (if k = 1
2(n− 1) = dimP , then (iv) holds). Let

W be a subspace complementary to Q. Then W ∩W θ has dimension at least n − 2k − 2 ≥ 0.
Hence W ∩W θ is nonempty. Let w ∈ W ∩W θ be arbitrary. Then 〈Q,w〉 is fixed and so is
w = 〈Q,w〉∩W = 〈Q,w〉∩W θ. Hence W ∩W θ ⊆ P and so ` = dimP ≥ n−k−1. If ` ≥ n−k,
then the dual argument could be applied and would yield n − k − 1 ≥ n − k, a contradiction.
Hence k + ` = n− 1 and (iv) holds.
Step 4. Suppose dim Σ ≥ 3, the fixed point set B generates Σ and has the structure of a thick
projective space. Then by steps 1 and 2, every fixed plane α intersects B in a Baer subplane of
α and (ii) holds.
Step 5. Suppose dim Σ ≥ 3, the fixed point set P generates Σ and has the structure of a non-
thick generalised projective space. We first claim that, if L is a thick line of P , then all points
of Σ incident with L belong to P . Indeed, suppose not and let {x, y} be a thin line of P . The
plane π = 〈L, x〉 is fixed by θ and steps 1 and 2 implies that π ∩ P is a Baer subplane of π. Let
B be a line of π through x intersecting P in at least three points. Then B is a proper subline of
its carrier in Σ. The plane 〈B, y〉 is fixed and steps 1 and 2 imply that 〈x, y〉 contains at least
three points of P , a contradiction. The claim is proved.

Now let {x, y} again be a thin line (which exists by assumption). Let Px and Py be the sets
of points of P lying on a thick line together with x and y, respectively. We claim that {Px, Py}
is a partition of P . Indeed, if u ∈ Px ∩ Py, then the plane 〈x, y, u〉 contains two lines entirely
consisting of fixed points, hence steps 1 and 2 imply that all points of that plane are fixed; in
particular all points of 〈x, y〉, contradicting our assumption on 〈x, y〉. Also, suppose there exists
v ∈ P \ (Px ∪Py). Then the plane 〈x, y, v〉 is fixed and 〈x, y, v〉 ∩P = {x, y, v}. This contradicts
steps 1 and 2 once again. The claim follows. Consider now two arbitrary points z, w of Px,
z 6= w 6= x 6= z. Then the plane 〈x, z, w〉 contains two lines all of whose points are in P . Steps 1
and 2 imply that also all points of 〈z, w〉 are fixed. Hence Px, and similarly Py, is a subspace of
Σ. Now (iii) holds.

Examples of each kind are easy to find. One remark concerning Case (ii): if the underlying
structure is a field (the projective space is Pappian then), then such an automorphism θ is
induced by the identity matrix and a companion field automorphism pointwise fixing a subfield
F of a field K such that K is 2-dimensional over F. Hence θ is an involution. But if the underlying
division ring is not commutative, then examples exist where θ is not an involution (note that
this corrects [17, Theorem 7.2] where the statement “ideal Baer involution” should be replaced
with “ideal Baer collineation”). Consider for instance a field F with a quadratic Galois extension
K, and denote the Galois involution x 7→ x. Then define the division ring KF((t)) of Laurent
series f(t) over K with multiplication induced by xt = tx, for all x ∈ K. Let a ∈ K be such
that aa = 1, but a /∈ {1,−1} (always exists). Then the mapping θ : f(t) 7→ f(at) defines an
automorphism pointwise fixing the field K((t2)) of Laurent series f(t2) over K (and KF((t)) is
2-dimensional over K((t2)) and the induced automorphism on any projective space of dimension
at least 2 over KF((t)) satisfies (ii)). However, the order of θ is the multiplicative order of a in
K, which is distinct from 2 as a 6= −1.

This has now the following interesting consequence.

Corollary 3.4. A point-domestic collineation θ of a polar space ∆ = (X,Ω) of odd rank r fixes
a chamber.
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Proof. We first claim that θ fixes a maximal singular subspace, i.e., a singular subspace of
dimension r − 1. Note that [18, Theorem 4.2] proves the claim for polar spaces that are not
symplectic, however here we provide an independent proof that includes the symplectic case.

Suppose θ does not fix any maximal singular subspace. Let d ≤ r − 2 be the maximal
dimension of a fixed singular subspace and let U be fixed under θ with dimU = d. Then d ≥ 1
by Proposition 3.1. Since d < r − 1, there exists a point x collinear to all points of U . If x is
fixed, then the singular subspace generated by U and x is fixed under θ and has dimension d+1,
a contradiction to the maximality of d. Hence x 6= xθ and θ fixes the line xxθ. Since U is fixed,
xθ is collinear to all points of U and U and xxθ generate a subspace U ′ of dimension d + 1 or
d+ 2, fixed under θ, again a contradiction to the maximality of d. We conclude that the claim
holds.

Now let U be a maximal singular subspace fixed by θ. By Proposition 3.3, we always fix a
chamber of U , and hence a chamber of ∆, except in Case (i). But that case does not occur here
since dimU = r − 1 is even.

Lemma 3.5. A point-domestic collineation θ of a polar space ∆ of rank at least 3 with non-
Pappian planes (hence defined over a non-commutative division ring) fixes a chamber.

Proof. If ∆ has rank 3, then this follows from Corollary 3.4. Suppose now that the rank of ∆ is
at least 4. Then ∆ is thick. If the opposition diagram of θ is B2

n;1, then Proposition 3.11, proved
independently, implies that θ is an axial collineation, hence it fixes any chamber containing
the axis. Consequently, by the classification of opposition diagrams, θ has opposition diagram
B2
n;i, for i > 1. But that means that there is some non-domestic 3-space U . The duality θU ,

however, must be domestic, implying it is a symplectic polarity, contradicting the fact that U
is non-Pappian.

Finally, we observe that we automatically have a class II collineation if it is (n−1)-domestic,
as follows immediately from Lemma 2.1.

Corollary 3.6. Let ∆ be a thick building of type Xn with X ∈ {B,C,D} and let Π = (P,Ω) be
the associated polar space. If a collineation θ has opposition diagram X2

n,i, with 2i < n, then θ
pointwise fixes a geometric subspace or corank at most n− 1.

3.2 Class II automorphisms

If θ is a class II automorphism of a polar space of rank n then Diag(θ) = X2
n;i for some 0 ≤ i ≤ n/2

(where X ∈ {B,C,D}).

3.2.1 The opposition diagrams X2
n;1

The point-domestic collineations with opposition diagram X2
n;1 (with X ∈ {B,C,D}) can be

classified. This is the content of Theorem 3, which we prove in this subsection. We begin with
the symplectic case, that is, Theorem 3(1).

Theorem 3.7. Let n ≥ 2. A collineation θ of the symplectic polar space ∆ := Cn,1(K), assumed
to have at least one fixed point if n = 2, having copolar opposition diagram (that is, C2

n;1) is
unique. It is a involutive homology if char(K) 6= 2, and if char(K) = 2, then θ is an axial elation.

Proof. First assume n ≥ 3. Then θ is j-domestic, for all j ≥ 3, j ≤ n. So it follows from [18,
Theorem 6.1] that the fixed point structure of θ is a subspace of corank 2. Hence the same cases
as in the proof of Theorem 2.3 apply. Clearly, with the notation of that proof, the case where p
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and q are non-collinear only occurs if all points of the hyperbolic line 〈p, q〉 are fixed. This gives
rise to a unique involutive homology if char(K) 6= 2 and to the identity if char(K) = 2. If we
have a collineation θ(a, b, c), a, b, c ∈ K then one easily calculates that θ(a, b, c) maps the point
(xi)1≤i≤2n to a collinear one if and only if

ax2
2 + 2cx2x4 + bx2

4 = 0,

which implies the theorem.
Next assume that n = 2. Then we have a point-domestic symplectic generalised quadrangle.

If follows from [19] that θ either linewise fixes a spread, or pointwise fixes an ideal subquadrangle,
or is an axial elation. Since it is assumed that θ fixes at least one point, it is easily seen that
the first case cannot occur (it leads to the identity).

Suppose now θ pointwise fixes an ideal subquadrangle. Taking the standard symplectic form
x0y1−x1y0 +x2y3−x3y2, we may assume that the ideal subquadrangle contains all lines meeting
both hyperbolic lines (∗, ∗, 0, 0) and (0, 0, ∗, ∗), with self-explaining notation. Then θ has the
form (x0, x1, x2, x3) 7→ (x0, x1, ax2, ax3), for some a ∈ K. This preserves the given symplectic
form if and only if a2 = 1, showing that we have an involutive homology if char(K) 6= 2, and
the identity if char(K) = 2. Since in characteristic 6= 2, a symplectic quadrangle does not admit
axial elations, the theorem is proved.

Next we consider all other polar spaces. Rank 3 will be an exception, but the domestic
collineations in this case are already classified in [18, Section 6]. This includes the more intricate
non-embeddable polar spaces (which do not admit axial elations).

In order to prove Theorem 3(2), we need some preparations. We start with gathering some
properties of geometric hyperplanes and subhyperplanes in the following proposition. The radical
of a subspace S is the set of points of S collinear to all points of S. It is always a singular
subspace.

Proposition 3.8. Let ∆ = (X,Ω) be a non-degenerate polar space of rank at least 3. Then the
following properties hold.

(i) Each geometric hyperplane and subhyperplane is a possibly degenerate polar space (and
every point of the radical is called a deep point).

(ii) The radical of a geometric hyperplane or subhyperplane is at most 0-dimensional, or 1-
dimensional, respectively.

(iii) Let S be a geometric subhyperplane and let p ∈ X be a point off S. Set S′ = {x ∈ X | x ∈
L, p ∈ L, S ∩L 6= ∅}. If S ⊆ p⊥, then S′ = p⊥ is a geometric hyperplane. If some point of
S is not collinear to p, then S′ is a geometric subhyperplane.

