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Abstract. In this article we introduce the notion of a regular partition of a Coxeter group. We
develop the theory of these partitions, and show that the class of regular partitions is essentially
equivalent to the class of automata (not necessarily finite state) recognising the language of
reduced words in the Coxeter group. As an application of this theory we prove that each cone
type in a Coxeter group has a unique minimal length representative. This result can be seen
as an analogue of Shi’s classical result that each component of the Shi arrangement of an affine
Coxeter group has a unique minimal length element. We further develop the theory of cone
types in Coxeter groups by identifying the minimal set of roots required to express a cone type
as an intersection of half-spaces. This set of boundary roots is closely related to the elementary
inversion sets of Brink and Howlett, and also to the notion of the base of an inversion set
introduced by Dyer.

Introduction

In [4], Brink and Howlett showed that every finitely generated Coxeter system (W,S) is auto-
matic by providing an explicit construction of a finite state automaton A0 recognising the language
L(W,S) of reduced words of (W,S). A key insight in [4] was the introduction of the set E of ele-
mentary roots of the associated root system, and the proof that E is finite for all finitely generated
Coxeter systems. This remarkable work paved the way for the study of other structures in Cox-
eter groups which also induce automata, such as the notion of Garside shadows and low elements
introduced by Dehornoy, Dyer, and Hohlweg (see [7, 11]).

By the Myhill-Nerode Theorem there exists a unique (up to isomorphism) minimal (with respect
to the number of states) automaton A(W,S) recognising L(W,S). This automaton has been of
considerable interest recently. For example, in [16, Conjecture 2] Hohlweg, Nadeau and Williams
conjectured necessary and sufficient conditions for minimality of the automaton A0 constructed
by Brink and Howlett, and this conjecture was verified by the current authors in [17, Theorem 1].
Furthermore, in [16], an automaton recognising L(W,S) is constructed using the smallest Garside
shadow, and it is conjectured in [16, Conjecture 1] that this automaton is always minimal.

In this paper we provide a detailed investigation of the minimal automaton A(W,S). The set of
accept states of this automaton is the set T of all cone types in W , where the cone type of x ∈W
is

T (x) = {y ∈W | `(xy) = `(x) + `(y)}.
Here ` : W → N is the usual length function, and we note that |T| < ∞ (this is a consequence of
the fact that |E| <∞). Thus studying A(W,S) amounts to studying cone types in Coxeter groups.

A main contribution of this paper is the introduction of the notion of a regular partition of W .
This concept is inspired by, and simultaneously generalises, both the Shi arrangement and the
theory of Garside shadows, and we show that the class of regular partitions of W is essentially
equivalent to the class of automata recognising L(W,S) (see Theorem 2).

We will outline our main results below. In order to do so, we fix the following terminology (see
Section 1 for precise definitions). Let (W,S) be a finitely generated Coxeter system, and let Φ be
an associated root system. For w ∈W write Φ(w) for the inversion set of w, and E(w) = Φ(w)∩E
for the elementary inversion set of w. The right weak order on W is defined by x 4 y if and only if
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`(x−1y) = `(y)− `(x) (equivalently, if and only if x is a prefix of y). The left descent set of w ∈W
is DL(w) = {s ∈ S | `(sw) = `(w)− 1}.

Recall, from [7], that a Garside shadow in W is a subset B ⊆ W such that (i) S ⊆ B, (ii) B is
closed under taking suffixes of elements, and (iii) B is closed under taking joins (in the right weak
order) of bounded subsets. Since the intersection of Garside shadows is again a Garside shadow,
there exists a unique smallest Garside shadow, denoted S̃, and |S̃| <∞.

One of the main contributions of this paper is the proof of the following fundamental property
of cone types in Coxeter groups (see Corollary 4.25).

Theorem 1. For each cone type T there is a unique element mT ∈W of minimal length such that
T (mT ) = T . Moreover, if w ∈W with T (w) = T then mT is a suffix of w.

The path to proving Theorem 1 is surprisingly circuitous, and along the way we introduce several
new concepts, as outlined below. An initial observation is that while the set {w ∈W | T (w) = T}
of all cone type representatives of T is disconnected (in the Coxeter complex), the inverse of this
set turns out to be connected, and indeed convex (see Proposition 4.3). Thus we consider the sets

XT = {w ∈W | T (w−1) = T}, for T ∈ T.

We will ultimately prove Theorem 1 by showing that XT contains a unique minimal length element
gT , and that whenever w ∈ W is such that T (w−1) = T then gT 4 w. We call Γ = {gT | T ∈ T}
the set of gates of W . Of course mT = g−1

T , however it turns out that the set Γ appears to be
more fundamental than the set of minimal length cone type representatives.

We call the partition T = {XT | T ∈ T} of W the cone type partition. When W is affine,
the partition T shares many properties with the partition S of W induced by the classical Shi
arrangement introduced by Shi in [18, 19] (and extensively studied ever since). We illustrate this
below in the case B̃2 (the parts of the partitions are the connected components; see Example 3.31
for the details of how to compute T ).

(a) The cone type partition T (b) The Shi partition S

Figure 1. The partitions S and T for B̃2

In Figure 1(a) the gates gT are shaded blue. By direct observation, each part of the partition S
also contains a unique minimal length element, and these are shaded blue and red (the red element
in Figure 1(b) is shaded red to highlight the difference with Figure 1(a)). Note that S is a
refinement of T (written T ≤ S ), and that T is not a hyperplane arrangement.

One can define the Shi partition S for an arbitrary Coxeter group by declaring x, y ∈ W to
lie in the same part of S if and only if E(x) = E(y) (see [16, Definition 3.18], and note that in
the affine case this agrees with the classical definition, as the hyperplanes of the Shi arrangement
are precisely the hyperplanes corresponding to the elementary roots of W ). While the celebrated
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result of Shi [19] tells us that in the affine case each component of S contains a unique minimal
length element, it is unknown if this is true for general Coxeter type, and this analogy underscores
the difficulty in proving Theorem 1.

The above discussion suggests that the language of “partitions of W ” is the appropriate frame-
work in which to study cone types and related structures. Indeed our approach to Theorem 1 is
via a detailed study of a special class of partitions that we call the regular partitions of W . A
partition P of W is regular if the following conditions are satisfied for each part P ∈P:

(1) if x, y ∈ P then DL(x) = DL(y) (write DL(P ) for this common value), and
(2) if s /∈ DL(P ) then sP ⊆ P ′ for some part P ′ ∈P.

A partition satisfying (1) is called locally constant. Let P(W ) denote the set of all partitions of
W , and let Preg(W ) denote the set of all regular partitions of W .

It is not hard to see that T is a regular partition, and other interesting examples of regular
partitions include partitions induced by Garside shadows, and the partitions induced by general
Shi arrangements (see Theorem 3.11).

The following theorem (see Theorems 3.13 and 3.16) shows that regular partitions are equivalent
to “reduced” automata recognising L(W,S) (here “reduced” is a natural and mild hypothesis, see
Section 3.2).

Theorem 2. For each regular partition R ofW there exists an explicitly defined reduced automaton
recognising L(W,S), with accept states being the parts of R. Moreover, every reduced automaton
recognising L(W,S) arises in such a way from some regular partition R.

Theorem 2 highlights the fundamental role regular partitions play in the automatic structure
of W . In particular, our construction encapsulates all of the known constructions of automata
recognising L(W,S), and produces infinitely many new examples.

To make further progress, and continuing towards a proof of Theorem 1, we undertake a study
of the structure of the partially ordered set Preg(W ) of all regular partitions. Here the partial
order is P ≤P ′ if P ′ is a refinement of P. We prove (see Theorem 3.17):

Theorem 3. The partially ordered set (Preg(W ),≤) is a complete lattice, with bottom element T
and top element 1 = {{w} | w ∈W} (the partition into singletons).

Thus for any partition P ∈P(W ) one may define the regular completion P̂ ∈Preg(W ) by

P̂ =
∧
{R ∈Preg(W ) |P ≤ R}.

While it is not immediately obvious from the definition, we show in Theorem 3.24 that P ≤ P̂,
and hence P̂ is the minimal regular partition refining P. We give an algorithm (called the simple
refinements algorithm) to compute the regular completion, and prove sufficient conditions for this
algorithm to terminate in finite time (see Algorithm 3.22 and Theorem 3.28).

Thus we have an essentially free construction of regular partitions, and hence by Theorem 2 an
essentially free construction of automata recognising the language L(W,S). Furthermore, our suf-
ficient conditions for the simple refinements algorithm to terminate in finite time leads to sufficient
conditions for the resulting automata to be finite state.

An important corollary of Theorem 3 is the following characterisation of the cone type parti-
tion T . Let D be the partition of W according to left descent sets (that is, x and y in the same
part of D if and only if DL(x) = DL(y)). Then (see Corollary 3.29):

Corollary 4. We have T = D̂ .

Corollary 4, along with the simple refinements algorithm, allows for T to be computed algo-
rithmically (see Example 3.31). Moreover, Corollary 4 is a key step in establishing Theorem 1.

We next introduce the notion of a gated partition. A partition P of W is called gated if for
each part P ∈ P there exists an element g ∈ P with g 4 x for all x ∈ P . These elements g are
called the “gates” of the partition, and we write Γ(P) for the set of gates of P (it is clear that
each part P of a gated partition has a unique gate).

We show that if P is a gated and convex partition, then the simple refinements algorithm
preserves the gated property. Here convex means that each part of the partition is convex in
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the usual sense. Thus we have the following theorem (see Corollary 4.24), which, combined with
Corollary 4, finally leads to a proof of Theorem 1.

Theorem 5. Let P be a locally constant, convex and gated partition of W . If the simple refine-
ments algorithm terminates in finite time, then the regular completion P̂ is gated and convex.

The finite set Γ = Γ(T ) (the set of gates of W ) has many remarkable properties. For example,
Γ is closed under taking suffix, contains all spherical elements of W , is contained in every Gar-
side shadow, and is contained in the set Γ(P) of gates of every gated regular partition P (see
Proposition 4.29). Moreover we make the following conjecture (which in turn would resolve [16,
Conjecture 1], see Theorem 4.32).

Conjecture 1. The set Γ is closed under join, and hence is a Garside shadow.

Let Φ+
sph denote the set of spherically supported positive roots. We have Φ+

sph ⊆ E , however this
containment can be strict (see [17, Theorem 1] for the classification of Coxeter systems for which
E = Φ+

sph). Let L ⊆ W denote the set of low elements of W introduced by Dehornoy, Dyer, and
Hohlweg in [7] (see Definition 1.8). We prove the following, providing evidence for Conjecture 1
(see Theorem 4.33).

Theorem 6. If E = Φ+
sph then Γ = S̃ = L, and so Γ is a Garside shadow.

Other main contributions of this paper include the following. In Section 2 we characterise the
minimal set ∂T ⊆ Φ+ of positive roots required to determine T (we call ∂T the boundary roots
of T ), and provide a precise formula for cone types in terms of these roots. If T is a cone type,
and x ∈W is such that T = T (x−1), we define

∂T = {β ∈ Φ+ | there exists w ∈W with Φ(x) ∩ Φ(w) = {β}}.
This set of roots is independent of the particular representative x ∈ W with T = T (x−1) chosen,
and we prove the following theorem (see Theorem 2.8).

Theorem 7. Let T be a cone type. Then

T =
⋂
β∈∂T

H+
β where H+

β = {w ∈W | `(sβw) > `(w)}.

Moreover, removing any root from the above intersection results in strict containment.

We note that if T (x−1) = T then ∂T ⊆ E(x), however strict containment can occur. Moreover,
we have ∂T ⊆ Φ1(x) (where Φ1(x) is the “base” of Φ(x), defined by Dyer [9]), however again strict
containment can occur. We make the following conjecture (for which we can only prove the reverse
implication):

Conjecture 2. Let x ∈W . Then x ∈ Γ if and only if ∂T (x−1) = Φ1(x).

We also identify the “partition theoretic” equivalent to Garside shadows, in the following sense. If
P is a regular gated partition, then the set Γ(P) of all gates of P contains S and is automatically
closed under suffix. However Γ(P) is not necessarily closed under join. In Section 5 we define
conical partitions (see Definition 5.1). These partitions are necessarily gated, and the set of gates
of a conical partition is necessarily closed under join. Thus regular conical partitions are equivalent
to Garside shadows (see Corollary 5.7).

In Section 6, motivated by Conjecture 2, we define ultra low elements in a Coxeter group to be
the elements x ∈W with ∂T (x−1) = Φ1(x), and investigate their properties. We have U ⊆ Γ ⊆ S̃.
Conjecture 2, if true, implies that U = Γ, and Conjecture 1, if true, implies that Γ = S̃.

Finally, in Section 7 we consider the question of which elementary roots occur as a boundary
root of some cone type. We show that in spherical and affine Coxeter groups all elementary roots
occur, and we exhibit a family of rank 4 Coxeter groups where the inclusion is strict.

We thank C. Hohlweg and M. Dyer for helpful comments on an earlier version of this work,
and R. Howlett for useful discussions concerning elementary roots and super elementary roots.
This work was supported by funding from the Australian Research Council under the Discovery
Project DP200100712.
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1. Preliminaries

In this section we give an overview of background and preliminary results on Coxeter groups,
root systems, elementary roots, the Coxeter complex, low elements, Garside shadows, cone types,
and automata recognising the language of reduced words in a Coxeter group. Our main references
are [1, 2, 8] (for Coxeter groups, the Coxeter complex, and root systems), [4] (for elementary roots),
[10, 11] (for low elements), [7, 16] (for Garside shadows), and [12, 16] (for relevant automata theory).

1.1. Coxeter groups. Let (W,S) be a Coxeter system. We will assume throughout that |S| <∞.
For s, t ∈ S let ms,t denote the order of st. The length of w ∈W is

`(w) = min{n ≥ 0 | w = s1 · · · sn with s1, . . . , sn ∈ S},
where `(e) = 0, with e the identity element. An expression w = s1 · · · sn with n = `(w) is called a
reduced expression for w. An element v ∈ W is a prefix of w if `(w) = `(v) + `(v−1w). Similarly,
an element u ∈ W is a suffix of w if `(w) = `(u) + `(wu−1). Note that v is a prefix (respectively
suffix) of w if and only if there is a reduced expression for w starting (respectively ending) with a
reduced expression for v.

Let J ⊆ S. The J-parabolic subgroup of W is the subgroup WJ = 〈J〉, and we say that J
is spherical if |WJ | < ∞. If J is spherical then there exists a unique longest element of WJ ,
denoted wJ , and we have `(wJw) = `(wwJ) = `(wJ)− `(w) for all w ∈ WJ . If |W | <∞ (that is,
S is spherical) then we often write w0 = wS for the longest element of W .

The left descent set of w ∈W is

DL(w) = {s ∈ S | `(sw) = `(w)− 1},
and similarly the right descent set is DR(w) = {s ∈ S | `(ws) = `(w)−1}. By [1, Proposition 2.17]
both DL(w) and DR(w) are spherical subsets of S for all w ∈W .

Let J ⊆ S. It is well known (see, for example [1, Proposition 2.20]) that each coset WJw
contains a unique representative of minimal length. Let W J be the transversal of these minimal
length coset representatives. Then each w ∈W has a unique decomposition

w = uv with u ∈WJ , v ∈W J , (1.1)

and moreover whenever u ∈WJ and v ∈W J we have `(uv) = `(u) + `(v).
The right weak order is the partial order defined on W with v 4 w if v is a prefix of w. The

partially ordered set (W,4) is a complete meet semilattice (see [2, Chapter 3.2]), and thus for any
subset X ⊆ W there is a greatest lower bound (or meet), denoted

∧
X. A bound for a subset

X ⊆W is an element w ∈W such that x 4 w for all x ∈ X. It follows from the existence of meets
that every bounded subset X ⊆W admits a least upper bound (or join), given by∨

X =
∧
{w ∈W | x 4 w for all x ∈ X}.

If X = {x, y} is bounded we write
∧
{x, y} = x ∧ y and

∨
{x, y} = x ∨ y.

1.2. Root systems. Let (W,S) be a Coxeter system. Let V be an R-vector space with basis
Π = {αs | s ∈ S}, and define a symmetric bilinear form on V by linearly extending 〈αs, αt〉 =
− cos(π/ms,t). The Coxeter group W acts on V by the rule sλ = λ − 2〈λ, αs〉αs for s ∈ S and
λ ∈ V , and the root system of W is

Φ = {wαs | w ∈W, s ∈ S}.
The elements of Φ are called roots, and the simple roots are the roots αs with s ∈ S.

Remark 1.1. Note that 〈αs, αt〉 = −1 if mst =∞. One may work more generally with an arbitrary
based root system Φ associated to W , as in [11, §2.3], however for the purpose of this paper the
concrete choice of realisation described above suffices.

Each root α ∈ Φ can be written as α =
∑
s∈S csαs with either cs ≥ 0 for all s ∈ S, or cs ≤ 0 for

all s ∈ S. In the first case α is called positive (written α > 0), and in the second case α is called
negative (written α < 0). Let Φ+ denote the set of all positive roots.

The set of reflections of W is {wsw−1 | w ∈ W, s ∈ S}. If wαs = β we define sβ = wsw−1.
Note that this reflection acts on V by sβλ = λ− 2〈λ, β〉β.



6 JAMES PARKINSON AND YEEKA YAU

The inversion set of w ∈W is

Φ(w) = {α ∈ Φ+ | w−1α < 0}.

We recall some well-known facts in the following proposition.

Proposition 1.2. Let u, v, w ∈W and s ∈ S.
(1) We have `(ws) > `(w) if and only if wαs > 0.
(2) We have `(sw) > `(w) if and only if w−1αs > 0.
(3) If w = s1 · · · sn is reduced, then Φ(w) = {β1, . . . , βn} where

βj = s1 · · · sj−1αsj for 1 ≤ j ≤ n.

(4) We have Φ(w) = {β ∈ Φ+ | `(sβw) < `(w)}.
(5) Φ(v) ⊆ Φ(w) if and only if v 4 w.
(6) If w = uv with `(w) = `(u) + `(v) then Φ(w) = Φ(u) t uΦ(v).

Proof. See [8, Proposition 2.2 and Proposition 3.1] and [2, Proposition 3.1.3]. �

The support of a root α ∈ Φ is supp(α) = {s ∈ S | cs 6= 0}, where α =
∑
s∈S csαs. For J ⊆ S

let
ΦJ = {α ∈ Φ | supp(α) ⊆ J},

and for w ∈W write ΦJ(w) = Φ(w) ∩ ΦJ .

Lemma 1.3. [16, Corollary 2.13] Let J ⊆ S. If w = uv with u ∈ WJ and v ∈ W J then
Φ(u) = ΦJ(w). In particular, we have W J = {v ∈W | ΦJ(v) = ∅}.

Each root β ∈ Φ+ partitions W into two sets

H+
β = {w ∈W | `(sβw) > `(w)} and H−β = {w ∈W | `(sβw) < `(w)}.

