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Abstract

We establish a strong connection between buildings and Hecke algebras by studying two
algebras of averaging operators on buildings. To each locally finite regular building 2~ we
associate a natural algebra Z of chamber set averaging operators, and when the building
is affine we also define an algebra o7 of vertex set averaging operators. We show that
for appropriately parametrised Hecke algebras 777 and H , the algebra Z is isomorphic
to # and the algebra o is isomorphic to the center of /. On the one hand these results
give a thorough understanding of the algebras &/ and . On the other hand they give
a nice geometric and combinatorial understanding of Hecke algebras, and in particular of
the Macdonald spherical functions and the center of affine Hecke algebras. Our results also
produce interesting examples of association schemes and polynomial hypergroups.

It is shown that all algebra homomorphisms A : &/ — C may be expressed in terms of
the Macdonald spherical functions. We also provide a second formula for these homomor-
phisms in terms of an integral over the boundary of 2Z". The algebra .7 may be regarded as
a subalgebra of the C*-algebra of bounded linear operators on the Hilbert space £2(Vp) of
square summable functions f : Vp — C, where Vp is in most cases the set of special vertices
of Z". We write 4% for the closure of & in this algebra. The Gelfand map o5 — €(Ms),
where My = Hom(g#, C), is studied, and we compute M, and the Plancherel measure
of 7. This ‘spherical harmonic analysis’ is applied to give a local limit theorem for radial
random walks on affine buildings.

In an appendix we discuss an alternative approach to the study of the algebra o7 and the
algebra homomorphisms h : &/ — C in the ‘low dimension’ cases, using more elementary
techniques (that is, without the machinery of Hecke algebras).
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Introduction

Buildings are certain geometric objects, initially studied by Jacques Tits in the mid
1950’s to give a systematic geometric interpretation of the semi-simple Lie groups (see
the introduction to [40]). Since then, the theory of buildings has enjoyed a rich and
rapid development in many directions, with Tits being a main contributor. To a large
extent this activity has been motivated by the useful and interesting connections between
buildings and other branches of mathematics (for example, p-adic and arithmetic groups).
One aim of this thesis is to describe some close connections between buildings and Hecke
algebras, through the combinatorial study of two algebras of averaging operators associated
to (regular) buildings.

Often we are interested in affine buildings, of which homogeneous trees are the simplest
examples. Indeed, a motivation for our work is the existing theory of ‘harmonic analysis
on homogeneous trees’ (see [14] for example). There is also an extensive literature in the
higher rank cases too (see [23]), but under the assumption that the building is constructed
from a group. It is another aim of this thesis to lay the foundations for ‘harmonic analysis
on affine buildings’, using building theoretic, rather than group theoretic, techniques.

We note that there exist buildings that do not arise from the standard group construc-
tions, even in the spherical and affine cases. For example, in a locally finite A, building, the
vertices of distance 1 from a given vertex have the structure of a projective plane (which
might not be Desarguesian). This plane may vary from vertex to vertex (with the order
fixed) [34], resulting in a building with trivial automorphism group. The situation for C
and G, buildings is similar.

For a simpler example, notice that in a homogeneous tree in which each vertex has
valency ¢ + 1, it is only when ¢ is a prime power that the tree arises as the Bruhat-Tits
building of a group.

Our methods deal with buildings in a uniform, axiomatic manner. We do not assume
that our buildings arise from groups, and so it is the building theoretic aspects which
determine our results.

Let us give a brief description of the structure and main results of this thesis.

Buildings and Regularity. In Chapter 1 we collect some basic facts regarding Cox-
eter groups, chamber systems, labelled simplicial complexes, Coxeter complexes and build-
ings. There are two main definitions of buildings in the literature: one in terms of simplicial

3



INTRODUCTION 4

complezes ([40],[7]), and a second (more recent) definition in terms of chamber systems
([41],[35]). In this chapter we discuss both definitions. This is all standard material, and
serves as a rather rapid introduction to buildings.

Section 1.7 contains a discussion of regularity in buildings, a concept which will be
important throughout. To discuss regularity, it is convenient to regard buildings as certain
chamber systems. Thus a building 2 is a set C of chambers with an associated Coxeter
system (W, .S), and a function 6 : C x C — W such that (¢, d) defines a W-valued distance
between ¢ and d (in some sense that will be made clear in Chapter 1).

For each ¢ € C and w € W, define C,(c) = {d € C | i(¢,d) = w}. We always assume
local finiteness, by which we mean |Cs(c)] < oo for all ¢ € C and s € S. We call 2
regular if for each s € S we have |Cs(c)| = |Cs(d)| for all ¢,d € C. In a regular building
we write ¢s = |Cs(c)|, and we call the set {gs}ses the parameter system of the building. In
Proposition 1.7.1 we show that regularity implies the stronger result that |C,,(c)| = |Cy(d)]
for all ¢,d € C and w € W, and as such we define ¢, = |C,,(¢)|. In Theorem 1.7.4 we prove
that all locally finite thick buildings with no rank 2 residues of type A; are regular, showing
that regularity is a very weak hypothesis. Note that thin buildings are also regular.

After Chapter 1, all buildings in this thesis are locally finite and regular.

The Algebra #. In Chapter 2 we discuss chamber set averaging operators associated
to arbitrary locally finite regular buildings. For each w € W we define an operator B,,,
acting on the space of functions f : C — C, by

(Buf)(c Z f(d for all c € C.

dECw C)

In Theorem 2.2.1 we show that the linear span of these operators over C forms an associative
algebra %, which is isomorphic to a suitably parametrised Hecke algebra (put very briefly,
Hecke algebras may be considered as certain deformations of the group algebra of a Coxeter
group). This generalises results in [15, Chapter 6], where an analogous algebra is studied
under the assumption that there is a group G (of label preserving simplicial complex
automorphisms) acting strongly transitively on the building. We note that it is simple to
see that all buildings admitting such a group are regular. However not all regular buildings
admit such a group, for example, the A, buildings with trivial automorphism group. Our
results uniformly cover all regular buildings.

We note that some of our results in Chapter 2 are proved in [46] in the quite different

context of association schemes.

The Algebra /. A main part of this thesis is the study of an algebra <7 of vertez set
averaging operators (described below), and the homomorphisms h : &/ — C. Chapter 3
gives some preliminary material for this study. We give a brief discussion of root systems,
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hyperplane arrangements and Weyl groups. We describe how a root system can be asso-
ciated to each locally finite regular affine building (the non-reduced root systems of type
BC,, play a role here). All of the material of this chapter is known.

Chapters 4 and 5 are devoted to the study of the algebra 7. Let us give an historical
discussion to motivate this study. Let G = PGL(n + 1, F)) where F' is a local field, and
let K = PGL(n+1,0), where O is the ring of integers in F. The space of bi- K-invariant
compactly supported functions on G forms a commutative convolution algebra (see [23,
Corollary 3.3.7] for example). Associated to G there is a building 2~ (of type Kn), and
the above algebra is isomorphic to an algebra .7 of averaging operators defined on the
space of all functions G/K — C. In [10] it was shown that these averaging operators may
be defined in a natural way using only the geometric and combinatorial properties of 2,
hence removing the group G entirely from the discussion. For example, in the case n =1,
Z is a homogeneous tree and o is the algebra generated by the operator A;, where for
each vertex x, (A1 f)(z) is the average value of f over the neighbours of z.

In [10], using this geometric approach, Cartwright showed that .o/ is a commutative
algebra, and that the algebra homomorphisms A : @/ — C can be expressed in terms of
the classical Hall-Littlewood polynomials of [25, III, §2]. It was not assumed that 2
was constructed from a group G (although there always is such a group when n > 3).
Although not entirely realised in [10], as a consequence of our work here we see that
the commutativity of the algebra . and the description of the algebra homomorphisms
h : o/ — C follow from the fact that & is isomorphic to the center of an appropriately
parametrised affine Hecke algebra.

One aim of this thesis is to generalise the above results to arbitrary affine buildings. In
the main body of text we will assume that our buildings are of irreducible type, although
the general case is dealt with in Appendix A.

Let 2 be a regular affine building, and let V' denote the vertex set of Z". In Defini-
tion 3.8.1 we define a subset Vp C V of good vertices, which, for the sake of this simplified
description, can be thought of as the special vertices of Z .

Let R be the root system associated to 2" (as in Chapter 3), and let P be the coweight
lattice of R, and write P for the set of dominant coweights. For each z € Vp and A\ € P*
we define (Definition 4.2.2) sets V) (x) in such a way that {V\(z)}\ep+ forms a partition
of Vp. In Theorem 4.3.4 we show that regularity implies that the cardinalities |V)(z)|,
A € Pt are independent of the particular x € Vp, and as such we write N, = |V)(z)|. For
each A € PT we define an operator Ay, acting on the space of functions f : Vp — C, by

(Arf)(z Z fly for all z € Vp.

er,\

These operators generalise the operators studied in [10].
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Let <7 be the linear span of {A,} cp+ over C. In Theorem 4.4.8 we show (using only
regularity) that o7 is a commutative algebra.

To give a more thorough description of the algebra .7 we need some affine Hecke algebra
theory, and this is given in Chapter 5. In Section 5.1 we give the definition of affine Hecke
algebras (we use H to denote such an algebra), and provide some very basic properties
of these algebras. In Section 5.2 we describe the center Z (%Z ) of A, and discuss the
Macdonald spherical functions Py(x), A € P*, which are certain special elements of Z(e%z)
which arise naturally in connection with the Satake isomorphism.

In Theorem 5.3.5 we prove the important result that .27 is isomorphic to Z (), with
the isomorphism determined by Ay — Py(z). It is a standard fact that Z(J#) = C[P]Wo
(here C[P]"™° is the algebra of Wy-invariant elements of the group algebra of the abelian
group P, and W is the Weyl group of R), and so & = C[P]"°, giving a very concrete
description of the algebra <.

This isomorphism serves two purposes. Firstly it gives us an essentially complete un-
derstanding of the algebra 7. For example, in Theorem 5.3.6 we use rather simple facts
about the Macdonald spherical functions to show that <7 is generated by {A), }icr, Where
{Ai }ier, 1s a set of fundamental coweights of R. On the other hand, since &7 is a purely com-

binatorial object, the above isomorphism gives a nice combinatorial description of Z(.7¢)

when a suitable building exists. In particular the structure constants cy .., that appear in

N,
Py(x)Pu(r) = > eyuwbPolx)  are ey = v @) NV ()],

veP+ #

for some p* € P* (depending only on p in a simple way). This shows that (when a suitable
building exists) ¢y ., > 0.

In Theorem 5.4.2 we extend this result by showing that the c, ,,,’s are (up to positive
normalisation factors) polynomials in the variables {gs — 1}scs with nonnegative integer
coefficients (even when no building exists). This generalises the main theorem in [30], where
the corresponding result for the A,, case (where the ¢ ,,’s are certain Hall polynomials)
is proved. Thus we see how to construct a polynomial hypergroup from the structure
constants ¢, ,, as in [4] (see also [22]).

Since the submission of this thesis we have learnt that Theorem 5.4.2 has been proved
independently by Schwer in [38], where a formula for c) ,., is given.

We note that our results concerning the algebra o7 give interesting examples of asso-
ciation schemes (see Remark 3.8.3 and Remark 4.4.9), generalising the well known con-

struction of association schemes from infinite distance reqular graphs.

The Algebra Homomorphisms h : &/ — C. Chapters 6 and 7 study the algebra
homomorphisms h : & — C. In Chapter 6 we use the isomorphism & = C[P]"" to
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give the first of two formulae for these homomorphisms. This formula is in terms of the
Macdonald spherical functions of [23], and so we shall call it the Macdonald formula.

We may regard o7 as a subalgebra of the C*-algebra of bounded linear operators on
the Hilbert space £*(Vp) of square summable functions f : Vp — C, and we write <% for
the closure of &7 in this algebra. In Section 6.2 we study the Gelfand map o/ — €(Ms),
where M, = Hom(a%, C), and discuss the Plancherel measure of 7. In Section 6.3 we
compute the Plancherel measure, using results from [23, Chapter V]. We then apply the
theory from Section 6.2 to compute M,. This spherical harmonic analysis is used in the
important Theorem 7.7.2 (see below), as well as in Chapter 8, where we study random
walks on buildings.

A sector in an affine building is the analogue of a ray in a (homogeneous) tree. The
boundary €2 of an affine building is the set of equivalence classes of sectors, where two
sectors are declared to be equivalent if and only if their intersection contains a sector.
In Chapter 7 we show that there is a natural topology on (2, making it into a totally
disconnected compact Hausdorff space. In Theorem 7.6.4 we give a second formula for
the algebra homomorphisms A : o/ — C in terms of an integral over (2. This formula is
an analogue of the formula in [23, Proposition 3.3.1], which expresses the zonal spherical
functions on a group G of p-adic type as an integral over K, where K is a certain compact
subgroup of G. For example, when G = SL(n + 1, F'), where F is a p-adic field, K is
SL(n+ 1,0), where O is the ring of integers in F. In Theorem 7.7.2 we show that the

Macdonald and integral formulae for the algebra homomorphisms agree.

Random Walks on Affine Buildings. In Chapter 8 we study radial random walks
on affine buildings. These are random walks in which the transition probabilities satisfy
p(z,y) = p(2',y’) whenever y € V)(x) and y' € V,(2') for some X € PT. We apply the
results obtained concerning the algebra homomorphisms h : &/ — C to prove a local limit
theorem for these walks (that is, we give an asymptotic formula for the k-step transition
probabilities p*)(z,y)). This generalises results in [12].

Appendices. The main body of text is followed by a series of appendices. The study
of the algebra & assumed irreducibility, and in Appendix A we demonstrate that this
assumption can be removed without too much difficulty. In Appendix B we provide the
proofs of some results whose proofs were omitted from the main body of text.

Appendix C gives an interesting alternative proof of the Macdonald formula in the
dimension 1 and 2 cases, using elementary methods (that is, without the Hecke algebra
machinery). The calculations in this appendix follow [11], where A, buildings are studied.
Here we give the calculations for affine buildings of types BC:, Ay, BCy, Cy and Gy. We
will also list the relevant results (from [11]) for affine buildings of type A, for completeness.
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In Appendix D we list some relevant root data for the irreducible root systems, and in
Appendix E we describe the parameter systems of locally finite regular affine buildings of

irreducible type.

Comparison with results of Macdonald. Let us conclude this introduction with a
comparison between our results and those in [23]. Let G be a group of p-adic type, with
a maximal compact subgroup K, as in [23, §2.7]. Associated to G there is an irreducible
(but not necessarily reduced) root system R, as in [23, Chapter II]. As mentioned above,
the typical example here is G = SL(n + 1, F) and K = SL(n + 1,0), where F is a p-adic
field and O is the ring of integers in F'. In this case R is a root system of type A,,.

A function f : G — C is called bi-K-invariant if f(gk) = f(kg) = f(g) for all g € G
and k € K. Let Z(G, K) be the space of continuous, compactly supported bi- K-invariant
functions on G. In [23, Theorem 3.3.6], Macdonald shows that 2 (G, K) = C[Q]"° (the
subalgebra of Wy-invariant elements of the group algebra of the coroot lattice @ of R), and
thus Z(G, K) is a commutative convolution algebra.

A function ¢ : G — C is called a zonal spherical function relative to K if

(i) (1) =1,
(ii) ¢ is bi-K-invariant and continuous, and

(ili) f* ¢ = Apo for all f € Z(G, K), where Ay is a scalar

(see [23, Proposition 1.2.5]). In [23, Proposition 3.3.1] Macdonald gives a formula for the
zonal spherical functions in terms of an integral over K, and in [23, Theorem 4.1.2] he uses
this integral formula to obtain a second ‘summation’ formula for the spherical functions in
terms of a sum over W, of rational functions.

The group G acts strongly transitively on its Bruhat-Tits building 2" [23, Lemma 2.4.4],
which is locally finite, regular and affine, although Macdonald makes little use of this
building. The contents of this thesis lead us to the conclusion that, rather than playing
a relatively minor role, the building theoretic elements alone determine the nature of the
algebra Z (G, K) and the zonal spherical functions. Moreover, since there are (locally finite
regular affine) buildings that are not the Bruhat-Tits buildings of any group, our building
approach puts the results of [23] into a more general setting.

Let us see how our results relate to Macdonald’s. Firstly, the algebra 2 (G, K) is
isomorphic to a subalgebra o7, of <, spanned by the operators {A, | A € @ N P*}. The
reason that this smaller algebra occurs here is that Macdonald supposes that his groups of
p-adic type are simply connected, and so for him the coweight lattice has to be replaced
by the coroot lattice, and thus the set Vp is replaced by the smaller set V consisting
of all those vertices of one special type. See [11, Propositions 2.4 and 2.5] for details in
the R = A, case.
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In Theorem 5.3.5 we show that &/ = C[P]"°, and in Proposition 5.3.7 we deduce that
Ao = ClQ]"", thus proving the analogue of [23, Theorem 3.3.6].

The zonal spherical functions on G correspond to the spherical functions on Vi (see
Definition 7.6.2), which in turn correspond to the algebra homomorphisms h : @75 — C
(see Proposition 7.6.3). Our analogue of Macdonald’s integral formula is Theorem 7.6.4
(see also Corollary 7.6.5), and our analogue of his summation formula is (6.1.1). Both of
our formulae are proved in the context of the larger algebra /. We discuss a method for
deducing the corresponding results for certain subalgebras <7, (including <7, ) in Section 4.5
and Proposition 5.3.7.



CHAPTER 1

General Building Theory

In this chapter we give a discussion of buildings, both from the chamber system point

of view, and from the simplicial complex point of view.

1.1. Coxeter Groups

Let I be an index set, which we assume throughout is finite, and for each pair i,7 €
let m; ; be an integer or oo such that m; ; = m;; > 2 for alli # j, and m;; = 1 for all i € I.
We call M = (my; ;)i jer a Coxeter matriz. The Coxeter group of type M is the group

W = ({si}ier | (sis;)™ =1foralli,j € I), (1.1.1)

where the relation (s;s;)™ = 1 is omitted if m;; = co. Writing S = {s; | ¢ € I}, it is
more precise to call (W, S) a Coxeter system, although we shall rarely do so.

For subsets J C I we write W for the subgroup of W generated by {s;}ic;. Given
w € W, we define the length ¢(w) of w to be smallest n € N such that w = s;, ...s;, , with
Uy nnsin € 1.

It will be useful on occasion to work with I*, the free monoid on I. Thus elements
of I* are words f = iy---i, where iy,...,1, € I, and we write sy = s;,---5;, € W.
An elementary homotopy [35, §2.1] is an alteration from a word of the form fip(i,7)fo
to a word of the form fip(j,1)f2, where p(i,j) = ---ijij (m;; terms). We say that the
words f and f’ are homotopic if f can be transformed into f’ by a sequence of elementary
homotopies, in which case we write f ~ f’. A word f is said to be reduced if it is not
homotopic to a word of the form fyiif; for any ¢ € I. By [35, Theorem 2.11] we have that
f=ri1---i, € I" isreduced if and only if sy = s;, - - - 5;, is a reduced expression in W (that
is, {(sf) =n).

The Cozxeter graph of W' is the graph D = D(W) with vertex set I, such that vertices
i,j € I are joined by an edge if and only if m;; > 3. If m;; > 4 then the edge {i,j}
is labelled by m; ;. By an automorphism of D we mean a permutation o of I such that
Mo(i)o() = May for all i,j € I. Write Aut(D) for the group of all automorphisms of D.
An automorphism o € Aut(D) induces a group automorphism of W, which we also denote
by o, by

T(W) = So(ir) * ** Solin) (1.1.2)

whenever s;, - - - s;, is an expression for W (not necessarily reduced).

10



1.3. SIMPLICIAL COMPLEXES 11
1.2. Chamber Systems

A set C is called a chamber system over I if each i € I determines a partition of C, two
elements in the same block of this partition being called ¢-adjacent. The elements of C are
called chambers, and we write ¢ ~; d to mean that the chambers ¢ and d are i-adjacent.
By a gallery of type i1 -- -1, € I" in C we mean a sequence ¢, . . ., ¢, of chambers such that
Ch—1 ~i, ¢ and cx_1 # ¢ for 1 < k < n. If we remove the condition that c,_; # ¢ for all
1 < k < n, we call the sequence cy,...,c, a pre-gallery.