(iv) Every plane containing a deep point of a geometric subhyperplane contains a line of that
subhyperplane.

Proof. (i) This follows immediately from the definition of subspace.

(ii) Suppose the radical of a geometric hyperplane H contains a line L. Then a line L′ opposite
L has no point in common with H, contradicting the definition of a geometric hyperplane.
The other statement is proved in a similar fashion.
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(iii) Suppose first that S ⊆ p⊥. Assume for a contradiction that some line L through p does
not intersect S. Select any plane π containing L. Since S is a geometric subhyperplane,
it intersects π in a point x (it cannot intersect in a line since this would contradict the
fact that L does not meet S). Let K be a line in π not containing x, and let α be a plane
through K not collinear to p. Then α and S should have a point y in common, and by
construction y /∈ K. Then y ⊥ p, contradicting the choice of α. This shows that p⊥ = S′.
Clearly, this is a geometric hyperplane.

Now suppose some point of S is not collinear to p. Assume for a contradiction that some
plane β is disjoint from S′. Let βp be a plane through p intersecting β in a line M . Then
βp contains some point s of S; hence the line ps is contained in S′. Consequently the point
ps ∩M is contained in S′. So β contains a point of S′ after all.

(iv) Suppose for a contradiction that some plane α intersects a geometric subhyperplane S
(only) in a deep point x. Let α′ be a plane through a line K of α not through x such that
α′ is not collinear to x. Then α′ has some point y in common with S and xy belongs to
S, hence xy ∩K belongs to S, a contradiction.

Next, we need some more properties of subspaces (of certain corank).

Proposition 3.9. Let S be a subspace of a polar space and assume that S is not a singular
subspace (but it can be a degenerate polar space).

(i) If some singular subspace D of dimension d is a geometric hyperplane of S, then it contains
the radical and maximal singular subspaces of S have dimension either d or d+ 1.

(ii) If a set D of points of S is collinear to its complement S \D, then either it is contained
in the radical or the complement of D is contained in the radical.

(iii) The complement in S of a proper geometric hyperplane of S can never be contained in the
radical.

Proof. For x ∈ S we briefly write x⊥ for x⊥ ∩ S.

(i) Suppose first that there exists a point x in the radical R of S, which is not contained in D.
Let y, z be two non-collinear points of S. The lines xy and xz both contain some point of
D, which, by assumption, are collinear, contradicting the choice of y and z. So D contains
the radical of S. Then D/R is a singular subspace which is a hyperplane in the residue of
R, which is either a (non-degenerate) polar space (a contradiction since for every subspace
there exists a disjoint line) or just a set of points. Then D/R is either empty or a single
point, which proves (i).

(ii) Suppose D is not contained in R and let x ∈ D \ R. Then x⊥ is a (proper) geometric
hyperplane of S and contains S \ D by assumption. Suppose x⊥ \ (D ∪ R) 6= ∅ and let
y ∈ x⊥ \ (D ∪ R). Select z ∈ S \ (x⊥ ∪ y⊥). Then z ∈ D as z /∈ x⊥. But then y ∈ D as
y /∈ z⊥, a contradiction.

(iii) Suppose H is a proper geometric hyperplane of S containing the complement of the radical
R of S. Let x ∈ R \ H and y ∈ H \ R. Then every point z ∈ 〈x, y〉 \ {x, y} belongs to
S \ (R ∪H) = ∅, a contradiction.

The proposition is proved.

Finally we need to recognise symplectic polar spaces, which we already treated in Theo-
rem 3.7.
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Proposition 3.10. A polar space ∆ of rank at least 3 is symplectic if and only if for some pair
of noncollinear points {x, y} (and then for all such pairs) every point z is contained in a line of
the polar space containing a point of {x, y}⊥ and a point of {x, y}⊥⊥.

Proof. The “only if” part is clear. We now show the“if” part.
Replacing ∆ with the intersection of the perps of two appropriate opposite singular subspaces

of codimension 2, we may assume that ∆ has rank 2 (but is classical, implying its automorphism
group acts transitively on opposite pairs of points and hence we may assume the given condition
holds for each pair of non-collinear points). We show that each point is projective i.e., for each
point x and every pair {y, z} of points opposite x, the sets {x, y}⊥ and {x, z}⊥ either have
exactly one point in common, or coincide.

Indeed, we may assume z /∈ {x, y}⊥⊥ (otherwise {x, y}⊥ = {x, z}⊥). Now, the given condi-
tion implies that z is on a line L containing y′ ∈ {x, y}⊥⊥ and z′ ∈ {x, y}⊥. Then z′ ∈ {x, y, z}⊥.
If also z′ 6= z′′ ∈ {x, y, z}⊥, then z ∈ {z′, z′′}⊥ ⊇ {x, y}⊥⊥. Hence y′ ∈ {z′, z′′}⊥, implying the
whole line L is collinear with z′′, hence z′′ ∈ L and consequently z′ = z′′.

The result now follows from [15].

We now prove Theorem 3(2).

Proposition 3.11. Let ∆ = (X,Ω) be a polar space of rank at least 3, not of symplectic type, and
let θ be an automorphism of ∆ with opposition diagram B2

n;1 or D2
n;1. Then θ is an axial elation

(and so ∆ is an orthogonal polar space), or the rank is 3 and θ is an ideal Baer collineation.

Proof. We first show that the fixed point structure of θ is precisely a subspace of corank 2,
whenever θ is not an ideal Baer collineation in rank 3.

Theorems 6.1 and Theorem 7.2 of [18] already imply that θ pointwise fixes a subspace S of
corank 2. Note that S is not a singular subspace as otherwise we can find a plane disjoint from
S. We show that θ does not fix any point outside S. Indeed, suppose for a contradiction that θ
fixes some point x ∈ X \ S.

We first claim that θ fixes pointwise every line incident with x and with a point of S. Indeed,
we distinguish between two situations.

Suppose first that not all points of S are collinear to x. Then x⊥∩S is a geometric hyperplane
H of S. Suppose for a contradiction that all points of S \ H are collinear to all points of H.
Then by Proposition 3.9(ii), (iii), H is contained in the radical of S. Hence the union of all
lines through x intersecting S is a singular subspace, but also a geometric subhyperplane by
Proposition 3.8(iii), clearly a contradiction (an opposite subspace is disjoint). We conclude that
there exist points a ∈ H and b ∈ S \H which are not collinear. Hence the projection of b onto
the line ax is also fixed. Consider any line L in S through a; then the restriction of θ to the
singular plane spanned by L and x is the identity as it fixes a line pointwise and two additional
points. So θ pointwise fixes all lines through x intersecting S in a point collinear to a. By
connectivity of H, θ fixes all lines through x intersecting S pointwise.

Now suppose that all points of S are collinear to x. Assume first that there is a point y 6= x
with y ⊥ S. Note that {x, y}⊥ = S in this case (this follows from Proposition 3.8(iii)). By
Proposition 3.10 we can select a point z not contained in a line joining a point of S and {x, y}⊥⊥.
Note that z is not fixed under θ as, by the choice of z, we can find a point w of x⊥\S collinear to
z, which must be fixed by the one-or-all axiom as otherwise wwθ contains x. Then the line zzθ

intersects x⊥ in some point u, which is fixed by θ, since every line through x is fixed and since
zzθ is fixed by Proposition 3.1. If u /∈ S, then a similar argument as in the previous paragraph
implies that θ fixes x⊥ pointwise, implying line-domesticity, a contradiction. Hence we may
assume u ∈ S. Since S is a section of x⊥, it is a non-degenerate polar space, so there is a point
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v ∈ S \ u⊥. The projection x′ of v onto zzθ is a fixed point of θ and S is not contained in x′⊥.
Hence, by the first part of the proof, the line zzθ is fixed pointwise. This contradiction implies
that z is fixed after all, and hence also the point w above, and hence, as before, this implies that
x⊥ is fixed pointwise. This contradiction shows the claim.

The previous proof clearly showed that S is not contained in x⊥, as otherwise x⊥ is fixed
pointwise and so θ is line-domestic. Let Hx be the union of all lines through x intersecting S.
Then by Proposition 3.8(iii) Hx is a geometric subhyperpane of ∆.

Finally we claim that every line K contains a fixed point. Indeed, let K be any line and let
β be any plane containing L. Since S is a subspace of corank 2, β contains a point s ∈ S, and
since Hx is a subspace of corank 2, β contains a point h ∈ Hx. If s 6= h, then interchanging
the roles of h and x yields a pointwise fixed line in β (namely, hs), and hence a fixed point on
K. So we may assume s = h ∈ H. Suppose first that there exists a point r ∈ S not collinear
to s. Then by the first part of the proof of the present claim, the plane containing r and the
projection of r onto β contains a pointwise fixed line, which intersects K, proving the claim.
So we may assume that s is collinear with all points of S. Then s is a deep point of S and by
Proposition 3.8(iv) every plane through s has a line in common with S, again yielding a fixed
point on K.

Hence θ is line-domestic, contradicting our hypothesis. This shows that indeed, the set of
fixed points for θ is the geometric subhyperplane S. Let x be a point off S. We claim that
the line xxθ intersects S. Indeed, suppose not. Then x⊥ ∩ S = (xθ)⊥ ∩ S. Since the line xxθ

does not intersect S, Proposition 3.8(iii) implies that S is not contained in x⊥. But then the
projection from a point of S \ x⊥ onto the line xxθ is a fixed point outside S, a contradiction.
The claim follows.

Set xxθ ∩ S = c. If some point z opposite c existed in S, then the projection of z onto xxθ

is a point off S that would be fixed, a contradiction. Hence c is a deep point for S. We can
now choose y ∈ X \ S opposite c and obtain a second deep point c′ = yyθ ∩ S of S. Hence cc′ is
the radical of S (since the radical cannot be larger than a line by Proposition 3.8(ii)) and every
point z which is not fixed satisfies zzθ ∩ cc′ 6= ∅. So θ is an axial elation with axis cc′.