Note that e ∈ H+
β . We call H+

β and H−β the half-spaces determined by β. Note that if β ∈ Φ+

then β ∈ Φ(w) if and only if w ∈ H−β .

1.3. Elementary roots. A root β ∈ Φ+ is said to dominate a root α ∈ Φ+ if w−1β < 0 implies
that w−1α < 0 (for all w ∈ W ). A root β ∈ Φ+ is said to be elementary if β dominates no other
positive root α 6= β. Geometrically, β dominates α if and only if H−β ⊆ H−α , or equivalently, if and
only if H+

β ⊇ H+
α . We note that elementary roots are also called small, humble or minimal in the

literature.
Let E ⊆ Φ+ denote the set of all elementary roots. By [4, Theorem 2.8] the set E is finite for all

(finitely generated) Coxeter systems (W,S).
The elementary inversion set of w ∈W is

E(w) = {β ∈ E | w−1β < 0} = Φ(w) ∩ E .

Let E = {E(w) | w ∈ W} be the set of all elementary inversion sets. Since E is finite, E is finite
too.

Let n ∈ N. A root β ∈ Φ+ is called n-elementary if it dominates at most n roots α ∈ Φ+\{β}.
Thus 0-elementary roots are the same as elementary roots. Let En denote the set of all n-elementary
roots.

The n-elementary inversion set of w ∈ W is En(w) = Φ(w) ∩ En. Let En denote the set of all
n-elementary inversion sets. By [14, Corollary 3.9] the set En is finite for each n ∈ N, and hence:

Corollary 1.4. The set En is finite for each n ∈ N.

The following lemma is key to the automatic structure of W (see [4] and [11, Lemma 3.21]).

Lemma 1.5. Let w ∈W , s ∈ S, and n ∈ N. If `(sw) > `(w) then

En(sw) = ({αs} t sEn(w)) ∩ En.
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The set of spherical roots is

Φsph = {α ∈ Φ | supp(α) ⊆ J for some spherical subset J ⊆ S}.
Let

S = {Φsph(w) | w ∈W}, where Φsph(w) = Φ(w) ∩ Φsph.

Clearly S is finite.
We have Φ+

sph ⊆ E , however this containment can be strict. The classification of Coxeter systems
for which E = Φ+

sph is as follows (see [17, Theorem 1]). Let X denote the set of connected Coxeter
graphs which are either of affine or compact hyperbolic type and contain neither circuits nor
infinite bonds. Then E = Φ+

sph if and only if the Coxeter graph of (W,S) does not have a subgraph
contained in X . In particular, if follows that E = Φ+

sph whenever (W,S) is spherical, of type Ãn,
right-angled, or has complete Coxeter graph (that is, ms,t ≥ 3 for all s, t ∈ S with s 6= t).

1.4. The Coxeter complex. The Coxeter complex of a Coxeter system is a certain abstract
simplicial complex Σ(W,S) on which W naturally acts. While no result of this paper formally
depends on the Coxeter complex, it is nonetheless a useful concept for providing a geometric
intuition for Coxeter groups.

We refer to [1, Chapter 3] for the formal construction of Σ(W,S). Here we provide a less formal
sketch. For each w ∈ W let Cw be a combinatorial simplex with |S| vertices, and assign each
vertex x of Cw a type τ(x) ∈ S such that Cw contains precisely one vertex of each type s ∈ S. For
each w ∈W and s ∈ S we glue Cw and Cws together along their cotype {s} faces, identifying the
vertex of type s′ in Cw with the vertex of type s′ in Cws for all s′ ∈ S\{s}. The resulting simplicial
complex Σ(W,S) is called the Coxeter complex of (W,S). The Coxeter complex has maximal
simplices Cw, w ∈ W , and these are called the chambers (or sometimes alcoves) of the complex.
The Coxeter group W acts on Σ(W,S) by type preserving simplicial complex automorphisms. On
the level of chambers this action is given by wCv = Cwv for all w, v ∈ W , and the action on the
set of chambers is simply transitive. Let C0 = Ce be the fundamental chamber, and so Cw = wC0.
By construction, the chambers wC0 and wsC0 are s-adjacent (meaning they share a cotype {s}
face).

Let β ∈ Φ+. The set
Hβ = {σ ∈ Σ(W,S) | sβ(σ) = σ}

of all simplices fixed by sβ is called a wall of the Coxeter complex. Since sβ fixes no chambers,
there are no chambers contained in the wall Hβ . This illustrates the utility of the Coxeter complex,
as one can now speak of the wall Hβ separating the half-spaces H+

β and H−β .
We will sometimes identify W with the set of chambers of Σ(W,S) by identifying w ↔ wC0.

Thus one may simultaneously think of W as a group, and more geometrically as the associated
Coxeter complex.

1.5. Low elements. The base of an inversion set is defined in terms of extreme rays of the cone
of Φ(w) (see [9] and [11]), however for our purposes the following equivalent characterisation is
sufficient (see [11, Proposition 4.6]).

Definition 1.6. Let w ∈W . The base of the inversion set Φ(w) is

Φ1(w) = {β ∈ Φ+ | `(sβw) = `(w)− 1}.

By Proposition 1.2(4) we have Φ1(w) ⊆ Φ(w). For A ⊆ Φ+ let cone(A) be the set of all non-
negative linear combinations of roots in A and write coneΦ(A) = cone(A) ∩ Φ+. The set Φ1(w)
determines the inversion set Φ(w) in the following sense.

Theorem 1.7. [9, Lemma 1.7] Let w ∈W . Then

Φ(w) = coneΦ(Φ1(w)),

and moreover if A ⊆ Φ+ is such that Φ(w) = coneΦ(A) then Φ1(w) ⊆ A.
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In [11] Dyer and Hohlweg introduced the notion of an n-low element of a Coxeter group W .

Definition 1.8. Let n ∈ N. An element w ∈W is n-low if Φ(w) = coneΦ(A) for some A ⊆ En. A
0-low element is called low. Let Ln denote the set of all n-low elements, and let L = L0 denote the
set of low elements. Note that by Theorem 1.7 we have that w is n-low if an only if Φ1(w) ⊆ En.

Let Θn : Ln → En be the map Θn(x) = En(x) (introduced by Dyer and Hohlweg in [11]).
This map is injective (see [11, Proposition 3.26]), and hence |Ln| ≤ |En| for all n ∈ N. In [11,
Conjecture 2] Dyer and Hohlweg conjecture that Θn is a bijection for all n ∈ N.

The following result is useful when working with joins.

Proposition 1.9. [11, Proposition 2.8] If X ⊆W is bounded, then

Φ(
∨
X) = coneΦ(

⋃
x∈X

Φ(x)).

Each reduced expression w = s1 · · · sn gives rise to an ordering of the inversion set of w, as in
Proposition 1.2(3). In particular, the “final root” of this ordered sequence is β = s1 · · · sn−1αsn =
−wαsn > 0 (see Proposition 1.2(3)). The set of such roots β, as the reduced expression for w
varies, plays an important role later in this work.

Definition 1.10. Let w ∈W . The set of final roots of w is

Φ0(w) = {−wαs | s ∈ DR(w)}.

Note that β ∈ Φ0(w) if and only if sβw = ws for some s ∈ DR(w), if and only if β = −wαs > 0
for some s ∈ S. Also note that Φ0(w) ⊆ Φ1(w).

1.6. Garside shadows. The notion of a Garside shadow in a Coxeter system (W,S) was intro-
duced and investigated by Dehornoy, Dyer and Hohlweg [7] and Dyer and Hohlweg in [11].

Definition 1.11. A Garside shadow is a subset B ⊆W such that S ⊆ B and
(1) for X ⊆ B if w =

∨
X exists, then w ∈ B;

(2) if w ∈ B and v is a suffix of w then v ∈ B.
We refer to (1) as closure under join, and (2) as closure under taking suffixes.

It is clear that the intersection of two Garside shadows is again a Garside shadow (see [11,
Proposition 2.2]) and hence there is a unique smallest Garside shadow, denoted S̃. Using the
finiteness of the set of elementary roots, Dyer and Hohlweg show in [11, Theorem 1.1] that S̃ is
finite for all finitely generated Coxeter systems (W,S).

If B is a Garside shadow then each element w ∈W can be “projected” onto B as follows.

Definition 1.12. [16, Definition 2.4] Let B ⊆W be a Garside shadow. The projection of W onto
B is the function πB : W → B given by

πB(w) =
∨
{b ∈ B | b 4 w}.

Note that πB(w) ∈ B because B is closed under join.

The following important theorem was first conjectured in [11, Conjecture 1], where it was proved
in the case n = 0 (see [11, Theorem 1.1]), and for all n ∈ N in the case that W is affine (see [11,
Theorem 4.17]). Recently Dyer [10] has proved the theorem for all n ∈ N for arbitrary W .

Theorem 1.13. [10, Corollary 1.7] Let n ∈ N. The set Ln of n-low elements is a finite Garside
shadow.

1.7. Cone types. The cone type of w ∈W is

T (w) = {v ∈W | `(wv) = `(w) + `(v)}.
Thus T (w) consists of all elements v that “extend” w. Let T = {T (w) | w ∈ W} be the set of all
cone types of W . Cone types play a central role in this work. The following proposition collects
some basic results.
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Proposition 1.14. Let x, y ∈W . The following are equivalent:
(1) `(x−1y) = `(x) + `(y)
(2) y ∈ T (x−1)
(3) x ∈ T (y−1)
(4) Φ(x) ∩ Φ(y) = ∅
(5) Φ(x−1y) = Φ(x−1) t x−1Φ(y).

Proof. The equivalence of (1), (2) and (3) is immediate from the definitions. For the equivalence
of (1) with (4) see, for example [4, Lemma 1.2]. Finally, if `(x−1y) = `(x) + `(y) then Φ(x−1y) =
Φ(x−1) t x−1Φ(y) by Proposition 1.2(6), and conversely if Φ(x−1y) = Φ(x−1) t x−1Φ(y) then
`(x−1y) = `(x) + `(y) because `(w) = |Φ(w)| for all w ∈W , completing the proof. �

We also note the following obvious fact.

Lemma 1.15. If x 4 y then T (y−1) ⊆ T (x−1).

Proof. If w ∈ T (y−1) then Φ(y)∩Φ(w) = ∅ (by Proposition 1.14), and hence Φ(x)∩Φ(w) = ∅ (as
x 4 y implies that Φ(x) ⊆ Φ(y)) and hence w ∈ T (x−1) (again by Proposition 1.14). �

The following result gives a formula for cone types in terms of inversion sets and half-spaces.

Theorem 1.16. For x ∈W we have

T (x−1) =
⋂

β∈Φ(x)

H+
β .

Proof. We have y ∈ T (x−1) if and only if Φ(x) ∩ Φ(y) = ∅ (by Proposition 1.14), if and only if
y−1β > 0 for all β ∈ Φ(x), if and only if `(sβy) > `(y) for all β ∈ Φ(x) (by Proposition 1.2), if and
only if y ∈

⋂
β∈Φ(x)H

+
β . �

Example 1.17. To apply the formula in Theorem 1.16 to determine T (w−1), one considers all
walls of the Coxeter complex that separate e and w (the positive roots corresponding to these walls
are the elements of Φ(w)), and take the intersection of the half-spaces containing the identity for
each of these walls. Let us illustrate in an example.

Figure 2. A cone type

Let w be the element shaded dark red in Figure 2. The identity is shaded grey, and the walls
separating e from w are show in bold. The intersection of the corresponding positive half-spaces is
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shown in light grey – this is the cone type T = T (w−1). Note that some of the walls are “redundant”
in the sense that the corresponding roots can be removed from the intersection in Theorem 1.16.
We will address this issue in Theorem 2.8. The red shaded region is XT = {x ∈W | T (x−1) = T}
(see Proposition 3.3). Note that this is a convex region, with a unique minimal length element
g, and moreover for all x ∈ XT we have g 4 x. We will prove these observations in general in
Corollary 4.25.

The cone of w ∈W is

C(w) = {v ∈W | `(v) = `(w) + `(w−1v)} = {v ∈W | w 4 v}.
Note that T (w) = w−1C(w). The following lemma shows that joins and intersections of cones are
closely related.

Lemma 1.18. A subset X ⊆ W is bounded if and only if
⋂
x∈X C(x) 6= ∅, and if X ⊆ W is

bounded then C(
∨
X) =

⋂
x∈X C(x).

Proof. Both statements are clear from the fact that y ∈
⋂
x∈X C(x) if and only if y is an upper

bound for X. �

We note, in passing the following result, which superficially appears similar to Lemma 1.18,
however requires a rather different proof. While we will not require this result in this paper, we
record it for future reference.

Proposition 1.19. If X ⊆W is bounded with y =
∨
X then T (y−1) =

⋂
x∈X T (x−1).

Proof. The inclusion T (y−1) ⊆
⋂
x∈X T (x−1) follows from Lemma 1.15 because x 4 y for all

x ∈ X. Now suppose that w ∈
⋂
x∈W T (x−1). Then by Proposition 1.14 we have Φ(x)∩Φ(w) = ∅

for all x ∈ X. We claim that Φ(y) ∩ Φ(w) = ∅. For if there exists β ∈ Φ(y) ∩ Φ(w) then by
Proposition 1.9 we have Φ(y) = coneΦ(

⋃
x∈X Φ(x)), and so

β =
∑

ciβi

where βi ∈ Φ(x) ∪ Φ(y) with x ∈ X and ci ≥ 0. Since w−1β < 0 we have w−1βi < 0 for some
βi ∈

⋃
x∈X Φ(x) and hence Φ(x) ∩ Φ(w) is non-empty for some x ∈ X, a contradiction. �

1.8. Automata recognising the language of reduced words. An automaton A can be viewed
as a computing device for defining a language over a finite alphabet A. Any string over A can
be input into the automaton, which is then either accepted or rejected by A. The set of strings
accepted by A is the language recognised by A and any language L for which there exists a finite
state automaton recognising L, is called a regular language.

In this paper we are interested in automata recognising the language of reduced words in a
Coxeter system (W,S). This allows for some minor simplifications to the general definition of an
automaton, as explained below. We will work in the setting of G being any group generated by a
finite set S. Let `S : G → N be the associated length function (defined as in the Coxeter group
case). A word (s1, · · · , sn) ∈ Sn is reduced if `S(s1 · · · sn) = n. Let L(G,S) be the set of all
reduced words (the language of reduced words in (G,S)).

Definition 1.20. An automaton with alphabet S is a quadruple A = (Y, µ, o, †) where Y is a set
(called the state set), o ∈ Y is the start state, † /∈ Y is the dead state, and µ : (Y ∪{†})×S → Y ∪{†}
is a function (called the transition function) such that µ(†, s) = † for all s ∈ S. If |Y | < ∞ then
A is a finite state automaton. The language accepted by A is the set of all words (s1, . . . , sn) such
that yn ∈ Y , where y0 = o and yj = µ(yj−1, sj) for 1 ≤ j ≤ n.

We will often omit † from the notation, and simply give the automaton as a triple A = (Y, µ, o).
It is helpful to think of an automaton A = (Y, µ, o) as a directed graph with labelled edges. The
vertex set of this graph is Y , and if x, y ∈ Y with µ(x, s) = y we draw an arrow from x to y with
label s. Note that the dead state † is not drawn, and we have µ(x, s) = † if and only if there is
no s-arrow exiting the state x. If A = (Y, µ, o) recognises the language L(G,S) then there exists
a path in the associated directed graph starting at o with edge labels (s1, . . . , sn) if and only if
(s1, . . . , sn) is reduced.



CONE TYPES, AUTOMATA, AND REGULAR PARTITIONS IN COXETER GROUPS 11

The concepts of quotients and totally surjective morphisms are useful when comparing two
automata.

Definition 1.21. Let A = (Y, µ, o, †) and A′ = (Y ′, µ′, o′, †′) be automata recognising L(G,S).
We say that A′ is a quotient of A if there exists a function f : Y ∪ {†} → Y ′ ∪ {†′} such that:

(1) f(o) = o′, f(†) = †′, and f(Y ) = Y ′;
(2) if x, y ∈ Y with µ(x, s) = y then µ′(f(x), s) = f(y);
(3) if x′, y′ ∈ Y ′ with µ′(x′, s) = y′ then there exists x, y ∈ Y with f(x) = x′, f(y) = y′, and

µ(x, s) = y.
We call such a function f a totally surjective morphism f : A → A′. If, in addition, f : Y → Y ′

is injective then we call f an isomorphism, and we say that A and A′ are isomorphic, and write
A ∼= A′.

More intuitively, condition (2) says that if x →s y is a transition in A then f(x) →s f(y) is a
transition in A′, and condition (3) says that every transition x′ →s y

′ in A′ is the image under f
of some transition x→s y in A.

The cone type of g ∈ G is T (g) = {h ∈ G | `S(gh) = `S(g) + `S(h)}, and we write T(G,S) for
the set of all cone types.

Lemma 1.22. Let A = (Y, µ, o) be an automaton recognising L(G,S). If (s1, . . . , sn) and (s′1, . . . , s
′
m)

are reduced words such that the corresponding paths in the automaton end at the same state, then
T (s1 . . . sn) = T (s′1 · · · s′m).

Proof. Let (t1, . . . , tk) be a word, with t1, . . . , tk ∈ S. Since the paths in A with edge la-
bels (s1, . . . , sn) and (s′1, . . . , s

′
m) both end at the same state, and since A recognises the lan-

guage L(G,S), we have that the word (s1, . . . , sn, t1, . . . , tk) is accepted if and only if the word
(s′1, . . . , s

′
m, t1, . . . , tk) is accepted. Hence the result. �

The following theorem is essentially the Myhill-Nerode Theorem (see [12, Theorem 1.2.9]). We
sketch a proof in our context.

Theorem 1.23. Let G be a group generated by a finite set S. Let A(G,S) = (T(G,S), µ, T (e)),
where µ is given by (for T ∈ T(G,S) and s ∈ S)

µ(T, s) =

{
T (gs) if s ∈ T and g ∈ G is such that T = T (g)

† if s /∈ T .

Then
(1) A(G,S) is an automaton recognising L(G,S);
(2) A(G,S) is a quotient of every automaton recognising L(G,S);
(3) L(G,S) is regular if and only if |T(G,S)| <∞;
(4) if L(G,S) is regular then A(G,S) is the unique minimal (with respect to the number of

states) automaton up to isomorphism recognising L(G,S).

Proof. It is elementary to check that if s ∈ T and g, g′ ∈ G with T = T (g) = T (g′) then T (gs) =
T (g′s), and hence µ is well defined. The proof of (1) is a simple induction on the length of the
word.

To prove (2), by Lemma 1.22 if (s1, . . . , sn) and (s′1, . . . , s
′
m) are reduced words such that the cor-

responding paths in the automaton end at the same state y ∈ Y ′, then T (s1 . . . sn) = T (s′1 · · · s′m).
Thus we can define a function f : Y ′ ∪ {†′} → T(G,S) ∪ {†} by setting f(†′) = † and f(y) =
T (s1 · · · sn), and it is straightforward to check that f is a totally surjective morphism. Then (3)
follows from (1) and (2) and the definition of regular languages.