A gallery of type jy---j, with ji,..., 75, € J C [ is called a J-gallery. For ¢ € C we

write R;(c) for the J-residue of ¢, that is,
R;(c) = {d € C | there exists a J-gallery from ¢ to d}. (1.2.1)

A chamber system C over [ is said to be thick if for each ¢ € C and i € I there exist at
least two distinct chambers d # ¢ such that d ~; ¢, and C is called thin if for each ¢ € C
and ¢ € I there exists exactly one chamber d # ¢ such that d ~; c.

If C and D are chamber systems over a common index set I, we call a map ¥ : C — D

an isomorphism of chamber systems, or simply an isomorphism, if 1 is a bijection such

that ¢ ~; d if and only if ¥(c) ~; ¥(d).

1.3. Simplicial Complexes

A simplicial complex with verter set X is a collection ¥ of finite subsets of X (called
simplices) such that the singleton {z} is a simplex for each x € X, and every subset of
a simplex o is a simplex (called a face of o). If o is a simplex which is not a proper
subset of any other simplex, then we call ¢ a mazimal simplex of 3. The dimension of a
simplex o is |o| — 1, where |o| denotes the cardinality of the set . We will always assume
that the simplices of a simplicial complex have bounded dimension, and so every simplex
is contained in a maximal simplex.

A labelled simplicial complex with vertex set X is a simplicial complex equipped with
a set I of types, and a type map 7 : X — I such that the restriction of 7 to any maximal
simplex is a bijection. The type of a simplex 0 = {z1,..., 2} is {7(x1),...,7(xx)}, and
the cotype of o is I\{7(x1),...,7(xx)}.

It is clear that each maximal simplex of a labelled simplicial complex must have the
same dimension, d, say. In this case we say that X has dimension d, and we call the
maximal simplices chambers. We write C(3) for the set of all chambers of ¥. A panel of a
d-dimensional labelled simplicial complex ¥ is a simplex 7w of dimension d — 1. It is clear
that the cotype of 7 is ¢ (more accurately, {i}) for some i € I.

An isomorphism of simplicial complexes is a bijection of the vertex sets that maps
simplices, and only simplices, to simplices. If both simplicial complexes are labelled by the
same set, then an isomorphism which preserves types is said to be type preserving.
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1.4. Connection Between Chamber Systems and Simplicial Complexes

Given a chamber system C over I we can construct a labelled simplicial complex as

follows. For each ¢ € I, form the set
Xi ={Rn(c) [ c€C},

and let X be the disjoint union over ¢ € I of these sets. Call elements of X wvertices, and
define a type map 7: X — I by 7(z) =i if x € X;. Declare simplices to be the subsets of
the sets

{R[\{i}(@ ‘ 1 E [}, celC. (1.4.1)

This produces a labelled simplicial complex, with maximal simplices as in (1.4.1).

Conversely, given a labelled simplicial complex > with vertex set X and type map
7 : X — I, we can construct a chamber system by declaring maximal simplices C' and D
of ¥ to be i-adjacent (where i € I) if either C' = D or if all the vertices of C' and D are
the same except for those of type i.

Under certain weak hypotheses the above operations are mutually inverse, up to iso-
morphisms of chamber systems and type preserving isomorphisms of labelled simplicial
complexes. We refer the reader to [9, Proposition 1.4] for details. Put briefly, it suffices to

assume that

(i) our labelled simplicial complexes satisfy the condition that if C, D € C(X) and
o C C'N D, then there exists a gallery C' = Cy,...,C,, = D with o C C} for each
0<k<n,and
(ii) that our chamber systems satisfy the condition that for all ¢,d € C and J C I, if
Rpiy(c) = Rpay(d) for each @ € I\ J, then R;(c) = R;(d).
We remark that these conditions are satisfied for Coxeter complexes (Section 1.5) and
buildings (Section 1.6) (see [9]).

1.5. Coxeter Complexes

To each Coxeter group W over I we associate a (thin) chamber system C(W), called
the Coxeter complexr of W, by taking the elements w € W as chambers, and for each v €
define i-adjacency by declaring w ~; w and w ~; ws;.

By the discussion in Section 1.4, we may also describe C(W) as a labelled simplicial
complex (W), whose vertex set is the (automatically disjoint) union over i € I of the
sets X; = {wWpngy | w € Wh If x € X; we say that x has type i, and write 7(z) = 1.
Simplices of ¥ (W) are subsets of maximal simplices, which are defined to be sets of the
form {wWpngy | i € I}, w € W. It is not difficult to see that (W) and C(W) satisfy
conditions (i) and (ii) of Section 1.4.
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EXAMPLE 1.5.1. Let W be a Coxeter group of type A, that is,

W = (so, $1, 2 | 58 = sf = 5% = (3031)3 = (3052)3 = (5152)3 =1).

The Coxeter complex of W' is shown in Figure 1.5.1.

NN N/

525051

52515051

525150

52515052

FIGURE 1.5.1

As a chamber system, C(W') consists of the elements of W, which are shown in Fig-
ure 1.5.1 as triangles. To consider C(W) as a labelled simplicial complex (W), we define
vertices to be sets of the form Ry (w) = wWpgy, w € Wand ¢ € I = {0,1,2}. For
example, the vertices x, y and z in Figure 1.5.1 are really the sets
T = S1W1\{0} = {1,51, S2, 5152, 5251, 515251 = 828132}
y = s1Wn 1y = {51, 5150, 5152, 515052, 515250, 51525052 = 51505250 } (1.5.1)
2z = 51Wp 2y = {1, 51, S0, 5150, 5051, 505150 = 515051},

and have types 0, 1 and 2 respectively. Note that we could write x = wWp oy for any

w € s1Wn oy, and similarly for y and z. We have chosen the representations in (1.5.1) to
make it clear that

{SC,’y,Z} = {Slwl\{i} ‘ (&S [}

is a maximal simplex.
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Finally, note how adjacency works in the simplicial complex context. The maximal
simplices {x,y, z} and {z,y, 2’} are 2-adjacent, for they have all vertices in common except

for those of type 2. That is, they share a panel {z,y} = s:Wn 0,13 = {51, 5152} of cotype 2.

1.6. Building Definitions

We now give two definitions of buildings. The first definition is in terms of chamber
systems, and the second is in terms of simplicial complexes. Although it is certainly not
obvious, the two definitions are equivalent, via the conversion between chamber systems

and labelled simplicial complexes described in Section 1.4 (see [9] for details).

DEFINITION 1.6.1 ([40],[35]). Let M be the Coxeter matrix of a Coxeter group W
over I. Then 2 is a building of type M if

(i) 2 is a chamber system over I such that for each ¢ € 2" and i € I, there is a
chamber d # ¢ in £ such that d ~; ¢, and

(ii) there exists a W-distance function § : 2~ x 2~ — W such that if f is a reduced
word then (¢, d) = sy if and only if ¢ and d can be joined by a gallery of type f.

DEFINITION 1.6.2 ([41],[7]). Let W be a Coxeter group of type M. A building of
type M is a nonempty simplicial complex 2 which contains a family of subcomplexes

called apartments such that

(i) each apartment is isomorphic to X (1),

(ii) given any two maximal simplices of 2~ there is an apartment containing both,

iii) given any two apartments A and A’ that contain a common maximal simplex,
g y p p

there exists an isomorphism ¢ : A — A’ fixing AN A’ pointwise.
We remark that Definition 1.6.2(iii) can be replaced with the following (see [7, p.76]).

(iii)" If A and A’ are apartments both containing simplices p and o, then there is an

isomorphism ¢ : A — A’ fixing p and o pointwise.

We will always use the symbol 2~ to denote a building, and it will be clear from the
context if 2 is to be regarded as a chamber system, or as a simplicial complex. We write
C = C(Z) for the set of all chambers of 2", and V = V(Z) for the set of all vertices
of Z'. We often say that 2 is a building of type W rather than a building of type M.
The rank of a building of type M is the cardinality of the index set I.

It is clear that Coxeter complexes are (thin) buildings. Indeed, a building is thin if and
only if it is isomorphic to a Coxeter complex.

1.7. Regularity and Parameter Systems

In this section we write 2~ for a building of type M, with associated Coxeter group
W over index set I. We will assume that 2 is locally finite, by which we mean that
HdeC|d~;c}t <ooforalliel andceC.
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For each ¢ € C and w € W, let
Cu(c)={deC|d(c,d) =w}. (1.7.1)
Observe that for each ¢ € C, the family {C,(¢)},ew forms a partition of C, and for s = s;,
Cs(c) ={deC|d~;cand d# c},
as illustrated in Figure 1.7.1, where Cy(c) = {dy, da, d3, d4}.

FiGURE 1.7.1

We say that 2 is regular if for each s € S, |Cs(c)| is independent of ¢ € C. If 2
is a regular building we define ¢; = |Cs(c)| for each s € S (this is independent of ¢ € C
by definition), and we call {gs}secs the parameter system of the building. Local finiteness
implies that ¢, < oo for all s € S. We write g; in place of ¢, for¢ € I. In Figure 1.7.1, ¢; = 4.

The two main results of this section are Proposition 1.7.1(ii), where we give a method
for finding relationships that must hold between the parameters of buildings, and Theo-
rem 1.7.4, where we generalise [37, Proposition 3.4.2] and show that all thick buildings

with no rank 2 residues of type A, are regular.

PRrROPOSITION 1.7.1. Let Z be a locally finite reqular building.

(i) |Cu(C)| = 4i iy, - + - Gi,, Whenever w = s;, -+ ;. is a reduced expression, and

n

(ii) ¢; = q; whenever m;; < 0o is odd.

PROOF. We first prove (i). The result is true when ¢(w) = 1 by regularity. We claim
that whenever s = s; € S and {(ws) = {(w) + 1,

Cos(e) = |J C.d) (1.7.2)

where the union is disjoint, from which the result follows by induction.

First suppose that a € Cys(c) where £(ws) = ¢(w) + 1. Then there exists a minimal
gallery ¢ = ¢, ..., cp = a of type fi (where w = sy with f € I* reduced) from ¢ to a, and
in particular a € Cs(cx_1) where ¢, € Cyp(c). On the other hand, if a € Cs(d) for some
d € Cy(c) then a € Cys(c) since £(ws) = ¢(w) + 1, and so equality holds in (1.7.2). To see
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that the union is disjoint, suppose that d,d" € C,(c) and that Cs(d) N Cs(d') # 0. Then if
d' # d we have d' € C4(d), and thus d’ € Cys(c), a contradiction.

To prove (ii), suppose m;; < oo is odd. Since s;s;s;--- = s;8;5;--- (m;; factors on
each side), by (i) we have ¢;q;¢; - - = ¢;q:q; - - - (my; factors on each side), and the result
follows. O

COROLLARY 1.7.2. Let 2" be a locally finite reqular building of type W. If s; = ws;w ™
for some w € W then q; = g;.

PROOF. By [5, IV, §1, No.3, Proposition 3|, s; = ws;w™! for some w € W if and only
if there exists a sequence s;,, ..., s;, such that iy =1, i, = j, and m;,_;,, is finite and odd

for each 1 < k < p. The result now follows from Proposition 1.7.1(ii). O

Proposition 1.7.1(i) justifies the notation q,, = ¢, - - - ¢;, whenever s;, - - - s;, is a reduced
expression for w; it is independent of the particular reduced expression chosen. Clearly we
have ¢q,-1 = q,, for all w € W.

ExamPLE 1.7.3. Using Proposition 1.7.1(ii) it is now a simple exercise to describe the
relations between the parameters of any given (locally finite) regular building. For example,
e (with the nodes labelled 0,1 and 2 from left to right) we
must have g; = ga since m; 2 = 3 is odd. Note that we cannot relate gy to ¢; since mg; = 4

in a building of type e

is even.

The following theorem seems to be well known (see [37, Proposition 3.4.2] for the case
|IW| < 00), but we have been unable to find a direct proof in the literature. For the sake
of completeness we will provide a proof here.

THEOREM 1.7.4. Let 2" be a thick building such that m; ; < oo for each pairi,j € I.
Then X is reqular.

Before giving the proof of Theorem 1.7.4 we make some preliminary observations. First
we note that the assumption that m; ; < co in Theorem 1.7.4 is essential, for A, buildings
are not in general regular, as they are just trees with no end vertices. Secondly we note
that Theorem 1.7.4 shows that most ‘interesting’ buildings are regular, for examining the
Coxeter graphs of the (irreducible) affine Coxeter groups, for example, we see that m; ; = oo
only occurs in A buildings. Thus regularity is not a very restrictive hypothesis.

Recall that for m > 2 or m = oo a generalised m-gon is a connected bipartite graph

m

with diameter m and girth 2m. By [35, Proposition 3.2], a building of type e e isa

generalised m-gon, and vice versa (where the edge set of the m-gon is taken to be the
chamber set of the building, and vice versa).

In a generalised m-gon we define the valency of a vertex v to be the number of edges
that contain v, and we call the generalised m-gon thick if every vertex has valency at
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least 3. By [35, Proposition 3.3], in a thick generalised m-gon with m < oo, vertices in
the same partition have the same valency. In the statement of [35, Proposition 3.3], the
assumption m < oo is inadvertently omitted. The result is in fact false if m = oo, for a

thick generalised oco-gon is simply a tree in which each vertex has valency at least 3.

PROOF OF THEOREM 1.7.4. For each ¢ € C and each i € I, let ¢;(c) = |Cy,(c)|, so by
thickness, ¢;(c) > 1. We will show that ¢;(c) = ¢;(d) for all ¢,d € C and for all i € I.

Let ¢ € C and i € I be fixed. By [35, Theorem 3.5], for j € I the residue Ry; ;i(c)
is a thick building of type M, ;3 which is in turn a thick generalised m; ;-gon, by [35,
Proposition 3.2]. Thus, since m; ; < oo by assumption, [35, Proposition 3.3] implies that

ql(d) = C]Z(C> for all d € R{i,j} (C) . (173)

Now, with ¢ and 7 fixed as above, let d € C be any other chamber. Suppose firstly that
d ~y c for some k € I. If k =i, then ¢;(d) = ¢;(c) since ~; is an equivalence relation. So
suppose that k # i. Then

¢i(d)+1={aeC:a~;d}
= |{a € Ry (d) - a ~; d}|
= |{a € Ry (d) - a ~; ¢} by (1.7.3)
= |{a € R iy(c) s a ~; c} since Ry;py(d) = Ry (c)
=[{aeeCra~ici=aq()+1,
and so ¢;(d) = ¢;(c). Induction now shows that ¢;(d) is independent of the particular d € C,
and so the building is regular. O

REMARK 1.7.5. The description of parameter systems given in this section by no means
comes close to classifying the parameter systems of buildings. For example, it is an open
question as to whether thick A, buildings exist with parameters that are not prime powers.
By the free construction of certain buildings given in [34] this is equivalent to the corre-
sponding question concerning the parameters of projective planes (generalised 3-gons). See

[3, Section 6.2] for a discussion of the known parameter systems of generalised 4-gons.
We conclude this chapter by recording a definition for later reference.

DEFINITION 1.7.6. Let {¢s}ses be a set of indeterminates such that g¢ = ¢; whenever
s' = wsw™! for some w € W. Then [5, IV, §1, No.5, Proposition 5] implies that for w € W,
the monomial ¢, = g5, -*-¢s,, is independent of the particular reduced decomposition
w = 8; - -8;, of w. If U is a finite subset of W, the Poincaré polynomial U(q) of U is
Ulq) = qu-
wel

Usually the set {gs}secs will be the parameters of a building (see Corollary 1.7.2).



CHAPTER 2

Chamber Set Averaging Operators

Let 2 be a locally finite regular building, considered as a chamber system, as in
Definition 1.6.1. In this chapter we define chamber set averaging operators, acting on the
space of all functions f : C — C, and study an associated algebra 2. Our results here
generalise the results in [15, Chapter 6], where it is assumed that there is a group G of
type preserving simplicial complex automorphisms acting strongly transitively on 2 . This
means that G acts transitively on the set of pairs (A, ¢) of apartments A and chambers ¢
with ¢ C A. All buildings admitting such a group action are necessarily regular, whereas
the converse is not true. Our proofs work for all locally finite regular buildings, which, by
Theorem 1.7.4, includes all thick buildings with no rank 2 residues of type A;. Tt should
be noted that our results also apply to thin buildings (where ¢; = 1 for all i € I), as well
as to regular buildings that are neither thick nor thin (that is, buildings that have ¢; = 1
for some but not all i € I). We note that some of the results of this section are proved in
[46] in the context of association schemes.

2.1. The Algebra %

DEFINITION 2.1.1. Recall the definition of the sets C,(c) from (1.7.1). For each w € W,

define an operator B,,, acting on the space of all functions f : C — C by

(Buf)c) =~ S f(d) forall cec. (2.1.1)

T deCu (c)

Since |Cy(¢)| = qw, the operator B, truly is an averaging operator in the usual sense.
DEFINITION 2.1.2. Let 4 be the linear span over C of the set {B,, | w € W}.

In Proposition 2.1.9 we show that & is an associative algebra. To do so we need to
understand products B, B, of the averaging operators.

18
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If ¢’ CC, write 1¢ : C — {0, 1} for the characteristic function on C’. Since b € C,,(a) if
and only if a € C,-1(b), for wy, ws € W we have

(BuBuf)(@) = — 3 (Bunf)(b)

Gun becw1 (a)

PO IR

le qw? bECwl (a) CEC'LUQ (b)

YD Len@®)le,m(©f () (2.1.2)

q““ Gy beC ceC

" Gun G 2 (Z le, @ chI(c)(b)> f(o)

ceC beC

> 1€, (@) NCi (o) fle).

T s &

We wish to explicitly compute the above when wy = s € S (and so w;* = w,). Thus
we have the following lemmas.

LEMMA 2.1.3. Let w e W and s € S, and fix a € C. Then

b e Cys(a) if l(ws) =l(w)+ 1, and

Cu(a) NCy(b) # 0 = b € Co(a) UCus(a) if b(ws) = £(w) — 1.

PROOF. Let s = s; where ¢ € I. Suppose first that {(ws) = ¢(w) + 1 and that
c € Cy(a) NCs(b). Let f be a reduced word in I* so that s; = w, and so there exists a
gallery from a to ¢ of type f. Since b € Cs(c), there is a gallery of type fi from a to b,
which is a reduced word by hypothesis. It follows that b € C,s(a).

Suppose now that {(ws) = ¢(w)—1, and that ¢ € C,(a)NCs(b). Since ws is not reduced,
there exists a reduced word f’ such that f’i is a reduced word for w. This shows that there
exist a minimal gallery a = ay, ..., a,, = ¢ such that a,, 1 € Cs(c). Since b € Cs(c) too, it
follows that either b = a,,—1 or b € Cs(a,,—1). In the former case we have b € C,s(a) and in
the latter we have b € Cy(a). O

REMARK 2.1.4. The above lemma is essentially [42, §2.1, Axiom Bu2], where an alter-
native (equivalent) definition of buildings is adopted.

LEMMA 2.1.5. Let w e W and s € S. Fix a,b € C. Then

1 if {(ws)
Cu(a) NCs(b)] = 9 g if L(ws)
qs — 1 ng(ws)

l(w)+1 and b € Cys(a),
l(w)—1 and b € Cys(a), and
lw)—1 and b € Cy(a).
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PROOF. Suppose first that ¢(ws) = ¢(w) + 1 and that b € Cyps(a). Thus there is a
minimal gallery a = aq,...,a, = b such that a,,_1 € Cs(b). There are g5 chambers c
in Cy(b). One of these chambers is a,,_1, which lies in C,(a), and the remaining ¢, — 1 lie
in Cys(a), so a,,_1 is the only element of C,(a) NCs(b). Thus |C,(a) NCs(b)| = 1 as claimed
in this case.

Suppose now that ((ws) = {(w) — 1 and that b € Cy,s(a). Write s = s;. Let w = sy
where f € I is reduced. Since ¢(ws) = ¢(w) — 1, there exists a reduced word f’ such that
f'i is a reduced word for w, and thus there exists a minimal gallery of type f’ from a to b.
Thus each ¢ € C4(b) can be joined to a by a gallery of type f'i ~ f, and hence ¢ € Cy(a),
verifying the count in this case.