3.2.2 Split polar spaces

Our attention now goes to the split case. Indeed, we can classify all point-domestic collineations
of split polar spaces which are also domestic in the maximal singular subspaces. First a lemma
and some notation: For three pairwise disjoint lines L,M,N of PG(3,K), denote by projLM (N)
the projection of N with center L onto M , that is, projLM (N) takes a point x ∈ N onto the
intersection 〈L, x〉 ∩M .

Lemma 3.12. Let L1, L2 and L3 be three pairwise disjoint lines in PG(3,K) and let M be a
transversal, that is, M is a line which intersects Li in a point xi, for all i ∈ {1, 2, 3}. Let L be
a line through x1 in the plane 〈L1,M〉, with L1 6= L 6= M , and, for |K| > 2, let L′ be a line
intersecting both L1 and M , but disjoint from the triple {x1, x2, x3}. Then projL1

L2
(L3) projLL3

(L2)

has a unique fixed point, and projL1
L2

(L3) projL
′

L3
(L2) has exactly two fixed points.

Proof. This follows easily as {L1, L2, L3} and {L,L2, L3} have exactly one common transversal,
namely M , and {L1, L2, L3} and {L′, L2, L3} have exactly two common transversals, namely M
and the unique transversal of {L1, L2, L3} through L′ ∩ L1.

The next theorem is the bulk of Theorem 4. Recall the definition of θα for a collineation
θ that maps an object α to opposite, just after Theorem 1.3 in Section 1. Recall also that a
proper symplectic polar space is one in characteristic different from 2.
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Theorem 3.13. Let θ be a point-domestic collineation of a large parabolic, proper symplectic,
or hyperbolic polar space ∆ with opposition diagram B2

n;i, 2 ≤ 2i ≤ n− 1, C2
n,i, 2 ≤ 2i ≤ n− 1,

or D2
n,i, 2 ≤ 2i ≤ n − 2, respectively. Then θ is the product of i pairwise orthogonal long root

elations, an (I2n−2i,−I2i)-homology, or the product of i pairwise orthogonal long root elations,
respectively.

Proof. We show this theorem by induction on i, the case i = 1 being contained in Proposi-
tion 3.11 and Theorem 3.7. Let now i ≥ 2.

We first observe that, under the product of at most n/2 perpendicular root elations in a
parabolic polar space of rank n, or a hyperbolic polar space of rank n + 2, every fixed line is
either pointwise fixed or a unique point on it is fixed. Moreover, every point is in a fixed line.
Also, under an (I2n−2i,−I2i)-homology of a symplectic polar space of rank n, every fixed line is
either pointwise fixed of exactly two points on it are fixed. Moreover, every point is on a fixed
line.

The opposition diagram tells us that there is a line L mapped onto an opposite. By largeness,
we can choose L such that θL is by induction either the product of i − 1 pairwise orthogonal
long root elations, an (I2n−2i,−I2i−2)-homology, or the product of i−1 pairwise orthogonal long
root elations, respectively. Now let Σ be a singular 3-space through L fixed under θL and such
that all planes through L in Σ are also fixed under θL. Then each plane π of Σ containing L has
the property π ∩ πθ 6= ∅. Set K = Σ ∩ Σθ and let K ′ ⊆ Σ be such that K ′θ = K. First assume
that K and K ′ are disjoint. Then the point x ∈ K ′ is mapped onto the point 〈L, x〉 ∩K. Hence
the restriction to K ′ of the action of θ is given by projLK(K ′). Let M be a line in Σ disjoint from
K ∪ K ′. We claim that M is opposite M θ. Suppose not and let u ∈ M θ be a point collinear
to all points of M . Note that u /∈ K and 〈M,K〉 = Σ, which now contradicts the fact that
u is collinear to all points of M ∪ K. Hence the claim. Now choosing M appropriately in Σ,
Lemma 3.12 leads to a contradiction to our observation in the second paragraph of this proof.
If K ′ ∩ K is some point z, then the restriction to K ′ of θ is given by the perspectivity with
center L ∩ 〈K,K ′〉. Considering a line M intersecting K,K ′ in an appropriate different point
(on the line 〈z, L ∩ 〈K,K ′〉〉 for the symplectic case, not on that line for the other cases), we
again obtain a contradiction to our observation in the second paragraph of this proof.

So we have shown that K is fixed pointwise. Now let π be any plane through L not fixed
under θL. Then by our observation again, π is contained in a singular 3-space Σ fixed by θL.
We claim that K := Σ ∩ Σθ is stabilised by θ (with exactly one or two fixed points, depending
on the orthogonal or symplectic case). There are again two cases to rule out: K ′ (defined as
before as K ′θ = K) disjoint from K, and K ′ ∩ K a singleton. Let’s explain the first one; the
second one is much easier and left to the reader.

First the orthogonal case. Let π be the unique plane containing L in Σ fixed by θL. Let
M be the line in π intersecting all of L,K and K ′ in points. We can now choose a unique line
T through M ∩ L in the plane 〈L,M〉 such that projTK(K ′) = θ/K ′. It follows that θT fixes all
planes through T inside Σ, and the previous part of the proof now implies that K = Σ ∩ Σθ is
fixed pointwise under θ, a contradiction (as θL does not fix all planes through L in Σ).

Now the symplectic case goes similarly, noting that there are two planes π1, π2 through L
fixed under θL. Let Mi be the unique transversal of L,K,K ′ in the plane πi, then we can again
appropriately choose a point z on M1 such that, setting T := 〈z,M2 ∩ L〉, the map projTK(K ′)
coincides with θ/K ′. We obtain the same contradiction.

Hence we have shown that θ stabilises W := L⊥ ∩ Lθ⊥, in which θ induces by induction,
in the orthogonal case, the product σ of i − 1 pairwise orthogonal long root elations, say with
axis the (2i − 3)-dimensional singular subspace AW , and in the proper symplectic case, an
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(I2n−2−2i,−I2i−2)-homology σ, say with axes the (2n − 2i − 3)-dimensional singular subspace
AW and the (2i − 3)-dimensional singular subspace A′W . In any case, W contains a line L∗

which is mapped onto an opposite. Playing the same game with L∗ as with L above, and noting
that, in the orthogonal case, the hyperbolic quadric H defined by L and Lθ is stabilised, and
in the (proper) symplectic case the union L ∪ Lθ is stabilised (as these are the unique lines
intersecting all of the stabilised lines 〈x, xθ〉, with x ∈ L) we see that, in the orthogonal case, θ
induces an axial elation σ′ on H, say with axis the line A, or a unique (I2,−I2)-homology σ′ in
the non-degenerate symplectic space induced in the span of L and Lθ, say with axes the lines A
and A′.

Now we first treat the orthogonal case. Let σ′ be the natural extension of σ to ∆ (that is, σ′

is the product of the (i − 1) perpendicular long root elations generating σ, naturally extended
to ∆; note that every long root elation of W extends uniquely to a long root elation of ∆ by
considering the same axis and the same pair of corresponding lines). Let σ′′ be the long root
elation with axis A mapping L to Lθ. We claim that σ′σ′′ restricted to W ∗ := L∗ ∩L∗⊥ (denote
it by σ∗) coincides with θ restricted to W ∗ (denote it by θ∗). Indeed, we know that θ∗ is the
product of at most (i− 1) perpendicular long root elations. consequently the set of fixed points
is a singular subspace, which must hence contain A and AW ∩W ∗. But these generate a singular
subspace A∗ of dimension 2i − 3, hence σ∗ is the product of precisely (i − 1) perpendicular
long root elations and has axis B. We can multiply σ′σ′′ with the root elation ρ with axis
〈L∗, L∗θ〉 ∩ AW , which is a line, mapping L∗θ to L∗. Since ρ induces the identity on L∗ ∩ L∗⊥,
we deduce that also σ∗ is the product of at most (i − 1) perpendicular long root elations. But
its fixed point set also contains B and hence B is the axis of σ∗. Since σ∗ and θ∗ agree over
W ∩W ∗ and both map L to Lθ, the claim is proved. Hence σ′σ′′ coincides with θ over W ∪W ∗.
By [12, Proposition 5.4] we obtain σ′σ′′ = θ and θ is the product of i perpendicular long root
elations, as claimed.

Now we treat the proper symplectic case. Here, it is more convenient to work algebraically.
We can choose the standard alternating bilinear form so that it also has standard form in W
and in H. Then it follows from the foregoing that there exists k ∈ K such that the matrix of θ
is diagonal with on the diagonal 2n− 2i− 2 times 1, 2i− 2 times −1, two times k and two times
−k. But clearly, in order θ to be an automorphism of ∆, we should have k ∈ {1,−1} and the
assertion follows.

We now extend Theorem 3.13 in the symplectic case to diagrams C2
2n;n, thereby completing

the proof of Theorem 4. Note that domestic collineations with that opposition diagram exist
which do not fix any chamber. But if we require at least one fixed point, then we have a well
defined involutive homology.

Theorem 3.14. Let θ be a point-domestic collineation of a large proper symplectic polar space
∆ with opposition diagram C2

n,i, 2 ≤ 2i ≤ n, fixing at least one point if n = 2i. Then θ is an
(I2n−2i,−I2i)-homology.

Proof. If 2i < n, then this is proved in Theorem 3.13, so assume from now on that n = 2i. We
proceed by induction on n. For n = 2, the theorem follows from Theorem 3.7. Now assume
n > 1.

Let x be a fixed point. It is easy to see that point-domesticity implies that the map θ(x)

induced by θ in Resδ(x) is also point-domestic. We claim that some plane π through x is
such that π, πθ is an opposite pair in Res∆(x). Indeed, suppose not. Then θ(x) is point- and
line-domestic and hence the identity. Let X be a non-domestic 3-space (which exists by the
opposition diagram). Then it is easy to see that x⊥ ∩ X intersects x⊥ ∩ Xθ as x and x⊥ ∩ X
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span a singular subspace of dimension 1+dim(x⊥∩X) which is moreover fixed under the action
of θ. This is a contradiction, which proves the claim.