(4) If L(G,S) is regular then A(G,S) has finitely many states (by (3)), and for any finite state
automata A′ = (Y ′, µ′, o′) recognising L(G,S) we have |T(G,S)| ≤ |Y ′| by (2). If equality holds
then the totally surjective morphism from A′ is injective, and hence an isomorphism. �

Definition 1.24. We refer to the automaton A(G,S) constructed in Theorem 1.23 as the cone
type automaton.
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1.9. Examples of automata recognising L(W,S). We now recall examples from the literature
of finite state automata recognising the language L(W,S) of reduced words in a Coxeter group.

The first construction of a finite state automaton recognising L(W,S) was given by Brink and
Howlett in [4, Section 3] using elementary inversion sets (in fact, the automaton in [4] recognises
the language of lexicographically minimal reduced words in (W,S)). This concept was extended
by Hohlweg, Nadeau, and Williams in [16], leading to the following construction.

Theorem 1.25. (see [4], [13] and [16, Section 3.4]) For n ∈ N let An = (En, µ, ∅), where, for
A ∈ En,

µ(A, s) =

{
({αs} ∪ sA) ∩ En if αs /∈ A
† if αs ∈ A

Then An is a finite state automaton recognising L(W,S).

The automaton An is called the n-canonical automaton. We sometimes call A0 the Brink-
Howlett automaton. By Lemma 1.5 the transition function of An is given by µ(En(w), s) = En(sw)
whenever `(sw) > `(w).

Corollary 1.26. Each finitely generated Coxeter system has finitely many cone types.

Proof. The fact that A0 is finite state (as |E| <∞) implies, by Theorem 1.23, that the cone type
automaton A(W,S) is also finite state. �

To each Garside shadow B there is an associated automaton AB = (B,µ, e) (finite state if
|B| <∞) defined as follows.

Theorem 1.27. [16, Theorem 1.2] Let B be a Garside shadow, and let AB = (B,µ, e) where

µ(w, s) =

{
πB(sw) if s /∈ DL(w)

† if s ∈ DL(w).

Then AB is an automaton recognising L(W,S).

It is conjectured by Hohlweg, Nadeau and Williams [16, Conjecture 1] that the automaton AS̃
(where S̃ is the smallest Garside shadow) is the minimal automaton recognising L(W,S) (and
hence isomorphic to the cone type automaton A(W,S)).

By [10, Corollary 1.7] the set Ln of n-low elements forms a finite Garside shadow, and hence
ALn = (Ln, µ, e) is a finite state automaton recognising the language of reduced words in W .
It is conjectured by Dyer and Hohlweg [11, Conjecture 2] that the map Θn : Ln → En with
Θn(w) = En(w) is a bijection. If (W,S) is such that Θn is a bijection, then it follows that
An ∼= ALn

(see also the discussion in [16, §3.6]).
We note that the results of [11], [16] and [17] imply the following, confirming [16, Conjecture 1]

in the case that E = Φ+
sph, and [11, Conjecture 2] in the case that E = Φ+

sph and n = 0.

Theorem 1.28. If E = Φ+
sph then the automaton AS̃ is minimal, and the map Θ0 : L → E with

Θ0(x) = E(x) is bijective.

Proof. Since L is a Garside shadow we have S̃ ⊆ L, and by [11, Proposition 3.26] we have |L| ≤ |E|,
and so |S̃| ≤ |L| ≤ |E|. On the other hand |E| is the number of states of the Brink-Howlett
automaton A0, and by [17, Theorem 1] this automaton is minimal if and only if E = Φ+

sph. Thus
|E| ≤ |S̃| (as AS̃ recognises L(W,S) by [16, Theorem 1.2]), and hence S̃ = L and |L| = |E|. �

2. Cone types in Coxeter groups

In this section we study cone types in Coxeter groups. In Section 2.1 we give an explicit formula
for the transitions between cone types in A(W,S). In Section 2.2 we define the boundary roots of a
cone type, and show that these roots form the minimal set of roots required to express a cone type
as an intersection of half-spaces. In Section 2.3 we consider the connection between containment
of cone types and the property x 4 y, collecting some results that will be useful later in the paper.
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2.1. Transitions in the cone type automata. The construction of the transition function in
the cone type automata A(W,S) in Theorem 1.23 requires one to choose cone type representatives
(however, ultimately, is independent of these choices). The following lemma can be used to remove
these choices (see Corollary 2.2 below), and gives an iterative method of computing cone types.
Lemma 2.1. Let T ∈ T and s ∈ S, and suppose that s ∈ T . Then the set

T ′ = s{w ∈ T | `(sw) = `(w)− 1} = s(T\H+
αs

)

is a cone type. Moreover, if T = T (v) then `(vs) = `(v) + 1 and T ′ = T (vs).

Proof. Let v ∈ W be such that T = T (v). Since s ∈ T we have `(vs) = `(v) + 1. We claim that
T (vs) = s{w ∈ T | `(sw) = `(w)− 1}, from which the result follows.

If u ∈ T (vs) then `(vsu) = `(vs)+`(u) = `(v)+`(u)+1, and it follows that `(vsu) = `(v)+`(su)
and `(su) = `(u) + 1. Thus the element w = su satisfies w ∈ T (v) = T and `(sw) = `(w) − 1.
Conversely, suppose that w ∈ T = T (v) and `(sw) = `(w)− 1. Then

`((vs)(sw)) = `(vw) = `(v) + `(w) = `(v) + `(sw) + 1 = `(vs) + `(sw),

and so sw ∈ T (vs). �

Lemma 2.1 gives a geometric description of the transition function in the automaton A(W,S).
Corollary 2.2. The transition function of A(W,S) = (T, µ, T (e)) is given by

µ(T, s) =

{
s(T\H+

αs
) if s ∈ T

† if s /∈ T

Example 2.3. Figure 3 illustrates the transitions T (e)→s T (s)→t T (st)→u T (stu) in the cone
type automaton of the rank 3 Coxeter group with ms,t = 4, mt,u = 3 and ms,u = 3.

Hyperbolic pictures

J. Parkinson

July 6, 2021

s

t

u

Figure 1: The (3, 3, 4) triangle group
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(a) The cone type T (e)
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(b) The cone type T (s)
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(c) The cone type T (st)
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(d) The cone type T (stu)

Figure 3. Transitions in A(W,S)
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2.2. Boundary roots. In this section we give a geometric description of cone types, proving a
more precise, and indeed optimal, version of Theorem 1.16. The main result of this section is
Theorem 2.8, giving a formula for a cone type in terms of a minimal set of “boundary roots” of
the cone type. One interesting consequence this formula is another proof of Corollary 1.26 (the
finiteness of T) without directly appealing to automata theory, however the finiteness of E is still
required in the proof.

Lemma 2.4. Let x, y ∈W and β ∈ Φ+. Suppose that Φ(x) ∩ Φ(y) = {β}. Then:
(1) β ∈ E, and
(2) β ∈ Φ1(x) ∩ Φ1(y).

Proof. (1) If β /∈ E then β dominates some root α ∈ Φ+ with α 6= β. Since x−1β < 0 and y−1β < 0
we have x−1α < 0 and y−1α < 0 (by the definition of dominance) and hence α ∈ Φ(x) ∩ Φ(y), a
contradiction.

(2) Let y = s1 · · · sn be a reduced expression. Since β ∈ Φ(y) we have β = s1 · · · sj−1(αsj ) for
some 1 ≤ j ≤ n (see Proposition 1.2). Let y′ = s1 · · · sj . Then sβy′ = y′sj with `(sβy′) = `(y′)−1.
We have

`(x−1sβy
′) = `((sβx)−1y′) ≤ `(sβx) + `(y′).

Since Φ(sβy
′) = Φ(y′sj) = Φ(y′)\{β} we have Φ(x) ∩ Φ(sβy

′) = ∅, and so by Proposition 1.14

`(x−1sβy
′) = `(x) + `(sβy

′) = `(x) + `(y′)− 1.

Thus `(sβx) ≥ `(x−1sβy
′)− `(y′) = `(x)− 1.

On the other hand, `(sβx) ≤ `(x) − 1 because β ∈ Φ(x) (see Proposition 1.2). Thus `(sβx) =
`(x)− 1 and so β ∈ Φ1(x). Interchanging the roles of x and y shows that β ∈ Φ1(y) too. �

Definition 2.5. Let T be a cone type. The boundary roots of T are the roots β ∈ Φ+ such that
there exists w ∈ W and s ∈ S with w /∈ T and sβw = ws ∈ T . Let ∂T be the set of all boundary
roots of T .

The conditions w /∈ T and ws ∈ T in Definition 2.5 force `(ws) = `(w)− 1 because if T = T (x),
we have `(xw) < `(x) + `(w) and `(xws) = `(x) + `(ws), and so `(ws) = `(xws) − `(x) ≤
`(xw) + 1− `(x) < `(w) + 1.

In terms of the simplicial structure of the Coxeter complex, the roots β ∈ ∂T are the roots
β ∈ Φ+ such that the wall Hβ bounds T . To understand this interpretation, note that the
chambers wC0 and wsC0 are adjacent in the Coxeter complex, and the panel (codimension 1
simplex) π = wC0∩wsC0 lies on the wall Hβ , and separates the chamber wsC0 (which is contained
in T ) from the chamber wC0 (which is not contained in T ). For example, in Figure 2 the walls Hβ

with β ∈ ∂T are the three walls bounding T .
We will formalise the above interpretation in Theorem 2.8. We first develop some important

properties of the boundary roots.

Theorem 2.6. Let T be a cone type. If T = T (x−1) then β ∈ ∂T if and only if there exists w ∈W
with

Φ(x) ∩ Φ(w) = {β}.
Moreover if β ∈ ∂T then there exists w ∈ W , independent of x, such that Φ(x) ∩ Φ(w) = {β}
whenever T = T (x−1).

Proof. Let β ∈ ∂T . Thus there exists w ∈ W and s ∈ S with w /∈ T and sβw = ws ∈ T , and
necessarily `(ws) = `(w) − 1. Let x ∈ W with T (x−1) = T . Since w /∈ T and ws ∈ T we have
Φ(x)∩Φ(w) 6= ∅ and Φ(x)∩Φ(ws) = ∅ (by Proposition 1.14). Since `(ws) = `(w)−1 and sβw = ws
we have Φ(ws) = Φ(w)\{−wαs} and β = −wαs, and thus Φ(x)∩Φ(w) = {β} (with w independent
of the particular x ∈W with T = T (x−1)).

Suppose that T = T (x−1) and that there is w ∈ W with Φ(x) ∩ Φ(w) = {β}. Let w = s1 · · · sn
be a reduced expression, and let 1 ≤ j ≤ n be such that β = s1 · · · sj−1αsj (by Proposition 1.2).
Let v = s1 · · · sj . Then vsj = sβv and we have Φ(x) ∩ Φ(v) = {β} and Φ(x) ∩ Φ(vsj) = ∅. Thus
v /∈ T and vs ∈ T (by Proposition 1.14), and so β ∈ ∂T . �
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We immediately have the following corollary:

Corollary 2.7. Let T be a cone type, with T = T (x−1). Then |∂T | <∞ and ∂T ⊆ Φ1(x) ∩ E(x).
In particular, all boundary roots of T are elementary.

Proof. We have |∂T | < ∞ by Theorem 2.6, as ∂T ⊆ Φ(x) whenever T = T (x−1). If β ∈ ∂T and
T = T (x−1) then by Theorem 2.6 there exists w ∈W with {β} = Φ(x)∩Φ(w). The result follows
from Lemma 2.4. �

The main theorem of this section is as follows.

Theorem 2.8. If T is a cone type then

T =
⋂
β∈∂T

H+
β .

Moreover, no root can be removed from this intersection (in the sense that if a root is omitted then
the equality becomes strict containment).

Proof. Let x be any element with T (x−1) = T . By Corollary 2.7 we have ∂T ⊆ Φ(x) and thus by
Theorem 1.16 we have

T = T (x−1) =
⋂

β∈Φ(x)

H+
β ⊆

⋂
β∈∂T

H+
β (2.1)

Now suppose that there exists
v ∈

( ⋂
β∈∂T

H+
β

)
\T.

Let v = s1 · · · sn be a reduced expression. Since v /∈ T we have `(x−1v) < `(x−1)+`(v) and so there
is an index 1 ≤ j < n such that `(x−1s1 . . . sj) = `(x−1) + j and `(x−1s1 . . . sj+1) < `(x−1) + j+ 1.
Let w = s1 · · · sj+1 and let s = sj+1. Then w /∈ T and ws ∈ T and writing β = −wαs > 0 we have
sβw = ws. Thus β ∈ ∂T . Since β ∈ Φ(w) (as w−1β = −αs < 0) and Φ(w) ⊆ Φ(v) (as w 4 v) we
have v ∈ H−β , a contradiction. Thus equality holds in (2.1).

Now suppose β0 ∈ ∂T is omitted from the intersection, and let w ∈ W , s ∈ S be such that
w /∈ T and sβ0

w = ws ∈ T . Since Φ(ws) = Φ(w)\{β0} and ws ∈ T we have

w ∈
⋂

β∈∂T\{β0}

H+
β ,

and so the right hand side strictly contains T (as w /∈ T ). �

While Theorem 2.8 gives the most precise formula for the cone type (that is, with no redundan-
cies in the intersection), the following corollary collects various other useful formulae for the cone
type.

Corollary 2.9. Let T be a cone type. If T = T (x−1) then

T =
⋂

Φ(x)

H+
β =

⋂
E(x)

H+
β =

⋂
Φ1(x)

H+
β =

⋂
Φ1(x)∩E(x)

H+
β =

⋂
∂T

H+
β .

Proof. By Corollary 2.7 we have ∂T ⊆ Φ1(x) ⊆ Φ(x) and hence by Theorems 1.16 and 2.8 we have

T =
⋂

Φ(x)

H+
β ⊆

⋂
Φ1(x)

H+
β ⊆

⋂
∂T

H+
β = T,

and so equality holds throughout. By Corollary 2.7 we also have ∂T ⊆ E(x), and so

T =
⋂

Φ(x)

H+
β ⊆

⋂
E(x)

H+
β ⊆

⋂
∂T

H+
β = T,

and so equality holds throughout. �
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The formulae in Corollary 2.9 give another proof of Corollary 1.26, independent of automata
theory, as follows.

Corollary 2.10. Each finitely generated Coxeter system has finitely many cone types.

Proof. The result follows from the formula

T (x−1) =
⋂

β∈E(x)

H+
β

and the fact that there are only finitely many elementary roots. �

In Proposition 1.14 we listed some equivalences to the statement y ∈ T (x−1). We now record
some further equivalences.

Corollary 2.11. Let x, y ∈W . The following are equivalent.
(1) y ∈ T (x−1);
(2) E(x) ∩ E(y) = ∅;
(3) Φ1(x) ∩ Φ1(y) = ∅;
(4) ∂T (x−1) ∩ Φ(y) = ∅.

Proof. Using the formulae in Corollary 2.9 we have y ∈ T (x−1) if and only if y ∈ H+
β for all

β ∈ E(x), if and only if `(sβy) > `(y) for all β ∈ E(x), if and only if β /∈ Φ(y) for all β ∈ E(x). Thus
(1) and (2) are equivalent. Similarly (1) and (3) are equivalent, and (1) and (4) are equivalent. �

Remark 2.12. The following example shows that each formula in Corollary 2.9, except for the
boundary root formula, may have redundancies. Consider (W,S) of type B̃2, with ms,t = 4,
mt,u = 4, and ms,u = 2. Consider the element x = tus. Let T = T (x−1). We have ∂T = {αs, αu},
while Φ1(x) = E(x) = {αs, αu, suαt} (see Figure 1).

Later in this paper we will be interested in the sets

XT = {x ∈W | T (x−1) = T}, for T ∈ T.
To obtain a formula for XT as an intersection of half-spaces, we introduce the internal roots of a
cone type.

Definition 2.13. Let T be a cone type. A root β ∈ Φ+ is an internal root of T if there exists w ∈ T
with β ∈ Φ(w). Let Int(T ) denote the set of all internal roots of T . Thus Int(T ) =

⋃
w∈T Φ(w).

Geometrically, Int(T ) is the set of roots β ∈ Φ+ such that the wall Hβ separates two elements
of T . To see this, note that if β ∈ Int(T ) then β ∈ Φ(w) for some w ∈ T , and so β separates
e ∈ T and w ∈ T . Conversely, if β ∈ Φ+ and Hβ separates elements w, v ∈ T then we may assume
w ∈ H−β (and then v ∈ H+

β ) and so β ∈ Φ(w).

Theorem 2.14. For T ∈ T we have

XT =

( ⋂
β∈∂T

H−β

)
∩
( ⋂
β∈Int(T )

H+
β

)
.

Proof. Let Y denote the right hand side of the equation in the statement of the theorem. Suppose
that x ∈ XT . Thus T (x−1) = T , and so ∂T ⊆ Φ(x) (by Corollary 2.7) and so x ∈ H−β for
all β ∈ ∂T . If β ∈ Int(T ) then β ∈ Φ(w) for some w ∈ T , and since Φ(x) ∩ Φ(w) = ∅ (by
Proposition 1.14) we have β /∈ Φ(x), and so x ∈ H+

β for all β ∈ Int(T ). Hence XT ⊆ Y .
Conversely, suppose that y ∈ Y . We claim that T (y−1) = T . On the one hand, if there exists

w ∈ T with w /∈ T (y−1) then Φ(w) ∩ Φ(y) 6= ∅, and for any β ∈ Φ(w) ∩ Φ(y) we have β ∈ Int(T )
(as β ∈ Φ(w) and w ∈ T ) and y ∈ H−β (as β ∈ Φ(y)), a contradiction. Thus T ⊆ T (y−1). On the
other hand, if w /∈ T then by Theorem 2.8 there is β ∈ ∂T with w ∈ H−β , and so β ∈ ∂T ∩ Φ(w).
Since y ∈ Y we have y ∈ H−β , and so β ∈ Φ(y). Thus Φ(y) ∩ Φ(w) 6= ∅, and so w /∈ T (y−1). Thus
T (y−1) ⊆ T , completing the proof. �

Note that the intersection in Theorem 2.14 may be over an infinite set of roots, as Int(T ) may be
infinite. We will show in Corollary 4.27 that in fact each set XT can be expressed as an intersection
of finitely many half-spaces.
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2.3. On containment of cone types. In this section we consider the connection between con-
tainment of cone types T (y−1) ⊆ T (x−1) and the property x 4 y. We saw in Lemma 1.15 that if
x 4 y then T (y−1) ⊆ T (x−1). The converse implication is obviously false in general. For example,
if x and y are elements in the red shaded region of Figure 2, then T (x−1) = T (y−1), however of
course x 4 y may not occur.