Finally, suppose that ¢(ws) = ¢(w) — 1 and b € C,(a). Then, as in the proof of
Lemma 2.1.3, there exists a minimal gallery a = aq,...,a, = b such that b € Cs(am,_1).
Exactly one of the g, chambers ¢ € C4(b) equals a,,_1, and thus lies in C,s(a). For the
remaining ¢; — 1 chambers we have ¢ € Cs(a,,—1), and thus ¢ € C,(a), completing the

proof. O

THEOREM 2.1.6. Let w e W and s € S. Then
Bus when l(ws) = l(w) + 1,

ByBs =9 .
o Bus + (1 - q—s) B, when l(ws) =l(w) —1.

PROOF. Let us look at the case {(ws) = ¢(w) —1. The case {(ws) = {(w)+1 is similar.
By (2.1.2) and Lemma 2.1.5 we have
1
B,B, =B, + (1 = —) B,.
w s
All that remains is to show that ‘fﬁ = q—ls. If fis a reduced word with s; = w and s = s;,
the hypothesis that ¢(ws) = ¢(w) — 1 implies that there exists a reduced word f’ such that

f'i is a reduced word for w. The result now follows. ([l
COROLLARY 2.1.7. By, By, = Bujw, whenever {(wijwsy) = (wy) + £(ws).

COROLLARY 2.1.8. Let wy,wy € W. There exist numbers by, wymws € QT such that
By, Buw, = Z Doy wasuws Bus and Z buywasws = 1.
wzeW wzeW

Moreover, |[{ws € W | by, wo:ws 7 0} is finite for all wy, ws, € W.

PROOF. An induction on ¢(ws) shows existence of the numbers by, wous € QF such
that Bu, Bu, = Y, bw; waws Bus, and shows that only finitely many of the by, w,w,’s are
nonzero for fixed wy and wy. Evaluating both sides at the constant function 1¢: C — {1}
shows that ng by wpiws = 1. O

Recall the definition of & from Definition 2.1.2.
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PROPOSITION 2.1.9. £ is an associative algebra, generated by {Bs}ses, with vector
space basis { By fwew -

PRrOOF. The first statement follows from Corollary 2.1.8 (4 is associative since multi-
plication is given by composition of maps). Suppose we have a relation » ;_, byB,, = 0,
and fix a,b € C with (a,b) = w; with 1 < j <n. Then writing d, = 1) we have

0= Z b (B, 00)(a Z kawk Ok = gq;jla

and so b; = 0. From Corollary 2.1.7 we see that {B; | s € S} generates %. 0

We refer to the numbers by, 1,0, from Corollary 2.1.8 as the structure constants of the
algebra # (with respect to the natural basis {B,, | w € W}).
We say that 2" is chamber regular if for all w; and wy in W,

|Cuy (@) N Copy (b)| = |Cuy (¢) N Copy ()] whenever 6(a, b) = 6(c, d).
The following proposition shows that all regular buildings are chamber regular.

PROPOSITION 2.1.10. Let 2" be a reqular building of type W, and let wy, wy, w3 € W.
For any pair a,b € C with b € Cy,(a) we have

€y (@) Nyt (0] = 202y

w3

and so X is chamber reqular.

PROOF. By (2.1.2) we have (B, Bu,0)(a) = ¢,,¢,[C,, (@) N C,-1(b)|, whereas by
Corollary 2.1.8 we have (By, Buy0b)(a) = ¢ buy s - O

DEFINITION 2.1.11. Let {¢;};c; be the parameter system of a locally finite regular
building of type W. Define Auty(D) = {0 € Aut(D) | ¢,y = ¢; for all i € I}, where D is
the Coxeter diagram of W.

The following is stronger than chamber regularity, and will be used in Chapter 4. Recall
the notation of (1.1.2).

LEMMA 2.1.12. For all wy,ws € W and o € Aut,(D) we have

|C0(w1)<al> N CU(w2)<b/)| = ‘Cwl <a> N Cus (b)‘ )
whenever a,b,a’, b’ € C are chambers with 6(a’,b') = o(d(a,b)).

ProoF. We first show that, in the notation of Corollary 2.1.8,

bw1,w2;w3 = ba(wl),a(wg);a(wg) (213)

for all wy, wq, w3 € W.



2.2. CONNECTIONS WITH HECKE ALGEBRAS 22

Theorem 2.1.6, the definition of Aut,(D) and the fact that {(o(w)) = ¢(w) for allw € W
show that this is true when f(wy) = 1, beginning an induction. Suppose (2.1.3) holds
whenever ¢(ws) < n, and suppose w = $;, - - - S;,_,S;, has length n. Write w’ = s;, ---s;,_,
and s = s;,. Observe that o(w) = o(w')o(s), so that By(w) = Be(uw)Bo(s) by Theorem 2.1.6,
and so

Bo(w))Bow) = (Bo(w) Bo(w)) Bo(s)

= ) bo(un)owiows) Bows) Ba(s)

wzeW

= Z (bwl,w/;ll)s Z ba(wg),o(s);g(w4)Ba(w4)>
wzeW wa€EW

- Z <Z bwl,w/;wsbwg,s;w4> Bo(w,) -
waEW wSGW

Thus
ba(w1),a(w);0(w4) = Z bw1,w/;w3bw3,s;w4 for all wy € W' (2.1.4)
wzeW

The same calculation without the o’s shows that this is also by, wuw,. This completes the
induction step, and so (2.1.3) holds for all wy, ws and w3 in W.
Thus for any chambers a, b, a’, b’ with d(a, b) = ws, and §(a’, V') = o(w3) we have (using
Proposition 2.1.10)
oo uy
Qw3
_ Lo owsh

[Cuy (@) N Cus, (D)] =

Wy, Wy Wg

o(wy),0(w; ');o(ws)

Go(ws)
= |Cowr) (@) N Cofuy (V)] - O

2.2. Connections with Hecke Algebras

Those readers familiar with Hecke algebras will notice immediately from Theorem 2.1.6
the connection between % and Hecke algebras. Let us briefly describe this connection. We
will have much more to say about Hecke algebras in Chapter 5.

For our purposes we define Hecke algebras as follows (see [19, Chapter 7]). For each
s € S, let ay and b, be complex numbers such that ay = a, and by = b, whenever
s' = wsw™! for some w € W. The Hecke algebra 5 (as,b,) is the algebra over C with
presentation given by basis elements T,, w € W, and relations

Tows when ((ws) = l(w) + 1,

T,T, = (2.2.1)
asTys + bsT,, when l(ws) =l(w) —1.
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THEOREM 2.2.1. Suppose a building Z~ of type W exists with parameters {qs}ses. Then
B=A (g1 —q7).

PROOF. We note first that by Corollary 1.7.2, the numbers a, = ¢;* and by = 1 — ¢
satisfy the condition ay = a, and by = b, whenever s’ = wsw~! for some w € W.

Since {T,, }wew is a vector space basis of ' (q;',1 — ¢;') and {B,, }wew is a vector
space basis of & (see Proposition 2.1.9) there exists a unique vector space isomorphism
O (71— q;') — P such that ®(T,) = B, for all w € W. By (2.2.1) and Theo-
rem 2.1.6 we have ®(T,T;) = ®(T,,)P(T}) for allw € W and s € S, and so ® is an algebra

homomorphism. It follows that ® is an algebra isomorphism. 0



CHAPTER 3

Affine Coxeter Complexes and Affine Buildings

This chapter is preparation for our study of the algebra o7 of Chapter 4.

3.1. Root Systems

Let E be an n-dimensional vector space over R with inner product (-,-). For o € F\{0}
define o = (j%)’ and let H, = {z € E | (z,a) = 0}. The orthogonal reflection in H, is
the map s, : £ — E, so(v) =2 — (x,)a” for all z € E.

DEFINITION 3.1.1. A subset R of F is called a root system in E if
(R1) R is finite, R spans E and 0 ¢ R, and
(R2) if @ € R then s,(R) = R, and
(R3) if a, f € R then (o, 3Y) € Z.
A root system is said to be reduced if in addition to (R1), (R2) and (R3) it satisfies
(R4) if @ € R then the only other multiple of @ in R is —«,
and irreducible if in addition to (R1), (R2) and (R3) it satisfies

(R5) R cannot be partitioned into two proper subsets Ry and Ry such that (o, 5) =0
for all « € R; and § € R».

The elements of R are called roots, and the rank of R is n, the dimension of E. A
root system that is not reduced is said to be non-reduced and a root system that is not

irreducible is said to be reducible.

We will assume that R is irreducible, but not necessarily reduced. We discuss the
general case in Appendix A.

Let B = {a; | i € Iy} be a base of R, where Iy = {1,2,...,n}. Thus B is a subset
of R such that (i) B is a vector space basis of F, and (ii) each root in R can be written
as a linear combination of elements of B with integer coefficients which are either all
nonnegative or all nonpositive. We say that o € R is positive (respectively negative) if
the expression for « from (ii) has only nonnegative (respectively nonpositive) coefficients.
Let Rt (respectively R™) be the set of all positive (respectively negative) roots. Thus
R~ =—R*" and R = R" U R™, where the union is disjoint.

Define the height (with respect to B) of a =} .., ‘kio; € R by ht(a) = >, ki. By
[5, VI, §1 No.8, Proposition 25] there exists a unique root & € R whose height is maximal,

24
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and defining numbers m; by

we have m; > 1 for all € I;. To complete the notation we define mg = 1.

The dual (or inverse) of Ris RY = {a" | « € R}. The elements of RY are called coroots
of R. By [5, VI, §1, No.1, Proposition 2] RY is an irreducible root system which is reduced
if and only if R is.

We define a dual basis {\;}icr, of £ by (A, ;) = &;;. Recall that the coroot lattice
Q of R is the Z-span of RY, and the coweight lattice P of R is the Z-span of {\;}icy,-
Elements of P are called coweights (of R), and the vectors \;, i € Iy, are called fundamental
coweights. It is clear that ) C P. We call a coweight A = Zielo a;\; dominant if a; > 0
for all ¢ € I, and we write P for the set of all dominant coweights.

Let R and R’ be root systems in vector spaces E' and E’, respectively. We call R and R’
isomorphic if there exists a vector space isomorphism ¢ : £ — E’ mapping R to R’, such
that (p(a),p(B)Y) = («a, ") for all a, 3 € R. The irreducible root systems have been
classified up to isomorphism [5, VI, §4]. The irreducible reduced systems are labelled by
symbols A, (n > 1), B, (n >2),C,, (n>2), D, (n>4), Es, E7, Es, Fy and G3. No two
systems in the above list are isomorphic, except that Bs is isomorphic to Cy (we keep both

systems to maintain certain dualities between R and RY).

EXAMPLE 3.1.2. For the A, root system we may take E = {£ € R? | & + & + & = 0}
and R = {£(e; —¢;) | 1 <i < j <3} Let a5 = e —ep and ay = ey — e3. Then
1 1 2
3€2 73 3
For the C, root system we may take £ = R? and R = +{e; — eq, 1 + €3, 2¢1, 2e5}. Let

a; = e — ey and ap = 2e5. Then B = {ay, an} is a base of R, and we have A\; = e; and

B = {a1,as} is a base of R. We compute A\ = %el - e3 and \g = %61 + %62 — Ze3.

Ay = %el + %62. These systems are shown in Figure 3.1.1.

(0%)] Q2
A2
)\1 )\2
(€3]
A1
(€3]
The root system A, The root system C

FiGURE 3.1.1
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For each n > 1, there is exactly one irreducible non-reduced root system (up to isomor-
phism) of rank n, denoted by BC,,. To describe this system, we may take £ = R™ with the
usual inner product, and let a; = ¢; —e;4; for 1 < j <nand a,, = e,. Then B = {a;}}_;,
and R = {ey, 2ex,¢; +¢j,¢; —e; | 1 <k <n,1<i<j<n}. Notice that R¥ = R, and
one easily sees that () = P.

3.2. Hyperplane Arrangements and Reflection Groups

Let R be an irreducible (but not necessarily reduced) root system, and for each o € R
and k € Z let Hyy, = {v € E | (z,a) = k}. Let H denote the family of these (affine)
hyperplanes H,.,, o € R, k € Z. Note that H,,c = H, for all « € R. We denote by H, the
family of these hyperplanes H,, a € R.

Given H,., € H, the associated orthogonal reflection is the map s, : £ — E given by
Sak () = — ((z,a) — k) for all © € E. Note that s, = s, for all @ € R. We write s;
in place of s,,. The Weyl group of R, denoted Wy(R), or simply Wy, is the subgroup of
GL(F) generated by the reflections s,, a € R, and the affine Weyl group of R, denoted
W(R), or simply W, is the subgroup of Aff(F) generated by the reflections s,x, o € R,
k € Z. Here Aff(E) is the set of maps x — Tz + v, T € GL(F), v € E. Writing ¢, for
the translation x — x + v, we consider E as a subgroup of Aff(F) by identifying v and ¢,.
We have Aff(E) = GL(E) x E, and W = W, x Q. Note that Wy(RY) = Wy(R) [5, VI, §1,
No.1].

Let so = sa.1, define I = I, U {0}, and let Sy = {s; | i € Ip} and S = {s; | i € I}.
The group Wy (respectively W) is a Coxeter group over Iy (respectively 1) generated by S
(respectively S).

We write 3 = 3(R) for the vector space E equipped with the sectors, chambers and
vertices as defined below. The open connected components of E\ |J; ., H are called the
chambers of ¥ (this terminology is motivated by building theory, and differs from that used
in [5] where there are chambers and alcoves), and we write C(X) for the set of chambers
of ¥. Since R is irreducible, each C' € C(X) is an open (geometric) simplex [5, V, §3, No.9,
Proposition 8]. Call the extreme points of the sets C, C' € C(X), vertices of ¥, and write
V(%) for the set of all vertices of 3.

The choice of B gives a natural fundamental chamber Cj.
Co={zre EF|(x,a;) >0 forallielyand (z,a) < 1}, (3.2.1)

where we use the notation of (3.1.1).

The fundamental sector of ¥ is
So={r € E|(x,q;) >0foralliel}, (3.2.2)

and the sectors of ¥ are the sets A+wSy, where A € P and w € W,. The sector § = A+ w8,
is said to have base vertex A (we will see in Section 3.4 that A is indeed a vertex of ¥).
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The group W, acts simply transitively on the set of sectors based at 0, and Sy is a
fundamental domain for the action of W on E. Similarly, W acts simply transitively on
C(¥), and Cj is a fundamental domain for the action of W on E [5, VI, §1-3]. It follows
easily from [5, VI, §2, No.2, Proposition 4(ii)] that W} acts simply transitively on the set
of C € C(X) with 0 € C.

3.3. A Geometric Realisation of the Coxeter Complex

The set C(X) from Section 3.2 forms a chamber system over I if we declare wCy ~; wC
and wCy ~; ws;Cy for each w € W and each i € I. The map w — wCj is an isomorphism
of the Coxeter complex C(W) of Section 1.5 onto this chamber system, and so ¥ may be
regarded as a geometric realisation of C(W') (see Example 1.5.1).

Furthermore, ¥ may be naturally regarded as a labelled simplicial complex with vertex
set V(2) by taking maximal simplices to be the sets V(C'), C' € C(X), where V (C') denotes
the vertex set of C'. The type map on ¥ is constructed as follows. The vertices of C are
{0y U{Ai/m; | i € Iy} (see [5, VI, §2, No.2]), and we declare 7(0) = 0 and 7(\;/m;) =i
for i € Iy. This extends to a unique labelling 7: V/(X) — I (see [9, Lemma 1.5]).

Recall the definition of X (W) from Section 1.5. The map ¢ : ¥ — (W) of simplicial
complexes given by ¥(x) = wWp y if z is the type i vertex of wCy is a (well defined)
type preserving isomorphism of simplicial complexes. Thus ¥ may also be regarded as a
geometric realisation of (W) (see Example 1.5.1). The natural action of W on X is type
preserving [7, Theorem, p.58].

3.4. Special and Good Vertices of X

Following [5, V, §3, No.10], a point v € E is said to be special if for every H € H
there exists a hyperplane H’ € H parallel to H such that v € H’. Note that in our set-up
0 € E is special. Each special point is a vertex of ¥ [5, V, §3, No.10], and thus we will
call the special points special vertices. Note that in general not all vertices are special (for
example, in the 52 and 52 complexes). When R is reduced P is the set of special vertices
of X [5, VI, §2, No.2, Proposition 3]. When R is non-reduced then P is a proper subset of
the special vertices of ¥ (see Example 3.4.3).

To deal with the reduced and non-reduced cases simultaneously, we define the good
vertices of 3 to be the elements of P. On the first reading the reader is encouraged to
think of P as the set of all special vertices, for this is true unless R is of type BC),. Note

that, according to our definitions, every sector of ¥ is based at a good vertex of X.
LEMMA 3.4.1. Let Ip={1(\) | A€ P}. Then Ip ={i €I |m; =1}.

PROOF. We have already noted that the vertices of Cy are {0} U{\;/m; | i € Is}. The
good vertices of Cy are those in P, and thus have type 0 or i for some ¢ with m; =1. U
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EXAMPLE 3.4.2 (R = C3). Take E = R?, a; = e;—ey and aip = 2e5. Then B = {ay, as}
and R™ = {ay, ag, oy + g, 201 + an} (see Example 3.1.2).

FIGURE 3.4.1

The dotted lines in Figure 3.4.1 are the hyperplanes {Hyo,.x | w € Wy, k € Z}, and
the dashed lines are the hyperplanes {Hya,x | w € Wy, k € Z}. We have \; = ¢; and
Ao = 1(e1 + €2), and 7(0) = 0, 7(3e1) = 1 and 7(3(e1 + e2)) = 2. We have P = {(z,y) €

1

(3Z)* | * +y € Z}, which coincides with the set of all special vertices (as expected, since

R is reduced here). Thus Ip = {0, 2}.

EXAMPLE 3.4.3 (R = BC,). Take E = R?, a; = ¢; — ey and ay = 5. Then B =
{a1, 0} and Rt = {a, ag, a1 + o, aq + 202, 2000, 2001 + 2002}

1 1 R 1
1 1 . 1 1
T T o T T
1 1 Lo 1
1 L o 1
L1 L oo .1 o
- r--Tk--r—- IS i b ooty Al
T S 1 T
1 1 R 1
| | | |
T T T T
1 1 S| 1
o 1, g ! .
[ SRS SR SR g RS [ AN .
[ 1 1 T
1 1 1 1
I 1 Co, I
T T T T
1 1 1 1
[ 1 [ L
Y ) %P S )’ S . PR S up— -
o o AT
1 1 1 \Q1 1
1 1 1 1
1 1 1 1
| | T | |
1 1 1 1
1 1 1 1
R LY S o, S E— (RN N i SAN
I | | i
1 1 1 1
1 1 1 1
1 1 -y 1 1
| | | |
1 1 1 1

FIiGURE 3.4.2
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The dotted lines in Figure 3.4.2 represent the hyperplanes in {Hya, 1 | w € Wy, k € Z},
and solid lines represent the hyperplanes in {Hya,x | w € Wy, k € Z}. The union of the
dashed and solid lines represent the hyperplanes in { Hy(2a.)% | w € Wo, k € Z}.

In contrast to the previous example, here we have A; = e; and Ay = e; + e5. The set
of special vertices and the vertex types are as in Example 3.4.2, but here P = Z? (and so
Ip = {0}, as expected from Lemma 3.4.1).

3.5. The Extended Affine Weyl Group

The extended affine Weyl group of R, denoted W(R) or simply W, is W = Wy x P. In
particular, notice that for each A € P, the translation ¢ : F — FE, ty(x) = x + ), is in w.

In general W is larger than W. In fact, W/W = P/Q [5, VI, §2, No.3]. We note that
while W (C,,) = W(BC,), W(C,) is not isomorphic to W (BC,,).

The group W permutes the chambers of &, but in general does not act simply transi-
tively. Recall [27, §2.2] that for w € W, the length of w is defined by

{(w) = |{H € H | H separates Cy and w ™ 'Cy}|. (3.5.1)
We have ((w) = ¢(w™') ([27, §2.2]), and so
l(w) =|{H € H | H separates Cy and wCy}|.

When w € W, (3.5.1) agrees with the definition of /(w) given previously for Coxeter groups.