Now let L be a line in π not through x. Then Lθ is opposite L in ∆. The map θL fixes
the plane spanned by L and x and therefore induction implies that it is either the ideintity,
or an (In−2,−In−2)-homology. Either way, similarly as in the proof of Theorem 3.13 one now
shows that ∆L := L⊥ ∩ (Lθ)⊥ is stabilised by θ. Suppose ∆L is fixed pointwise (in other
words, θL is the identity). Then every singular subspace of dimension at least 4 is domestic, a
contradiction if n ≥ 6. So if n ≥ 6, then θ induces an (In−2,−In−2)-homology in ∆L. Pick, in
this case, a non-domestic line M in ∆L. Considering an embedding of ∆ in PG(2n − 1,K), we
see that M⊥ ∩∆L has dimension 2n − 7 and hence intersects the pointwise fixed subspaces in
∆L, which have dimension n− 3, nontrivially if (2n− 7) + (n− 3)− (2n− 4) ≥ 0; hence if n ≥ 6.
Consequently, if n ≥ 6, then θM has a fixed point and we can again apply induction and show
that ∆M := M⊥ ∩ (M θ)⊥ is fixed; moreover θ induces an (In−2,−In−2)-homology in ∆M . The
homologies induced in ∆L and ∆M agree on the non-empty intersection (which has dimension
at least 3), and since ∆L and ∆M span the whole space, θ is itself an (In,−In)-homology.

We are left with the case n = 4. Assume for a contradiction that ∆L is fixed pointwise.
Then ∆⊥L is a symplectic quadrangle stabilised by θ and Theorem 3.7 implies that θ either fixes
a spread S or is an (I2,−I2)-homology. In the former case, let S ∈ S be a line of the spread
and p any point of ∆L. Then the singular plane π spanned by S and p is fixed by θ whereas no
point on L is fixed. But for an arbitrary point q ∈ π \ (S ∪ {p}) we have q 6= qθ and qqθ is fixed,
implying S ∩ qqθ is fixed, a contradiction. Hence θ induces an (I2,−I2)-homology in ∆⊥L , say
with axes A and A′. Now Propositions 3.1 and 3.3(iii) imply that either 〈A,∆L〉 or 〈A′,∆L〉 are
fixed pointwise. This means that θ is an (I6,−I2)-homology and hence has opposition diagram
C2
4;1, a contradiction. The claim is proved.

Hence θ induces an (I2,−I2)-homology in ∆L, say with corresponding axes A,A′. Let again
M be a line of ∆L mapped onto an opposite. Then ∆M = ∆⊥L and interchanging the roles
of L and M we see that θ induces an (I2,−I2)-homology in ∆M , say with axes B,B′. Then
Propositions 3.1 and 3.3(iii) imply that either 〈A,B〉 and 〈A′, B′〉 are fixed pointwise, or 〈A,B′〉
and 〈A′, B〉 are. Either way, we obtain an (I4,−I4)-homology.

3.2.3 General case of class II collineations

Since the rank 3 situation is completely known, we may restrict to the rank ≥ 4 case. We have
the following starting points.

Proposition 3.15. Let ∆ = (X,Ω) be a polar space of rank n ≥ 4. Let θ be a point-domestic
collineation of ∆. Then all planes of ∆ are Pappian, i.e., ∆ is defined over a field, and θ has
as companion field automorphism the one related to the corresponding Hermitian form (hence
trivial for symplectic and orthogonal polar spaces, and an involution for Hermitian polar spaces).
If θ is point-domestic, (n− 1)-domestic and (n− 2)-domestic, then ∆ is always a symplectic or
orthogonal polar space.

Proof. The opposition diagram tells us that there is some singular subspace Σ of dimension 3
mapped to an opposite. Then θΣ is a domestic duality, which by largeness is a symplectic
polarity (anyway, if the polar space would be small, then it is also defined over a field). These
only exist in Pappian projective spaces. Now pick an arbitrary line L in Σ that is not fixed by
the symplectic polarity. Then L and Lθ are opposite, and the 3-dimensional subspace W in the
ambient projective space of ∆, generated by L and Lθ inersects ∆ in a generalised quadrangle.
It follows directly from the proof of Theorem 8.5.11 in [21] that the map κ : Lθ → L : x 7→ x⊥∩L
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is the restriction of a semi-liner mapping with companion field automorphism the involution σ
corresponding to the Hermitian form defining ∆ (and hence trivial for symplectic and orthogonal
polar spaces). Let σ′ be the companion field automorphism of θ. Let L′ be the projection of
Lθ onto Σ. Then, for each point x ∈ L, we have xθκ = L ∩ (xθ)⊥ = L ∩ xθΣ = x, since θΣ

is symplectic and hence x ∈ xθΣ . Since the companion field automorphism of θκ is σ′σ, which
must be the identity in view of xθκ = x, for all x ∈ L, we deduce σ = σ′.

Left to show is the last assertion. Suppose, to that end, that θ is also (n− 1)-domestic and
(n − 2)-domestic. Theorem 6.1 of [18] implies that θ pointwise fixes a subspace of corank at
most n− 2. Since such a subspace always contains a line, the companion field automorphism of
θ is the identity, and so ∆ is not Hermitian.

Proposition 3.16. A point-domestic collineation θ of a polar space of rank n ≥ 3 with a fixed
point fixes a chamber (through each fixed point).

Proof. Let x be a fixed point of θ. We proceed by induction on n. If n = 2, then it follows
immediately from the fact that θ is point-domestic that every line through x is stabilised. Now
let n > 2. Then by induction, it suffices to show that some line through x is fixed by θ. Let
L be an arbitrary line through x and assume that L is not fixed. Then by Proposition 3.1 the
plane π spanned by L and Lθ is fixed. Combined with Proposition 3.3 this yields a fixed line
through x in π. The proposition follows.

From Proposition 3.15 emerge three cases: the symplectic case, the orthogonal case and
the Hermitian case. The symplectic case is treated in Theorem 3.14. We now treat the proper
orthogonal case, that is, orthogonal polar spaces for which the minimal embedding has no secants
of size at least 3. We will show, slightly stronger than Proposition 3.16, that θ belongs to a
conjugate of the group of collineations pointwise fixing the set E1(C) (in Tits’ notation [20]) of
all chambers adjacent to C.

Lemma 3.17. A point-domestic collineation θ of a (strictly) orthogonal polar space ∆ of rank
n ≥ 3 with a fixed point fixes a chamber C and all adjacent chambers. In particular, this happens
if θ is both point-domestic and (n− 1)-domestic, or if θ is point-domestic and n is odd.

Proof. Let x be a fixed point of θ. By Proposition 3.16, θ fixes a maximal singular subspace
U containing x. We can again apply Proposition 3.3. Since we know that θ is linear (see
Proposition 3.15), and we have at least one fixed point (by assumption, namely x), there are
only two possibilities for the fixed point structure: (1) Either θ pointwise fixes exactly two
complementary subspaces W1 and W2, or (2) θ induces an elation in U (possibly a trivial one).

Suppose first (1) that θ pointwise fixes two complementary subspaces W1 and W2. Pick
hyperplanes V1 ⊆ W1 and V2 ⊆ W2 and consider the action of θ in the residue R of the
subspace V of dimension n− 3 spanned by V1 and V2. Note that R is an orthogonal generalised
quadrangle. Then θ fixes 〈V1,W1〉 and 〈V2,W1〉, which are points on the line U of R, and no
other points on that line are fixed. But θ induces a point-domestic collineation in R. Since such
collineations pointwise fix a dual geometric hyperplane, the fixed point structure in R is an ideal
subquadrangle. But proper orthogonal quadrangles are line-minimal (for terminology and this
result, see Section 5.9 of [21]). This contradiction shows we always have case (2).

Hence θ induces an elation in U . So we can select a chamber C ′ in U such that θ pointwise
fixed E1(C ′). Set C = C ′ ∪ {U}. Then θ fixes C and all i-adjacent chambers of C with
1 ≤ i ≤ n − 1. There remains to show that θ also fixes all n-adjacent chambers. Consider the
singular subspace Σ of dimension n− 3 in C ′. Then the induced action of θ on the residue of Σ,
which is a generalised quadrangle, fixes the point corresponding to the singular subspace Σ′ of

28



dimension n− 2 in C ′. By point-domesticiy, it fixes all lines through that point, i.e., θ fixes all
maximal singular subspaces containing Σ′. Hence θ fixes all chambers n-adjacent to C.

If θ is (n− 1)-domestic, then it fixes a point by Lemma 2.1. If n is odd, then the opposition
diagram of θ shows that θ is (n− 1)-domestic.

In particular the previous lemma holds for all hyperbolic polar spaces.
Now we investigate the Hermitian case. A Baer subspace of a projective space Σ has the

following two properties: (1) every hyperplane of Σ is incident with at least one point of Σ and
(2) every point of Σ is on some line of Σ′. Let ∆′ be a rank n sub polar space of the polar space
∆ of rank n with the following properties.
(Pr1) Every maximal singular subspace of ∆′ is a Baer subspace of some maximal singular

subspace of ∆.
(Pr2) Every maximal singular subspace of ∆ containing a submaximal singular subspace of ∆′

belongs to ∆′.
Then we call ∆′ an ideal Baer sub polar space of ∆. This generalises the definition of an ideal
Baer sub polar space of rank 3 in [18]. An involution that fixes an ideal Baer sub polar space of
∆ and nothing more is called an ideal Baer involution.

Proposition 3.18. A point-domestic collineation θ of a Hermitian polar space ∆ of rank n ≥ 3
with a fixed point is an ideal Baer involution and has opposition diagram B2

n;m, with 2m ∈
{n, n+ 1}.