However, with some constraints on x, the reverse implication does hold. The following theorem
shows that x ∈ WJ , with J ⊆ S, is a sufficient condition. Later in this paper we conjecture a
generalisation of this result (see Conjecture 4.39).

Theorem 2.15. Let x ∈ WJ and y ∈ W with J ⊆ S spherical. Then T (y−1) ⊆ T (x−1) if and
only if x 4 y.

Proof. By Lemma 1.15, we only need to show that if T (y−1) ⊆ T (x−1) then x 4 y. Hence suppose
that T (y−1) ⊆ T (x−1), with x ∈WJ . Write y = uv as in (1.1), with u ∈WJ and v ∈W J .

Let z = uwJ , with wJ the longest element of WJ . Since v ∈W J we have

`(y−1z) = `(v−1wJ) = `(v) + `(wJ) = `(y)− `(u) + `(wJ) = `(y) + `(z),

and so z ∈ T (y−1). Thus z ∈ T (x−1).
Let w = wJz

−1x ∈WJ , and note that xw−1v = y. We claim that

`(xw−1v) = `(x) + `(w−1v), (2.2)

from which the desired result x 4 y follows. To prove (2.2), we have

`(xw−1v) = `(xw−1) + `(v) as v ∈W J

= `(wJ)− `(z) + `(v) as xw−1 = zwJ

= `(wJ)− (`(x−1z)− `(x)) + `(v) as z ∈ T (x−1)

= `(x) + `(w) + `(v) as w = wJz
−1x and z−1x ∈WJ

= `(x) + `(w−1v) as v ∈W J and w ∈WJ ,

completing the proof. �

Corollary 2.16. Let W be a finite Coxeter group. Then for x, y ∈ W we have T (y−1) ⊆ T (x−1)
if and only if x 4 y.

Proof. The result follows by letting W = WJ in the statement of Theorem 2.15. �

2.4. Cone types in finite Coxeter groups. We can describe cone types in a finite Coxeter
group very precisely, and this description will be useful in conjunction with Theorem 2.15 in later
sections.

Proposition 2.17. Let W be a finite Coxeter group and let w0 be the longest element of W . Then
for x ∈W we have

T (x−1) = {w ∈W | w 4 xw0}.
In particular, for all x, y ∈W we have T (x−1) = T (y−1) if and only if x = y.

Proof. If w ∈ T (x−1) then `(x−1w) = `(x) + `(w), and so

`(w−1xw0) = `(w0)− `(w−1x) = `(w0)− `(x)− `(w) = `(xw0)− `(w),

and so w 4 xw0. Conversely, if w 4 xw0 then

`(w−1xw0) = `(xw0)− `(w) = `(w0)− `(x)− `(w),

but also `(w−1xw0) = `(w0)− `(w−1x) = `(w0)− `(x−1w), and so `(x−1w) = `(x) + `(w), giving
w ∈ T (x−1).

In particular, if T (x−1) = T (y−1) then since xw0 ∈ T (x−1) we have xw0 4 yw0, and similarly
yw0 4 xw0. Hence xw0 = yw0 and so x = y. �
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Lemma 2.18. Let x ∈ W and J ⊆ S with J spherical. Write x = uv with u ∈ WJ and v ∈ W J .
If w ∈WJ with w ∈ T (u−1) then w ∈ T (x−1).

Proof. Since u−1w ∈WJ , v ∈W J , and w ∈ T (u−1), we have

`(x−1w) = `(v−1u−1w) = `(v) + `(u−1w) = `(v) + `(u) + `(w),

and the result follows since `(v) + `(u) = `(uv) = `(x). �

Corollary 2.19. Let x, y ∈ W and J ⊆ S with J spherical. Write x = uv and y = u′v′ with
u, u′ ∈WJ and v, v′ ∈W J . If u 6= u′, then T (x−1) 6= T (y−1).

Proof. Since u 6= u′ by Proposition 2.17 there is w ∈ WJ with w ∈ T (u−1) \ T (u′−1). By
Lemma 2.18 we have x ∈ T (w), and since w /∈ T (u′−1) we have w /∈ T (y−1). �

We note, in passing, the following corollary which shows that the minimal automata recognising
the language of reduced words in a finite Coxeter groupW is just the “trivial” automaton with states
W and transition function µ(w, s) = ws if `(ws) = `(w) + 1 (note that this gives an automaton
recognising L(W,S) for all Coxeter systems, however of course it is finite state if and only if W is
finite).

Corollary 2.20. If W is a finite Coxeter group then |A(W,S)| = |W |.

Proof. By Proposition 2.17 we have |A(W,S)| = |T| = |W |. �

3. Regular partitions

In this section we introduce one of the main concepts of this paper: the notion of a “regular
partition” ofW . This concept has its genesis in the Ph.D. of P. Headley in his study of the classical
Shi arrangement (see [15, Lemma V.5]). We now give an outline of the results of this section.

We begin in Section 3.1 by setting up appropriate language for working with the partially
ordered set of all partitions of W . We then introduce certain special partitions of W that will play
an important role in the paper, including the cone type partition T , Garside shadow partitions,
and the n-Shi partitions associated to n-elementary inversion sets.

In Section 3.2 we define the notion of a regular partition, and exhibit some of the main examples
of such partitions. We show in Theorem 3.13 that each such partition gives rise to an automaton
recognising L(W,S), and in Theorem 3.16 we show that every automaton recognising L(W,S)
satisfying a mild hypothesis arises in such a way.

In Section 3.3 we study the partially ordered set Preg(W ) of all regular partitions of W . We
show in Theorem 3.17 that Preg(W ) is a complete lattice with bottom element being the cone type
partition T (note the convention (3.1)). This in turn allows us to define the regular completion
P̂ of an arbitrary partition P of W (this is the “minimal” regular partition refining P).

In Section 3.4 we develop an algorithm, based on “simple refinements”, for producing the regular
completion of a partition, and provide natural sufficient conditions for this algorithm to terminate
in finite time. As a consequence, we prove in Corollary 3.29 that T = D̂ , where D is the partition
of W according to left descent sets. This characterisation of T will be crucial in proving the main
result of this paper (Theorem 1).

3.1. Partitions of W . Various partitions of W play an important role in this work, and we begin
by recalling some terminology. A partition ofW is a set P of subsets ofW such that

⋃
P∈P P = W

and P ∩ P ′ = ∅ for P, P ′ ∈P with P 6= P ′. The sets P ∈P are called the parts of the partition.
Let P(W ) denote the set of all partitions of W .

If P and P ′ are partitions of W such that each part of P ′ is contained in some part of P
then we say that P ′ is a refinement of P. We also say that P ′ is finer than P, and that P is
coarser than P ′.

We write

P ≤P ′ if P ′ is a refinement of P. (3.1)

Note that this is dual to the standard convention. Our choice here is motivated by the fact that
we are often interested in the number of parts of a partition, and a partition with few parts
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is best considered to be “small”. Thus, the partially ordered set (P(W ),≤) has top element
1 = {{w} | w ∈ W} (the partition into singletons) and bottom element 0 = {W} (the partition
with one part).

A covering of W is a set X of subsets of W with
⋃
X∈XX = W . Each covering of W induces a

partition of W , as follows.

Definition 3.1. Let X be a covering of W . Let ∼X be the equivalence relation on W given by
x ∼X y if and only if {X ∈ X | x ∈ X} = {X ∈ X | y ∈ X} (that is, x ∈ X if and only if y ∈ X, for
X ∈ X). The partition induced by X is the partition X of W into ∼X equivalence classes. Thus
elements x, y ∈W lie in the same part of X if and only if they lie in precisely the same elements
of X.

Important examples of partitions are provided by hyperplane arrangements. In our general
setting, a hyperplane arrangement is most appropriately thought of as a partition of W induced
by a set of roots, as follows. Let Λ ⊆ Φ+ be nonempty. The partition of W induced by Λ is the
partition H (Λ) induced by the covering {H+

β , H
−
β | β ∈ Λ} (as in Definition 3.1). We will refer

to such partitions as hyperplane partitions to emphasise this connection to traditional hyperplane
arrangements.

We now provide the main examples of partitions that will appear in this work. Recall the
definition of C(w) from Section 1.7, and recall that Π = {αs | s ∈ S}. Recall that T denotes the
set of all cone types.

Definition 3.2. Let n ∈ N, and let B be a Garside shadow.
(1) The cone type partition is the partition T induced by the covering T.
(2) The Garside partition associated to B is the partition GB induced by the covering {C(b) |

b ∈ B} (this is a covering as e ∈ B).
(3) The n-Shi partition is the hyperplane partition Sn = H (En).
(4) The S-partition is the hyperplane partition D = H (Π).
(5) The spherical partition is the hyperplane partition J = H (Φsph).

We now give a more concrete description of the parts of each of the above partitions. Recall
that En denotes the set of all n-elementary inversion sets, and S denotes the set of all spherical
inversion sets.

Proposition 3.3. Let B be a Garside shadow and let n ∈ N.
(1) The parts of the cone type partition T are the sets

XT = {w ∈W | T (w−1) = T}, with T ∈ T.

(2) If B is a Garside shadow, the parts of GB are the sets

π−1
B (b) = {w ∈W | πB(w) = b}, with b ∈ B.

(3) The parts of the n-Shi partition Sn are the sets

{w ∈W | En(w) = E}, with E ∈ En.

(4) The parts of the S-partition D are the sets

D−1
L (J) = {w ∈W | DL(w) = J}, with J ⊆ S spherical.

(5) The parts of the spherical partition J are the sets

{w ∈W | Φsph(w) = Σ}, for Σ ∈ S.

In particular, |T | = |T| <∞, |GB | = |B|, |Sn| = |En| <∞, and |D |, |J | <∞.

Proof. (1) If u ∼T v then for all w ∈ W we have u ∈ T (w−1) if and only if v ∈ T (w−1). Thus,
by Proposition 1.14, for all w ∈ W we have w ∈ T (u−1) if and only if w ∈ T (v−1), and hence
T (u−1) = T (v−1). So u, v ∈ XT , where T = T (u−1).

Conversely, suppose that u, v ∈ XT for some T ∈ T. Thus T (u−1) = T (v−1) = T . If u ∈ T (w−1)
then by Proposition 1.14 we have w ∈ T (u−1) = T (v−1), and so again by Proposition 1.14 we have
v ∈ T (w−1). Thus u ∼T v.
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Thus |T | = |T|, which is finite by Corollary 1.26.
(2) Let P be a part of GB and let u, v ∈ P . Then for all b ∈ B we have u ∈ C(b) if and only if

v ∈ C(b), and so b 4 u if and only if b 4 v, and so πB(u) = πB(v).
Conversely, suppose that u, v ∈ W with πB(u) = πB(v). If b ∈ B and u ∈ C(b) then b 4

πB(u) = πB(v) 4 v, and hence v ∈ C(b).
(3) Let P be a part of Sn, and let u, v ∈ P and β ∈ En. Then β ∈ En(u) if and only if

`(sβu) < `(u), if and only if u ∈ H−β , if and only if v ∈ H−β (from the definition of Sn, using
u, v ∈ P ), if and only if `(sβv) < `(v), if and only if β ∈ En(v). Thus En(u) = En(v).

Conversely if u, v ∈ W with En(u) = En(v), and if β ∈ En and ε ∈ {−,+}, then u ∈ Hε
β if and

only if v ∈ Hε
β , and so u and v lie in the same part of Sn.

Thus |Sn| = |En|, which is finite by Corollary 1.4.
(4) Let P be a part of D , and let u, v ∈ P . For s ∈ S we have u ∈ H−αs

if and only if v ∈ H−αs
,

and so s ∈ DL(u) if and only if s ∈ DL(v), and so DL(u) = DL(v).
Conversely, let u, v ∈ W with J = DL(u) = DL(v). If s ∈ J then u, v ∈ H−αs

, and if s ∈ S\J
then u, v ∈ H+

αs
, and hence u and v are in the same part of D . Finally, recall that descent sets are

always spherical subsets (see [1, Proposition 2.17]).
(5) This is similar to (3). �

Example 3.4. Figure 4 shows a cone type T (shaded grey), and the corresponding set XT (shaded
red).

Hyperbolic pictures

J. Parkinson

July 6, 2021

Figure 1: The (3, 3, 4) triangle group

1

Figure 4. A cone type T and the corresponding part XT of T

Computing the partitions D and J is of course trivial: geometrically the walls determining the
hyperplane partition D are the walls bounding the fundamental chamber, and the walls determining
the partition J are the walls passing through a vertex of the fundamental chamber. Computing the
partition Sn is also straightforward once the n-elementary roots are known. However computing
the cone type partition T is nontrivial (see Algorithm 3.22 and Corollary 3.29).
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Example 3.5. The partitions D , J , S0, and T are illustrated for G̃2 in Figure 5 (in each case
the identity chamber is shaded grey, and the blue and red shaded chambers will be discussed in
the following section). The partitions S0 and T for B̃2 and Ã2 are given in Figures 1 and 6.

(a) The S-partition (b) The spherical partition

(c) The 0-Shi partition (d) The cone type partition

Figure 5. The partitions D , J , S0, and T for G̃2

Remark 3.6. We make the following comments.
(1) If W is affine, then the 0-Shi partition S0 is the partition induced by the classical Shi

hyperplane arrangement (see [18, 19]).
(2) The partitions T and GB (with B a Garside shadow) are generally not hyperplane parti-

tions. For example, see the partition T in Figure 5.
(3) Note that J ≤ S0, as Φ+

sph ⊆ E0.

3.2. Regular partitions. In this section we define the notion of a regular partition of W , and
show that these partitions are intimately related the automatic structure of W .

Definition 3.7. A partition P of W is locally constant if the function DL : W → 2S is constant
on each part of P. If P is locally constant, and P ∈P, we write DL(P ) = DL(w) for any w ∈W .
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Note that every refinement of a locally constant partition is again locally constant. Moreover,
we have the following.

Lemma 3.8. A partition P is locally constant if and only if D ≤P.

Proof. This is immediate from Proposition 3.3. �

Proposition 3.9. All partitions in Definition 3.2 are locally constant.

Proof. By Proposition 3.3 the parts of T are the sets XT = {w ∈W | T (w−1) = T}, with T ∈ T.
If x, y ∈ XT then T (x−1) = T (y−1), and thus DL(x) = DL(y). So T is locally constant.

Let B be a Garside shadow. By Proposition 3.3 the parts of GB are the sets π−1
B (b), with b ∈ B.

If x, y ∈ π−1
B (b) then πB(x) = πB(y) = b. By [16, Proposition 2.6] we have DL(x) = DL(πB(x)) =

DL(y), and hence GB is locally constant.
If x, y lie in the same part of Sn then En(x) = En(y). Since each root αs with s ∈ S is

elementary, it follows that DL(x) = DL(y).
The remaining cases follow easily from Proposition 3.3. �

The main definition of this section is as follows.

Definition 3.10. A partition R of W is regular if:
(1) R is locally constant, and
(2) if R ∈ R and s /∈ DL(R) then sR ⊆ R′ for some part R′ ∈ R.

Let Preg(W ) denote the set of all regular partitions of W .

Note that the condition s /∈ DL(R) is equivalent to R ⊆ H+
αs
, or more gemetrically, that e and

R both lie on the same side of the wall Hαs in the Coxeter complex.

Theorem 3.11. The following partitions of W are regular:
(1) the cone type partition T ;
(2) the Garside partition GB, for any Garside shadow B;
(3) the n-Shi partition Sn, for n ∈ N.

Proof. By Proposition 3.9 these partitions are all locally constant.
(1) By Proposition 3.3 each part of T is of the form XT = {w ∈ W | T (w−1) = T} for some

cone type T . Suppose that s ∈ S with s /∈ DL(XT ). For any w ∈ XT we have DL(w) = DL(XT ),
and so s ∈ T (w−1) = T . By Lemma 2.1 we have

T ((sw)−1) = T (w−1s) = s{x ∈ T | `(sx) = `(x)− 1},

which is independent of the particular w ∈ XT . Thus, writing T ′ = T (w−1s) (for any w ∈ XT ),
we have sXT ⊆ XT ′ , and hence T ∈Preg(W ).

(2) Let B be a Garside shadow. By Proposition 3.3 the parts of GB are the sets π−1
B (b),

with b ∈ B. If x, y ∈ π−1
B (b) and s /∈ DL(x) = DL(y) then by [16, Proposition 2.8] we have

πB(sx) = πB(sπB(x)) = πB(sb) = πB(sy), and so sx and sy lie in the part π−1
B (πB(sb)). Hence

GB ∈Preg(W ).
(3) If x, y ∈ W lie in the same part of Sn then En(x) = En(y) = A, say. If s /∈ DL(x) = DL(y)

then by Lemma 1.5 we have En(sx) = ({αs}t sA)∩En = En(sy). Thus sx and sy lie in a common
part of Sn, and so the partition is regular. �

Remark 3.12. We record the following observations.
(1) The top element 1 = {{w} | w ∈ W} of (P(W ),≤) is obviously regular. Thus each

P ∈ P(W ) can be refined to a regular partition. In Section 3.3 we will show that there
is a unique minimal such “regular completion”.

(2) The partition D is generally not regular (see, for example, Figure 5(a)).
(3) The partition J is generally not regular. For example, the partition J is not regular for

G̃2 (see Figure 5(b)), however it is regular for Ã2 (see Figure 6).
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Figure 6. In type Ã2 we have T = S0 = J

The main interest in the concept of regular partitions stems from the following theorem, pro-
viding a very general geometric construction of automata recognising L(W,S). Note that if P is
locally constant then the part of P containing e is the singleton {e} (by considering left descent
sets).

Theorem 3.13. Let R be a regular partition of W . Define µ : R × S → R ∪ {†} by

µ(R, s) =

{
R′ if s /∈ DL(R) and sR ⊆ R′ ∈ R

† if s ∈ DL(R).

Then A(R) = (R, µ, {e}) is an automaton recognising L(W,S).
Moreover, if w = s1 · · · sn is reduced, then the final state of the path with edge labels (s1, . . . , sn)

starting at {e} is the part R ∈ R with w−1 ∈ R.

Proof. Let R0 = {e}. We show, by induction on n ≥ 1, that (s1, . . . , sn) is accepted by A(R) if
and only if s1 · · · sn is reduced. Consider n = 1. Each expression s is reduced. On the other hand,
since s /∈ DL(R0) we have µ(R0, s) = R1, where R1 ∈ R is the part containing s. Thus all length
1 reduced words are accepted by A(R).

Let k ≥ 1, and suppose that s1 · · · sk is reduced if and only if (s1, . . . , sk) is accepted by A(R).
Let s1 · · · sks be reduced. Then s1 · · · sk is reduced, and so (s1, . . . , sk) is accepted by A(R). Let
Rk ∈ R be the part of R containing sk · · · s1. Since s1 · · · sks is reduced we have s /∈ DL(sk · · · s1) =
DL(Rk). Hence, by the regularity condition, sRk ⊆ Rk+1 where Rk+1 is the part of R with
ssk · · · s1 ∈ Rk+1. Then µ(Rk, s) = Rk+1, and so (s1, . . . , sk, s) is accepted by A(R).