The subgroup G = {g € W | £(g) = 0} will play an important role; it is the stabiliser
of Cy in W. By [5, VI, §2, No.3] we have W = W x G, and furthermore, G = P/Q, and
so (G is a finite abelian group. Let wy and wgy denote the longest elements of Wy and W,

respectively, where
Wor ={w € Wy | wA = A} (3.5.2)
Recall the definition of the numbers m; (with mg = 1) from (3.1.1). Then
G ={gi [ mi =1} (3.5.3)

where gy = 1 and g; = ty,wop,wp for ¢ € Ip\{0} (see [5, VI, §2, No.3] in the reduced case
and note that G = {1} in the non-reduced case since G = P/Q).

3.6. Automorphisms of > and D

An automorphism of ¥ is a bijection ¢ of E' that maps chambers, and only chambers,
to chambers with the property that C' ~; D if and only if ¢/(C) ~y ¢(D) for some i’ € I
(depending on C, D and 7). Let Aut(X) denote the automorphism group of 3. Clearly W,
W and W can be considered as subgroups of Aut(), and we have Wy < W < W < Aut(%).
Note that in some cases W is a proper subgroup of Aut(Y). For example, if R is of type As,
then the map a1 A\; + agAs — a1 Ay + azA; is in Aut(X) but is not in w.
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Write D for the Coxeter graph of W. Recall the definition of the type map 7 : V() — I

from Section 3.3.

PROPOSITION 3.6.1. Let 1) € Aut(X). Then there exists an automorphism o € Aut(D)
such that (T o¥)(v) = (oo 7)(v) for allv € V(X). If C ~; D, then ¥(C) ~ou) (D).

PROOF. The result follows from [7, p.64-65]. O

For each g; € G (see (3.5.3)), let 0; € Aut(D) be the automorphism induced as in
Proposition 3.6.1. We call the automorphisms o; € Aut(D) type-rotating (for in the A,
case they are the permutations k — k-+i mod n+1), and we write Aut, (D) for the group
of all type-rotating automorphisms of D. Thus

Auty(D) = {0y |i € Ip}. (3.6.1)

Note that since gy = 1, 0p = id.
Let Dy be the Coxeter graph of W,. We have [5, VI, §4, No.3]

Aut(D) = Aut(Dy) X Aut, (D). (3.6.2)

The group W has a presentation with generators s;, i € I, and 9j, j € Ip, and relations
(see [31, (1.20)])

(sis5)™ =1 for all 7,5 € I, and
. . . (3.6.3)
9;8i9; = Soyi) forallie€ I and j € lp.

PROPOSITION 3.6.2. Leti € Ip and o € Auty, (D).
(i) 04(0) = 1.
(i) If o(i) =i, then 0 = 0¢ = id.
(iii) Auty. (D) acts simply transitively on the good types of D.

PRroOF. (i) follows from the formula g; = ), wox,wo (i € Ip) given in Section 3.5. By (i)
we have (0,1 00 00;)(0) =0, and so 0; ' 00 0 0; = 0y = id. Thus (ii) holds, and (iii) is

now clear. 0

PROPOSITION 3.6.3. Let ¢ € Aut(X).
(i) The image under v of a gallery in 3 is again a gallery in X.
(ii) A gallery in ¥ is minimal if and only if its image under 1) is minimal.
(iii) There ezists a unique o € Aut(D) so that ¢ maps galleries of type f to galleries
of type o(f). If vy =w € W then o € Auty (D). If w = w'g;, where w' € W, then
o= o0;.
(iv) If v € W maps A € P to . € P, then the induced automorphism from (ii) is
o=o0,00 ", wherel =7(\) and m = 7(p).
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PROOF. (i) and (ii) are obvious.

(iii) The first statement follows easily from Proposition 3.6.1, and the remaining state-
ments follow from the definition of Aut (D).

(iv) Since o(I) = m, we have (0 0 0;)(0) = 0,,(0), and so ¢ = 0,, 0 0; ' by Proposi-
tion 3.6.2. 0

PROPOSITION 3.6.4. z +— —x is an automorphism of X.

PrRoOOF. The map x — —x maps H to itself and is continuous, and so maps chambers
to chambers. If C' ~; D and C' # D then there is only one H € H separating C' and D,
and then —H is the only hyperplane in H separating —C' and —D, and so —C' ~; —D for

some i’ € I. O

DEFINITION 3.6.5. Let o, € Aut(D) be the automorphism of D induced by the auto-
morphism x — —z of ¥ (see Proposition 3.6.4). Furthermore, for A € P let A\* = wy(—2\),
where wy is the longest element of Wy. Finally, for [ € Ip let [* = 7(\*), where A € P is

any vertex with 7(\) = [.

We need to check that the definition of [* is unambiguous. If 7(\) = 7(u), then A = wp
for some w € W. Since W = W, x @) we have w = w't, for some w’ € W and v € @), and
s0 —A = —w'(y+p) =w't_,(—p) = w"(—p) for some w” € W. Thus 7(—\) = 7(—p), and
so T(A*) = 7(u*).

Note that in general o, is not an element of Aut. (D). In the BC, case, o, is the
identity, for the map = — —x fixes the good type 0, implying that o, = id by direct

consideration of the Coxeter graph.
PROPOSITION 3.6.6. If A € P*, then \* € P+.

PROOF. Observe that wy(—S8y) = Sy since —S is a sector that lies on the opposite side
of every wall to Sp. Thus wo(—\) € PT. O

3.7. Special Group Elements and Technical Results

For i € I, let W; = Wpy; (this extends our notation for Wy). Given A\ € P*, define
t, to be the unique element of W such that ¢\, = t}g for some g € G, and, using [5, VI,
§1, Exercise 3|, let wy be the unique minimum length representative of the double coset
Wot\ Wi, where [ = 7(\). Fix a reduced word fy € I* such that sy = w.

PROPOSITION 3.7.1. Let A € Pt andi € Ip. Suppose that 7(\) = 1, and write j = o;(l).
Then g; = gigi and ty = t\g.

Proor. We see that g; = g;g; since the image of 0 under both functions is the same.
Temporarily write ¢y =t} gy, and so g, = t’{lb\. Observe that g,(0) = vy for some k € Ip
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(here wy, is the type k vertex of Cp). But (£, 't))(0) = 4, ' (\) = v, since t} is type
preserving. Thus vy = v;, so k = [, and so g\ = g;. O

Recall that o € Aut(D) induces an automorphism (which we also denote by o) of W
as in (1.1.2). From (3.6.3) we have the following.

LEMMA 3.7.2. Let A € P and | = 7(\). Then gWog, ' = W, = oy(Wy), and so W, is
the stabiliser of the type | vertex v; of Cy.

PROPOSITION 3.7.3. Let A € P*. Then

(i) wy = t)\wo/\wogl_l = tho(worwp), where | = 7(N), and woy and wy are the longest
elements of Wy and Wy respectively.
(i) A € wrCo, and wrCy is the unique chamber nearest Cy with this property,
(iii) wyCo C Sp.

PRrooF. (i) By Proposition 3.7.1 and Lemma 3.7.2 we have Wyt \Wy = WythgWy =
Wot\Wygi, and so it follows that the double coset Wyt\Wy has unique minimal length
representative my = wyg;. By [27, (2.4.5)] (see also [31, (2.16)]) we have m, = t\wo wo,
proving the first equality in (i). Then

-1 -1 / —1 /
wx =myrg, = bwpwoeg, = thgwoawoeg, = t\or(worwo).

(i) With m, as above we have my(0) = (tyxworwp)(0) = A, so A € myCo. Now
wy = mAgfl, and since gfl € G fixes Cy we have A € w,C.

To see that w, is the unique chamber nearest Cy that contains A in its closure, notice
that by Lemma 3.7.2 the stabiliser of A in W is tf\W}t')\_l, which acts simply transitively
on the set of chambers containing A in their closure. So if wCjy is a chamber containing
A in its closure, then wCy = (thwty )t (Co) = thw,Cy for some w, € W;. Thus we have
w = thw, € AW, C Wpt\W,, and so ¢(wy) < ¢(w). The uniqueness follows from [35,
Theorem 2.9].

We now prove (iii). The result is clear if A = 0, so let A € PT\{0}. If A € Sy then
So NwyCy # B, and so wyCy C Sy since w,Cy is connected and contained in E\ UHeHO H.

Now suppose that A € Sp\Sp, so A € H,, for some a € B. Let Cy,CY,...,Cy = wy Cy
be the gallery of type fy from Cy to wyCo. If w\Cy € Sy then this gallery crosses the
wall H,, so let C} be the first chamber on the opposite side of H, to Cy. The sequence
Coy s Cr1,80(Cr),y - o, Sa(wCo) joins 0 to A as s,(A) = A. Since Cyx_1 = $4(Ck), there
exists a gallery joining 0 to A of length strictly less than m, a contradiction. U

Each coset wWyy, w € Wy, has a unique minimal length representative. To see this,
by Lemma 4.2.1 Wy, is the subgroup of W, generated by Spy = {s € Sy | s\ = A}, and
the result follows by applying [5, IV, §1, Exercise 3]. We write W;' for the set of minimal
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length representatives of elements of Wy/Wy,. The following proposition records some

simple facts.

PROPOSITION 3.7.4. Let A € P* and write [ = 7(X\). Then
(i) ¢ = wyw; for some w; € Wy, and £(t)) = L(w)) + {(wy).
(ii) Fach w € Wy can be written uniquely as w = wv with u € WO’\ and v € Wy, and
moreover (w) = £(u) 4+ £(v).
(iii) For v € Wyy, vwy = w,\wlal(v)wf1 where w;, € Wy is as in (i). Moreover

((vwy) = £(v) + L(wy) = L(wy) + Llwoy(v)w; ).

(iv) Each w € Wyw\W; can be written uniquely as w = uwyw' for some u € W3 and
w' € Wy, and moreover {(w) = {(u) + L(w)) + L(w').

PROOF. (i) follows from the proof of Proposition 3.7.3 and [5, VI, §1, Exercise 3].
(ii) is immediate from the definition of Wy, and [5, VI, §1, Exercise 3].

(iii) Observe first that vty = t\v in the extended affine Weyl group, for vtyv=?

= tyr
for all v € Wy, and t,\ =ty if v € Wyy. Since t)\ = t\g; (see Proposition 3.7.1) we have

vty = vt =g, =t(gug ) = thoi(v),
and so from (i), vwy, = wywo(v)w;'. By [5, IV, §1, Exercise 3] we have ((vw)) =
{(v)+L(wy); in fact, L(wwy) = £(w)+L(w)) for allw € Wy. Observe now that ws,w ™" = Syuq
for w € Wy, and it follows that £(w,0;(v)w; ') = €(v).
(iv) By [5, IV, §1, Exercise 3] each w € Wyw)\W, can be written as w = wjwyws, for
some wy; € Wy and wy € W, with {(w) = £(wy) + €(wy) + €(wy). Write w; = uv where
u € Wy and v € Wy, as in (ii). Then by (iii)

Wiwawy = uvwywy = uwy (w,o(v)w;, ws),

and so each w € Wyw,\W,; can be written as w = uw,w’ for some u € WO’\ and w’ € W; with
l(w) = l(u) + (wy) + ¢(w'). Suppose that we have two such expressions w = wjwyw| =
uswywh where uy,uy € W@t and w}, wlh, € W;. Write v; for the type [ vertex of Cp. Then
(uywaw!)(vr) = (uywy)(v;) = urA, and similarly (ugwaw})(v;) = ugA. Thus uyuy € Wiy,
and so us Woy = usWo,, forcing u; = us. This clearly implies that w] = wj too, completing
the proof. O

Recall the definitions of o,, A* and [* from Definition 3.6.5.

PROPOSITION 3.7.5. Let A € P* (so A\* € PT too), and write T(\) = 1.
(i) 02 =id and 0,(0) = 0.
(i) ou(wy) = wys and o.(l) = I*.

)
(iii) o, 00;00, = o4 for alli € Ip.
(iv) wys = a[l(wgl).
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PROOF. (i) is clear, since —(—z) =« for all z € E.

(ii) Let ¥ be the automorphism of ¥ given by ¢(z) = wo(—x) for all z € E. Then the
automorphism of D induced by v is o, (see Proposition 3.6.1). Let Cy, ..., C,, = w,Cy be
the gallery of type fy in X starting at Cp, and so ¥(Cp), ..., ¥ (Cy,) is a minimal gallery
of type o.(fy) (see Proposition 3.6.3). Observe that ¢(Cy) = Cy and \* € 9(C,,). The
gallery (Cy), ..., ¥(C,,) from Cy to A* cannot be replaced by any shorter gallery joining C
and \*, for if so, by applying ¢~! we could obtain a gallery from Cj to A of length < £(wy).
Thus ¢ (C,,) = Cy+ by Proposition 3.7.3, and so o,(f\) ~ fi-. Therefore o,(w)) = w),
and so o,(l) = I*.

(iii) Since Auty, (D) is normal in Aut(D) (see (3.6.2)) we know that o, 0 0; 0 0,1 = 0y,
for some k € Ip. By (i) and (ii) we have (0, 0 0; 00, 1)(0) = i* and the result follows.

(iv) Let Cy, ..., C,, be the gallery from (ii) and write fy =iy - -4,. Then C,,,...,Cy
is a gallery of type rev(fy) = iy, - - i1 joining A to 0. Let ¢ = wgowg, ot_y : ¥ — ¥ where
woy 1is the longest element of Wy,. By Proposition 3.7.3(i) we have

Y(Crn) = (wo o wgy oty owy)(Cp) = C.

Thus by Proposition 3.6.3 Cy = 1¥(Ch,), . .., 1¥(Cp) is a gallery of type o, ' (rev(fy)) joining
0 to A* (since A* € ¥(Cy)). Since no shorter gallery joining 0 to A\* exists (for if so apply

1~1 to obtain a contradiction) it follows that
-1 1/ .1 ~1/, ~1
Wx+ = 0, (Srev(fy)) = O (sz ) =0, (w,"). O

3.8. Affine Buildings

Here we consider buildings as simplicial complexes, as in Definition 1.6.2.

A building 2 is called affine if the associated Coxeter group W is an affine Weyl group.
To study the algebra 7 of the next chapter, it is convenient to associate a root system
R to each irreducible locally finite regular affine building. If 2" is of type W, we wish to
choose R so that (among other things) (i) the affine Weyl group of R is isomorphic to W,
and (ii) ¢,y = ¢; for all i € I and o € Aut, (D) (note that Aut (D) depends on the choice
of R, see (3.6.1)).

It turns out (as should be expected) that the choice of R is in most cases straight
forward; for example, if 2 is of type Fy then choose R to be a root system of type Fy (and
call 2 an affine building of type Fy). The regular buildings of types Ay and C, (n>2)
are the only exceptions to this rule, and in these cases the non-reduced root systems BC),
(n > 1) play an important role. Let us briefly describe why.

Using Proposition 1.7.1(ii) we see that the parameters of a regular C, (n > 2) building

must be as follows:

o 4 91 41 g1 q1 4 Qgn
*—1oo—o

e o o *r—o—0
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If we choose R to be a C), root system then the automorphism o,, € Auty, (D) interchanges
the left most and right most nodes, and so condition (ii) is not satisfied (unless qo = @,).
If, however, we take R to be a BC, root system, then Aut (D) = {id}, and so both
conditions (i) and (ii) are satisfied.

Thus, in order to facilitate the statements of later results, we rename regular C,, (n>2)
buildings, and call them affine buildings of type BC,, (or BC, (n > 2) buildings). We
reserve the name ‘én building’ for the special case when ¢y = ¢, in the above parameter
system. For a similar reason we rename regular A buildings (which are semi-homogeneous
trees) and call them affine buildings of type BCy (or BC, buildings), and reserve the
name ‘A, building’ for homogeneous trees. With these conventions we make the following

definitions.

DEFINITION 3.8.1. Let £ be an affine building of type R with vertex set V', and
let ¥ = X(R). Let Vi, (X) denote the set of all special vertices of X (see Section 3.4), and
let Iy, = {T(N\) | A € Vip(2) }.

(i) A vertex x € V is said to be special if 7(z) € Iy,. We write V;, for the set of all
special vertices of 2.

(i) A vertex z € V is said to be good if 7(x) € Ip, where Ip is as in Section 3.4. We
write Vp for the set of all good vertices of 2.

Clearly Vp C V4. In fact if R is reduced, then by the comments made in Section 3.4,
Vp = V. If R is non-reduced (so R is of type BC,, for some n > 1), then Vp is the set of
all type 0 vertices of 2" (for Ip = {0} by Lemma 3.4.1), whereas Vj, is the set of all type 0
and type n vertices of Z .

PROPOSITION 3.8.2. A vertex x € V is good if and only if there exists an apartment A
containing x and a type preserving isomorphism 1 : A — X such that (z) € P.

PROOF. Let x € Vp, and choose any apartment &/ containing x. Let ¢ : A — X be a
type preserving isomorphism (from the building axioms). Then ¢ (z) is a vertex in ¥ with

type 7(x) € Ip, and so ¢(x) € P. The converse is obvious. O

REMARK 3.8.3. We note that infinite distance reqular graphs are just BC, buildings
in very thin disguise. To see the connection, given any p,q > 1, construct a BC, building
(that is, a semi-homogeneous tree) with parameters ¢y = p and ¢; = ¢. Construct a new
graph I', , with vertex set Vp and vertices =,y € Vp connected by an edge if and only if
d(z,y) = 2. It is simple to see that I, , is the (graph) free product K, * - - - * K, (p copies)
where K, is the complete graph on ¢ letters. By the classification ([20], [28]) [, , is infinite
distance regular, and all infinite distance regular graphs occur in this way.

Recall the definition of Aut, (D) from (2.1.11).
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THEOREM 3.8.4. The diagrams in Appendix E characterise the parameter systems of
the locally finite reqular affine buildings. In each case Auty (D) U {o.} C Aut, (D).

PROOF. These parameter systems are found case by case using Proposition 1.7.1(ii) and
the classification of the irreducible affine Coxeter graphs. Note that Auty, (D)U{o.} = {id}
it 2" is a BC,, building. Thus the final result follows by considering each Coxeter graph. [J



CHAPTER 4

Vertex Set Averaging Operators

Let 2" be a regular affine building of type R (see Section 3.8). We will assume that R
is irreducible (see Appendix A for the general case).

For each A € P* we will define an averaging operator Ay, acting on the space of all
functions f : Vp — C. These operators Ay were defined in [39, 11, §1.1.2] for homogeneous
trees, [11] and [29] for A, buildings, and [10] for A, buildings.

We will study an associated algebra 7, and show that it is commutative. A more
thorough description of .7 requires some Hecke algebra theory, and so will be discussed in
Chapter 5, where we show that there is an affine Hecke algebra € such that B ~ A, a
large subalgebra of 2, and & = Z(J#), the center of 7.

4.1. Initial Observations

Recall the definition of type preserving isomorphisms of labelled simplicial complexes
from Section 1.3.

DEFINITION 4.1.1. Let A; and A be apartments of 2.
(i) An isomorphism 1 : A; — As is called type-rotating if and only if it is of the
form ¢ = 15" o w o 1f; where ¢ : A — ¥ and v : Ay — ¥ are type preserving
isomorphisms, and w € W.

(ii) We have an analogous definition for isomorphisms ¢ : A; — X by omitting 1.

PROPOSITION 4.1.2. Let A, A" be any apartments and suppose that b : A — A" is an
tsomorphism. Then
(i) The image under ¢ of a gallery in A is a gallery in A’.

(ii) A gallery in A is minimal if and only if its image under v is minimal.

(iii) There ezists a unique automorphism o € Aut(D) so that v maps galleries of type f
in A to galleries of type o(f) in A’. If 1) is type-rotating, then o € Auty (D), and
(To)(x) = (o oT)(x) for all vertices x of A.

(iv) If v is type-rotating and maps a type i € Ip vertex in A to a type j € Ip vertex

in A', then the induced automorphism from (iii) is 0 = oj 0 0 *.

Proor. This follows from Proposition 3.6.3 and the definition of type-rotating isomor-
phisms. O

37
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LEMMA 4.1.3. Suppose x € Vp is contained in the apartments A and A" of 2", and
suppose that ¢ : A — ¥ and ' : A — X are type-rotating isomorphisms such that
Y(x) =0=1"(x). Let ¥" : A — A’ be a type preserving isomorphism mapping x to x (the
existence of which is guaranteed by Definition 1.6.2). Then ¢ = ' o )" o b=t is in W.

PROOF. Observe that ¢ : ¥ — ¥ has ¢(0) = 0. Since ¢ and ¢’ are type-rotating
isomorphisms we have ¢ = w o 1)y and ¢ = w’ o ¢} for some w,w’ € W and ¢y : A — %,

Y]+ A" — ¥ type preserving isomorphisms. Therefore
p=w oo opitow =w o ow™, say.