Proof. Let x be any fixed point. Again by Proposition 3.16 there exists a maximal singular
subspace U through x, fixed under the action of θ. Now Propositions 3.3 and 3.15 imply that
the fixed point structure of θ in U is a Baer subspace Σ′, and the restriction to U of θ is an
involution. Let W be a hyperplane of U spanned by a hyperplane of Σ′. Then, by point-
domesticity, all maximal singular subspaces of ∆ containing W are fixed by θ, and so they all
contain further points fixed under θ. This shows that for each fixed point x there exist many
opposite fixed points. So the fixed point structure is a non-degenerate polar space, which is
easily seen to be an ideal Baer sub polar space.

Clearly θ2 is linear and point-domestic (by Corollary 3.2) and so the identity by Proposi-
tion 3.15. Hence θ is an involution and the lemma is proved (the opposition diagrams follow
from the last assertion of Proposition 3.15).

Example 3.19. Let ∆ be the rank n polar space corresponding to the Hermitian variety with
equation

∑n
i=1X−iXi − XiX−i = 0, in PG(2n − 1,K), where x 7→ x is the corresponding

field involution, K commutative. Let θ be the collineation defined by mapping a point with
coordinates (x−n, x−n+1, . . . , x−1, x1, . . . , xn) to (x−n, x−n+1, . . . , x−1, x1, . . . , xn). If we denote
by F the fixed field of the field involution, then the fixed points in ∆ are precisely all points of
a Baer subspace PG(2n− 1,F), hence θ pointwise fixes a symplectic polar space of rank n. The
collineation is point-domestic as one easily calculates.

We can now turn our attention to collineations of class III.

3.3 Class III automorphisms

If θ is a class III automorphism of a polar space of rank n then, by Corollaries 3.4 and 3.6, the
rank n is even, and Diag(θ) = X2

n;n/2 (where X ∈ {B,C,D}).
First we need to be a little more precise in Case (i) of Proposition 3.3.
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Proposition 3.20. Let Σ be a finite-dimensional projective space over a field K with dimension
at least 2 and let θ be a fixed point free collineation with the property that the line 〈x, xθ〉
is fixed for every point x. Then the projective dimension of Σ is odd, say 2n + 1, and the
fixed subspaces form a projective space of dimension n either over a quadratic (not necessarily
separable) extension L of K, or over a quaternion division algebra H which naturally contains
K as a 2-dimensional subalgebra over its center.

Proof. It is clear that the fixed point structure is a projective space P of dimension n. In order
to determine the coordinatizing division ring, we consider a fixed 3-dimensional subspace, i.e.,
we consider the case n = 1. Applying Klein correspondence, θ acts on a hyperbolic quadric Q
in PG(5,K) pointwise fixing an ovoid O.

If θ is linear, then any triple of points of O determine a conic on Q which is fixed pointwise
(by linearity). Considering four fixed points no three on a conic we see that θ pointwise fixes
a 3-dimensional subspace Σ of PG(5,K) intersecting Q in O. Hence O is an elliptic quadric
in Σ (that is, a non-degenerate nonruled quadric). Since the stabiliser of O induces a group
containing PGL2(L), for some quadratic extension L of K, and since the group of projectivities
of a line of P is inherited from the collineation group of a 3-dimensional subspace of Σ fixed by
θ, we deduce that P is defined over L.

Now suppose that θ is not linear. Note that θ does not map any point to a collinear one.
We show that θ is an involution. Let x be an arbitrary point. If x is fixed by θ, then x is also
fixed by θ2. Now suppose that xθ is opposite x. Let π be any singular plane through x. Since θ
preserves types, πθ intersects π in a unique point p. Clearly pθ ∈ πθ 3 p, hence by our remark
above, p = pθ. Hence the set of fixed points in p⊥ ∩ (pθ)⊥ forms an ovoid C, which cannot be a
plane conic as θ is not linear. Hence C spans p⊥ ∩ (pθ)⊥ and so θ preserves p⊥ ∩ (pθ)⊥. Hence
θ also preserves the perp of that set, which is {p, pθ}, implying that pθ

2
= p. This shows that θ

is an involution.
So back to P, θ acts as a Galois group and hence P arises from Galois descent, implying

that the coordinatising structure is a quaternion division algebra. This can also be seen in an
elementary way: denote by K → K : k 7→ k the companion field involution, then coordinates
in the case n = 1 can be chosen such that θ maps (x1, x2, x3, x4) to (x2, ax1, x4, ax3), with
a = aθ /∈ {xx : x ∈ K}. This determines the quaternion division ring where multiplication is
given by (x, y) · (u, v) = (xu+ ayv, yu+ xv).

An immediate corollary is Theorem 5:

Corollary 3.21. Let ∆ = (X,Ω) be a polar space of rank n ≥ 4 defined over the field K. Let θ
be a point-domestic collineation of ∆ with any fixed points. Let Y be the set of fixed lines, and
let Υ be the set of fixed singular subspaces. Then Γ = (Y,Υ) is a polar space defined over either
a quadratic extension of K, or over a quaternion division algebra H which is 2-dimensional over
K (and K is 2-dimensional over he centre of H).

Now we first handle the split case (Theorem 6 ). Recall the definition of a minimal Hermitian
polar space of rank n: one with ambient projective space of dimension 2n − 1. A mixed polar
space (of rank n) is a polar space which is a proper subspace of a symplectic polar space of rank
n. Here, the characteristic is necessarily equal to 2.

Theorem 3.22. Let ∆ = (X,Ω) be a split polar space of rank n ≥ 4 defined over the field K.
Let θ be a point-domestic collineation of ∆ without any fixed point. Then n is even, say n = 2m
and the opposition diagram is either C2

n,m or D2
n,m. Moreover, ∆ is either

30



− a symplectic polar space, and the fixed point structure of θ is a symplectic polar space over
a quadratic extension of K; or

− a hyperbolic orthogonal polar space, and the fixed point structure of θ is either a minimal
Hermitian polar space, or a mixed polar space.

Proof. The symplectic case immediately follows from Proposition 3.20 and the fact that sym-
plectic polar spaces are the only embedded polar spaces with the property that all points of the
ambient projective space belong to the polar space.

In the hyperbolic case it suffices to consider rank n = 4. Applying triality, we may assume
that θ has opposition diagram D1

4;2, in which case the fixed point structure is a subspace of
corank 2, hence an orthogonal generalised quadrangle naturally embedded in projective 5-space
and, by Remark 3.4.10 of [21], either a mixed quadrangle, or the dual of a minimal Hermitian
quadrangle.

In the parabolic case, we consider two opposite maximal singular subspaces fixed by θ. Then
θ stabilises the hyperbolic polar subspace H generated by those. A fixed line not contained in
H intersects H in a point (as H is a geometric hyperplane), which must subsequently be fixed,
yielding a contradiction.

Note that the previous theorem says that no parabolic polar space admits a point-domestic
collineation without fixed points. Hence in the symplectic case, the defining field cannot be per-
fect when it has characteristic 2. In fact we can even be more specific concerning the collineations
and the said quadratic extensions. The next proposition is Theorem 7.

Proposition 3.23. Let ∆ = (X,Ω) be a symplectic polar space of rank n ≥ 4 defined over the
field K. Let θ be a point-domestic collineation of ∆ without any fixed point. Let L be the quadratic
extension of K over which the fixed points structure of θ is defined according to Theorem 3.22.
Then θ is an involution and either
− the characteristic of K is not 2 and L is a separable extension of K, or
− the characteristic of K is 2 and L is an inseparable extension of K.

Conversely, if K admits a quadratic extension L/K, inseparable if the characteristic of K is 2,
then ∆ admits a point-domestic collineation without fixed points as above.

Proof. Clearly it suffices to show that, if in a sympleclic quadrangle over K a spread is fixed
by a fixed point free collineation θ, then θ is an involution and the spread corresponds to an
inseparable extension if the characteristic of K is 2.

Let the symplectic quadrangle ∆ be defined by the standard symplectic form x0y1 − x1y0 +
x2y3 − x3y2. Without loss of generality we may assume that θ (which has trivial companion
field automorphism by Proposition 3.15) maps the point (1, 0, 0, 0) to (0, 0, 0, 1) and (0, 0, 1, 0)
to (0, 1, 0, 0). Hence (0, 1, 0, 0) is mapped to (0, a, b, 0), and (0, 0, 0, 1) to (c, 0, 0, d), yielding the
matrix 

0 0 0 c
0 a e 0
0 b 0 0
1 0 0 d

 ,

for some a, b, c, d, e ∈ K. Expressing that θ maps each point (x0, x1, x2, x3) to a collinear one,
we obtain

cx3x1 − (ax1 + ex2)x0 + bx1x3 − (x0 + dx3)x2 ≡ 0.

This yields e = −1, c = −b and a = d = 0.
Since θ has no fixed points, b is a nonsquare and we see that L = K(

√
b), which proves the

assertions (the converse is obvious in view of our explicit form of θ). .
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The hyperbolic case is even more canonical. This is Theorem 8 from the introduction.

Proposition 3.24. Let ∆ = (X,Ω) be a hyperbolic polar space of rank n ≥ 4 defined over the
field K. Let θ be a point-domestic collineation of ∆ without any fixed point. Let PG(2n− 1,K)
be the ambient projective space. Then θ naturally extends to PG(2n − 1,K) poinwise fixing a
spread S which defines a projective space PG(n − 1,L) over a quadratic extension L of K.
Every collineation of PG(2n − 1,K) with pointwise fixes S is a point-domestic collineation of
∆ without fixed points. If L/K is separable, then the fixed polar space is minimal Hermitian, if
L/K is inseparable, then the fixed polar space is the subspace of the symplectic polar space over
L obtained by restricting the long root elations to K.

Conversely, if K admits a quadratic extension L/K, then there exists a point-domestic
collineation of ∆ without fixed points as above.

Proof. It again suffices to consider the case n = 4. We order coordinates as in

(x−4, x−3, x−2, x−1, x1, x2, x3, x4),

take X to be the set of points with equation X−4X4−X−3X3+X−2X2−X−1X1 = 0, and assume
that θ stabilises the lines 〈p−4, p−3〉, 〈p4, p3〉, 〈p−2, p−1〉, 〈p2p1〉, where pi is the point with a 1 in
position i and 0 elsewhere. Set

Mi =

(
ai bi
ci di

)
,

ai, bi, ci, di ∈ K, i = −2,−1, 1, 2. Then we can assume that θ has block matrix
M−2 0 0 0

0 M−1 0 0
0 0 M1 0
0 0 0 M2

 .