Conversely, suppose that (s1, . . . , sk, s) is accepted by A(R). Then (s1, . . . , sk) is accepted,
and so s1 · · · sk is reduced. Moreover, with Rk being the part containing sk · · · s1, the fact that
(s1, . . . , sk, s) is accepted gives µ(Rk, s) = Rk+1 where Rk+1 is the part containing ssk · · · s1. Thus,
by definition, s /∈ DL(Rk). In particular s /∈ DL(sk · · · s1), and so s1 · · · sks is reduced.

The final statement is now clear: If w = s1 · · · sk is a reduced expression, then the corresponding
path in the automaton A(R) = (R, µ, {e}) is

{e} = R0 →s1 R1 →s2 R2 →s3 · · · →sk Rk,

where Rj ∈ R is the part containing sjRj−1. Thus sn · · · s1 ∈ Rn. �

The above construction leads to a uniform and conceptual proof of the known automata recog-
nising L(W,S). In particular, using Theorems 3.11 and 3.13 we obtain new proofs of Theorems 1.25
and 1.27. Moreover, the above construction leads to the following remarkable fact that will be used
in a crucial way to define the “regular completion” of a partition in the following section.
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Corollary 3.14. If R ∈Preg(W ) then R is a refinement of T (that is, T ≤ R).

Proof. Let A = (R, µ, {e}) be the automaton constructed in Theorem 3.13. Let R ∈ R, and
suppose that x, y ∈ R. Let x = s1 · · · sn and y = s′1 · · · s′m be reduced expressions. By the final
statement of Theorem 3.13, we have that the paths in A starting at {e} with edge labels (sn, . . . , s1)
and (s′m, . . . , s

′
1) both end at the state R. Then by Lemma 1.22 we have T (sn · · · s1) = T (s′m · · · s′1),

and so T (x−1) = T (y−1). Thus x and y lie in the same part of the cone type partition (by
Proposition 3.3) and so R is a refinement of T . �

There is a partial converse to Theorem 3.13. We call an automaton A = (Y, µ, o) recognising
L(W,S) reduced if the following property holds: If w = s1 · · · sn and w = s′1 · · · s′n are both reduced
expressions for w, then the paths in A starting at o with edge labels (s1, . . . , sn) and (s′1, . . . , s

′
n)

finish at the same state.

Proposition 3.15. Let R ∈ Preg(W ). The automaton A(R) constructed in Theorem 3.13 is
reduced.

Proof. From the final statement of Theorem 3.13, if w = s1 · · · sn is a reduced expression then
the final state in the path with edge labels (s1, . . . , sn) does not depend on the particular reduced
expression chosen, and so A(R) is reduced. �

If A = (Y, µ, o) is reduced, then for w ∈W we can define

µ(o, w) = µ(. . . µ(µ(o, s1), s2), . . . , sn)

where s1 · · · sn is any reduced expression for w (this is well defined by the reduced assumption).
Thus µ(o, w) is the common end state of all paths in A whose edge labels represent w.

Let Ared(W,S) denote the set of isomorphism classes of reduced automata recognising L(W,S).

Theorem 3.16. Let A = (Y, µ, o) be a reduced automaton recognising L(W,S). The partition
R(A) of W into sets

Ay = {w ∈W | µ(o, w−1) = y}, with y ∈ Y ,
is a regular partition of W .

Moreover, the functions F : Preg(W ) → Ared(W,S) and G : Ared(W,S) → Preg(W ) with
F (R) = A(R) (c.f. Theorem 3.13) and G(A) = R(A) are are mutually inverse bijections.

Proof. It is clear that W =
⋃
y∈Y Ay, and that Ay ∩ Ay′ = ∅ if y 6= y′. Thus R(A) is a partition

ofW . Moreover, if u, v ∈ Ay then T (u−1) = T (v−1) by Lemma 1.22. In particular, DL(u) = DL(v),
and so R(A) is locally constant.

Suppose that s /∈ DL(Ay), and consider w ∈ Ay. Thus `(sw) = `(w) + 1 and so `(w−1s) =
`(w) + 1. Since y = µ(o, w−1), if w−1 = s1 · · · sn is reduced then w−1s = s1 · · · sns is also reduced,
and hence µ(o, w−1s) = µ(y, s). Thus sw ∈ Aµ(y,s), and hence sAy ⊆ Aµ(y,s). So R(A) is regular.

To prove the final statement, we show that G(F (R)) = R and F (G(A)) = A for all R ∈
Preg(W ) and A ∈ Ared(W,S). For the first statement, the states of the automaton F (R) are
parts of R, and so the parts of the partition G(F (R)) are the sets AP = {w ∈W | µ(o, w−1) = P}
with P ∈ R, with µ as in Theorem 3.13. Recall that if w−1 = s1 · · · sn is reduced then the path
in F (R) starting at {e} with edge labels (s1, . . . , sn) ends at the part P of R containing w (see
Theorem 3.13). Thus AP = {w ∈W | w ∈ P} = P .

On the other hand, if A = (Y, µ, o) ∈ Ared(W,S), then the states of the automaton F (G(A))
are the sets Ay = {w ∈ W | µ(o, w−1) = y}, with y ∈ Y , and the transition function is given by
µ′(Ay, s) = Ay′ if s /∈ DL(Ay) and sAy ⊆ Ay′ , with y′ ∈ Y . We showed above that sAy ⊆ Aµ(y,s),
and hence µ′(Ay, s) = Aµ(y,s). It follows that f : A → F (G(A)) with f(y) = Ay is an isomorphism
of automata. �

3.3. The regular completion of a partition. In this section we show that the partially ordered
set (Preg(W ),≤) is a complete lattice (that is, every nonempty subset has both a meet and a
join). As a consequence, given an arbitrary partition P ∈ P(W ) there exists a unique minimal
regular partition P̂ ∈ Preg(W ) refining P (we call this partition the regular completion of P.
We provide an algorithm for computing the regular completion, along with sufficient conditions
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for this algorithm to terminate in finite time. An important consequence of this analysis is that
T = D̂ (see Corollary 3.29). This fact will play a pivotal role in proving Theorem 1.

Theorem 3.17. The partially ordered set (Preg(W ),≤) is a complete lattice, with bottom element
T and top element 1 (recall convention (3.1)).

Proof. Let X = {Pi | i ∈ I} ⊆Preg(W ) be nonempty. The join of X in the partially ordered set
(P(W ),≤) is (see, for example, [6, p.36])∨

X =

{⋂
i∈I

Pi

∣∣∣∣ Pi ∈Pi,
⋂
i∈I

Pi 6= ∅
}
.

Write P =
∨
X. We claim that P ∈Preg(W ). Clearly P is locally constant (as it is a common

refinement of locally constant partitions). Moreover, if P ∈ P and s ∈ S with s /∈ DL(P ) then
writing P =

⋂
i∈I Pi with Pi ∈Pi we have s /∈ DL(Pi) = DL(P ) for all i ∈ I (as P 6= ∅ and each

Pi is locally constant). Thus by regularity of each Pi there is P ′i ∈ Pi with sPi ⊆ P ′i . Thus
sP =

⋂
i∈I(sPi) ⊆

⋂
i∈I P

′
i , which is a part of P by definition. Thus P ∈Preg(W ). Thus every

nonempty subset X ⊆Preg(W ) has a join in the partially ordered set (Preg(W ),≤).
By Corollary 3.14 the cone type partition T ∈ Preg(W ) is a lower bound for every nonempty

subset X ⊆Preg(W ). Thus the set

{R ∈Preg(W ) | R ≤P for all P ∈ X}
is nonempty, and using the existence of joins from the previous paragraph, the meet of X is given
by ∧

X =
∨
{R ∈Preg(W ) | R ≤P for all P ∈ X}.

Thus Preg(W ) is a complete lattice with bottom element T and top element 1. �

Theorem 3.17 allows us to define the “regular completion” of a partition.

Definition 3.18. The regular completion of P ∈P(W ) is

P̂ =
∧
{R ∈Preg(W ) |P ≤ R}

Then P̂ is a regular partition, as (Preg(W ),≤) is a complete lattice by Theorem 3.17.

It is not immediate from the definition that P ≤ P̂, however we shall see that this is indeed
true in Theorem 3.24 below (and hence P̂ is the minimal regular partition refining P).

3.4. Simple refinements algorithm. We now develop an algorithm to compute P̂. This algo-
rithm will not always terminate in finite time, however we will provide natural sufficient conditions
under which it will terminate in finite time.

To begin with, if P ∈P(W ) then the minimal locally constant partition refining P is obviously
P ∨ D (see Lemma 3.8), whose parts are the sets P ∩D−1

L (J) for P ∈ P, J ⊆ S spherical, and
P ∩D−1

L (J) 6= ∅. Moreover, from the definition of regular completion it is clear that P̂ = P̂ ∨D ,
for if R is regular with P ≤ R then P ∨D ≤ R ∨D = R (as R is locally constant). Thus after
replacing P with P ∨D , we may assume that P is locally constant.

We now define a simple refinement of a locally constant partition. These operations will be the
basic building blocks of our algorithm for computing the regular completion.

Definition 3.19. Let P be a locally constant partition of W . Suppose that (P, s) ∈ P × S is
such that s /∈ DL(P ) and sP is not contained in a part of P. Let X = {P ′ ∈P | P ′ ∩ sP 6= ∅},
and partition the set P as

P =
⊔
P ′∈X

(P ∩ sP ′),

and let P ′ be the refinement of P obtained by replacing the part P of P by the above partition.
We call the refinement P 7→ P ′ the simple refinement, and we say that this refinement is based
at the pair (P, s).
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We note the following.

Proposition 3.20. If P is locally constant and P 7→ P ′ by a simple refinement, then P ′ is
locally constant, and if |P| <∞ then |P ′| < 2|P| <∞.

Proof. The first statement is clear, because all refinements of a locally constant partition are locally
constant. For the second statement, note that |P ′| = |P|+ |X| − 1 (with X as in Definition 3.19,
as the single part P is replaced by |X| parts P ∩ sP ′ with P ′ ∈ X), and that |X| ≤ |P|. �

Example 3.21. Figure 7 gives an example of a simple refinement in type G̃2. We start with the
locally constant partition P determined by the solid heavy lines. Let P be the part of P shaded
blue, and let s be reflection in the vertical wall bounding the identity chamber (shaded grey). Note
that s /∈ DL(P ), as e and P lie on the same side of Hαs

. The set sP is shaded red. There are
4 parts P ′ of P such that sP ∩ P ′ 6= ∅. Let P 7→ P ′ via the simple refinement based at (P, s).
The partition P ′ is given by the union of the solid heavy lines and the dotted heavy lines. The
meaning of the black and red circles will be given in Section 4 (see Example 4.23).

•
•

••

◦
•

• •

Figure 7. A simple refinement

The following algorithm is called the simple refinements algorithm.

Algorithm 3.22. Let P ∈ P(W ). Let P0 = P ∨ D . For j ≥ 1, if there exists a pair (P, s)
with P ∈Pj−1 and s ∈ S with s /∈ DL(P ) and sP 6⊆ P ′ for any P ′ ∈Pj−1, let Pj be the simple
refinement of Pj−1 based at the pair (P, s).

We will show in Theorem 3.24 below that if Algorithm 3.22 terminates in finite time, then the
output of the algorithm is the regular completion of the input partition. The key observation is
the following lemma.

Lemma 3.23. Let P be a locally constant partition, and suppose that R is a regular partition
with P ≤ R. Let P 7→P ′ by a simple refinement. Then P ′ ≤ R.

Proof. We must show that each part of R is contained in a part of P ′. Suppose that the simple
refinement P 7→P ′ is based at the pair (P, s) ∈P × S. Let R be a part of R. Then R ⊆ Q for
some part Q of P (because P ≤ R). If Q 6= P then Q is also a part of P ′ (by the definition of
simple refinements), and we are done. So suppose that Q = P and so R ⊆ P . Since R is regular,
and since s /∈ DL(R) (as s /∈ DL(P )) we have that sR ⊆ R′ for some part R′ of R. Moreover,
since P ≤ R and since R′ ∩ R = ∅ (by the locally constant condition) we have R′ ⊆ P ′ for some
part P ′ of P with P ′ ∈ X (with X as in Definition 3.19). Thus sR ⊆ R′ ⊆ P ′, and so R ⊆ sP ′.
But also R ⊆ P , and so R ⊆ P ∩ sP ′, which is a part of P ′. �
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Theorem 3.24. Let P ∈P(W ) and let P̂ be the regular completion of P.

(1) We have P ≤ P̂.
(2) If Algorithm 3.22 terminates in finite time with output Q, then Q = P̂.
(3) If |P| <∞ then Algorithm 3.22 terminates in finite time if and only if |P̂| <∞.

Proof. Suppose first that the simple refinements algorithm terminates in finite time. Then there
is a chain of partitions P ∨ D = P0 ≤ P1 ≤ P2 ≤ · · · ≤ Pn with Pj−1 7→ Pj by a simple
refinement for 1 ≤ j ≤ n and with Pn regular. By Lemma 3.23 every regular partition R with
P ≤ R satisfies Pn ≤ R, and since P̂ is the meet of such partitions (by definition), and since
Pn is regular, we have P̂ = Pn. This proves (2), and also proves (1) in the case that the simple
refinements algorithm terminates in finite time.

Suppose now that the simple refinements algorithm does not terminate in finite time. Then one
can construct an infinite chain P ∨ D = P0 ≤ P1 ≤ P2 ≤ · · · of partitions with Pj−1 7→ Pj

by a simple refinement for all j ≥ 1. Moreover, it is clear that this sequence can be chosen
such that for each N > 0 there exists M > 0 such that the partition PM restricted to the ball
BN = {w ∈ W | `(w) ≤ N} is regular (by this we shall mean that if P is a part of PM and
s /∈ DL(P ) then sP ∩BN is contained in some P ′ ∩BN with P ′ a part of PM ). Consider the join

P∞ =
∨
n≥0

Pn.

Every regular partition R with P ≤ R satisfies P∞ ≤ R (for if not, then since P0 ≤P1 ≤ · · ·
there is some n with Pn 6≤ R, contradicting Lemma 3.23). Moreover, P∞ is regular because by
construction the restriction of P∞ to each finite ball is regular. Thus, as in the previous paragraph,
P̂ = P∞, and the proof of (1) is complete.

To prove (3), note that if |P| < ∞ and the algorithm terminates in finite time, then the
output partition (which is P̂ by (2)) has finitely many parts by Proposition 3.20. Conversely, if
|P̂| <∞, and if P ∨D = P0 7→P1 7→ · · · 7→Pn is a sequence of simple refinements, then since
|P| < |P1| < · · · < |Pn|, and since Pn ≤ P̂ (by Lemma 3.23) we have n ≤ |P̂| − |P|, and so
Algorithm 3.22 terminates in finite time. �

Remark 3.25. Note that, as a consequence of Theorem 3.24, if Algorithm 3.22 terminates in finite
time then the output partition is independent of the order of the simple refinements chosen.

We note, in passing, the following corollary. Recall (c.f. [6, Section 7.1]) that a closure operator
on a partially ordered set (X,≤) is a map c : X → X satisfying (1) x ≤ c(x) for all x ∈ X, (2) if
x, y ∈ X with x ≤ y then c(x) ≤ c(y), and (3) c(c(x)) = c(x) for all x ∈ X. The closed elements
of the closure operator c : X → X are the elements x ∈ X with c(x) = x.

Corollary 3.26. The map c : P(W )→P(W ) with c(P) = P̂ is a closure operator on P(W ).
The set of closed elements is precisely Preg(W ).

Proof. By Theorem 3.24 we have P ≤ c(P) for all P ∈P(W ). If P,Q ∈P(W ) with P ≤ Q
then {R ∈ Preg(W ) | P ≤ R} ⊇ {R ∈ Preg(W ) | Q ≤ R}, and hence from the definition of
regular completion we have c(P) ≤ c(Q). Since P̂ is regular we have c(c(P)) = c(P), and so
c is a closure operator. The closed elements are those partitions P ∈ P(W ) with P = P̂, and
these are precisely the regular partitions. �
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We note that the simple refinements algorithm (Algorithm 3.22) may not terminate in finite
time, even in the case that the input partition P has finitely many parts, as the following example
shows.

Example 3.27. Let W = 〈s, t | s2 = t2 = e〉 be the infinite dihedral group. Let P =
{P0, P1, P2, P3} be the partition of W into 4 parts, with P0 = {e}, P1 = {w ∈W | DL(w) = {s}},
P2 = {w ∈ W | DL(w) = {t} and `(w) ∈ N}, and P3 = {w ∈ W | DL(w) = {t} and `(w) /∈ N},
where N = {n(n + 1) | n ∈ Z>0}. This is illustrated in Figure 8, with P0 grey, P1 green, P2 red,
and P3 blue.

es t

Figure 8. The simple refinements algorithm does not terminate in finite time

We claim that Algorithm 3.22 does not terminate in finite time when applied to P. To prove
this it is sufficient to show that the regular completion P̂ has infinitely many parts (see Propo-
sition 3.20 and Theorem 3.24). For n ≥ 1 write wn = tst · · · s with `(wn) = n(n + 1). Thus
P2 = {w1, w2, w3, . . .}. We claim that if i 6= j then wi and wj do not lie in a common part of P̂.
Suppose that i < j, and that {wi, wj} is contained in a part Q0 of P̂. Since s /∈ DL(Q0) we have
that {swi, swj} is contained in a part Q1 of P̂ (as the regular completion is regular). Continuing,
we have that {tswi, tswj} is contained in a part Q2 of P̂, and so on. Writing v = t · · · sts with
`(v) = 2(i+ 1) it follows that {vwi, vwj} is contained in a part Qi+1 of P̂. Note that vwi = wi+1

and j(j + 1) < `(vwj) = j(j + 1) + 2(i+ 1) < j(j + 1) + 2(j + 1) = (j + 1)(j + 2). Thus vwi ∈ P2

and vwj ∈ P3 are in different parts of P, and hence in different parts of the refinement P̂, a
contradiction. Hence the result.

We now provide a sufficient condition for Algorithm 3.22 to terminate in finite time. Given
a partition P, we define the roots of P to be the set Φ(P) of roots β ∈ Φ+ such that there
exist parts P1 6= P2 of P and elements w ∈ P1 and s ∈ S such that ws ∈ P2 and wαs = ±β.
Geometrically, this means that the wall Hβ of the Coxeter complex separates the chambers of P1

from the chambers of P2, and that P1 ∩ P2 (intersection of simplical complexes) contains a panel
(codimension 1 simplex) of Hβ . For example, if P is the hyperplane partition induced by Λ, then
one can easily check that Φ(P) = Λ.

Note that if |Φ(P)| < ∞ then |P| < ∞, however the converse is false (see, for example, the
infinite dihedral example in Example 3.27).