Now ¢/ = | o) o9py! : £ — X is a type preserving automorphism, as it is a composition
of type preserving isomorphisms. By [35, Lemma 2.2] we have ¢’ = v for some v € W,
and hence ¢ = w’ ovow ™" € W. Since $(0) = 0 and W = W} x P we in fact have ¢ € Wy,
completing the proof. O

4.2. The Sets V,(z)

The following definition gives the analogue of the partition {C,(a)}wew used for the
chamber set of 2. Let us first record the following lemma from [7, p.24] (or [18, §10.3,
Lemma BJ). Recall the definition of the fundamental sector Sy from (3.2.2).

LEMMA 4.2.1. Let w € Wy and X € E. If N = w\ € So NwSy then N = \, and
w e ({s; | siA = A}).

DEFINITION 4.2.2. Given © € Vp and A\ € PT, we define V)(z) to be the set of all
y € Vp such that there exists an apartment 4 containing x and y and a type-rotating

isomorphism v : A — ¥ such that ¢)(z) = 0 and ¥(y) = A.
Notice that for all z € Vp and A € P we have V) (z) # 0.

PROPOSITION 4.2.3. Let Vi (x) be as in Definition 4.2.2.

(i) Given x,y € Vp, there exists some X € Pt such that y € V)(z).
(i) If y € Va(x) NV (x) then A = N,
(iii) Let y € Vi(z). If A is any apartment containing x and y, then there ezists a
type-rotating isomorphism v : A — X such that ¥(x) =0 and ¥(y) = .

PROOF. First we prove (i). By Definition 1.6.2 there exists an apartment A containing
x and y and a type preserving isomorphism ¢ : A — X. Let pu = ¢ (z) and v = 91 (y),
so p1,v € P. There exists a w € W such that w(v — p) € SN P [18, p.55, exercise 14],
and so the isomorphism ¢ = w ot_, o ¢y satisfies ¢(z) = 0 and ¢(y) = w(v — ) € P,
proving (i).
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We now prove (ii). Suppose that there are apartments A and A’ containing = and y,
and type-rotating isomorphisms ¢ : A — ¥ and ¢’ : A" — 3 such that ¥(z) = ¢'(z) =0
and Y¥(y) =X € Pt and ¢/'(y) = XN € P*. We claim that A = \.

By Definition 1.6.2(iii)" there exists a type preserving isomorphism " : A — A’ which
fixes z and y. Then ¢ = ¢’ o) 09p™! : ¥ — ¥ is a type-rotating automorphism of 3 that
fixes 0 and maps A to \. By Lemma 4.1.3 we have ¢ = w for some w € Wy, and so we
have X = w\ € Sy NwSy. Thus by Lemma 4.2.1 we have \' = \.

Note first that (iii) is not immediate from the definition of V) (z). To prove (iii), by the
definition of V)(z) there exists an apartment A’ containing x and y, and a type-rotating
isomorphism ¢ : A" — ¥ such that ¢/(z) = 0 and ¢'(y) = A. Then by Definition 1.6.2(iii)’
there is a type preserving isomorphism ¢ : A — A’ fixing x and yy. Then ¢ = ¢'0¢: A — X
has the required properties. U

REMARK 4.2.4. Note that the assumption that v is type-rotating in Definition 4.2.2 is
essential for Proposition 4.2.3(ii) to hold. To see this we only need to look at an apartment
of an 12{2 building. The map a;A; + asAs — ai; s + asA;, shown in Figure 4.2.1, is an
automorphism which maps A\; to \s. Thus if we omitted the hypothesis that 1 is type-
rotating in Definition 4.2.2, part (ii) of Proposition 4.2.3 would be false.

VAVALVARY,

FIGURE 4.2.1

PROPOSITION 4.2.5. If y € V)(x), then x € V\«(y) where \* is as in Definition 3.6.5.

PRrROOF. If ¥ : A — ¥ is a type-rotating isomorphism mapping = to 0 and y to A,
then wgot_y ot : A — X is a type-rotating isomorphism mapping y to 0 and x to
A = wo(—=\) € P* (see Proposition 3.6.6). O
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LEMMA 4.2.6. Let x € Vp and A € P*. If y,y' € Vi(z) then 7(y) = 7(v').

PROOF. Let A be an apartment containing x and y, and let A’ be an apartment
containing = and y’. Let ¢ : A — ¥ and ¢’ : A — ¥ be type-rotating isomorphisms
with ¢(z) = ¢'(z) = 0 and ¥(y) = ¢¥'(y) = X\. Thus x = ¢ Loy : A — A is a type
preserving automorphism since x(z) = x (see Proposition 3.6.2). Since x(y) = y’ we have
(y) =7(y"). a

In light of the above lemma we define 7(V)(z)) = 7(y) for any y € V)\(z).

Clearly the sets V) (x) are considerably more complicated objects than the sets C,(a).
The following theorem provides an important connection between the sets V\(z) and C,(a)
that will be relied on heavily in subsequent work. For ¢ € C and i € I, let m;(c) be the
type ¢ vertex of c. For the following theorem the reader is reminded of the definition of
wy € W and f, € I* from Section 3.7.

THEOREM 4.2.7. Let x € Vp and A € P*. Suppose 7(x) =i and 7(Vi(x)) = j, and let
a € C be any chamber with m;(a) = x. Then
fpecClm) en@)= |J Cula),
wEWioi(wA)Wj

where the union is disjoint.

PROOF. Suppose first that y = m;(b) € Vi(x). Let a = ¢g,¢q, ..., ¢, = b be a minimal
gallery from a to b of type f, say. By [35, Theorem 3.8], all the ¢ lie in some apartment, A,
say. Let ¢ : A — ¥ be a type-rotating isomorphism such that ¢(x) = 0 and ¥ (y) = A (see
Proposition 4.2.3(iii)). Then v (cp), ¥ (c1), . .., (c,) is a minimal gallery of type o;*(f) by
Proposition 4.1.2.

Recall the definition of the fundamental chamber Cy from (3.2.1). Since 0 is a vertex
of 1¥(cy), we can construct a gallery from 1 (co) to Cy of type ey, say, where s, € W.
Similarly there is a gallery from w)\Cy to ¥(c,) of type ey, where s., € W0;1(j). Thus we
have a gallery

b(e) > Co 2 waCo % tca)
of type ey fres. Since X is a Coxeter complex, galleries (reduced or not) from one chamber

to another of types f1 and f, say, satisfy sp, = sy, [35, p.12], so Se1(f) = Se1fres- Thus
0(a,b) = sy = 0i(s,-1(4)) = 0ilSe1frea) = S¢; o,(42)5¢l
where €] € W; and €, € W;. Thus b € C,(a) for some w € W;o;(wy)W;.
Now suppose that b € C,(a) for some w € Wo;(w\)W;. Let y = m;(b). By [35,
p.35, Exercise 1], there exists a gallery of type €|o;(f))e, from a to b where €] € W, and

ey € Wj. Let ¢k, cpt1, - .., be the subgallery of type o;(f)). Note that m;(c;) = x and
m;(¢;) = y. Observe that o;(f)) is reduced since o; € Aut(D), and so all of the chambers ¢,,,,
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kE < m <, lie in an apartment A, say. Let v : A — ¥ be a type-rotating isomorphism
such that ¢(x) = 0. Thus ¥(ck), ..., ¥(q) is a gallery of type fy in X (Proposition 4.1.2).
Since W, acts transitively on the chambers C' € C(X) with 0 € C' (Section 3.2) there exists
w € Wy such that w(y(cx)) = Cy. Then ¢’ = wor) : A — 3 is a type-rotating isomorphism
that takes the gallery cg,...,¢ in A of type o;(fy) to a gallery Cy,...,9'(¢) of type fi.
But in a Coxeter complex there is only one gallery of each type. So 1’(¢;) must be wy(Cp),
and by considering types ¥'(y) = A, and so y € V) (z). O

For z € V we write st(x) for the set of all chambers that have = as a vertex. Recall the

definition of Poincaré polynomials from Definition 1.7.6.

LEMMA 4.2.8. Let x € Vp. Then |st(z)| = Wy(q). In particular, this value is indepen-
dent of the particular x € Vp.

PROOF. Suppose 7(z) =1 € Ip and let ¢y be any chamber that has x as a vertex. Then

st(z) = {c€C|d(co,c) e Wi} = | J Culco)

weW;

where the union is disjoint, and so [st(x)| = > ¢y, ¢w- Theorem 3.8.4 now shows that

St ()] = Y o) = Y qw = Wolq). O

weWy weWy

Note that if the hypothesis ‘let x € Vp’ in Lemma 4.2.8 is replaced by the hypothesis

‘let x be a special vertex’, then in the non-reduced case it is no longer true in general that

[st(z)] = Wo(q)-

4.3. The Cardinalities |V, (z)|

In this section we will find a closed form for |V, (z)|. We need to return to the operators
B,, introduced in Chapter 2.
For each ¢ € I define an element 1; € % by

1
1, = TR0 > quBu. (4.3.1)

weW;

LEMMA 4.3.1. Leti € I. Then 1,B,, = B,1; = 1; for allw € W;, and 1? = 1.
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PROOF. Suppose s is a generator of W; and set W= = {w € W; | f(ws) = £(w) £ 1}.
Then

Wi@liBi= > quBus+ Y Qw< o Bus t (1— l) Bw)

weW;" w W, qs
= Z qu + Z qw< ws+(1_l)3w)
GW_ w' eW,” 4s ds
- Z (q_was + Qwa)
weW,;” 5
= Z Qwa + Z quw = Wz(Q)]l@ .
weWw;" weW,;~

A similar calculation works for B,1,; too. It follows that 1,B,, = B,1; = 1, for all w € W,
and so 17 = 1. O

Recall the definition of Wy, from (3.5.2).

THEOREM 4.3.2. Let A € PT and write | = 7(\). Then

Z Qwa (( )) Quw, OBwA]ll

weWow\W;

PRrROOF. Recall from Corollary 2.1.7 that B,B,, = B, whenever {(vw) = {(v) + {(w).
Then by Proposition 3.7.4(ii), Proposition 3.7.4(iii), Lemma 4.3.1 and Proposition 3.7.4(iv)
(in that order)

1
]]-OBwA]ll = Wi Z Z quququBwA]]-l
0<q> ueWy v€Wox

1
= W (Q) Z Z ququuB'LU)\Bwlo'l(U)wl_l]]‘l
0 ueWy v€Wox

1
= W(](Q) Z Z QquBquA]]-l

uEWg‘ vEWpA

Woxlg)
— 7(]10 quwa
WO(Q)VVl(Q) ’ wevggxwl

and the result follows, since
= =D o) = Wolg)
weW, weWy

by Proposition 3.8.4. U
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LEMMA 4.33. Let A € P, x € Vp, and y € Vi(x). Write 7(z) =i, 7(y) = j and

7(\) = 1. Then o;'(j) =1, and so 0; = 0,0 0;.

PROOF. Since y € V) (z), there exists an apartment A containing = and y and a type-
rotating isomorphism 1 : A — ¥ such that ¢(z) = 0 and ¢ (y) = A. Since () = 0,
the o from Proposition 4.1.2(iii) maps i to 0 and so is o; *. Thus A = (y) has type
o(j) = 0;'(4) and so | = 0; '(j). Thus 0;(0) = (0;007)(0), and so 0; = 7; 0 0;. O

THEOREM 4.3.4. Let x € Vp and A € Pt with 7(\) =1 € Ip. Then

1 Wo(q)
[VA(z)] = Y = Gur, = [Vas ()] -
WO(q) weWow\W; WOA(q)
PRrROOF. Let i = 7(z) and j = 7(Vi(z)). Let C\(z) = {c € C | m(c) € Vi(x)} and
construct a map ¢ : Cy\(z) — Vi(x) by ¢+ 7,(c) for all ¢ € C\(z). Clearly 9 is surjective.
Observe that for each y € Vy(z) the set {c € Cx(z) | ¢¥(c) = y} has |st(y)| distinct ele-
ments, and so by Lemma 4.2.8 we see that ¢ : Cy(z) — V)\(z) is a Wy(g)-to-one surjection.

Let ¢y € C be any chamber that has = as a vertex. Then by the above and Theorem 4.2.7

we have

G 1 N 1
V=@ T W@, 2 O g 2

wGWZ’O'Z'(w)\)Wj wEWiai(wk)Wj

Since o;'(j) = | (Lemma 4.3.3) we have Wio;(wy)W; = o;(Wow\W;), and so by Theo-
rem 3.8.4

1 1
|V)\(.T)‘ = WO(Q) Z Qo;(w) = m Z Gu -

weWow \W; weWow W,
Let 1¢ : C — {1} be the constant function. Then (B,1¢)(c) = 1 for all ¢ € C, and so
we compute (1;1¢)(c) =1 for all ¢ € C. Thus by Theorem 4.3.2

UGC)
2 W)™

weWow W

Now, by Proposition 3.7.5 and Theorem 3.8.4 we have

@ = Y = Y =) a

WO(q) U)EO'*(WOQU)\W[) 0<q) weWOU))\WZ

DEFINITION 4.3.5. For A € P we define N, = |V)(z)|, which is independent of = € Vp
by Theorem 4.3.4.

Note that Ny = Ny, and since Vy(z) # ) for all z € Vp and A € P*, we have N, > 0
for all A € PT.
We conclude this section by giving an alternative formula for N,.



4.4. THE OPERATORS A\, AND THE ALGEBRA & 44

By [5, VI, §1, No.6, Corollary 3 to Proposition 17] we have ¢(wow) = ¢(wg) — ¢(w) for
all w € Wy, and so writing Wo(q™") = > e, €' We have

= Z Quow = QwoWO(q_l)' (4.3.2)

weWy

Each @ € W can be written uniquely as @ = wg where w € W and g € G, and we
define ¢ = q,. In particular, ¢, = 1 for all g € GG, and it is clear that ¢,, = ¢,q, whenever
u,v € W satisfy £(uv) = £(u) + £(v). See Appendix B.1 for a calculation of g, .

PROPOSITION 4.3.6. Let A\ € P*. Then

Wolg™)

N,
A= WoA( _1)%,\

PROOF. Let [ = 7(A), and let wy and wpy be the longest elements of Wy and Wy,
respectively. Since t) = wygwowey and £(wygwowey) = L(wrg;) + £(wowpy) (see Proposi-
tion 3.7.3) we have g1, = Gu, Guow, - Since L(wow) = l(wy) — ¢(w) for all w € Wy it follows
that quyw,, = qwoq;()lk. Thus

_ -1 _ -1
qw>\ - qtkqwowo/\ - thqU)O qw0>\'

Since W, is a Coxeter group we have Wor(q) = Guo, Woa(g™'), as in (4.3.2).
Putting all of this together the result follows. 0

We say that A\ € P is strongly dominant if (A, «;) > 0 foralli =1,... n, and we write
P for the set of all strongly dominant coweights. Note that when A € P™1 Wy, = {1},
and so by Proposition 4.3.6

Ny = I/Vo(q_l)chk for all A\ € P*+, (4.3.3)

4.4. The Operators A, and the Algebra o/

We now define the verter set averaging operators on Z .

DEFINITION 4.4.1. For each A € P*, define an operator Ay, acting on the space of all
functions f : Vp — C, by

(Axf)(x Z f(y) forall z € Vp.

yEVA(l“)
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LEMMA 4.4.2. The operators Ay are linearly independent.

PROOF. Suppose we have arelation ), pr axAy = 0, and fix z,y € Vp with y € V,(z).

Then writing d, for the function taking the value 1 at y and 0 elsewhere,
0= Z (l)\(AA(Sy)(I‘) = Z aAN/\_lé)W = aMNu_l s
AeP+ AeP+

and so a, = 0. O

Following the same technique used in (2.1.2) for the chamber set averaging operators,

we have

1
NAN,

(ANALf)(z) = > Val@) Vi)l fly)  forall z € Vp. (4.4.1)

yeVp

Our immediate goal now is to understand the cardinalities |V)(z) NV, (y)|.
DEFINITION 4.4.3. We say that 2" is vertex reqular if, for all A\, u, v € P,
Va(z) NV ()| = Va(@') N Ve (f)] - whenever y € V,(z) and i € V,(2') ,
and strongly vertex reqular if for all A\, u,v € P
Va(x) NV (y)] = [Va= (') NV, (y')]  whenever y € V,(z) and y' € V().

Strong vertex regularity implies vertex regularity. To see this, suppose we are given
x,y, 2’y € Vp with y € V,(z) and 3/ € V,(2'), and choose any pair z”,y” € Vp with
y"” € V,«(2"). Then if strong vertex regularity holds, we have

Va(@) NV ()] = [Va- (") N VL(y")] = Va(e) 0 Ve ()]

LEMMA 4.4.4. Let y € V,(z) and suppose that z € V\(x) N V,«(y). Write 7(x) = 1,
m(y) =, 7(2) =k, 7(A) =1, () = m, and 7(v) = n.

(i) o; (k) =1, 0, (j) =m and 0;'(j) =n. Thus 0; ' o0}, = 0y, 03,* 0 0j = 0y, and

-1 o
o, 00j; = 0p.

(i) o, = 010 Oy

PRrROOF. (i) follows immediately from Lemma 4.3.3. To prove (ii), we have

aloamzai_loakoa,gloajzai_loajzan. ]

Recall the definition of the automorphism o, € Aut(D) from Section 3.6.
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THEOREM 4.4.5. Z s strongly vertex reqular.

PRrROOF. Let z,y € Vp with y € V,(z) and suppose that z € V)(z) N V,«(y). Let
7(x) =1, 7(y) = j and 7(2) = k. With the notation used in the proof of Theorem 4.3.4,
define a map v : C\(x) NC,» (y) — V() NV, (y) by the rule ¢)(c) = mx(c). As in the proof
of Theorem 4.3.4 we see that this is a W;(q)-to-one surjection, and thus by Theorem 4.2.7

1
Va(z) N Vi )l = 47 @ > Cuy (@) N Cuy ()]
old w1 EW o (wx) Wy
wQGWjO'j(wH*)Wk

where a and b are any chambers with 7;(a) = x and 7;(b) = y. Notice that this implies
that é(a,b) € W;o;(w,)W;, by Theorem 4.2.7.
Writing 7(\) = [ and 7(v) = n, Lemma 4.4.4(i) implies that

WiO'i<U})\)Wk = O'i(WQU})\O';l(Wk)) = O'Z'<W0U})\Wai—1(k)) = O'i<W0U})\VVl) y

Wioj(wu )Wy, = Ui<Wo;1(j)(U;1 © Uj)<wu*)woi—1(k)) = 03(Whon(wy)Wi)
and similarly W;o;(w,)W; = o;(Wow,W,,). Applying Lemma 2.1.12 (with o = 0;) we

therefore have

1
Va(z) NV (y)] = > |Cun (@) M Cy (V)] (4.4.2)
Wo(g) w1 EWow W,
wQEWan(wH* YW,

where @',V are any chambers with §(d’, ') € Wyw, W,,.
Vertex regularity follows from (4.4.2), for the value of |V(z) NV, (y)| is seen to only
depend on A, 4 and v. To see that strong vertex regularity holds, we use Proposition 3.7.5

to see that
WounWi = 0w (W,-1 0, (wa)W,-1y) = 0u(Wowy-Wi-)
Woon (W )Wi = 04 (W (U;l 00,00 ) (W )Wir) = 0 (Wi 0 (w, )W)

and similarly Wow,W,, = o.(Wyw,«W,«). A further application of Lemma 2.1.12 (with
o = o,) implies that

1
[Va(z) N Vi (y)] = [Cun (@) N Cuy (V7))
' Wo(q) w1€WQZw/\*Wl* 1 ’
weEW, %0 (Wy) Wi

where a”,b" are any chambers with 6(a”,0") € Wyw,«W,«. Thus by comparison with
(4.4.2) we have

Va(@) N Ve ()] = [Vas (&) 0 V(8]

where z/,y’ € Vp are any vertices with 3’ € V,.(2); that is, strong vertex regularity
holds. 0
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COROLLARY 4.4.6. Let A\, € PT. There exist numbers ay ., € QT such that
A\A, = Z ax Ay and Z arpw = 1.

vePt veP+t

Moreover, |{v € Pt | ay . # 0}| is finite for all \,p € P™.