(Recall from Proposition 3.15 that θ is linear; action of θ on the left)
Since θ has no fixed points, we have bi 6= 0 6= ci, for all i ∈ {−2,−1, 1, 2}. Expressing

that θ preserves the quadric (hence the quadratic form up to a scalar multiple), we deduce that
detA−2 = detA−1 = detA1 = detA2 := d. Expressing that θ maps each point to a collinear
one we deduce trA−2 = trA−1 = trA1 = trA2 := t. We also have A−i = Ai for i = 1, 2.
Moreover, since there are no fixed points in ∆, the equation x2 − tx+ d = 0 has no solution in
K and determines a quadratic field extension L/K. It follows that θ pointwise fixes a spread S
of PG(7,K). Clearly, every collineation of PG(7,K) fixing that spread pointwise restricts to a
point-domestic collineation of ∆.

Let δ be a solution in L of the equation x2 − tx + d = 0 above. Then we can write every
element of L as a + bδ, with a, b ∈ K and so with δ2 = tδ − d. Now we identify each point
p = (x−4, x−3, . . . , x3, x4) of PG(7,K) with the point pβ = (c2x−4 − a2x−3 + x−3δ, c1x−2 −
a1x−1 + x−1δ, c1x1 − a1x2 + x2δ, c2x3 − a2x4 + x4δ) of PG(3,L). An elementary computation
shows that the image of a point under the action of θ is identified with the same point of PG(3,L)
(the coordinates are equal up to the scalar δ). Hence we can identify the fixed lines of PG(7,K)
with the points of PG(3,L). Denote the conjugate u + tv − vδ of the element u + vδ ∈ L by
u+ vδ, where u, v ∈ K. Then one calculates that a point p of PG(7,K) belongs to ∆ if and only
if the coordinates (y−2, y−1, y1, y2) of pβ satisfy the relation c1Y−2Y 2 + c2Y−1Y 1 ∈ K.

This proves the proposition (noting that the converse is again obvious by our explicit form
of θ).
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We now consider non-split polar spaces. The neatest situation occurs with the minimal
Hermitian polar spaces. The following is Theorem 9.

Proposition 3.25. Let ∆ = (X,Ω) be a minimal Hermitian polar space of rank n ≥ 4 defined
over the field K, with corresponding field involution σ and field extension K/F. Let θ be a point-
domestic collineation of ∆ without any fixed point. Let PG(2n− 1,K) be the ambient projective
space. Then θ is an involution and naturally extends to PG(2n− 1,K) pointwise fixing a spread
S which defines a projective space PG(n − 1,H) over a quaternion division algebra H over its
centre F, with K a 2dimensional subalgebra of H. The only nontrivial collineation of ∆ fixing
every member of S in ∆ is θ. The fixed polar space is a minimal quaternion polar space related
to a nonstandard involution of H pointwise fixing a 3-dimensional subalgebra over F.

Conversely, if K admits a quaternion extension H such that the centre F of H is a subfield of
K and K/F is a separable quadratic field extension, then there exists a point-domestic collineation
of ∆ without fixed points as above.

Proof. Note that by Proposition 3.15, θ is a involution. Also, if another involution θ′ of ∆ would
fix exactly the same lines as θ, then θθ′ is a linear point-domestic collineation of ∆, implying
the stated uniqueness of θ. We may again only consider the case n = 4. The arguments run
parallel to those of the proof of Proposition 3.24. We order coordinates as in

(x−4, x−3, x−2, x−1, x1, x2, x3, x4),

take X to be the set of points with equation

X−4X
σ
4 +X4X

σ
−4 −X−3X

σ
3 −X3X

σ
−3 +X−2X

σ
2 +X2X

σ
−2 −X−1X

σ
1 −X1X

σ
−1 = 0,

and assume that θ stabilises the lines 〈p−4, p−3〉, 〈p4, p3〉, 〈p−2, p−1〉, 〈p2p1〉, where pi is the point
with a 1 in position i and 0 elsewhere.

Since θ is an involution we may assume that it interchanges p−4 with p−3, p4 with p3, p−2

with p−1, and p2 with p1. Hence it has block matrix
A−2 0 0 0

0 A−1 0 0
0 0 A1 0
0 0 0 A2

 ,

with

Mi =

(
0 ai
bi 0

)
,

ai, bi ∈ K, i = −2,−1, 1, 2. Expressing that θ preserves X and that θ maps points of ∆ to
collinear points readily implies that a−i = ai, b−i = bi, for i = 1, 2, and a1b

σ
1 = a2b

σ
2 = b1a

σ
1 =

b2a
σ
2 =: ` ∈ F. Then θ has no fixed points in ∆ if and only if ` /∈ {kkσ : k ∈ K}. It is easily

checked that this now defines a fixed point free involution in PG(7,K), hence pointwise fixing a
spread S .

We can define the quaternion division algebra H := {u+ vδ : (u, v) ∈ K×K} with ordinary
addition and multiplication determined by δv = vσδ and δ2 = `. Clearly F is the centre of H
and K is a 2-dimensional division subalgebra over F.

Now we identify each point p = (x−4, x−3, . . . , x3, x4) of PG(7,K) with the point pβ =
(aσ2x−4 + x−3δ, a

σ
1x−2 + x−1δ, a

σ
1x1 + x2δ, a

σ
2x3 + x4δ) of the left projective space PG(3,H). An

elementary computation shows that the image of a point under the action of θ is identified
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with the same point of PG(3,H) (the coordinates are equal up to the left scalar δ). Hence we
can identify the fixed lines of PG(7,K) with the points of PG(3,H). Denote the non-standard
involution u − vσδ of the element u + vδ ∈ H by u+ vδ, where u, v ∈ K. Then one calculates
that a point p of PG(7,K) belongs to ∆ if and only if the coordinates (y−2, y−1, y1, y2) of pβ

satisfy the relation Y−2a
−σ
2 Y 2 + Y−1a

−σ
1 Y 1 = Y2a

−σ
2 Y −2 + Y1a

−σ
1 Y −1.

This proves the proposition (noting that the converse is again obvious by our explicit form
of θ).

Left to consider are the orthogonal and Hermitian polar spaces whose standard form has
nontrival anisotropic forms. These contain hyperbolic and minimal Hermitian polar subspaces
fixed under the given point-domestic collineation and so Propositions 3.24 and 3.25 provide
necessary conditions for the existence. In general, if a polar subspace of hyperbolic or minimal
Hermitian type of an arbitrary polar space admits a point-domestic collineation without fixed
points, then it depends on the shape of the anisotropic form whether this collineation can be
extended as a point-domestic collineation without fixed points, and the general rule is that the
anisotropic form must, up to recoordinatization, be the sum of multiples of the norm form of
the corresponding field extension or quaternion division algebra, respectively. Let us give a few
examples for particular fields to illustrate this.

Some special fields

Quadrics over the reals. Consider a real quadric of Witt index 2n in a projective space of
dimension 4n+ 2k − 1. Its standard equation is

X−2nX2n +X−2n+1X2n−1 + · · ·+X−1X1 = X2
0,−k +X2

0,−k+1 + · · ·+X2
0,−1 +X2

0,1 + · · ·+X2
0,k.

Let M be a real 2 × 2 matrix with non-real eigenvalues. By multplying with an appropriate
scalar we may assume that its determinant is 1. Then its trace is of the form 2 cosϕ, for some
ϕ ∈]0, π[. Then the collineation defined by

(
x−2`

x−2`+1

)
7→ M ·

(
x−2`

x−2`+1

)
, ` = 1, 2, . . . , n,(

x2`−1

x2`

)
7→ M ·

(
x2`−1

x2`

)
, ` = 1, 2, . . . , n,(

x0,−`
x0,`

)
7→

(
cosϕ ± sinϕ
∓ sinϕ cosϕ

)
·
(
x0,−`
x0,`

)
, ` = 1, 2, . . . , k

is point-domestic and fixed point free. The fix point structure is a Hermitian polar space in
PG(2n+ k − 1,C) with equation (and previous conventions)

Y−nY n − YnY −n + · · ·+ Y−1Y 1 − Y1Y −1 = Y0,kY 0,k + · · ·+ Y0,1Y 0,1.

Quadrics over the rationals. Consider a rational quadric of Witt index 4 in a projective
space PG(11,Q) with equation

X−4X4 +X−3X3 +X−2X2 +X−1X1 = X2
0,−2 +X2

0,−1 +X2
0,1 + `X2

0,2,

with ` ∈ Q. If ` is a perfect square, then we can set X ′0,2 =
√
`X0,2 and similarly as before we

can construct fixed point free point-domestic collineations. However, if ` is not a perfect square,
then X2

0,−2 + `X2
0,2 and X2

0,−1 +X2
0,1 do not define the norm of the same quadratic extension of

Q, and indeed one can easily show that no fixed point free point-domestic collineation exists.
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Complex Hermitian polar spaces. Here similar considerations hold as for the real quadrics.
Let a Hermitian variety of Witt index 2n in the projective space PG(4n + 2k − 1,C) be given
by the (standard) equation

−2n∑
`=1

X−2`X2` +X2`X−2` −X−2`+1X2`−1 −X2`−1X−2`+1 =

k∑
`=1

X0,−`X0,−` +X0,`X0,`.

Then, for each r ∈ R+, the semi-linear involution defined by

(
x−2`

x−2`+1

)
7→

(
x−2`+1

−r.x−2`

)
, ` = 1, 2, . . . , n,(

x2`−1

x2`

)
7→

(
x2`

−r.x2`−1

)
, ` = 1, 2, . . . , n,(

x0,−`
x0,`

)
7→

(
±
√
r.x0,`

∓
√
r.x0,−`

)
, ` = 1, 2, . . . , k

is point-domestic and fixed point free.
Now a property similar to that of rational quadrics explained above holds for complex rational

Hermitian varieties, and we will not repeat it.