Theorem 3.28. Let P be a locally constant partition with |Φ(P)| < ∞. Then Algorithm 3.22
terminates in finite time, outputting the regular completion P̂, and moreover |P̂| <∞.

Proof. Since E0 ⊆ E1 ⊆ · · · is a filtration of Φ+, and since |Φ(P)| < ∞, there is n ≥ 0 such that
Φ(P) ⊆ En. From the definition of Φ(P) it is clear that Sn is a refinement of P, and in particular,
|P| <∞ (see Proposition 3.3). Then, by Lemma 3.23, if P →P ′ by a simple refinement we have
P ′ ≤ Sn. Since |P| < |P ′| < |Sn| Algorithm 3.22 must terminate after finitely many iterations
(at most |Sn| − |P| iterations in fact). The output is P̂ and |P̂| <∞, by Theorem 3.24. �

The following important corollary is a key ingredient in the proof of Theorem 1.

Corollary 3.29. We have T = D̂ .

Proof. Since T is regular (see Theorem 3.11) we have D ≤ T (see Lemma 3.8). Hence by
Lemma 3.23 and the fact that Algorithm 3.22 terminates in finite time (Theorem 3.28), we have
D̂ ≤ T . Since D̂ is regular Corollary 3.14 gives T ≤ D̂ , and hence the result. �

Combining Corollary 3.29 with Algorithm 3.22 and Theorem 3.28 we obtain an algorithmic
way to compute the cone type partition T by starting with D and applying simple refinements.
However it is more efficient to instead apply the following theorem, allowing us to start with J
instead of D (see Example 3.31 below).
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Theorem 3.30. We have J ≤ T , and Ĵ = T .

Proof. To prove that J ≤ T we must show that if x, y ∈ W with T (x−1) = T (y−1), then
Φsph(x) = Φsph(y). Suppose that Φsph(x) 6= Φsph(y). Then, after interchanging the roles of x
and y if neccessary, we may assume that there is a root β ∈ Φ+

sph with β ∈ Φ(y)\Φ(x). Let
J = supp(β). Writing x = uv and y = u′v′ with u, u′ ∈WJ and v, v′ ∈W J , we have ΦJ(x) = Φ(u)
and ΦJ(y) = Φ(u′) (see Lemma 1.3), and so u 6= u′. Thus T (x−1) 6= T (y−1) by Corollary 2.19.

Since J ≤ T we have Ĵ ≤ T , but also T ≤ Ĵ by Corollary 3.14. �

Example 3.31. Figure 9 illustrates the calculation of T for B̃2 using Theorem 3.30 and Algo-
rithm 3.22. Let s (respectively, t) be the reflection in the vertical (respectively, horizontal) wall
bounding the fundamental chamber. The spherical partition J is shown in Figure 9(a) (in solid
heavy lines). Let P0 be the part of J shaded in blue, and then sP0 is shaded red. The partition
P1 obtained by applying the simple refinement based at (P0, s) to J is shown in Figure 9(a) as
the union of the solid and dotted heavy lines. Similarly, Figure 9(b) shows the simple refinement
P1 →P2 based at (P1, s) (with P1 ∈P1 shaded blue), Figure 9(c) shows the simple refinement
P2 → P3 based at (P2, t), and Figure 9(d) shows the simple refinement P3 → P4 based at
(P3, t). Since P4 is regular we have P4 = Ĵ = T (by Theorems 3.24 and 3.30).

(a) J 7→ P1 (b) P1 7→ P2

(c) P2 7→ P3 (d) P3 7→ T

Figure 9. Computing T using T = Ĵ
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We note the following corollary.

Corollary 3.32. The following are equivalent.
(1) E = Φ+

sph,
(2) S0 = J ,
(3) T = S0.

Proof. If E = Φ+
sph then S0 = J directly from the definitions. If S0 = J then J is regular (as

S0 is regular by Theorem 3.11). Thus T ≤J by Corollary 3.14. But J ≤ T by Theorem 3.30,
and so equality holds. Hence T = J = S0.

On the other hand, suppose that T = S0. Thus the Brink-Howlett (ie, the 0-canonical)
automaton is minimal, and so by [17, Theorem 1] we have E = Φ+

sph. �

4. Gated partitions

In this section we introduce the notion of a gated partition. In a gated partition P, each part
P ∈ P contains a unique “gate” g with the property that g 4 x for all x ∈ P , and we write
Γ(P) for the set of all gates. We show, in Section 4.3, that simple refinements preserve the gated
property (provided an additional hypothesis, convexity, is assumed). It follows that T is gated,
proving Theorem 1.

4.1. Convex partitions. We begin with a discussion of convexity.

Definition 4.1. A subset X ⊆ W is convex if for all x, y ∈ X, and all reduced expressions
x−1y = s1 · · · sn, each element xs1 · · · sj with 0 ≤ j ≤ n is in X. A partition P of W is convex if
each part P ∈P is convex.

More intuitively, X ⊆ W is convex if for all x, y ∈ X, each chamber that lies on a minimal
length gallery from x to y in the Coxeter complex lies in X. Here gallery means a sequence of
adjacent chambers, starting at x, and ending at y. The following well-known result gives a useful
characterisation of convexity.

Lemma 4.2. [1, Proposition 3.94] A subset of W is convex if and only if it is an intersection of
half-spaces.

The above characterisation of convex sets leads to the following proposition.

Proposition 4.3. The following are convex:
(1) the intersection of convex sets;
(2) hyperplane partitions;
(3) cones and cone types;
(4) the cone type partition T .

Proof. (1) is clear from Lemma 4.2. To prove (2), note that if Λ ⊆ Φ+ then the part of the
hyperplane partition H (Λ) containing w ∈W is

P =

( ⋂
β∈Λ+

H+
β

)
∩
( ⋂
β∈Λ−

H−β

)
where Λ± = {β ∈ Λ | w ∈ H±β }, and use (1). Part (3) is clear from (1) and the formula in
Theorem 1.16, and the fact that C(w) = wT (w). Finally, the partition T is convex by the
description of the parts given in Theorem 2.14 combined with (1). �

In particular, note that Proposition 4.3(2) shows that D , J , and Sn are all convex.

Remark 4.4. Based on examples, we expect that if B is a Garside shadow, then GB is convex.
However we have only proved that GB satisfies a weaker form of convexity (see Proposition 4.12).
See Remark 5.6 for further discussion.
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4.2. Gated partitions. We now define gated partitions, provide some of the main examples, and
prove some basic properties of the gates of a regular gated partition.

Definition 4.5. A subset X ⊆ W is gated if there exists g ∈ X such that g 4 x for all x ∈ X.
The element g is called a gate of X. A partition P of W is called gated if each part P ∈ P is
gated. If P is gated we write Γ(P) for the set of all gates of P.

Lemma 4.6. Every gated subset X ⊆ W has a unique gate, and this gate is the unique minimal
length element of X.

Proof. If X ⊆ W is gated, and if g1, g2 ∈ X are gates, then g1 4 g2 and g2 4 g1. Hence g1 = g2.
Let g ∈ X be the unique gate. Since g 4 x for all x ∈ X the element g is the unique minimal
length element of X. �

We will show in Corollary 4.25 that T is gated (this proves Theorem 1). We first develop some
basic theory for gated partitions, and provide simple examples.

The following weaker notion of convexity is useful for studying Garside partitions.

Definition 4.7. Let X ⊆W be gated, with gate g. We say that X is weakly convex if g 4 y 4 x
and x ∈ X implies that y ∈ X. A gated partition P is called weakly convex if each part P ∈ P
is weakly convex.

It is obvious that if a gated set X ⊆ W (respectively a gated partition P ∈P(W )) is convex,
then X (respectively P) is also weakly convex, however the converse is clearly false. For example,
consider the partition W = {{e, s, t, st, ts}, {sts}} of the A2 Coxeter group. This gated partition
is weakly convex but not convex.

The gates of a gated weakly convex partition have the following characterisation.

Proposition 4.8. If X ⊆ W is gated and weakly convex then the gate g of X is characterised by
the properties g ∈ X and gs /∈ X for all s ∈ DR(g).

Proof. We have gs /∈ X for all s ∈ DR(g) as g has minimal length inX (by Lemma 4.6). Conversely,
suppose that x ∈ X is not the gate. Then g 4 x gives x = gs1 · · · sn with n ≥ 1 and `(x) = `(g)+n.
Then sn ∈ DR(x), and g 4 xsn 4 x, and by weak convexity xsn ∈ X. �

The following is a simple, but important, example of a gated partition.

Lemma 4.9. The partition D is a locally constant, convex, gated partition. Moreover,

Γ(D) = {wJ | J ⊆ S is spherical}.

Proof. The S-partition is locally constant by the description of the parts in Proposition 3.3, and
it is convex by Proposition 4.3. Let J ⊆ S be spherical, and let wJ be the longest element of
WJ . Each w ∈ W with DL(w) = J can be written as w = wJv with `(w) = `(wJ) + `(v) (see [1,
Proposition 2.17]), and hence wJ 4 w. Thus the part D−1

L (J) of D is gated, with gate wJ . �

The following theorem, applied to the caseX = W , shows that the join of convex gated partitions
is again convex and gated. If X ⊆ W then the notion of a gated partition of X has the obvious
meaning.

Theorem 4.10. Let X ⊆ W be convex. Let Pi, i ∈ I, be a family of convex (respectively weakly
convex) gated partitions of X. Then the join P =

∨
i∈I Pi is a convex (respectively weakly convex)

gated partition of X.

Proof. Recall that the parts of P =
∨
i∈I Pi are of the form P =

⋂
i∈I Pi with Pi ∈ Pi and

P 6= ∅. Let gi be the gate of Pi. Since P 6= ∅ there is w ∈ P , and since w ∈ Pi we have gi 4 w for
all i ∈ I. Thus {gi | i ∈ I} is bounded, and so g =

∨
{gi | i ∈ I} exists. Moreover, for any w ∈ P

we have g 4 w, and thus gi 4 g 4 w (for all i ∈ I). We may assume Pi is weakly convex (for if Pi

is convex then it is also weakly convex). Thus we have g ∈ Pi for each i ∈ I, and so g ∈ P . Thus
P is gated with gate g. Moreover, if w ∈ P and g 4 y 4 w then gi 4 g 4 y 4 w for all i ∈ I and
so y ∈ Pi for all i ∈ I, giving y ∈ P . Thus P is weakly convex. Finally, it is clear that if each Pi

is convex then P is convex (as the intersection of convex sets is convex, by Proposition 4.3). �
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Corollary 4.11. The spherical partition J is gated (see Proposition 5.8 for a description of the
set of gates of J ).

Proof. It is clear that for each spherical subset J ⊆ S the partition JJ = H (ΦJ) is convex (being
a hyperplane partition, see Propostion 4.3) and gated (with Γ(JJ) = WJ). Since

J =
∨
J

JJ ,

with the union over spherical subsets J ⊆ S, the partition J is gated by Theorem 4.10. �

In the following proposition we show that Garside partitions are gated (see Theorem 5.4 for a
generalisation).

Proposition 4.12. Let B be a Garside shadow. The partition GB is gated and weakly convex,
with Γ(GB) = B.

Proof. Each part of GB is of the form π−1
B (b) for some b ∈ B, and if x ∈ π−1

B (b) then b 4 x by the
definition of πB(x). Hence π−1

B (b) is gated with gate b.
We now show that GB is weakly convex. Suppose that b ∈ B and x ∈ π−1

B (b), and that b 4 y 4 x.
Let πB(y) = b′. Thus b′ 4 y, and so b′ 4 y 4 x, giving b′ 4 πB(x) = b (by definition of πB(x)).
On the other hand, since b 4 y we have b 4 b′ (by definition of πB(y)), and so b = b′. Thus
y ∈ π−1

B (b). �

Remark 4.13. We note the following.
(1) It is unknown if the n-Shi partition Sn is gated (see Conjecture 4.30).
(2) The partitions in Figures 1, 5, 6, and 11 are all gated. However, we note that the gated

property is in fact rather rare. For example, the partition in Figure 10 is convex, regular,
but not gated (the part shaded red has no gate).

Figure 10. A regular convex partition that is not gated

(3) There exist regular gated partitions that are not convex. For example let W be the
infinite dihedral group generated by s and t, and let P = {P0, P1, P2, P3, P4} be the
partition of W with P0 = {e}, P1 = {w ∈ W | DL(w) = {s} and `(w) /∈ 2Z}, P2 = {w ∈
W | DL(w) = {s} and `(w) ∈ 2Z}, P3 = {w ∈ W | DL(w) = {t} and `(w) /∈ 2Z}, and
P4 = {w ∈ W | DL(w) = {t} and `(w) ∈ 2Z}. This partition is regular and gated (with
corresponding gates g0 = e, g1 = s, g2 = st, g3 = t, and g4 = ts) however it is clearly not
convex.

(4) The set of gates of a gated regular partition does not determine the partition. For example,
let P be the gated regular partition of the infinite dihedral group from (2), and let P ′ =
{P ′0, P ′1, P ′2, P ′3, P ′4} with P ′0 = {e}, P ′1 = {s}, P ′2 = {w ∈W | DL(w) = {s} and `(w) > 1},
P ′3 = {t}, and P ′4 = {w ∈W | DL(w) = {t} and `(w) > 1}. Then P ′ is gated and regular,
and Γ(P ′) = Γ(P).
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We are particularly interested in partitions that are both gated and regular.

Lemma 4.14. Let R be a regular gated partition, and let A(R) = (R, µ, {e}) be the automaton
constructed in Theorem 3.13. Let R ∈ R with gate g, and let (s1, . . . , sn) be a reduced word. Then
g−1 = s1 · · · sn if and only if the path in A(R) starting at {e} with edge labels (s1, . . . , sn) is of
minimal length amongst all paths in A(R) from {e} to R.

Proof. By Theorem 3.13, if w = s1 · · · sn is reduced then the path in A(R) starting at {e} with
edge labels (s1, . . . , sn) ends at the part R with w−1 ∈ R, and the lemma follows. �

Theorem 4.15. Let R be a regular gated partition. Then the set Γ(R) of gates is closed under
taking suffix. Moreover, if J ⊆ S is spherical then WJ ⊆ Γ(R), and in particular S ⊆ Γ(R).

Proof. Let A(R) = (R, µ, {e}) be the automaton constructed in Theorem 3.13 and let R ∈ R
with gate g ∈ Γ(R). Let s ∈ DL(g) and choose a reduced expression g−1 = s1 · · · sn−1s. Then, by
Lemma 4.14 the path

{e} = R0 →s1 R1 →s2 · · · →sn−1 Rn−1 →s Rn = R

in A(R) from {e} to R with edge labels (s1, . . . , sn−1, s) is of minimal length amongst all paths
in A(R) from {e} to R. Hence the path from {e} to Rn−1 with edge labels (s1, . . . , sn−1) is of
minimal length amongst all paths from {e} to Rn−1, and so by Lemma 4.14 g′ = sn−1 · · · s1 = sg
is the gate of Rn−1. Thus Γ(R) is closed under taking suffixes by induction.

Since D ≤ R (by Lemma 3.8) and D has gates wJ with J ⊆ S spherical, it follows that
wJ ∈ Γ(R). Since Γ(R) is closed under suffix we have WJ ⊆ Γ(R) for all spherical J ⊆ S. �

Example 4.16. We note that the set Γ(R) of gates of a regular gated partition is not necessarily
closed under join (and hence Γ(R) is not necessarily a Garside shadow). An example, in type Ã2,
is given in Figure 11. With x, y ∈ Γ(R) as shown, we have that z = x ∨ y exists, yet z /∈ Γ(R).

x

y
z

Figure 11. An convex regular gated partition that is not join-closed

We conclude this section by noting that for each gated partition P one can define a “projection
map” πP : W → Γ(P) by

πP : W → Γ(P), with πP(w) the gate of the part containing w.

The following lemma shows that this map generalises the projection map πB for a Garside shadowB.

Lemma 4.17. Let B be a Garside shadow. Then πGB
= πB.

Proof. Let x ∈ π−1
B (b), with b ∈ B. Since b is the gate of π−1

B (b) we have πGB
(x) = b = πB(x). �

In fact, for a regular gated partition the associated automaton can be described purely using the
gates (rather than the parts of the partition), and the resulting formulation mirrors the Garside
case from Theorem 1.27.
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Corollary 4.18. Let R be a regular gated partition. Define A′(R) = (Γ(R), µ′, e) by

µ′(g, s) =

{
πR(sg) if s /∈ DL(g)

† if s ∈ DL(g).

Then A′(R) ∼= A(R), where A(R) is the automaton constructed in Theorem 3.13.

Proof. We define a bijection f : R ∪ {†} → Γ(R) ∪ {†} by f(†) = † and f(P ) = g if g is the gate
of P . We need to show that f(µ(P, s)) = µ′(f(P ), s) for all P ∈ R. Let P ∈ R and let g be
the gate of P . If s ∈ DL(P ) then f(µ(P, s)) = f(†) = † and also µ′(f(P ), s) = µ′(g, s) = † as
DL(g) = DL(P ). If s /∈ DL(P ) let P ′ ∈ R be the part of R with sP ⊆ P ′. Let g′ be the gate
of P ′. Then f(µ(P, s)) = f(P ′) = g′ and µ′(f(P ), s) = µ′(g, s) = πR(sg). By definition, πR(sg) is
the gate of the part containing sg, and since g ∈ P and sP ⊆ P ′ we have πR(sg) = g′, and hence
the result. �

We note, in passing, the following analogue of [16, Proposition 2.8] for general projection maps.

Proposition 4.19. Let R ∈Preg(W ). If w ∈W and s /∈ DL(w) then πR(sw) = πR(sπR(w)).

Proof. Let P be the part of R containing w, and let g be the gate of P . Thus πR(w) = g. Since R
is regular we have sP ⊆ P ′ for some part P ′ of R. Let g′ be the gate of P ′. Since sw ∈ sP ⊆ P ′

we have πR(sw) = g′. But also sg ∈ P ′, and so πR(sπR(w)) = πR(sg) = g′. Hence the result. �

4.3. Simple refinements preserve the gate property. In this section we show that if P is
locally constant, convex, and gated, and if P → P ′ via a simple refinement, then P ′ is also
locally constant, convex, and gated. Theorem 5 follows, and this is a key component of the proof
of Theorem 1.

Lemma 4.20. Let ε ∈ {−,+} and s ∈ S. If X ⊆ Hε
αs

is gated with gate g, then sX is gated with
gate sg.

Proof. Let x ∈ X. Since g is the gate of X we have `(g−1x) = `(x)−`(g), and since g, x ∈ X ⊆ Hε
αs

we have `(sx)− `(sg) = `(x)− `(g). Thus

`((sg)−1(sx)) = `(g−1x) = `(x)− `(g) = `(sx)− `(sg),

and so sg 4 y for all y = sx ∈ sX. �

Lemma 4.21. Let x, y ∈ W and s ∈ S with {x, y} bounded and s ∈ DL(x) ∩ DL(y). Then
s(x ∨ y) = (sx) ∨ (sy).