PROOF. Let v € V,(u) and set
N,
N\N,

which is independent of the particular pair u,v by vertex regularity. The numbers a, .,

~— IValw) NV (v)], (4.4.3)

Xy =

are clearly nonnegative and rational, and from (4.4.1) we have

(@ = Y (30 BEE))

vePt “NyeV,(z)

=2 aw;u( Z fly )

vePt er
= g ax (A f) ().
veP+

When f =1y, : Vp — {1} we see that ) ay . = 1.

We now show that only finitely many of the ay,.,’s are nonzero for each fixed pair
A\ v € Pt. Fix x € Vp and observe that ay ., # 0 if and only if V) (z) NV« (y) # 0 for each
y € V,(x). Applying (NyA\)(N,A,) to the constant function 1y, : Vp — {1}, we obtain

D Val@) NV (y)] = Nad,,

yeVp

and hence Vy(z) N'V,«(y) # 0 for only finitely many y € Vp. OJ

DEFINITION 4.4.7. Let <7 be the linear span of {4y | A € P™} over C. The previous

corollary shows that o/ is an associative algebra.

We refer to the numbers ay,, in Corollary 4.4.6 as the structure constants of the
algebra o7 .

THEOREM 4.4.8. The algebra <7 is commutative.

PROOF. We need to show that ay ., = a,, for all A, u,v € P*. Fixing any pair u,v
in Vp with v € V,,(u), strong vertex regularity implies that
N, N,
Va(u) NV«
o B NV )] =

completing the proof. O

|V>\ (v)N Vu(“)‘ = uxw

OWHES

Note that a similar calculation using Theorem 4.3.4 (specifically the fact that Ny = Ny)
shows that ay ., = ay« e+ for all A\, p,v € PT.
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REMARK 4.4.9. Let X be a set and let K be a partition of X x X such that §) ¢ K
and {(z,z) |z € X} € K. For k € K, define k* = {(y,z) | (z,y) € k}, and for each x € X
and k € K define k(x) = {y € X | (z,y) € k}. Recall [46] that an association scheme is a
pair (X, K) as above such that (i) £ € K implies that k* € K, and (ii) for each k,l,m € K
there exists a cardinal number ey .,, such that

(z,y) € m implies that |k(x)NI"(y)| = exim -

Let X = Vp, and foreach A € Pt let X' = {(z,y) |y € Va(x)}. Then L ={XN | A € Pt}
forms a partition of Vp x Vp, and XN (x) = V)\(z) for x € Vp.

By vertex regularity it follows that the pair (Vp, L) forms an association scheme, and
the cardinal numbers ey s are simply NyN,N, 'a, ... By strong vertex regularity this
association scheme also satisfies the condition ey s, = ey v, for all X\, p,v € P* (see
[46, p.1, footnote]).

Note that the algebra 7 is essentially the Bose-Mesner algebra of the association
scheme (Vp, L) (see [2, Chapter 2]). With reference to Remark 3.8.3, the above construction
generalises the familiar construction of association schemes from infinite distance regular

graphs (see [2, §1.4.4] for the case of finite distance regular graphs).
Recall the definition of the numbers by, s, given in Corollary 2.1.8.

PROPOSITION 4.4.10. Let 7(A\) = 1 and 7(v) = n. Suppose that y € V,(x) and that
Va(x) NV (y) # 0. Then

- Wox (Q)WW (9)
B WOI/(Q)WOQ(q}quqwu Z

a')\,u;u Qw1 GQus bwl,wg;w,,

w1 EWow W,
wo W0y (wp)Wh

PRrROOF. By Lemma 4.4.4(ii) we have o, = 0; 0 0,,,. Thus by Proposition 3.7.5(iv) we
have W, 0, (w, )W, = (Wioy(w,)W,,) !, and so by (4.4.2) we see that

1
Wi(z) NV, = C,(a)nC, -1(b 4.4.4
M@= s 3 6, @n e (1.4.4)
w wyW,
w2 EWjo (wp )W
whenever 6(a, b) € Wow, W,.
By Proposition 2.1.10 (and the proof thereof) we have
|Cw1 (a) N ngl (b)| = Qw1qw2(Bw1Bw25b)(a) )

and the result now follows from (4.4.4) by using Theorem 4.3.4 and the definitions of ay .,
and by, wymws, DY choosing b € Cy, (a). O

We conclude this section by recording an identity for later use.
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PROPOSITION 4.4.11. Let A\, pu,v € P*. Then

N, N, N,

A Qo Ao

PROOF. Since
(ArA)A, = Z < Z ak,uman,wﬁ) A¢
¢epPt “nepPt
and
AN(ALA)) = Z ( Z au,vma)\m;() Ag,
¢epPt “npePTt
we have
Z N pinn,vi¢ = Z Qg forall (€ PT.
nepP+ nepP+
Since a0 = Ny 0y, we see that ay,.-/N, = au..a-/Ny, and the result follows by

commutativity. U

REMARK 4.4.12. There is a similar identity to that in Proposition 4.4.11 for the alge-
bra . Indeed, there is a similar identity for any association scheme (see [46, Lemma 1.1.3]).

4.5. Subalgebras of o/
Let L be a lattice satisfying
QCLCP. (4.5.1)

LEMMA 4.5.1. With L as above, if X\ € L and p € P satisfy 7(\) = 7(u), then p € L.
Thus L 1s stable under Wj.

PrROOF. If 7(A\) = 7(u), then p— X\ € @, proving the first statement since ¢ C L. Thus
if A € L and w € Wy, we have w\ € L since 7(w\) = 7(A\). Hence WyL = L. O

Let I ={r(A\) | A€ L} and V[, ={x € V | 7(x) € I} (here V is the vertex set of Z).
Clearly {0} = 1o C I, C Ip and Vo C Vi, C Vp.
Let o7, be the linear span of {A, | A € L} over C. Thus &/p = &7.

PROPOSITION 4.5.2. For all lattices L as in (4.5.1), <71, is a subalgebra of <7 .

PROOF. Let A\, € L and let | = 7(\) and m = 7(u). By Corollary 4.4.6 and (4.4.3),
ANAy =Y e pr WAy wWhere ay 7 0 if and only if there is a vertex z € Vy(x) NV« (y),
where z,y € Vp are any vertices with y € V,(x). Suppose we have such a vertex z. By
choosing « € Vj (so 7(x) = 0), since z € V)(x) we have 7(z) = [. Since y € V},(2) we have
7(y) = oy(m). Thus 7(y) = 7(A + p), and since A + p € L we have y € V. Thus A\A, is
a finite linear combination of {A, | v € L}, and the result follows. 0
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In particular, o7 is a subalgebra of &7. In the case where 2" is the Bruhat-tits building
of a group G of p-adic type with maximal compact subgroup K (as in [23, §2.4-2.7]), </
is isomorphic to .Z(G, K), the space of continuous, compactly supported bi-K-invariant

functions on G.



CHAPTER 5

Affine Hecke Algebras, and the Isomorphism <7 — C[P]"

In this chapter we make an important connection between the algebra 7 and affine
Hecke algebras. In particular, in Theorem 5.3.5 we show that o is isomorphic to Z (,%Z ),
the center of an appropriately parametrised affine Hecke algebra A

In Sections 5.1 and 5.2 we give an outline of some known results regarding affine Hecke
algebras. The main references for this material are [27] and [31]. Note that in [31] there is
only one parameter ¢, although the results there go through without any serious difficulty
in the more general case of multiple parameters {¢,}cs. Note also that in [31] Q = Q(R)
and P = P(R), whereas for us Q = Q(R") and P = P(RY).

In Section 5.4 we give a positivity result for certain structure constants in 72 (,%Z ),
generalising a result of Miller Malley [30].

5.1. Affine Hecke Algebras

Let R be an irreducible (but not necessarily reduced) root system, and let W be the
extended affine Weyl group of R.

Let {gs}ses be a set of positive real numbers with ¢5, = qs; whenever s; and s; are
conjugate in W. The affine Hecke algebra 7 with parameters {gs}ses is the algebra
over C with presentation given by the generators T,,, w € W, and relations

Twlng = Tw1w2 if E(wlwg) = E(wl) + E(wg) s (511)

1 1
T.,Ts = —Tus + (1 — —) Ty if {(ws) < l(w) and s € S. (5.1.2)
ds ds

By (5.1.1), 'T, = T,,71 = T, for all w € W, and hence Ty = I since {Tw}wew
generates #. Then (5.1.2) implies that each T}, s € S, is invertible, and from (5.1.1) we
see that each T,, g € G, is invertible, with inverse T,-1 (recall the definition of G' from
Section 3.5). Since each w € W can be written as w = w'g for some w’ € W and g € G, it
follows that each T, w € W, is invertible.

REMARK 5.1.1. (i) In [27] the numbers {¢s}secs are taken as positive real variables.
Our choice to fix the numbers {g, }scs does not change the algebraic structure of A in any
serious way (for our purposes, at least).

(ii) The condition that ¢,, = ¢s; whenever s; = ws;w™t for some w € W is equivalent
to the condition that ¢s, = ¢,; whenever s; = usa(j)u_l for some o € Auty, (D) and u € W.

51
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This condition is quite restrictive, and it is easy to see that we obtain the parameter
systems given in Appendix E. Thus connections with our earlier results on the algebra .o
will become apparent when we take the numbers {g;}scs to be the parameters of a locally

finite regular affine building.

DEFINITION 5.1.2. (i) We write ¢, = Qs;, " s, if 84y s, 15 a reduced expression
for w € W. This is easily seen to be independent of the particular reduced expression (see
(5, IV, §1, No.5, Proposition 5]). Each w € W can be written uniquely as @ = wg for
w e W and g € G, and we define ¢; = ¢, (cf. Section 4.3). In particular ¢, = 1 for all
g € G. Furthermore, if s = s; we write ¢, = ¢;.

(ii) To conveniently state later results we make the following definitions. Let R; =
{aeR|2a0¢ R}, Ry={a€R|3a¢ R} and Ry =R NRy (so Ry =Ry =R3=Rif R
is reduced). For oo € Ry, write q, = ¢; if @ € Wya; (note that if « € Wya; then necessarily
a € Ry). It follows easily from Corollary 1.7.2 that this definition is unambiguous.

Note that R is the disjoint union of R3, Ri\R3 and R\ R3, and define set of numbers

{Ta}aER by

Go if @ € R
Tao = 3 Qo if v € Rl\Rg
qaq(j1 if @ € R\ R3,

where ¢y = ¢, (with sg = sa;1 and @ is as in (3.1.1)). It is convenient to also define 7, =1
if « ¢ R. The reader only interested in the reduced case can simply read 7, as ¢,. Note
that 7,, = 7, for all « € R and w € W,.

REMARK 5.1.3. We have chosen a slight distortion of the usual definition of the alge-
bra .. This choice has been made so as to make the connection between the algebras
o/ and A more transparent, as the reader will shortly see. To allow the reader to con-
vert between our notation and that in [27], we provide the following instructions. With
reference to our presentation for H given above, let 7; = /g; and T, = /q,, T,, (these 7’s
are unrelated to those in Definition 5.1.2(ii)). Our presentation then transforms into that
given in [27, 4.1.2] (with the T"s there replaced by 7"’s). This transformation also makes
it clear why the /g, ’s appear in the following discussion.

If A e Pt let 2t = /g, Tp,, and if A = pp— v with p,v € PT let 2* = 2#(2¥)~". This
is well defined by [27, p.40], and for all \, 4 € P we have 2 a# = 2 M+ = gig?,

We write C[P] for the C-span of {* | A\ € P}. The group Wy acts on C[P] by linearly
extending the action wa? = z%*. We write C[P]"° for the set of elements of C[P] that are
invariant under the action of W;. By Corollary 5.2.2, the center Z(#) of s is C[P]"o.
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Let . be the subalgebra of # generated by {T, | s € S}. The following relates the
algebra 7 to the algebra 2 of chamber set averaging operators on an irreducible affine

building.

PROPOSITION 5.1.4. Suppose a building 2 of type R exists with parameters {qs}ses-
Then 7 = A.

Proor. This follows in the same way as Theorem 2.2.1. O

We make the following parallel definition to (4.3.1). Recall the definition of Poincaré
polynomials from Definition 1.7.6. For each ¢ € I, let

1
1, = Gu T, (5.1.3)
Wi(q) w;l/i

where W; = Wy (as before). Thus 1; is an element of . As a word of warning, we

have used the same notation as in (4.3.1) where we defined the analogous element in 2.
There should be no confusion caused by this decision.

The following lemma follows in exactly the same way as Lemma 4.3.1.

LemMA 5.1.5. 1,7, =T,1; = 1; for allw € W; and i € I. Furthermore ]l? =1,.

5.2. The Macdonald Spherical Functions

The following relations are of fundamental significance.

THEOREM 5.2.1. Let A € P and i € I.

(i) If (R,i) # (BCy,n) for any n > 1, then

A S
T, — Ty, 2% = (1 — q[l)%.
-2
(ii) If R = BC,, for some n > 1 and i = n, then
.T)\ o SCS”)\

A Snh _ -1 -1/2(1/2 —1/2\ _—(2an)V
2Ty, = To, o = |1 =g, + 4, P (0" —gp 7)™ )}W'

n

PRrROOF. This follows from [27, (4.2.4)] (see Remark 5.1.3), taking into account [27,
(1.4.3) and (2.1.6)] in case(ii). O

We note that the fractions appearing in Theorem 5.2.1 are in fact finite linear combina-
tions of the z#’s [27, (4.2.5)]. We refer to the relations in Theorem 5.2.1 as the Bernstein
relations, for they are a crucial ingredient in the so-called Bernstein presentation of the
Hecke algebra.

COROLLARY 5.2.2. The center Z() of  is C[P]Wo.

Proor. This well known fact can be proved using the Bernstein relations, exactly as
in [27, (4.2.10)]. OJ
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For each A\ € P, define an element Py(z) € C[P]"° by
—1/2 1/2 av 1
4y Y TaTa/Q x
Pia) = 2 3"y <x | EECh—— (5.2.1)
WO(q> weWy a€RT Ta;Q @ =1

We call the elements Py (x) the Macdonald spherical functions of €. See (5.2.9) and

(5.2.11) for some alternative formulae for Py(z).

REMARK 5.2.3. (i) We have chosen a slightly different normalisation of the Macdonald
spherical function from that in [27]. Our formula uses the normalisation of [23, Theo-
rem 4.1.2] (see (5.2.9)).

(ii) Notice that the formula simplifies in the reduced case (namely, 7,/ = 1).

(iii) It is not immediately clear that Py(x) as defined in (5.2.1) is in C[P]"?, although
this is a consequence of [5, VI, §3, No.3, Proposition 2] (see also the proof of Theorem 5.2.7).

The proof of Theorem 5.2.4 below follows [31, Theorem 2.9] closely.
THEOREM 5.2.4. [31, Theorem 2.9]. For A € P we have qtlA/QP)\(x)]lo = 1oz 1,.

PROOF. By the Satake isomorphism (see [31, Theorem 2.4] or [21, 5.2] for example)
there exists some P (x) € C[P]"° such that P}(x)1y = 1o 1. If (R,i) # (BC,,n), then
by Theorem 5.2.1(i) (and using Lemma 5.1.5) we have

’ l‘)‘ _ :L,si)\
(14 ¢Ts, )2 Mg = 2™ + qa* Ty o + (g; — 1)17_av]10
— X i
qix)\ . x)\fa;/ . qixsi)\faz’ + xsi)\
= v ]lO
1—z7%
g —1 gz —1 (5:2.2)
= ( Za\,’ l‘)\ + : EpaY $’Si>\)]lo
% — 1 % —1
i — 1
= (1 -+ SZ‘)LSUA]I(].
% — 1

A similar calculation, using Theorem 5.2.1(ii), shows that if (R,7) = (BC,,n), then
)

(2an)V _ (2an )V
(V@0Gn = D) (Va/to + 1)5&10, (5.2.3)

222an) _ |

(1+ anSn):p/\]lo = (14 sp)

It will be convenient to write (5.2.2) and (5.2.3) as one equation, as follows. In the
reduced case, let 3; = a; for all i € Iy, and in the non-reduced case (so R = BC,, for some
n>1)let f; =q; for 1 <i<n-—1andlet 5, =2«,. For o« € R and i € I, write

1/2 v 172 v
(Tﬁﬂ'ﬁi//2 A 1)(Tﬁi//2a: +1)

x2e’ — 1 ’

Cl{\/
ai(z® ) =
and so in all cases

(1+ T )2 M = (1+ s;)a; (2 )a . (5.2.4)
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By induction we see that (writing 7; for Ty,)

[ﬁ(l + qszlk)

k=1

My = [ﬁ(l + 84, )a, (a:ﬁlvk)] My, (5.2.5)

k=1

where we write HZL:1 x;, for the ordered product z; - - - ,,,. Therefore 1o2*1, can be written
as fz*y, where f is independent of A and is a finite linear combination of terms of the

form
(Lt si)as (@70) -+ (L s3,.)ai,, (a7m)

where ’il, c. ,im € [0.
Thus we have

weWy

where each b,,(z) is a linear combination of products of terms a;(z”") and is independent
of A € P*. It is easily seen that this expression is unique, and since P{(z) € C[P]" it
follows that b, (z) = by (x) for all w,w’ € Wy, and we write b(x) for this common value.
Thus

Pi(x) = Z w (b(z)2) = Z w (2 Mwob())

weWy weWy

where wy is the longest element of W.

woA

We now compute the coefficient of £*°* in the above expression. Since this coefficient

is independent of A € P™ we may assume that (\, ;) > 0 for all i € Iy and so wA # weA
for all w € Wy\{wo}.