Finite fields. The previous considerations allow us now to conclude that a finite polar space
∆ of rank at least 3 admits a fixed point free point-domestic collineation if and only if it is a
symplectic polar space in odd characteristic, or it is a hyperbolic quadric, an elliptic quadric or
a minimal Hermitian variety. Moreover, all such collineations can be explicitly written down on
appropriate standard forms.

Remark 3.26. The inverse procedure, namely, to start with a Hermitian form over a field
extension L/K or over a quaternion division algebra H with 2-dimensional subfield K, and
consider it over the subfield K to obtain a quadratic form or a Hermitian form, respectively, is
well known (sometimes called field reduction). However, other situation turn up here as this is
not always related to a collineation and its fixed point structure (e.g., when the 2-dimensional
subfield K of the quaternion division algebra H is an inseparable extension of the ground field
of the algebra). But when it is related to a collineation and its fixed point structure, then it is
always a point-domestic fixed point free collineation.

4 Polar closed diagrams

In this section we prove Theorem 10, classifying those admissible Dynkin diagrams which arise
as the opposition diagram of a unipotent element of a split spherical building. The result for
the exceptional types En (n = 6, 7, 8), F4 and G2 is [12, Theorem 5], and so here we consider the
classical types. We will also prove Theorem 11.

We shall need the following lemma. A non-degenerate generalised polarity ρ in a projective
space PG(V ) is a symmetric relation in the point set such that for every point p the set pρ of
points in relation with p is a hyperplane of PG(V ). We say that a polar space ∆ is embedded in
a non-degenerate generalised polarity ρ of some projective space PG(V ) if each point p of ∆ is a
point of PG(V ) and if the hyperplane spanned by p⊥ coincides precisely with pρ.

Lemma 4.1. Let Γ be any polar space of rank n embedded in a non-degenerate generalised
polarity ρ of a projective space PG(V ) over L such that Γ spans PG(V ). Let 0 ≤ i ≤ n−1. Then
no geometric subspace of corank i is contained in a subspace of codimension i+ 1.

35



Proof. Suppose for a contradiction that S is a subspace of PG(V ) of codimension i+1 containing
a geometric subspace of Γ of corank i. Since Γ is embedded in ρ, every point x of Γ outside Sρ

has the property that x⊥ ∩ S is a subspace of codimension i+ 2. Let x1 be such a point (which
certainly exists as Γ is not contained in Sρ by assumption). In Γ1 := Res(x1) this means we
obtain a subspace S1 with codimS1 = i + 2 intersecting every singular subspace of dimension
(i − 1) nontrivially. Since Res(x1) is embedded in a non-degenerate polarity of PG(V2), with
codimV2 = 2, and spans PG(V2), we can apply the same argument and continue like this until
we reach a polar space Γi of rank n − i spanning PG(V2i), with codimV2i = 2i, and a subspace
Si of codimension 2i+ 1 in PG(V ), hence codimension 1 in PG(V2i), intersecting every subspace
of dimension 0 of Γi nontrivially. In other words, Γi is contained in Si, a contradiction.

We can now show that the opposition diagram B1
n;i for odd i does not occur as the opposition

diagram of any unipotent element in a split building of type Bn. In fact, we can prove a slightly
more general result by considering all proper orthogonal polar spaces. Recall that a proper
orthogonal polar space is a polar space for which the minimal embedding has no secants of size
at least 3. These include all the quadrics of Witt index at least 2 in characteristic different from
2, and all hyperbolic ones.

Proposition 4.2. Let ∆ be a proper orthogonal polar space standard embedded in some projective
space PG(V ) and let θ be a collineation of ∆ with opposition diagram B1

n;i for some odd i,
1 ≤ i ≤ n− 1. Then θ is not a unipotent element.

Proof. Suppose for a contradiction that θ is a unipotent element of ∆ with opposition diagram
B1
n;i for some odd i, 1 ≤ i ≤ n − 1. By [18, Theorem 6.1] and Lemma 2.1, θ pointwise fixes

a geometric subspace of corank i, which, by Lemma 4.1 generates a subspace S of PG(V ) of
codimension at most i. Since θ is unipotent, the set of fixed points of θ is a subspace T ,
and we claim it is S. Indeed, since S is spanned by the pointwise fixed subspace of corank
i, it is pointwise fixed (this also follows from the proof of Theorem 6.1 in [18]). Suppose now
codimT < i. Then a random singular subspace of dimension i−1 intersects T in at least a point
and thus cannot be mapped onto an opposite, a contradiction. So S = T and codimS = i.

Since S is an axis for θ, the subspace S⊥ is a centre for θ, that is, all subspaces of PG(V )
containing Sθ are fixed. Since unipotent elements have incident pairs (axis,center), we have
S⊥ ⊆ S. This now implies that S⊥ is a singular subspace of ∆ with dimension i − 1. Since it
acts as the centre of θ, the latter maps an (i− 1)-dimensional singular subspace W of ∆ disjoint
from S onto a disjoint singular subspace of dimension i− 1 contained in 〈S,W 〉. Hence W and
W θ are two disjoint maximal singular subspaces of the same type of the hyperbolic quadric
〈S,W 〉 ∩∆ of rank i, implying that i is even, a contradiction.

We can now prove one direction of Theorem 10.

Corollary 4.3. Let θ be an automorphism of a split spherical building. If the opposition diagram
of θ is not polar closed, then θ is not a unipotent element.

Proof. Recall that all admissible diagrams of classical type are polar closed except for those of
type A2

n;(n−1)/2 (n odd), A1
n;n, B1

n;i or D1
n;i (with i odd and 1 ≤ i < n), C2

n;i (with 1 ≤ i ≤ n/2),

and those in Table 2. The diagrams A2
n;(n−1)/2 (n odd), A1

n;n, B1
n;i (with i odd and 1 ≤ i < n),

and those in Table 2 all correspond to non-type preserving automorphisms of ∆, and hence
cannot arise as the opposition diagram of a conjugate of U . Proposition 4.2 and Theorem 3.14
show that the remaining non-polar closed diagrams B1

n;i (i odd) and C2
n;i cannot be obtained as

the opposition diagrams of unipotent elements.
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We must now prove the converse. To do so, we briefly recall explicit matrix realisations
of the elements xα(a) for split classical groups, following the conventions in [4] (note that this
leads to different quadratic forms than those listed in Section 1.6). In each case we will give
matrices for xα(a) with α ∈ Φ+, and the corresponding elements x−α(a) are obtained by taking
the transpose.

For type An the root system has simple roots αi = ei − ei+1 for 1 ≤ i ≤ n, and the highest
root is ϕ = e1 − en+1. The Chevalley generators are (for a ∈ K) xei−ej (a) = 1 + aEi,j for
1 ≤ i < j ≤ n+ 1.

For type Bn the root system has simple roots αi = ei − ei+1 for 1 ≤ i ≤ n− 1, and αn = en,
and the highest root is ϕ = e1 + e2. Let (·, ·) be the symmetric bilinear form defined on K2n+1

by
(x, y) = 2x0y0 + x1yn+1 + · · ·+ xny2n + xn+1y1 + · · ·+ x2nyn

(indexing of rows and columns of vectors and matrices begins at 0 here). Then ∆ = Bn(K) can
be realised as the polar space associated to the quadric f(x) = (x, x). The Chevalley generators
are (see [4, Section 11.2])

xei−ej (a) = 1 + a(Ei,j − En+j,n+i)

xei+ej (a) = 1 + a(Ei,n+j − Ej,n+i)

xek(a) = 1 + 2aEk,0 − aE0,n+k − a2Ek,n+k.

For type Cn the root system has simple roots αi = ei− ei+1 for 1 ≤ i ≤ n− 1, and αn = 2en,
and the highest root is ϕ = 2e1. Let (·, ·) be the symplectic form on K2n given by

(x, y) = x1yn+1 + · · ·+ xny2n − xn+1y1 − · · · − x2nyn.

We write the standard basis of K2n as ε1, . . . , εn, f1, . . . , fn, so that (εi, εj) = (fi, fj) = 0 for all
1 ≤ i, j ≤ n and (εi, fj) = δi,j . The Chevalley generators are

xei−ej (a) = 1 + a(Ei,j − En+j,n+i)

xei+ej (a) = 1 + a(Ei,n+j + Ej,n+i)

x2ek(a) = 1 + aEk,n+k.

For type Dn (n ≥ 4) the root system has simple roots αi = ei − ei+1 for 1 ≤ i ≤ n− 1, and
αn = en−1 + en, and the highest root is ϕ = e1 + e2. Let f(x) be the quadratic form

f(x) = x1xn+1 + · · ·+ xnx2n

on K2n, and let (x, y) be the associated symmetric bilinear form (x, y) = f(x+ y)− f(x)− f(y).
The Chevalley generators are

xei−ej (a) = I + a(Ei,j − En+j,n+i)

xei+ej (a) = I + a(Ei,n+j − Ej,n+i).

Moreover, the diagram automorphism (interchanging nodes n− 1 and n) has matrix

σ = 1− En,n − E2n,2n + En,2n + E2n,n.

The following proposition proves the converse of Theorem 10. Recall the definition of U(X)
from Section 1.4.
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Proposition 4.4. Let X = (Γ, J, π) be a polar closed admissible diagram of classical type. Every
generic element of U(X) has opposition diagram X.

Proof. Let θ be a generic element of U(X). By [12, Lemmas 1.1 and 3.5] the element θ maps
the chamber w0B to Weyl distance wS\Jw0, and hence the type J-simplex of this chamber is
mapped onto an opposite simplex by θ. Thus J ⊆ Typ(θ). It remains to prove the reverse
inclusion. We consider each nonempty polar closed diagram X, specifically, 2A1

n;i (0 ≤ i ≤ n/2),

B1
n;i (with i even and 0 ≤ i < n), B1

n;n, B2
n;i (0 ≤ i ≤ n/2), C1

n;i (for 0 ≤ i ≤ n/2), D1
n;i (with i

even), and D2
n,i (with 0 ≤ i ≤ n/2).