Proof. Let z = x ∨ y. Since `(sx) = `(x) − 1 and x 4 z we have `(sz) = `(z) − 1. Then
`((sx)−1(sz)) = `(x−1z) = `(z)− `(x) = `(sz)− `(sx), and so sx 4 sz. Similarly sy 4 sz, and so
{sx, sy} is bounded, and (sx) ∨ (sy) 4 sz.

Now let w be any bound for {sx, sy} with w 4 sz. Since s /∈ DL(sz) (as `(sz) = `(z)− 1) and
w 4 sz we have s /∈ DL(w). Thus

`(x−1(sw)) = `((sx)−1w)

= `(w)− `(sx) as sx 4 w by assumption
= `(w)− `(x) + 1 as s ∈ DL(x)

= `(sw)− `(x) as s /∈ DL(w).

Thus x 4 sw, and similarly y 4 sw. So sw is a bound for {x, y}. But also sw 4 z, because

`((sw)−1z) = `(w−1(sz))

= `(sz)− `(w) as w 4 sz by assumption
= `(z)− 1− `(w) as s ∈ DL(z)

= `(z)− `(sw) as s /∈ DL(w).

Thus sw = z (as z = x ∨ y is the least upper bound of {x, y}) and so w = sz. In particular we
have (sx) ∨ (sy) = sz. �
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Theorem 4.22. Let P be a locally constant, convex, gated partition of W , and for each P ∈ P
let gP denote the gate of P . Suppose that P 7→ P ′ by a simple refinement based at (P, s). Let
X = {P ′ ∈P | sP ∩ P ′ 6= ∅}, and let P ′0 be the element of X with sgP ∈ P ′0. Then

(1) the partition P ′ is locally constant, convex, and gated;
(2) the element gP is the gate of P ∩ sP ′0, and for each P ′ ∈ X\{P ′0} the set {gP , sgP ′} is

bounded and hP ′ = gP ∨ sgP ′ is the gate of P ∩ sP ′;
(3) if P has the property that each part P ∈P is an intersection of finitely many half-spaces,

then the partition P ′ also has this property.

Proof. Note that s /∈ DL(P ) (by the definition of simple refinements) and that P ′ is locally
constant and convex (as all refinements of a locally constant partition are locally constant, and the
intersection of convex sets is convex). It is also clear that (3) holds, for if P ∈P and P ′ ∈ X are
expressed as an intersection of finitely many half-spaces, then P ∩ sP ′ can also be expressed as an
intersection of finitely many half-spaces. Thus it remains to prove that each part P ∩ sP ′ of P ′ is
gated. Since gP ∈ P ∩ sP ′0 and gP 4 w for all w ∈ P we have that P ∩ sP ′0 is gated with gate gP .

Let P ′ ∈ X\{P ′0}. Let v ∈ sP ∩P ′ (note that sP ∩P ′ is nonempty by hypothesis). Since v ∈ sP
we have v = s(gPx) for some x ∈W with `(gPx) = `(gP ) + `(x) (by the gate property of P ), and
since s /∈ DL(P ) we have v = (sgP )x with `(sgPx) = `(sgP ) + `(x). Since v ∈ P ′ we have v = gP ′y
for some y ∈W with `(gP ′y) = `(gP ′)+`(y) (by the gate property of P ′). Thus v = (sgP )x = gP ′y
is an upper bound for {sgP , gP ′}. Let v = sgP ∨ gP ′ be the least upper bound of {sgP , gP ′}. In
particular, v is a prefix of each v ∈ sP ∩ P ′.

We claim that v ∈ sP ∩ P ′, and hence v is a gate of sP ∩ P ′. To see that v ∈ P ′, note that
for all v ∈ sP ∩ P ′ we have gP ′ 4 v 4 v, because v = sgP ∨ gP ′ and we showed above that v 4 v
for all v ∈ sP ∩ P ′. Since gP ′ , v ∈ P ′ it follows that v ∈ P ′ as P ′ is convex. Similarly, to see that
v ∈ sP observe that sgP 4 v 4 v, and note that sP is convex as P is convex.

Thus we have shown that v is a gate of sP ∩ P ′, and so P ∩ sP ′ is gated with gate hP ′ = sv =
s(sgP ∨ gP ′) (by Lemma 4.20). Since s ∈ DL(sgP ) ∩DL(gP ′) Lemma 4.21 gives hP ′ = gP ∨ sgP ′ ,
completing the proof.

�

Example 4.23. Theorem 4.22 is illustrated in Figure 7. We have X = {P ′0, P ′1, P ′2, P ′3}. The gates
g0, g1, g2, g3 of the parts P ′0, P ′1, P ′2, P ′3 are shown as black dots. The gate gP is shown as a red
circle, and the “new” gates hj = gP ∨ sgj are shown as red dots.

We have the following important corollary, proving Theorem 5.

Corollary 4.24. Let P be a locally constant, convex and gated partition of W . If Algorithm 3.22
terminates in finite time then the regular completion P̂ is gated and convex.

Proof. By assumption P̂ can be obtained from P by a finite sequence of simple refinements, and
hence the result by Theorem 4.22. �

4.4. The gates of W and minimal length cone type representatives. We are finally able
to prove Theorem 1.

Corollary 4.25. The cone type partition T is regular, convex, and gated. In particular, each part
XT of the cone type partition has a unique minimal length element gT , and if x ∈ XT then gT 4 x.

Proof. By Theorem 3.28 and Corollary 3.29 we have that Algorithm 3.22 applied to the S-partition
D terminates in finite time with T = D̂ . By Lemma 4.9 the partition D is convex and gated, and
so by Corollary 4.24 the partition T is also convex and gated. Hence the result. �

Corollary 4.26. Each cone type T has a unique minimal length cone type representative. That
is, for each cone type T the set {w ∈ W | T (w) = T} has a unique minimal length element mT .
Moreover, if w ∈W with T (w) = T (mT ) then mT is a suffix of w. We have mT = g−1

T , where gT
is the gate of XT .

Proof. It is obvious from Corollary 4.25 that if gT is the gate of the part XT of T then mT = g−1
T

is the unique minimal length element with T (mT ) = T . �
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Corollary 4.27. For each cone type T the set XT can be expressed as an intersection of finitely
many half-spaces.

Proof. This follows from part (3) of Theorem 4.22. �

Definition 4.28. The gates of W are the gates of the cone type partition. Let Γ = Γ(T ) denote
the set of gates of W . Then Γ−1 is the set of minimal length cone type representatives.

We record the following observations.

Proposition 4.29. We have
(1) the set Γ is closed under suffix;
(2) WJ ⊆ Γ for each spherical subset J ⊆ S;
(3) if P is regular and gated then Γ ⊆ Γ(P);
(4) if B is a Garside shadow, then Γ ⊆ B;
(5) Γ ⊆ L;
(6) |Γ| ≤ |E| with equality if and only if E = Φ+

sph.

Proof. (1) and (2) are special cases of Theorem 4.15. (3) follows from the fact that T ≤P for all
regular partitions P (by Corollary 3.14), and (4) is a special case of (3), using the Theorem 3.11
and Proposition 4.12. Moreover, since L is a Garside shadow we have Γ ⊆ L by (4).

Finally, since |Γ| is the number of states of the minimal automata recognising L(W,S), and since
A0 has |E| states, we have |Γ| ≤ |E|. Equality holds if and only if the automaton A0 is minimal,
and by [17, Theorem 1] this occurs if and only if E = Φ+

sph. �

If W is affine the partition S0 is gated by the classical work of Shi [18, 19], however in general
it is unknown if the n-Shi partitions Sn are gated. We make the following conjecture.

Conjecture 4.30. Let n ∈ N. The n-Shi partition Sn is gated.

In the case that n = 0 and (W,S) is affine, Conjecture 4.30 is true by Shi’s work [18, 19]. In
[11, Conjecture 2] Dyer and Hohlweg conjecture that the map Θn : Ln → En with Θn(x) = En(x)
is bijective, and we note that this conjecture, if true, readily implies Conjecture 4.30 (with the
gates being the n-low elements). Recently Chapelier-Laget and Hohlweg [5] have proved [11,
Conjecture 2] in the case n = 0 for affine Coxeter groups. Finally, Corollary 4.25 implies the
following further evidence for Conjecture 4.30.

Proposition 4.31. If E = Φ+
sph then S0 is gated.

Proof. By Corollary 3.32 if E = Φ+
sph then S0 = T , which is gated by Corollary 4.25. (Another

approach is to use Theorem 1.28). �

In [16, Conjecture 1] Hohlweg, Nadeau and Williams conjecture that the automaton GS̃ is the
minimal automaton recognising L(W,S). We note that, in terms of the set Γ, minimality of GS̃ is
equivalent to the following.

Theorem 4.32. The automaton GS̃ is minimal if and only if Γ is closed under join.

Proof. By Proposition 4.29 we have Γ ⊆ S̃. If GS̃ is minimal then AS̃ ∼= A(W,S) (by Theorem 1.23)
and hence |Γ| = |S̃|, giving Γ = S̃. Thus Γ is closed under join.

Conversely, if Γ is closed under join, then by Proposition 4.29 parts (1) and (2) we have that Γ

is a Garside shadow. Since Γ ⊆ S̃ we have Γ = S̃. �

We have been unable to prove in general that Γ is closed under join, however the following
theorem establishes this fact in the case E = Φ+

sph, providing evidence for Conjecture 1.

Theorem 4.33. Suppose that E = Φ+
sph. Then Γ = S̃ = L. In particular, Γ is closed under join.

Proof. By Proposition 4.29(4) we have Γ ⊆ S̃, and since L is a Garside shadow we have S̃ ⊆ L.
By [11, Proposition 3.26] we have |L| ≤ |E|, and hence |Γ| ≤ |S̃| ≤ |L| ≤ |E|. Thus if E = Φ+

sph

then Proposition 4.29(6) forces |Γ| = |S̃| = |L| = |E|. Since Γ ⊆ S̃ ⊆ L this gives Γ = S̃ = L. �
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Remark 4.34. Figures 1, 5, and 6 show the partitions S0 and T for B̃2, G̃2, and Ã2, respectively.
In these case it turns out (and conjecturally this is always true) that S0 is gated, with Γ(S0) = L.
In the B̃2 and G̃2 cases the inclusion Γ ⊆ L is strict. The elements of Γ are shaded blue, and the
elements of L\Γ are shaded red. In the Ã2 case we have Γ = L.

Moreover, since Γ (and also L) are closed under suffix, the sets Γ−1 and L−1 are closed under
prefix. Thus these sets are connected regions of the Coxeter complex. We draw these sets in
Figure 12 for Ã2, B̃2, and G̃2, with Γ−1 shaded blue, and L−1\Γ−1 shaded red. The fact that L−1

is a dilation of the fundamental alcove in these cases is explained by a celebrated result of Shi
(see [19, §8]) and the observation that L is the set of gates of S0 in these cases.

Figure 12. The sets Γ−1 and L−1

4.5. A characterisation of the gates of W . The following theorem gives a characterisation of
the gates in terms of roots, and is linked to the concept of boundary roots (see Theorem 2.6).
Recall the definition of Φ0(w) from Definition 1.10.

Theorem 4.35. Let x ∈ W . Then x ∈ Γ if and only if for each β ∈ Φ0(x) there exists w ∈ W
with Φ(x) ∩ Φ(w) = {β}.

Proof. Let x ∈ Γ, and let β ∈ Φ0(x). Hence β = −xαs for some s ∈ DR(x). Since `(xs) < `(x) we
have T (sx−1) 6= T (x−1) (as x ∈ Γ is of minimal length in its part of T ). Since T (x−1) ⊆ T (sx−1)
(by Lemma 1.15) we have strict containment, and so there exists w ∈ T (sx−1)\T (x−1). Thus by
Proposition 1.14 we have Φ(xs) ∩ Φ(w) = ∅ and Φ(x) ∩ Φ(w) 6= ∅. Since Φ(x) = Φ(xs) t {β} we
have Φ(x) ∩ Φ(w) = {β}.

Conversely, suppose that x /∈ Γ. Let T = T (x−1), and let g ∈ Γ be the gate of XT . Then g 4 x,
and by convexity of XT (see Proposition 4.3) each y ∈ W with g 4 y 4 x has T (y−1) = T . In
particular, since g 6= x there exists s ∈ DR(x) with T (sx−1) = T = T (x−1). Then β = −xαs ∈
Φ0(x), and by Proposition 1.14 we have that for all w ∈ W we have Φ(x) ∩ Φ(w) = ∅ if and
only if Φ(xs) ∩ Φ(w) = ∅. Since Φ(x) = Φ(xs) t {β} it follows that there is no element w with
Φ(x) ∩ Φ(w) = {β}. �

A priori, given x ∈W and β ∈ Φ0(x), deciding if there exists w ∈W such that Φ(x)∩Φ(w) = {β}
appears difficult to implement in an infinite Coxeter group. However we note that, by the following
proposition, one only needs to check w ∈ Γ (a finite set).

Proposition 4.36. Let x ∈W and β ∈ Φ+. Suppose there exists w ∈W such that Φ(x)∩Φ(w) =
{β}, and let w be of minimal length subject to this property. Then Φ0(w) = {β}, and w is a gate.

Proof. Let α ∈ Φ0(w). Thus sαw = ws for some s ∈ S and `(ws) = `(w) − 1. If α 6= β
then Φ(x) ∩ Φ(ws) = {β}, contradicting the minimal length assumption. Thus α = β, and so
Φ0(w) = {β}, and then w is a gate by Theorem 4.35. �
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Similar ideas give the following corollary.

Corollary 4.37. If T = T (x−1) then ∂T = {β ∈ Φ+ | Φ(x) ∩ Φ(g) = {β} for some g ∈ Γ}.

Proof. By Theorem 2.6 we have ∂T = {β ∈ Φ+ | Φ(x) ∩ Φ(w) = {β} for some w ∈W}, and the
result follows from Proposition 4.36. �

Remark 4.38. Theorem 4.35 and Proposition 4.36 allow one to implement the calculation of the set
Γ into MAGMA [3], utilising the existing Coxeter group package. The main steps are as follows.

(1) The set E of elementary roots is computed inductively by setting E0 = {αs | s ∈ S}, and
defining Ej+1 = Ej ∪ {sα | α ∈ Ej , s ∈ S, with − 1 < (α, αs) < 0}. Once En+1 = En we
have E = En (see [2, §4.7]).

(2) The set L of low elements is computed by settingM0 = {e}, and definingMj+1 = Mj∪{sw |
w ∈ Mj , s ∈ S\DL(w), Φ1(sw) ⊆ E}. Once Mn = Mn+1 we have L = Mn (by the suffix
closure property of L).

(3) Since Γ ⊆ L we can then determine, in finite time, the set Γ by checking, for each x ∈ L
and β ∈ Φ0(x), whether there exists w ∈ L such Φ(x)∩Φ(w) = {β} (using Proposition 4.36
and the fact that Γ ⊆ L).

We have carried through the calculations for a variety of Coxeter groups, and the data is presented
in Figure 13 for some affine and compact hyperbolic groups. See [17] for the definitions of the
compact hyperbolic groups X4(c) (c ∈ {4, 5}), X5(d) (d ∈ {3, 4, 5}), Y4, Z4, and Z5.

We note that, as a general rule, groups with large spherical subgroups will have have many gates
and low elements (by Proposition 4.29), while those with only small spherical subgroups tend to
have very few gates. For example, in D̃5 there are 59049 low elements and 58965 gates, while in
the corresponding Coxeter group with each occurrence of mst = 3 replaced by mst = 4 there are
only 332 low elements and 247 gates.

W |E| |L| |Γ|
Ã2 6 16 16

B̃2 8 25 24

G̃2 12 49 41

Ã3 12 125 125

B̃3 18 343 315

C̃3 18 343 317

Ã4 20 1296 1296

B̃4 32 6561 5789

C̃4 32 6561 5860

D̃4 24 2401 2400

F̃4 48 28561 22428

Ã5 30 16807 16807

B̃5 50 161051 137147

C̃5 50 161051 139457

D̃5 40 59049 58965

W |E| |L| |Γ|
X4(4) 25 438 392
X4(5) 32 516 462
Y4 32 687 578
Z4 30 513 473

X5(3) 114 101412 52542
X5(4) 83 25708 22886
X5(5) 135 42064 37956
Z5 120 41385 39138

Figure 13. Data for low rank affine and compact hyperbolic Coxeter groups

We conclude this section with a conjecture. Define a partial order on the set T of cone types by
T1 ≤ T2 if and only if T2 ⊆ T1 (thus ≤ is given by reverse containment).

Conjecture 4.39. The map Θ : (Γ,4)→ (T,≤) given by Θ(g) = T (g−1) is an order isomorphism.

Note that the conjecture, if true, generalises Theorem 2.15 because WJ ⊆ Γ for all spherical
J ⊆ S, by Proposition 4.29. We note the following consequence of Conjecture 4.39.
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Proposition 4.40. If Conjecture 4.39 holds then Γ is closed under join (hence Conjecture 1 holds)

Proof. Let x, y ∈ Γ, and suppose that {x, y} is bounded. Let z = x∨y, and let g be the gate of the
part of T containing z. Since x 4 z and y 4 z we have T (z−1) ⊆ T (x−1)∩T (y−1) (by Lemma 1.15;
in fact equality holds by Proposition 1.19). Since T (g−1) = T (z−1) ⊆ T (x−1) ∩ T (x−1) we have
x 4 g and y 4 g (assuming Conjecture 4.39), and so g is an upper bound for {x, y}. Thus z 4 g.
But also g 4 z by gate properties, and so z = g. �

5. Conical partitions

In this section we define conical partitions, generalising the construction of Garside partitions. In
fact, in Corollary 5.7 we show that regular conical partitions are the partition theoretic equivalent
to Garside shadows.

Definition 5.1. Let X ⊆ W with e ∈ X. The conical partition induced by X is the partition
C (X) of W induced by the covering {C(x) | x ∈ X}. (Note that e ∈ X is required for this to be a
covering).

In particular, every Garside partition is conical by definition (see Definition 3.2). In fact, as we
see in Theorem 5.4, every conical partition is gated, and the gates of such a partition are necessarily
closed under join, generalising Proposition 4.12.

Definition 5.2. The join-closure of a subset X ⊆W is

X∨ = {
∨
Y | Y ⊆ X is bounded}.

The following lemma shows that the join-closure of X is indeed closed under joins.

Lemma 5.3. Let X ⊆W . If Y ⊆ X∨ is bounded, then
∨
Y ∈ X∨.

Proof. Let Y ⊆ X∨ be bounded. If z ∈ Y \X then z =
∨
Z for some bounded subset Z ⊆ X (by

the definition of join-closure). It is clear that∨
Y =

∨
((Y \{z}) ∪ Z),

and it follows that
∨
Y can we written as

∨
Y ′ for a bounded subset Y ′ ⊆ X. Hence

∨
Y ∈ X∨. �

Theorem 5.4. Let X ⊆ W with e ∈ X. Let P = C (X) be the conical partition induced by X.
Then P is gated, with Γ(P) = X∨. In particular, the set Γ(P) is closed under join.