If wg =s; -5, is a reduced expression, then

m

Iy — (<1+qilﬂl>---<1+qimnm>

1
Wo(q)
+terms (14 ¢;,T5,) - - (1 4+ ¢;,Tj,) with j, € Iy and | < m) :

Thus, by (5.2.5)

1 - v
1oz, = m [ <H Siy iy, ($ﬁ’“)> ™

+ terms (H RO ) 1™ with jj, € Iy and [ < m]
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Thus the coefficient of x%o* is

wob(z) = s

T S @iy (T) < 84,04, (27)

1/2 1/2 gv
Bﬁﬂxﬁ —1)(r ﬁ/Qazﬁ +1)
wO | | I‘QBV 1 )

BeRT

where we have used the fact that

{51'\/,,17 Sim z’vm_lv T S Simo1 T Sig z\i} = (R;r)v

(see [27, (2.2.9)]) and the fact that 7,, = 7, for all w € Wy and a € R.
Finally, let us demonstrate that

1/2 1/2 1/2 o
(,3 6;2 :L‘Bv 1)( 6;2 - To 0‘;2 ) -1 5926
H+ 28 1 _H+ 1?2 v _ 1 (5.2.6)
BER] a€ER To/2

To see this we start with the right hand side of (5.2.6). Observe that each a € Ry \RJ is
equal to o//2 for some o/ € Rf\Rj, and conversely each a € R\ Rj is equal to 2a’ for
some o € Ry \R3 (this can be seen without the classification theorem). The factors of
the right hand side of (5.2.6) corresponding to the roots a € Rf\Ry and a/2 € R \R:

combine to give

T Tlgxo‘ —1 ‘ Ta/Q:EQ"v -1 B (T, Tlgxo‘ —1)(r 1gxo‘ +1)
Toljgxav 1 x2a\’ -1 x2a\’ —1 ’

since 7,/4 = 1. Furthermore, the factor corresponding to o € R§L is

T Tlgﬂf ol B (T, Tlga: " 1)( ;ga: @’ 1 1)
1/2 Qv - 2oV _
7_04/2 -1 v 1
since 7,2 = 1 if o € R3. The result follows. O

COROLLARY 5.2.5. For A\ € Pt we have
]10,1—‘t>\110 = P)\(l‘)]lo .
PRrROOF. This is clear, since 2* = qtlA/ ZTtA by definition. O

It will be useful to have some alternative formulae for Py(z). The inversion set of
w e Wy is
Ro(w) = {a € R} | H, is between Cy and w'Cj},
and we write R(w) = {a € RT | H, is between Cy and w™'Cy}. For w € W, we have
Ry(w) ={a € Ry |wa € R™}, and if w = s, - -+ 5
VI, §1, No.6, Corollary 2 to Proposition 17],

, is a reduced expression, then by |5,

RQ(UJ) = {Oéip, Sip()zipil, ey Sip te SiQOzil}.
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It follows that for w € Wy,
w= I @&= I = (5.2.7)
a€Ra(w™1) acR(w1)

(compare this with [26, (3.8)], noting that ¢, = ¢,-1). The second equality in (5.2.7) is
clear if R is reduced (for Ry = R and 7, = q,). If Ris of type BC,,, and if a € Ry(w ™)\ R3,

then ¢, = ¢, = TaT2a, verifying the result in this case too. In particular,
Quo = H To. (5.2.8)

a€Rt

Using (5.2.1), (5.2.8) and (4.3.2) we see that Py(z) may be written as
~1/2

Py(z) = =5 5™ w(ae(x)), (5.2.9)

Wo(qg™1) ot

where

—1_—-1/2 _ 4V
1—171 Tass T

cx) =[] 1 T — (5.2.10)
aERT _Ta/Q x
PROPOSITION 5.2.6. Let ¢(x) be as in (5.2.10). Then
(1-— 7'2_17'_1/226*0”/2)(1 + T_l/gx*avﬂ)
= o« e . 2.11
o) = 1 S (5211
aeR;

PROOF. See (5.2.6), and the paragraph immediately after it. O

THEOREM 5.2.7. {Py(z) | A € P} is a basis of C[P]"°. Furthermore, the Macdonald
spherical functions satisfy
P@)P) = Y e Pla)
VA4
for some numbers cy ., with
- Woa(g ) Wou(g™")
WA+ T _ 1\
P Wopn (@) Wolg ™)

where for U C W, U(qg™) = per G-

PROOF. For A € P*, let

~ Wo(q™) 1/2

P)\<5L’) = P (.T}),

and define the monomial symmetric function my(x) € C[P]""° by

ma(z) = Y at (5.2.12)

pneEWHA
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The set {my(x)},rep+ forms a basis for C[P]"°. Using the formula (5.2.11) and the calcu-

lations made in [26, §10] we have

Py(z) = ZC,\Mmﬂ(a:), where ¢y ) = 1, (5.2.13)
U=
which shows that {Py(z)}rep+ forms a basis for C[P]"°. Equation (5.2.13) is the so called
triangularity condition of the Macdonald spherical functions.
It is clear that my(z)my,(z) = >, <y, dr o (z) where dy 451, = 1, and so it follows
that

P)\(x)ﬁu(x) = Z ex ()

vAtp
for some numbers e ., with ey .24, = 1. It follows that for all A\, u,v € P*,
Woa(g™ ) Woul(g™) 1/2 1/2([1/2e
Wou(¢=1)Wo(q™1) B St S
and the result follows. g

Cxpy =

5.3. The Isomorphism & — C[P]"

We can now see how to relate the vertex set averaging operators A, to the alge-
bra elements Py(z). Let us recall (and make) some definitions. For A\, u,v € P and
wy, we, w3 € W, define numbers ay ., by woiwss Crppp aNA dyyy g0y DY

ANA, = Z ax v Ay By, By, = Z buwy waiws Bus
vePt w3eW

Py(z)Pu(z) = Z i P (2) T, Tw, = Z Ay wasws T -
vePt wz€W

Thus the numbers are the structure constants of the algebras ., %, C[P]"° and J# with
respect to the bases {Ay | A € PT}, {By, |w e W}, {P\(z) | A € P*} and {T, | w € W}
respectively.

Note that by Proposition 5.1.4 we have by, wows = dw, werws Whenever a building with
parameter system {gs}ses exists. We stress that di, w,.ws 1S @ more general object, for it
makes sense for a much more general set of ¢’s.

Recall the definition of w) from Section 3.7, and recall the definition of Wy, from (3.5.2).
We give the following lemma linking double cosets in W with double cosets in .

LEMMA 5.3.1. Let A € PT and i € Ip. Suppose that 7(\) =1, and write j = o;(1) (so
o; =o0;00). Then

Wioi (t\)W; = giWOt,\Wogfl ;
where the elements g; are defined in (3.5.3).
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PROOF. By Proposition 3.7.1, g; = g;g; and t) = t}g;, and by (3.6.3), o%(w) = grwgy '
for all w e W and k € Ip. Thus

Wiai(t\)W; = (9:Wog; ) (gitagr " 9i ) (g;Wog; ') = giWotaWog; . O

LEMMA 5.3.2. [31, Lemma 2.7]. Let A € P™. Then

Wi(q
Z Qudw = WO (( ))QwA]loﬂA]IO .
weWpt\Wo oaq
PRrOOF. This can be deduced from Theorem 4.3.2, or see the proof in [31]. O

The following important theorem will be used (along with Proposition 4.4.10) to prove

that o = Z(2).

THEOREM 5.3.3. Let A\, u,v € PT and write 7(\) =1, 7(u) = m and 7(v) = n. Then
if ¢ 7 0 we have

Wox(9)Wou(q)
Wo (W5 () qw Qu, 2

Cx v = G, qudew%wu'

w1 EWow W
w2 €W o (wp)Wh

ProOOF. To abbreviate notation we write Py = Py(z). First observe that by Theo-
rem 5.2.7 we have ¢y, = 0 unless v = A+ p. In particular we have cy ., = 0 when
T(v) # 7(A + p). It follows that o, = 0; 0 0, and so g, = 19 (see Proposition 3.7.1).
We will use this fact later.

By Corollary 5.2.5 and Lemma 5.3.2, for any A € Pt we have

Wox(q)
by W) T
Ao 05320 W02<q>quu wew%qu

and so if ¢ € Ip, 7(A\) = and j = 0;(l) we have (see Lemma 5.3.1)

Ty PALoT, 1 = % > T (5.3.1)
0 X weW;oi (th )W;
We can replace the ) by w) in the above because W;o;(ty)W; = W;o,;(wx)W; by Proposi-
tion 3.7.4(i) and the fact that o;(W;) = W;.
Using the fact that g, = gigm if i 7# 0 we have, by (5.3.1)

P1oP 10T, -1 = (PA]lngfl)(TglPM]lnggl)
_ Wox(9)Wo(q) Z

W) qwy G, I

w1 EWow W,
wo W0y (wp)Wh

W, W,
= M Z ( Z qwlqudel,lUQ;ngw;g) .

4
Wo (Q)qwkqwﬂ w3EW w1 EWowA W,
w2 EWjoy(wp )W
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So the coefficient of T}, in the expansion of P\1oF,1¢T-1 in terms of the T,,’s is

W, W
M Z Qw1qw2dw1,w2;wu : <532>

Wé(Q)qwx qwu w1 EWow W,

w2 W0y (wp)Whn

On the other hand, by Theorem 5.2.7 we have

P1oP 1T, = > ceaunPylol, -

n=3A+p
Won(q)
n=3A+p o\d qw" weWown Wiy

Since the double cosets Wyw, W, are disjoint over {n € P* | n < XA+ u} we see that the

coefficient of T}, is

WOV(Q)
C v - 5.3.3
The theorem now follows by equating (5.3.2) and (5.3.3). O

COROLLARY 5.3.4. Suppose that an irreducible locally finite reqular affine building exists
with parameters {qs}ses. Then for all A, u,v € Pt we have ay .y = Cx -

Proor. This follows from Theorem 5.3.3, (4.4.10) and Proposition 5.1.4. O

THEOREM 5.3.5. Suppose that an irreducible locally finite reqular affine building exists
with parameters {qs}ses. Then the map Py\(x) — A, determines an algebra isomorphism,

and so o = Z () = C[P|".

PROOF. Since {P\(z) | A € P*} is a basis of C[P]" and {4, | A € PT} is a basis
of 7, there exists a unique vector space isomorphism @ : Z() — o with ®(Py) = Ay
for all A € P*. Since ay,, = cypuw by Corollary 5.3.4, we see that ® is an algebra

isomorphism. O

THEOREM 5.3.6. The algebra Z(€) is generated by {Py,(x) | i € Ly}, and so o is
generated by {Ax, | i € Ip}.

PROOF. First we define a less restrictive partial order on P+ than <. For A\, u € Pt we
define ;1 < A if and only if A — p is an R*-linear combination of (RY)"™ and A\ # p. Clearly
if g < A then p < A. Observe also that A; > 0 for all ¢ € [ [18, p.72, Exercises 7-8|. Thus
if A= N+ )\ for some N € PT and i € Iy, we have A — X = \; > 0 and so \ < A.

Let P(A\) be the statement that P, is a polynomial in P,,..., P, (and By = 1).
Suppose that P(\) fails for some A € PT. Since {u € Pt | u < A} is finite (by the proof of
[18, Lemma 13.2B]) we can pick A € P minimal with respect to < such that P(\) fails.



5.4. A POSITIVITY RESULT AND HYPERGROUPS 61

There is an ¢ such that A — \; = X is in PT. Then X' < X and P\ = ¢Py Py, + a linear
combination of P,’s where ;1 < A, it # A. Then P()\’) holds, as does P(yu) for all these p’s.
So P(A) holds, a contradiction. O

Let L be a lattice with Q C L C P, and let I, V7, and o7, be as in Section 4.5. Let C[L]
denote the linear span of {z* | A € L} over C. It is clear that C[L] is a subalgebra of C[P],
and by Lemma 4.5.1 W,C[L] = C[L]. Let C[L]"* denote the Wy-invariant elements of C[L].

It is not difficult to see that {my(z) | A € L} forms a basis for C[L]"?, and so by
(5.2.13) we see that {Py(z) | A € L} forms a basis for C[L]"°.

PROPOSITION 5.3.7. Suppose that an irredicible locally finite reqular affine building

exists with parameters {qs}ses. Then the map Py(z) +— Ay for X € L determines an
algebra isomorphism C[L]"W° — o, and so «f, = C[L]"°.

PROOF. See the proof of Theorem 5.3.5. 0

5.4. A Positivity Result and Hypergroups

Here we show that the structure constants cy ., of the algebra C[P]"° are, up to
positive normalisation factors, polynomials with nonnegative integer coefficients in the
variables {g; — 1 | s € S}. This result has independently been obtained by Schwer in [38],
where a formula for ¢y ., is given (in the reduced case with ¢; = ¢ for all s € .5).

Thus if g, > 1 for all s € S then ¢, ., > 0 for all A, u,v € P*™. This result was proved
for root systems of type A, by Miller Malley in [30], where the numbers c, ,., are Hall
polynomials (up to positive normalisation factors). Note that it is clear from (4.4.3) and
Corollary 5.3.4 that c) ,,, > 0 when there exists a building with parameters {g;}ses-

In a recent series of papers ([33], [17], [43]) the numbers a, , appearing in the formula
Py(z) =32, axumy(x) are studied. We will provide a connection with the results we prove
here and the numbers ay , in Theorem 7.7.2.

The results of this section show how to construct a (commutative) polynomial hyper-
group, in the sense of [4] (see also [22] where the A, case is discussed).

U _ -1
For each wq, wa, w3 € W, et diy, 10 = Gy Gy G Quon o

LEMMA 5.4.1. For all wy, wy,ws € W, d] 15 a polynomial with nonnegative integer

w1, Ww2;w3

coefficients in the variables qs — 1, s € S.
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PROOF. We prove the result by induction on ¢(ws). When f(wy) = 1, so wy = s for
some s € S, we have

p

1 if {(wys) = l(wy) + 1 and w3 = w; s,

, qs if {(wys) = l(wy) — 1 and w3 = wys,

wi,s5w3

gs — 1 if l(wys) = L(wy) — 1 and w3 = wy,

(0 otherwise,

proving the result in this case.
Suppose that n > 2 and that the result is true for ¢(wy) < n. Then if {(ws) = n, write
wy = ws with {(w) =n — 1. Thus

TwlT - TwlT Z dwl,w w/T /T - Z (Z dwl,ww’dw sw3> w3 )

w'eW wzeW \w'eWw

which implies that

/
w17w2,w3 - Z dw1 ww/dw ,S;w3 *
w'eW

The result follows since ¢(w) < n and {(s) = 1. O
For each A\, u,v € PT, let

. _ WO(Q>WOV<Q> qWAqw“C)\ .
M Wor(@Wou(@) Gy

(5.4.1)

THEOREM 5.4.2. For all A\, u,v € PY, the structure constants C’MW are polynomials

with nonnegative integer coefficients in the variables ¢ — 1, s € S.

ProOF. We will use the same notation as in Theorem 5.3.3, so let 7(\) =1, 7(u) =m
and 7(v) = n. By Theorem 5.3.3 we have

o= LN E d
Ay W w1, W2Wy
O(q) w1 EWow W,
w2 €W o (wp)Wh

and so it immediately follows from Lemma 5.4.1 that Wy(q)c) ,,, is a polynomial in the
variables ¢; — 1, s € S, with nonnegative integer coefficients. The result stated in the
theorem is stronger than this, and so we need to sharpen the methods used in the proof of
Theorem 5.3.3.

In the notation of Proposition 3.7.4 we have the following (see Proposition 3.7.4 for
proofs of similar facts). Firstly, each w; € Wyw, W, can be written uniquely as w; = ujwyw
for some u; € W and w; € W;, and moreover £(w;) = £(u;) + £(wy) + £(w;). Similarly,
each wy € Wio;(w,)W,, can be written uniquely as wy = wjo;(w,,)us for some uy, € W} and
w; € W, and moreover {(wsy) = l(w;) + (o1(w,)) + ((uz).
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Secondly, each w € Wyw, can be written uniquely as w = uwy for some u € Wy, and
moreover {(w) = {(u) + ¢(wy). Similarly, each w’ € oy(w,)W,, can be written uniquely as
w' = oy(w,)u for some v’ € W}, and moreover ((w') = {(oy(w,)) + £(u).

Using these facts, along with the facts that 17 = 1, and Wi(q) = Wy(q), we have
(compare with the proof of Theorem 5.3.3)

Wox(@)Wo,(q)
P1,P,1,T -1 = ———+—+*1 E G Qo Lo T
0L 04 g Wé(g)qwkqw# 14w2 1 2

w1 EWow AW,
w2 W0y (wy)Wh

Wor(@)Wo, (@) Wi(q
- éV) (Q);( )C] l( ) Z Gurws Ty ]112 Z qal(wu)UQTUL(wu)m
0 wy 1wy u1€WOA ey

Worx(¢)Wo,(q)
= - Guly | 1 Q' L
WE (@) quy G, Z : Z

w/eol (w#)Wn

N WOu(Q) Z

Gw1 Gws Qs Ly Lo Ty -

Wowy, w2eW)
w3€eoT] (w;L)Wn

It is simple to see that

Z Qe Gy Qus Lwr, Tooy Ty = Z dw()‘v M)QwTw

w1 EWowy, waeW, weW
w3 €] (w#)Wn

where d,,(\, i) is a linear combination of products of d! s with nonnegative integer

w1, W2;wW3
coefficients, and so

W Q)W
P\1yP, 1T, 1 = ‘“ Worl@)Woulq) Z duw(N, 1)@ T
)QwAQw,L
So the coefficient of T, when P,\]IOPH]lnggl is expanded in terms of the 7T),’s is
Wor(9)Wou(q)  qu,
Wg)<q> QwAQwu

Comparing (5.4.2) with (5.3.3) we see that ¢} ., = du, (A, 1), and so the result follows from

Lemma 5.4.1 and the fact that dy, (A, i) is a linear combination of products of d;,, ...,

d, (A, ). (5.4.2)

with nonnegative integer coefficients. U



CHAPTER 6

The Macdonald Formula

In the following chapters we describe the algebra homomorphisms h : o/ — C, along
with some relevant spherical harmonic analysis. The isomorphism & = C[P]"° gives one
formula almost immediately in terms of the Macdonald spherical functions (see Section 6.1
below). In Chapter 7 we give a second formula in terms of an integral over the boundary
of 2", which gives a ‘building’ analogue of [23, (4.2.1)].

The formulae in Theorems 6.3.2 and 6.3.7 for the Plancherel measure are essentially
from [23, Chapter V].

6.1. The Macdonald Formula

Here we will use Theorem 5.3.5 to describe the Macdonald formula for the algebra
homomorphisms h : &/ — C.

For v € Hom(P,C*), write u* in place of u(\). Each u € Hom(P,C*) induces a
homomorphism, also called u, on C[P], and all homomorphisms C[P] — C arise in this
way. For w € W, and u € Hom(P, C*) we write wu € Hom(P, C*) for the homomorphism
(wu)* = u®*. If u € Hom(P,C*), we write Py(u) in place of u(Py(z)). Thus, by (5.2.9),

~1/2
q w a 'a
Py(u) = —2— g c(wu)u™, where c(u) = H 12 . (6.1.1)

-1 —aVv
Wo(q )wGWo werr 1 — Ty U

provided, of course, that the denominators of the c¢(wu) functions do not vanish. Since

Py\(u) is a Laurent polynomial, these singular cases can be obtained from the general
formula by taking an appropriate limit (see [23, §4.6]). Finally, for v € Hom(P,C*), let
h, : @ — C be the linear map with h,(Ay) = Py(u) for each \ € PT.

PROPOSITION 6.1.1. (¢f. [23, Theorem 3.3.12])

(i) Each homomorphism h : o/ — C is of the form h = h,, for some v € Hom(P, C*).
(ii) hy = hy if and only if v’ = wu for some w € Wy.

PROOF. Since C[P)] is integral over C[P]" [1, V, Exercise 12], every homomorphism
C[P]"* — C is the restriction of a homomorphism C[P] — C, and (i) follows.

It is clear that if v’ = wu for some w € Wy, then h,, = h,,. Suppose now that h, = h,.
Since { Py (z)}rep+ forms a basis of C[P]"° we see that u and u’ agree on C[P]"°, and thus
their kernels are maximal ideals of C[P] lying over the same maximal ideal of C[P]"0. The
result now follows by [1, V, Exercise 13]. O

64
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We call the formula h,(A)) = P\(u) the Macdonald formula for the algebra homomor-
phisms «/ — C. By comparing Proposition B.1.5 and [23, Corollary 3.2.5] we see that
in the case when P = @) (that is, when R is of type Eg, Fy, Gy or BC,, for some n > 1)
our formula Py(u) agrees with the formula in [23, Theorem 4.1.2]. The reason we require
P = @ here is because in [23] u € Hom(Q, C*) (although u there is called s).

REMARK 6.1.2. We often think of Py(u) as a function of the variables u; = u* € C*,
i=1,...,n. In general, the coroots a¥, @ € R, appearing in the formula for ¢(u) do not
have particularly neat expressions in terms of the basis {\;}?_;. Thus in any given specific
case it is often useful to work with numbers other than the {u;}! ;.

Let us illustrate this in the R = D, case, which may be described as follows (see
Appendix D). Let F = R" with standard orthonormal basis {e;}! ;, and take R to be the
set of vectors £e; £e;, 1 <i < j <n, where the £ signs may be taken independently. We
have R = R, and the set {e;—€;11, €n—1+€y }1<i<n—1 forms a base of R. The corresponding
set of positive roots is {e; — e;,€; + €j}1<icj<n. Observe that e; = Ay, e, = A\; — A\;_; for
2<i<n-—2e,1=MN_1+A — A2 and e, =\, — \,_1. Thus, defining numbers
t € Ci=1,...,n, by t; = up, t; = wu; Y, (2 <i<n—2), t, 1 = U, 1uyu,’, and

-1

t, = upu,_,, we have

(I—gq 't t)(A—q 't 't
(L=t 't =t

c(u) = H

1<i<j<n

(Notice that ¢; = ¢ for all ¢ € I, see Appendix E.)

6.2. The Plancherel Measure

Let /2(Vp) denote the Hilbert space of square summable functions f : Vp — C. Each
A € o maps (%(Vp) into itself, and for A € P and f € £2(Vp) we have || Axf|l2 < || ]2 (see
[10, Lemma 4.1] for a proof in a similar context). So we may regard </ as a subalgebra of
the C*-algebra .2 (¢*(Vp)) of bounded linear operators on £2(Vp). The facts that y € Vi (x)
if and only if z € V)«(y), and Ny« = N,, imply that A} = A,-, and so the adjoint A* of
any A € o7 is also in 7.

Let % denote the completion of & with respect to || - ||, the £>-operator norm. So %
is a commutative C*-algebra. We write My = Hom(2%, C) (this is the mazimal ideal space
of %), and we denote the associated Gelfand transform o — € (M) by A — A, where
A(h) = h(A). Here € (My) is the algebra of w*-continuous functions on M, with the sup
norm. This map is an isometric isomorphism of C*-algebras [13, Theorem 1.3.1].