In this proof (and only in this proof) “dimension” refers to vector space dimension (rather
than projective dimension). Moreover, {i}-domestic means domestic on type i vertices of the
building.

(1) X = A1
n;i with 1 ≤ i ≤ n/2. It is sufficient to show that θ is {j, n− j + 1}-domestic for each

j > i. The sequence of highest roots is ϕk = ek − en−k+2 for 1 ≤ k ≤ i. Thus

θ = (I + a1E1,n+1)(I + a2E2,n) · · · (I + aiEi,n−i+2) = I + a1E1,n+1 + · · ·+ aiEi,n−i+2,

with a1, . . . , ai 6= 0. Since θ pointwise fixes the (n − i + 1)-dimensional space spanned by the
vectors ek with 1 ≤ k ≤ n− i+ 1 it follows that each space of dimension j > i contains a fixed
point. Thus if (V, V ′) is a type {j, n−j+1}-simplex (that is, dim(V ) = j, dim(V ′) = n−j+1, and
V ⊆ V ′) then V contains a fixed point. Thus V θ ∩V ′ 6= {0}, and so θ is {j, n− j+ 1}-domestic,
hence the result.

(2) X = B1
n;2i with 1 ≤ i ≤ n/2. It is sufficient to show that θ is {j}-domestic for j > 2i

and is not {1}-domestic. The highest roots are ϕk with k = 1, . . . , 2i, where ϕk = e2k−1 + e2k

and ϕi+k = e2k−1 − e2k for 1 ≤ k ≤ i. Thus θ =
∏i
k=1 xe2k−1+e2k(ak)xe2k−1−e2k(bk) with

a1, . . . , ai, b1, . . . , bi 6= 0, and so

θ = I +

i∑
k=1

(
ak(E2k−1,n+2k − E2k,n+2k−1) + bk(E2k−1,2k − En+2k,n+2k−1) + akbkE2k−1,n+2k−1

)
.

The (2n − 2i + 1)-dimensional space spanned by the vectors ek with k /∈ {2, 4, . . . , 2i} ∪ {n +
1, n+ 2, . . . , n+ 2i} and the vectors en+2k − akb−1

k e2k with k = 1, . . . , i is fixed pointwise by θ,
and so θ is j-domestic for all j > 2i. Let x = e1 + e2 + en+1− en+2. Then (x, x) = 0 (and so 〈x〉
is a point of the polar space), and we compute (x, θx) = −a1b1 6= 0, and so this point is mapped
onto an opposite point by θ.

(3) X = B1
n;n. The first paragraph of the proof shows that θ maps a chamber to an opposite

chamber, hence the result.

(4) X = B2
n;i with 1 ≤ i ≤ n/2. It is sufficient to show that θ is {1}-domestic, and {j}-domestic

for all j > 2i. The highest roots are ϕk = e2k−1 + e2k for 1 ≤ k ≤ i, and so

θ =

i∏
k=1

(I + ak(E2k−1,n+2k − E2k,n+2k−1)) = I +

i∑
k=1

ak(E2k−1,n+2k − E2k,n+2k−1),

with a1, . . . , ai 6= 0. The (2n − 2i + 1)-dimensional space spanned by the vectors ek with
k /∈ {n + 1, n + 2, . . . , n + 2i} is fixed pointwise by θ, and it follows that every subspace of
dimension j > 2i contains a fixed point. Thus θ is {j}-domestic for all j > 2i. Moreover, for
each point p = 〈x〉 we compute (x, θx) = (x, x) = 0, and so θ is {1}-domestic.
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(5) X = C1
n;i with 1 ≤ i ≤ n. It is sufficient to show that θ is {j}-domestic for j > i and that θ

is not point domestic. The highest roots are ϕk = 2ek for 1 ≤ k ≤ i. Thus

θ =

i∏
k=1

(I + akEk,n+k) = I +

i∑
k=1

akEk,n+k.

Thus θ fixes the (2n− i)-dimensional space spanned by ek with k /∈ {n+ 1, . . . , n+ i}. Thus θ
is {j}-domestic for all j > i. Since θen+1 = a1e1 + en+1 we have (en+1, θen+1) = −a1 6= 0, and
so 〈en+1〉 is mapped onto an opposite point, hence the result.

(6) X = D1
n;2i with 1 ≤ i ≤ n/2. The highest roots are as in the B1

n;2i case, and the argument is
identical to (2).

(7) X = D2
n;i with 1 ≤ i ≤ n/2. The highest roots are as in the B2

n;i case, and the argument is
identical to (3).

Finally we prove Theorem 11.

Proof of Theorem 11. The non-polar closed type preserving admissible diagrams are B1
n;i with

i odd and 1 ≤ i < n and C2
n;i for 1 ≤ i ≤ n/2. If the underlying field is of characteristic 2

then, by assumption, the field is perfect and one can apply the previous Proposition and duality.
Thus suppose that characteristic is not 2. We will show that these diagrams can be obtained by
homologies of the associated buildings.

(1) X = B1
n;i with i odd and 1 ≤ i < n. More generally, we show that for all 1 ≤ i < n the

homology
θ = diag(ε,−1, . . . ,−1︸ ︷︷ ︸

i′

, 1, . . . , 1︸ ︷︷ ︸
n−i′

,−1, . . . ,−1︸ ︷︷ ︸
i′

, 1, . . . , 1︸ ︷︷ ︸
n−i′

),

where ε = (−1)i and i′ = bi/2c, has opposition diagram B1
n;i. Note that θ preserves the form

(·, ·) and hence θ ∈ Bn(F). Since θ fixes a subspace of dimension 2n − i + 1 pointwise, every
subspace of dimension j ≥ i+ 1 contains a fixed point, and so θ is j-domestic for each j ≥ i+ 1.
If i is odd then the point p = 〈e0 + en − e2n〉 is mapped onto an opposite point, and if i is even
then the point p = 〈e0 + e1 − en+1〉 is mapped onto an opposite point. Thus θ is not point
domestic. We now show that θ is not i-domestic. Suppose that i is even. Let xj = ej + e2n−j+1

and yj = en+j − en−j+1 for 1 ≤ j ≤ i′ = n/2. Then V = 〈x1, . . . , xi′ , y1, . . . , yi′〉 is totally
isotropic. If V 3 p = 〈v〉 with v = a1x1 + · · · + ai′xi′ + b1y1 + · · · + bi′yi′ with aj 6= 0 then
p is opposite θ〈yj〉 ∈ θiV , because (v, θyj) = −2aj . Similarly, if bj 6= 0 then p is opposite
θ〈xj〉 ∈ θV . Thus V and θV are opposite. Suppose now that i is odd. There exists an integer k
with i′ < k < n− i′+ 1, and thus both ek and en+k are fixed by θ. Let x1, . . . , xi′ and y1, . . . , yi′

be as above, and let z = e0 +ek−en+k. Then (z, z) = (z, xj) = (z, yj) = 0 for all 1 ≤ j ≤ i′, and
thus V = 〈z, x1, . . . , xi′ , y1, . . . , yi′〉 is a totally isotropic space of dimension i. If p = 〈v〉 with
v = cz + a1x1 + · · ·+ ai′xi′ + b1y1 + · · ·+ bi′yi′ with c 6= 0 then p is opposite θ〈z〉 ∈ θV . If c = 0
then either aj 6= 0 for some j (in which case p is opposite θ〈yj〉) or bj 6= 0 for some j (in which
case p is opposite θ〈xj〉). Thus V is opposite θV , hence the result.

(2) X = C2
n;i with 1 ≤ i ≤ n/2. Let θ be the (2n− 2i, 2i)-homology

θ = diag(−1, . . . ,−1︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

,−1, . . . ,−1︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

).

Since θ fixes a space of dimension 2n−2i pointwise, θ is j-domestic for all j ≥ 2i+ 1. Moreover,
since (x, θx) = 0 for all x ∈ F2n we see that θ is point-domestic. Let xj = ej + fn−j+1 and yj =
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en−j+1 + fj for 1 ≤ j ≤ n/2. Let V = 〈x1, . . . , xi, y1, . . . , yi〉 (note that V is totally isotropic).
We claim that V and θV are opposite. For if p = 〈v〉 with v = a1x1 + · · ·+aixi+b1y1 + · · ·+biyi
with aj 6= 0 for some j then p and θ〈yj〉 are opposite, and if bj 6= 0 for some j then p and θ〈xj〉
are opposite. Hence θ has opposition diagram C2

n,i.

We now consider the non-type preserving diagrams.

(3) X = A2
n;(n−1)/2 with n ≥ 3 odd. Let (·, ·) be any non-degenerate symplectic form on Fn+1

(note that n+ 1 is even), and for subspaces U write U◦ = {v ∈ Fn+1 | (u, v) = 0 for all u ∈ U}.
Then the map with U θ = U◦ is a symplectic polarity, and has the required diagram.

(4) X = 2B1
2;1 or X = 2C1

2;1, that is, dualities of buildings of types B2 and C2 for perfect fields of
characteristic 2. Every duality has this diagram.

(5) X = D1
n;2i+1 with 0 ≤ i < (n− 1)/2. Let 0 ≤ i ≤ n/2, and let

θi = I +

i∑
j=1

(E2j−1,2j − En+2j,n+2j−1)

η = I + En−1,n + En−1,2n − En−1,2n−1 − En,2n−1 − E2n,2n−1

σ = I − En,n − E2n,2n + En,2n + E2n,n,

with θ0 = I. Similar calculations to the above show that for 0 ≤ i ≤ n/2, the collineation θi has
opposition diagram D2

n,i, the collineation ηi = θiη has opposition diagram D1
n,2i, and the duality

σi = θiσ has opposition diagram D1
n,2i+1.

Finally, trialities of buildings of type D4 are treated in [22], and the proof is complete.
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