Proof. Let P be a part of P, and let w ∈ P . Since {C(x) | x ∈ X} is a covering of W , the set

{x ∈ X | w ∈ C(x)} = {x ∈ X | x 4 w}
is nonempty, and bounded above by w. Thus g =

∨
{x ∈ X | w ∈ C(x)} exists. By Lemma 1.18

we have ⋂
{x∈X|w∈C(x)}

C(x) = C(g),

and so w ∈ C(g). Thus g 4 w for all w ∈ P . We claim that g and w lie in the same part of P
(from which it follows that P is gated with gate g). Thus we must show that for all x ∈ X we have
w ∈ C(x) if and only if g ∈ C(x). If x ∈ X with w ∈ C(x), then by the definition of g we have
x 4 g and so g ∈ C(x). Conversely, if g ∈ C(x) then x 4 g, and so since g 4 w we have x 4 w,
and so w ∈ C(x). Hence the claim.

Now, if Y ⊆ X is any bounded set, and g =
∨
Y , then clearly

g =
∨
{x ∈ X | g ∈ C(x)},

and by the above discussion g is the gate of the part of P containing g. Hence Γ(P) = X∨. �
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The following lemma shows that one may replace X by its join closure when constructing C (X).

Lemma 5.5. If X ⊆W then C (X) = C (X∨).

Proof. Let u, v be in the same part of C (X). Let x ∈ C(X∨). Then x =
∨
Y for some Y ⊆ X.

Then C(x) =
⋂
y∈Y C(y) (by Lemma 1.18). So if u ∈ C(x) we have u ∈ C(y) for all y ∈ Y (as

u, v are in the same part of C (X)) and so v ∈ C(x). Thus u, v are in the same part of C (X∨).
Conversely, it is clear that if u, v are in the same part of C (X∨) then they are also in the same
part of C (X). �

Remark 5.6. We note the following.
(1) Not all conical partitions are Garside partitions. For example, considerW of spherical type

A2 and letX = {e, sts}. The conical partition induced byX is P = {{e, s, t, st, ts}, {sts}},
which is obviously not a Garside partition (in fact, the only Garside partition of a finite
Coxeter group is the partition 1 into singletons). We shall show below (in Corollary 5.7)
that Garside partitions are equivalent to regular conical partitions.

(2) Conical partitions are not necessarily convex, as the above A2 example shows (compare
with Remark 4.4). However conical partitions P = C (X) are necessarily weakly convex.
To see this, note that by Lemma 5.5 we may assume that X = X∨ and hence Γ(P) = X
by Theorem 5.4. Suppose that w ∈ W and that g ∈ X is the gate of the part of P
containing w. We need to show that if g 4 v 4 w then v and w lie in the same part of P.
Let g′ ∈ Γ(P). If v ∈ C(g′) then g′ 4 v 4 w and so w ∈ C(g′). On the other hand, if
w ∈ C(g′) then since g and w lie in the same part we have g ∈ C(g′) (by the definition of
conical partitions) and hence g′ 4 g 4 v, giving v ∈ C(g′). Thus v and w lie in the same
part of P.

Corollary 5.7. Let X ⊆ W with e ∈ X and let P = C (X) be the (necessarily gated, c.f.
Theorem 5.4) conical partition induced by X. Then Γ(P) is a Garside shadow if and only if P is
regular.

Proof. By Theorem 5.4 P is gated, with Γ(P) = X∨. Thus Γ(P) is closed under joins. If P is
regular then by Theorem 4.15 we have S ⊆ Γ(P) and that Γ(P) is closed under taking suffixes,
and hence Γ(P) is a Garside shadow.

Conversely, suppose that Γ(P) is a Garside shadow. By Lemma 5.5 we have P = C (X∨),
and thus P is the Garside partition of the Garside shadow X∨ = Γ(P). Hence P is regular by
Theorem 3.11. �

We showed in Corollary 4.11 that the spherical partition J is gated. We now give another
proof, using Theorem 5.4, that has the advantage of determining the set of gates. Let Wsph denote
the union of all spherical parabolic subgroups of W .

Proposition 5.8. We have J = C (Wsph). Thus J is gated, with Γ(J ) = W∨sph

Proof. Once we show that J = C (Wsph) the result follows from Theorem 5.4. So, consider a part
P = {w ∈W | Φsph(w) = Σ} of J , for some Σ ∈ S. Let x, y ∈ P , and let z ∈Wsph. It is sufficient
to show, by symmetry of x and y, that if x ∈ C(z) then y ∈ C(z) too. First we note that since
Φsph(x) = Φsph(y) we have ΦJ(x) = ΦJ(y) for all spherical subsets J ⊆ S.

Suppose that x ∈ C(z) with z ∈ Wsph. Choose a reduced expression of z, and let J be the set
of generators appearing in this reduced expression (thus J is spherical, and note that J does not
depend on the particular reduced expression chosen, by [1, Proposition 2.16]). Since z 4 x we have
Φ(z) ⊆ ΦJ(x) = ΦJ(y) ⊆ Φ(y). Thus z 4 y, and so y ∈ C(z). �

6. Ultra low elements

We now define a new class of elements of W called ultra low elements, which we denote by U .
Conjecturally, U is the set of gates Γ of W , which in turn is conjecturally the smallest Garside
shadow S̃ (see the comments below).

Definition 6.1. An element x ∈ W is ultra low if for each β ∈ Φ1(x) there exists w ∈ W such
that Φ(x) ∩ Φ(w) = {β}.
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For example, each s ∈ S is ultra low, and e is trivially ultra low.

Proposition 6.2. We have U ⊆ Γ ⊆ L.
Proof. The containment U ⊆ Γ follows from the definition of ultra low elements, and the char-
acterisation of gates in Theorem 4.35, noting that Φ0(x) ⊆ Φ1(x). The containment Γ ⊆ L is
Proposition 4.29. �

Remark 6.3. One can show more directly that U ⊆ L without passing through Γ. For if x ∈ U
then from the definition and Lemma 2.4 we have Φ1(x) ⊆ E , and hence x is low.

The following proposition connects the concept of ultra low elements with boundary roots.

Proposition 6.4. Let x ∈W and let T = T (x−1). Then x is ultra low if and only if Φ1(x) = ∂T .
Moreover, if Φ1(x) = ∂T then x is the gate of XT .

Proof. Note that ∂T ⊆ Φ1(x) by Corollary 2.7. We have x ∈ U if and only if for each β ∈ Φ1(x)
there exists w ∈W with Φ(x) ∩ Φ(w) = {β}, if and only if β ∈ ∂T by Theorem 2.6.

Let y ∈ XT , and so T (y−1) = T . By Corollary 2.7 we have ∂T ⊆ Φ1(y). Since Φ1(x) = ∂T , we
have Φ(x) = coneΦ(∂T ) ⊆ coneΦ(Φ1(y)) = Φ(y) (see Theorem 1.7). Thus by Proposition 1.2(5)
we have x 4 y for all y ∈ XT . Thus x = gT is the gate of XT . �

We conjecture that the reverse implication also holds in the second statement of Proposition 6.4
(this is the content of Conjecture 2 in the introduction). If this conjecture holds then it follows
that U = Γ.

Remark 6.5. We have verified that U = Γ for right angled Coxeter groups, rank 3 Coxeter groups,
and all Coxeter groups with complete Coxeter graph (that is, mst > 2 for all s 6= t). See [20,
Chapter 5] for details.

7. Super elementary roots

In Section 2.2 we observed that the boundary roots ∂T ⊆ E of a cone type T gives the minimal
amount of root data required to determine T . It is natural to ask whether every elementary root
is a boundary root of some cone type. Equivalently, is it true that Φ(T ) = E (in the notation
of Section 3.4)? In this section we show that Φ(T ) = E for spherical and affine Coxeter groups
(amongst others), however in general the containment Φ(T ) ⊆ E can be strict. In particular,
we exhibit a class of rank 4 Coxeter groups for which there is an elementary root that is not the
boundary root of any cone type. We thank Bob Howlett for inspiring the work in this section and
for suggesting a motivating example.

Definition 7.1. A root β ∈ Φ+ is super-elementary if there exists x, y ∈W with

Φ(x) ∩ Φ(y) = {β}.
Let S denote the set of all super-elementary roots.

By Theorem 2.6 S is precisely the set of roots that occur as the boundary root of some cone
type, and hence S = Φ(T ).

Proposition 7.2. Every super-elementary root is elementary. Thus S ⊆ E.
Proof. See Lemma 2.4. �

We now provide various classes of Coxeter systems for which S = E .
Theorem 7.3. If W is spherical then S = E = Φ+.

Proof. Let w0 = s1 · · · sn be a reduced expression for the longest element of W . Since Φ(w0) = Φ+

we have Φ+ = {β1, . . . , βn} where βj = s1 · · · sj−1αsj for 1 ≤ j ≤ n. We claim that

Φ(s1 · · · sj) ∩ Φ(s1 · · · sj−1w0) = {βj} for j = 1, . . . , n.

For if w ∈ W then Φ(ww0) = Φ+\Φ(w) (because if α ∈ Φ+\Φ(w) then (ww0)−1α = w0w
−1α < 0

as w−1α > 0, and `(ww0) = `(w0) − `(w) = |Φ+\Φ(w)|). Thus Φ(s1 · · · sj−1w0) = {βj , . . . , βn},
and the claim follows as Φ(s1 · · · sj) = {β1, . . . , βj}. Thus every positive root is super elementary,
and hence the theorem. �
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Corollary 7.4. We have Φ+
sph ⊆ S. In particular, if E = Φ+

sph then S = E.

Proof. If β ∈ Φ+
J with J ⊆ S spherical, then by Theorem 7.3 there exists x,w ∈ WJ with

Φ(x) ∩ Φ(w) = {β}, and so β ∈ S. �

In particular, Corollary 7.4 shows that ifW is right angled, or ifW has complete Coxeter graph,
then S = E (see [17, Theorem 1] for the classification of Coxeter systems with E = Φ+

sph).
We will now show that S = E for all affine Coxeter groups. When W is affine there is a related

notion of a “root system”, for W where one starts with a crystallographic root system Φ0 of a
spherical Coxeter group W0. We will not repeat this construction here, we refer to [17, Section 2.2]
for details, and we will use the notation of [17] in the following paragraphs. In particular, the finite
crystallographic root system Φ0 has simple system {α1, . . . , αn}, and 〈·, ·〉 denotes the bilinear
form on the underlying vector space. For α ∈ Φ0 we write α∨ = 2α/〈α, α〉. Let ω1, . . . , ωn be
the basis dual to the simple roots basis, and so 〈αi, ωj〉 = 1 if i = j and equals 0 otherwise. Let
P = Zω1+· · ·+Zωn (the coweight lattice of Φ0). The affine root system is Φ = Φ0+Zδ with positive
roots Φ+ = (Φ+

0 + Z≥0δ) ∪ (−Φ+
0 + Z>0δ). The set of elementary roots is E = Φ+

0 ∪ (−Φ+
0 + δ).

Lemma 7.5. Let K > 0 be an integer and α ∈ Φ+
0 . There exists λ ∈ P such that 〈λ, α〉 = 1 and

|〈λ, β〉| > K for all β ∈ Φ+
0 \{α}.

Proof. Let w ∈W0 be such that wα = αi (a simple root). Let

λ′ = ωi + (K + 1)
∑
j 6=i

ωj .

Then 〈λ′, αi〉 = 1 and 〈λ′, β〉 > K for all β ∈ Φ+
0 \{αi}. Now let λ = w−1λ′. So 〈λ, α〉 =

〈λ,w−1αi〉 = 〈wλ, αi〉 = 1, and if β ∈ Φ+
0 \{α} we have 〈λ, β〉 = 〈λ′, wβ〉. Since wβ ∈ Φ0\{−α, α}

there is an index j 6= i and an element γ in the Z≥0-span of the simple roots, such that either
wβ = −αj − γ (in the case that wβ ∈ −Φ+

0 ) or wβ = αj + γ (in the case that wβ ∈ Φ+
0 ). Then

|〈λ′, wβ〉| > K, and so |〈λ, β〉| > K. �

Theorem 7.6. If W is affine then S = E.

Proof. The roots in Φ+
0 are super elementary Corollary 7.4. So consider the roots −α + δ with

α ∈ Φ+
0 . Let

K = max
α,β∈Φ+

0

|〈α∨, β〉|

(this is an integer, as Φ0 is crystallographic). Using Lemma 7.5, choose λ ∈ P with 〈λ, α〉 = 1
and |〈λ, β〉| > K for all β ∈ Φ+

0 \{α}. Let µ = −λ + α∨. Then 〈µ, α〉 = −〈λ, α〉 + 〈α∨, α〉 = 1,
and 〈µ, β〉 = −〈λ, β〉 + 〈α∨, β〉 for β ∈ Φ+

0 \{α}. It follows, from the choice of K, that 〈µ, β〉 and
〈λ, β〉 have opposite signs for all β ∈ Φ+

0 \{α}. Let wλ and wµ be the (unique) elements of W such
that wλ(C0) = λ + C0 and wµ(C0) = µ + C0 (as sets, where C0 is the fundamental chamber in
the standard geometric realisation). Therefore every root in Φ(wλ) ∩Φ(wµ) lies in the parallelism
class of α, and since 〈λ, α〉 = 〈µ, α〉 = 1 we have Φ(wλ)∩Φ(wµ) = {−α+ δ}. Thus the root −α+ δ
is super elementary. �

We have now concluded our discussion of affine Coxeter groups, and thus we return to the
“standard” notion of root systems henceforth. We turn our attention to exhibiting a class of
Coxeter systems for which S is a strict subset of E . Let (W,S) be a rank 4 Coxeter system with
S = {s1, s2, s3, s4} and ms1,s2 = ms1,s3 = ms2,s3 = 2. Let mi = msi,s4 and ti = 2 cos(π/mi) for
i = 1, 2, 3. Thus W has Coxeter graph

m1
m2

m3

Write αi = αsi for i = 1, 2, 3, 4. If λ = aα1 + bα2 + cα3 + dα4 ∈ V with a, b, c, d ≥ 0 and λ 6= 0
we write λ > 0 (note that this notation does not imply that λ is a root).



CONE TYPES, AUTOMATA, AND REGULAR PARTITIONS IN COXETER GROUPS 43

Lemma 7.7. Let λ = aα1 + bα2 + cα3 + dα4 6= 0 with a, b, c, d ≥ 0, t1d − 2a ≥ 0, t2d − 2b ≥ 0,
t3d− 2c ≥ 0, and t1a+ t2b+ t3c− 2d ≥ 0. Then wλ > 0 for all w ∈W .

Proof. Induction on `(w), with the case w = e true by hypothesis (as a, b, c, d ≥ 0). Suppose the
result is true for w, and suppose that `(wsi) = `(w) + 1. Thus wαi > 0.

If i = 1 we have s1λ = λ+ (t1d− 2a)α1, and hence

wsiλ = w(λ+ (t1d− 2a)α1) = wλ+ (t1d− 2a)wα1 > 0

as t1d− 2a ≥ 0 and wα1 > 0. Similarly for i = 2, 3. If i = 4 then

wsiλ = w(λ+ (t1a+ t2b+ t3c− 2d)α4) > 0,

hence the result. �

Theorem 7.8. Let (W,S) be the rank 4 Coxeter system as above, and suppose that 1
mi

+ 1
mj
≤ 1

2

for each pair i, j ∈ {1, 2, 3} with i 6= j, and that m1,m2,m3 <∞. Then the root

β = t1α1 + t2α2 + t3α3 + α4

is elementary but not super elementary.

Proof. Since ms1,s2 = ms1,s3 = ms2,s3 = 2 we have β = s3s2s1(α4). Thus α4 7→s1 t1α1 + α4 7→s2

t1α1 + t2α2 + α4 7→s3 β is a path moving up the root poset of Φ+ such that the difference in the
αi coordinate at the ith step in the path is less than 2 (as m1,m2,m3 <∞). Thus β is elementary
by [2, §4.7].

Let λ = β + α4 and λi = siβ + α4 for i = 1, 2, 3. We claim that λ and λi satisfy the conditions
of Lemma 7.7. To see this, note that the condition 1

mi
+ 1

mj
≤ 1

2 is equivalent to t2i + t2j ≥ 4 for
i, j ∈ {1, 2, 3} with i 6= j. We have λ = t1α1 + t2α2 + t3α3 + 2α4, λ1 = 0α1 + t2α2 + t3α3 + 2α4,
λ2 = t1α1 + 0α2 + t3α3 + 2α4, and λ3 = t1α1 + t2α2 + 0α3 + 2α4. Then for λ we have t1d− 2a =
t2d − 2b = t3d − 2c = 0 and t1a + t2b + t3c − 2d = t21 + t22 + t23 − 4 ≥ 0, and for λ1 we have
t1d− 2a = 2t1, t2d− 2b = t3d− 2c = 0, and t1a+ t2b+ t3c− 2d = t22 + t23 − 4 ≥ 0. Similarly for λ2

and λ3, using t21 + t23 ≥ 4 and t21 + t22 ≥ 4.
Thus by Lemma 7.7 we have w−1λ > 0 and w−1λi > 0 (i = 1, 2, 3) for all w ∈ W . It follows

that there exists no element w ∈ W with {α4, β} ⊆ Φ(w) or {α4, siβ} ⊆ Φ(w) (for i = 1, 2, 3),
because if so then either w−1λ < 0 or w−1λi < 0.

We will now show that if β ∈ Φ(w) then |Φ(w) ∩ {α1, α2, α3}| ≥ 2 (and thus there cannot be
w, v ∈ W with Φ(w) ∩ Φ(v) = {β}, and so β /∈ S). Equivalently, we will show that at least two
of the simple reflections s1, s2, s3 are in DL(w). If β ∈ Φ(w) then the above observation gives
α4 /∈ Φ(w), and so s4 /∈ DL(w). Therefore at least one of s1, s2, s3 lie in DL(w) (as w 6= e since
β ∈ Φ(w)). Thus w = siv with `(siv) = `(v) + 1 for some i ∈ {1, 2, 3} and v ∈ W , and note
that v 6= e (as β ∈ Φ(w) and β 6= αi). If sj ∈ DL(v) for some j ∈ {1, 2, 3} then we are done (as
i 6= j, and sisj = sjsi giving si, sj ∈ DL(w)). So assume that DL(v) = {s4}. Then α4 ∈ Φ(v),
and so from the above observations siβ /∈ Φ(v). But then w−1β = v−1siβ > 0, a contradiction,
completing the proof. �

Corollary 7.9. Let W and β be as in Theorem 7.8. Then β is not a boundary root of any cone
type. In particular, Φ(T ) is a strict subset of E in this case.
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