The algebra homomorphisms & : % — C are precisely the extensions to <% of the
algebra homomorphisms & : &7 — C which are continuous with respect to the ¢2-operator
norm. When there is no risk of ambiguity we will simply write % in place of k. If h = h,
we write A(u) in place of A(h) (so Ay(u) = Py(u)).
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Let (-,-) be the usual inner product on ¢?(Vp) (this is not to be confused with the
unrelated inner product on F). If X C Vp we write 1x for the characteristic function

of X, and write J, for 1.
LEMMA 6.2.1. Let A € @ and o € Vp. Then Ad, = 0 implies that A = 0.

PROOF. Let € Vp. Observe that if A € o/ then Ad, is x-radial, for if A =", a Ay
is a finite linear combination, then Ad, = >, axNy 11V)\*($)7 which is x-radial. It follows
that Ad, is z-radial for all A € of. Now, given A € o and p € PT, (Ad,, 1‘/#*(35)} does
not depend on = € Vp, for if A =), ayA\ € &7, then (Ad,, lvﬂ*(x)) =a,. Thusif A € 4
and Ad, = 0, then (Ad,, ly,. (o)) = 0 for all p € P*, and so (Ad,, ly,. (@) = 0forall p € P*
and for all x € Vp. Since for any z, Ad, is z-radial, it follows that Ad, = 0 for all =, and
so Af = 0 for all finitely supported functions f € ¢2(Vp). Thus by density the same is true
for all f € ¢*(Vp), completing the proof. O

Since Ayd, = N/\_llvv(o) for each o € Vp, we have (Ax6,, Audo) = 5,\,MN)\_1. Thus we
can define an inner product on % (independent of o € Vp) by (A, B) = (Ad,, Bé,) (see
Lemma 6.2.1).

For any fixed o € Vp, the map A — (Ad,)(0) maps the identity Ay of <% to 1 and
satisfies |(A0,)(0)| < ||Ad,||2 < ||A|l = || Allco. Thus by the Riesz Representation Theorem

there exists a unique regular Borel probability measure = on M, so that
(Ad,)(0) = / A(h)dr(h) for all A € .
Mo

Hence, for all A, B € a7,

~

(A, B) = (A6,, BS,) = (B*A8,)(0) = / A(h)B(h)dr(h). (6.2.1)

Mo

We refer to m and M, as the Plancherel measure and spectrum of of5, respectively.
PROPOSITION 6.2.2. My = supp(m).

PRrooF. If hy € Ms\supp(7), then by Urysohn’s Lemma there is a ¢ € €(M3) so that

v = 0 on supp(m) and ¢(hg) = 1. Since A — A is an isomorphism, there is an A € 4% so
that A = ¢. Then by (6.2.1)

46,2 = (A, 4) = / A(h)Pdr(h) = 0,

supp()

and so A = 0 by Lemma 6.2.1, contradicting A= v # 0. OJ
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6.3. Calculating the Plancherel Measure and the (?>-spectrum

In this section we will calculate the Plancherel measure of . It turns out that there
are two cases to consider. We will then use these results to compute the ¢?-spectrum of .27 .
The Plancherel measure will also be used in the proof of Theorem 7.7.2, where we show
that h, = k!, for all u € Hom(P,C*), as well as in the proof of the local limit theorem in
Chapter 8.

LEMMA 6.3.1. 7, < 1 for some a € R if and only if R = BC,, and q, < qo-

Proor. If R is reduced we have 7, = ¢, for all « € R. Thus 7, < 1 for some
a € R implies that R = BC,, for some n > 1. Thus R may be described as follows (see
Appendix D). Let E = R™ with standard basis {e;}!' ;, and let R consist of the vectors
+e;, £2¢; and +e; £ e, for 1 <7 <nand 1 < j < k < n. Recall from Appendix E
that in an affine building of type BC,, we have ¢ = --- = ¢,_1. Thus by the definition
of the numbers 7, we have 7., = ¢,q, L Tie; = Qo and Tie,4e, = ¢ for 1 <4 < n and
1 <j <k <n. The result follows. O

Following [23, Chapter V] we call the situation where 7, > 1 for all & € R the standard
case, and we call the situation where 7, < 1 for some a € R the exceptional case.

6.3.1. The Standard Case. Let U = {u € Hom(P,C*) : |[u*| = 1 for all A € P}.
Writing u; = u* for each i = 1,...,n, we have U= T" where T = {2z € C : |2] = 1}.

In the next theorem we introduce (following [23]) a measure 7y which we will shortly
see is closely related to the Plancherel measure 7 (in the standard case). We will write
A(u) for hy(A) when A € o/ and u € U. As we shall see in Corollary 6.3.4, each such h,,

is continuous for the £?>-~operator norm, and so (6.3.1) will also be valid for A, B € .

THEOREM 6.3.2. (cf. [23, Theorem 5.1.5]) Let du denote the normalised Haar measure
Ye(u)|"2du. Then

on U, and let m be the measure on U given by dmo(u) = ol

(A, B) = /Ug(u)ﬁ(u)dﬂo(u) forall A,B € . (6.3.1)

PROOF. We may assume that A = A, and B = A,, where u,v € PT. Then the
integrand in (6.3.1) is A/A\( ). Now A A, = >\ cp+ auppnAx, and since a5 =
Ouw/Ny, it suffices to show that [ Ay (w)dmo(u) = dro for each A € PT. Notice that if
u € U, then w =u"!, and so

-7 Lr=1/2)—a¥
_ /2
le()]* = c(w)e(w™) = ]| YR
acR 1 - Ta/2 u-

Thus |c(wu)|* = |c(u)]? for all w € Wy. Furthermore, if f(u) = Z/\ ayu® is such that
>y laa] < oo, then [i; f(u)du = ag. It follows that [, f(wu)du = [, f(u)du for all w € Wy.
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Using these facts we see that
A

A, (u mo(u ~1/2 Y . 3.
[ Awamato = .7 [ ora (632)

Let R ={a € RT | 74 # 1}. Then it is clear that we can write

1— 71/20‘

1 /g U
c(u1) - H 2 ~1/2 - Z ayu’

1— o
acRY T 7-/2 u

where ap = 1 and the series is uniformly convergent. Since {\;}!, forms an acute basis
of E [5, VI, §1, No.10] we have (A, \;) > 0 for all A € P* and for all 1 < ¢ < n. Thus
each A € PT is a linear combination of {a;}"; with nonnegative coefficients. It follows
that if A € P*, v € Q" and A+~ = 0, then A = v = 0. Hence by (6.3.2) we have
fU A)\ )dmo(u) = 050, completing the proof. O

Fix 0 € Vp and let £2(Vp) denote the space of all f € ¢*(Vp) which are constant on
each set V) (o). For A € 4 define ||A]|, by

1Allo = sup{[|[Afll2 : f € £5(Vp) and || f]|2 < 1},
which defines a norm on 7 (see Lemma 6.2.1), and clearly [|A||, < ||A|| for all A € <.

REMARK 6.3.3. In fact ||A||, = ||A]|| for all A € % (in both the standard and excep-
tional cases). To see this, recall that an injective homomorphism between two C*-algebras
is an isometry [13, Theorem 1.5.5]. Let ® : o — Z(¢%(Vp)) be the linear map given by
A Alp,. Since [[Allo = ||Alew,) ||, it suffices to show that ® is an injection. This is
clear from Lemma 6.2.1, for ®(A) = 0 implies that Ad, = 0, and so A = 0.

COROLLARY 6.3.4. Each h,, u € U, is continuous for the {*-operator norm.

PROOF. We show that in fact |h,(A)] < ||A]l, for all A € & and u € U. Suppose
that this condition fails for some ug € U and A € /. Then there exists § > 0 so that
|hue (A)] > (14 9)||Al|,. Since h,(A) is a Laurent polynomial in wus, ..., u, there exists a
neighbourhood N of ug in U such that |h,(A)| > (1+9)||All, for all w € . Let N/’ denote
the set of u € U such that |h,(A)| > (14 0)||A|lo, so WoN' = N'. Let U/W, denote the
set of Wy orbits in U. It is compact Hausdorff with respect to the quotient topology, and

¢(U/Wy) = A{p € €(U) | p(wu) = p(u) for all w € W, and u € U}.
Now there exists ¢ € € (U/W,) such that ¢ # 0, but ¢ is 0 outside N”. By the Stone-
Weierstrass Theorem, for any given ¢ > 0, there exists B € & so that || B — ¢||« < €, and
choosing e suitably small we can ensure that

B(u)[*d B(u)|*d
[ 1B Pdr) > 5 [ 1Bl
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Thus by (6.3.1)
B8 = [ 125 Paro(u)
> (4 0PIAR [ 1B dm( > (1-+ O)AIZ1 51
and so ||Afll2 > V1 + 6| All,|lf]l2 for f = BJ,, contrary to the definition of || Al|,. O

COROLLARY 6.3.5. In the standard case, My = {h, | u € U}. Moreover, the map
@ : u — hy, induces a homeomorphism U/Wy — My (where U is given the Euclidean
topology, U/Wy is given the quotient topology, and My is given the w*-topology), and the
Plancherel measure w is the image of the measure my of Theorem 6.5.2 under w.

PROOF. The w*-topology on My, defined using the functionals h +— h(A), A € o, is
compact, and so agrees with the topology defined using only the functionals h — h(A)
with A € &7, since the latter is Hausdorff. Since each h,(A) (A € & fixed) is a Laurent
polynomial in wuq,...,u,, the map @ : u +— h., defined from U to M, in light of Corol-
lary 6.3.4, is continuous. Thus w(U) is closed in M,, and @ induces a homeomorphism
U/Wy — @w(U) since U/Wj is compact. The image 7 of 7y under w satisfies the defining
properties of the Plancherel measure. Since M, = supp(w) by Proposition 6.2.2,

m(M2\w(U)) = mo(w ™ (M2\w(U))) = 0,
and so My = w(U). Thus w is surjective, and it is injective by Proposition 6.1.1. U

6.3.2. The Exceptional Case. Let R = B(,, for some n > 1 and suppose that
Gn < qo- Recall the description of R from Appendix D. Let a; = ¢e; —e;4q for 1 <i<mn—1
and let o, = e,,. The set B = {«a;}, is a base of R, and the set of positive roots with

respect to B is

RY ={e;,2es,ej —erej+ep | 1<i<n, 1<j<k<n}.

By Appendix E, ¢ = - -+ = ¢,_1 in this case. Let a = /G,qo and b = \/q,,/qo (so b < 1).
Let u € Hom(P,C*). Since e¢; € P for each i = 1,...,n, we may define numbers

t; = t;(u) by t; = u®. We will now give a formula for ¢(u) in this case in terms of the
numbers {t;}7, (see Remark 6.1.2 for a related discussion).

If « =2¢;,1<i<n,then o € R1\R3, and so 7, = qo. Now /2 = ¢; € R\ R3, and
SO Ta/2 = qa/qu_l. Since |a/2| = || we have a2 = o, = @n, and thus 7,9 = s "
Now if & = ¢;, 1 <7 < n, then a € Ry\R3, and so by the above 7, = qnqo_l, and since
a/2 ¢ R we have 7,/o = 1. Since (2¢;)" = e; and e; = 2e;, the factors in c(u) (see (6.1.1))
corresponding to the roots a = 2¢; and o = e; are

1 — q;1/2q61/2t;1 1 — C];lth;z B (1 o a/—lt;l)(l 4 b—ltf1>

12 1/2,1 -2 - )
1—Qn/%/tz‘1 1= 1=
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Ifa=ejxey 1 <j<k<n, then o € R3, and so 7, = q,. Since |a| = |e; — €2 = ||
we have ¢, = ¢o, = ¢1(= @2 = -+ = ¢»_1), and so the product of the two factors of c(u)

corresponding to the roots a« =e; —ey and a =e; +¢, (1 <j <k <n)is

I—gq't;t) (- 't;'")
(1-— t;ltk) (1— t;lt,;l)

Combining all these factors we see that c(u) equals

n 1 — _1t'71 1 b—lt'fl 1 — 71tf1t 1 — fltfltfl
(e eIV QRN ] R
1—t b =G5

i=1
Notice that when R = BC,,, @ = P, and so we will be able to apply the results of [23]
(see the paragraph after the proof of Proposition 6.1.1). Thus when ¢; > 1 the Plancherel

measure here depends on how many of the numbers ¢fb, k € N, are less than 1 (see [23,

page 70]). Since we have an underlying building we have the following simplification.
LEMMA 6.3.6. If g1 > 1, then ¢1b > 1.

PROOF. By a well known theorem of D. Higman (see [35, page 30] for example), in
a finite thick generalised 4-gon with parameters (k,1), we have k < [? and | < k*. Thus
by [35, Theorem 3.5 and Proposition 3.2] we have ¢7 > ¢y (even if o = 1), and so

@b > /G > 1. O

Let T={z € C: |z| = 1}. Let dt = dt; - - - dt,,, where dt; is normalised Haar measure
on T. Define ¢g(u) = c(u)c(u™?) and

T ¢0(u) r_
o1(u) = tlh—r»Ilb = and dt’ = d_p(t1)dty - - - dt,,.

Note that the above limit exists since there is a factor 1+ b=, in c(u™!) (see (6.3.3)).
We use the isomorphism U — T", u — (ty,...,t,) to identify U with T™. Define
U = {-b} x T" !, and write U = UUU".

THEOREM 6.3.7. Let my be the measure on U = U UU" given by dmy(u) = va(go_‘l) d):l(tu)

on U and dmy(u) = Wf‘%—'l) ¢>(1ﬁ(t;) on U, where W{ is the Coxeter group C,,— (with Cy = A,

and Cy = {1}). Then (in the exceptional case)

(A, B) = /UA\(u)E(u)dWO(u) forall A,B € . (6.3.4)

PROOF. When ¢; > 1 this follows from the ‘group free’ calculations made in [23,
Theorem 5.2.10], taking into account Lemma 6.3.6. If g; = 1 the formula for ¢(u) simplifies
considerably, and a calculation similar to that in [23, Theorem 5.2.10] proves the result in
this case too. U
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As in the standard case we have the following corollary (see Corollary 6.3.5).

COROLLARY 6.3.8. In the exceptional case, My = {h, | u € U}. Moreover, the map
w : u — hy, induces a homeomorphism (U/Wo) U (U'/W}) — My and the Plancherel
measure w is the image of the measure my of Theorem 6.5.7 under w.



CHAPTER 7

The Integral Formula

As usual, let 2" be a locally finite regular affine building of irreducible type. In this
chapter we will provide a second formula for the algebra homomorphisms A : &/ — C in
terms of an integral over the boundary of 2 . In Theorem 7.7.2 we prove the non-trivial
fact that this integral formula coincides with the Macdonald formula of Chapter 6, and in
Theorem 7.7.3 we compute the norms ||A,||.

Having both the integral and Macdonald formulae for the algebra homomorphisms
h : o/ — C provides us with some very powerful machinery, which will be applied in
Chapter 8 to study radial random walks on affine buildings.

7.1. Convex Hull

Let H,x be a hyperplane of 3. The (closed) half-spaces of ¥ associated to H,,, are
Hi,={z€ E|(2,a)>k}and H , = {z € E | (z,a) < k}. The walls of an apartment A
are the pre-images of the hyperplanes of ¥ under an isomorphism v : A — X, and the
half-apartments of A are the pre-images of the half-spaces of ¥ under 1.

Given a subset X C Vp, define the convex hull of X, or conv(X), to be the set of good
vertices that lie in the intersection of all half-apartments that contain X.

We make the analogous definition of conv(X) for subsets X C P, with the word half-
apartment replaced by half-space.

Let < denote the partial order on P* given by u < X if and only if A — 4 € P*. Note
that this is quite different to the partial order < on P used earlier.

LEMMA 7.1.1. Let A € PT. Then conv{0,A\} = {u € Pt | u < A}

PROOF. Let u < X and write v = A — u € P*. Suppose that 0,\ € Hai:k Since
H_, = H,._ we may assume that & € RT, and since 0 € Hoi;k the only cases to consider
are H_,, with k >0, and H},, with k& < 0. In the case k > 0 we have (u, ) = (A —v,a) <
(\,a) < kand so p € Hy,. In the case k < 0 we have (u,a) > 0>k and sop € HJ,.
Thus {u € P | p < A} C conv{0, \}.

Now suppose that 1 € conv{0, A}. Since 0, € HJ , for each i € Iy, we have € H]
for each i € Iy too, and so u € P*. Also, 0,\ € I—I;ﬁo\m> for each ¢ € Iy, and so
(u, ;) < (A, o) for each i € Iy. That is, A — u € P, and so u < . O

72
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LEMMA 7.1.2. Let A\, pp € Pt. Then |Vy(z) NV (y)| = 1 whenever y € Vyy,(2).

Proor. By Corollary 5.3.4, Theorem 5.2.7 and Proposition 4.3.6 we have

B Ny
AX A tp = Cxpsdtp = N)\N ’
I

and the result follows from (4.4.3) O
REMARK 7.1.3. A ‘building theoretic’ proof of Lemma 7.1.2 is given in Appendix B.4.

COROLLARY 7.1.4. Let A € PT and u < X\, and let x,y € Vp be any vertices with

y € Va(x). There ezists a unique vertex, denoted v,(z,y), in the set V,(x) N V,«(y), where
v=\A—puePT.

THEOREM 7.1.5. Let A € P*, x € Vp, and y € V\(x). Then

conviz,y} = {v.(2,y) | 1 < A}

PROOF. Let H be a half-apartment of 2" containing {z, y}, and let A be any apartment
containing H. It is easy to see (using Axiom (B2) of [7, p.76]) that there exists a type-
rotating isomorphism v : A — ¥ such that ¢(z) = 0 and (y) = A. Let u < X and write
v=M\—pu € Pt The vertex v = ¢~ !(x) is in both V,,(z) and V,.(y) (as y € V, (v), for
(t_p,ov)(v) =0and (t_, 09)(y) = v € PT), and so by Corollary 7.1.4 v,(z,y) =v € A.
Now #(H) is a half-space of ¥ which contains 0 and A, and so by Lemma 7.1.1 € (H).
Thus v, (z,y) = ¢~ (u) € H, showing that

{ou(e.y) | 1 < A} C conv{z, y}.

Suppose now that v € conv{z,y}. Thus there exists an apartment A containing x,y
and v. Let ¢ : A — X be a type-rotating isomorphism such that ¥ (z) = 0 and (y) = A,
and write g = ¥(v). If u ¢ conv{0, A} then there is a (closed) half-space of ¥ which
contains 0 and A but not u, and it follows that there exists a half-apartment of A which
contains x and y but not v, a contradiction. Thus p € conv{0, A}, and so by Lemma 7.1.1
p < A It follows that v € V,(z) N V,+(y), where v = A — pp € P, and so v = v,(x,y),
completing the proof. O

Note that the above shows that conv{z,y} is a finite set for all z,y € Vp. Indeed

n

lconv{z,y}| = [ (A as) + 1)

i=1

if y € Vi(x), which also shows that |conv{z,y}| = |conv{u,v}| whenever y € V,(z) and
v € Vy(u), and that |conv{z,y}| does not depend on the parameters of the building.
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7.2. Preliminary Results

We now give some background that involves only the root system R, which throughout
is assumed to be irreducible. Recall that we write < for the partial order on P given by
pw=Xif and only if \ —pu € Q*.

We say that a subset X C P is saturated [5, VI, §1, Exercise 23] if p —iaY € X for
all p € X, a € R, and all i between 0 and (u, ) inclusive. Every saturated set is stable
under Wy, and for each A € P* there is a unique saturated set, denoted II,, with highest
coweight A (that is, p < X for all p € II,). Note that

Oy ={wp | pePHu=\we Wy} (7.2.1)

(see [18, Lemma 13.4B] for example).

We recall the definition of the Bruhat order on W [19, §5.9]. Let v,w € W, and write
v — wif v = s4w for some a € R, k € Z, and {(v) < ¢(w). Declare v < w if and only
if there exists a sequence v = wg — w; — - -+ — w, = w. This gives the Bruhat (partial)
order on W. We extend the Bruhat order to W as in (27, §2.3] by declaring v < w if and
only if ? = vg and W = wg with v <w in W and g € G.

By a sub-expression of a fixed reduced expression s;, ---s;. € W we mean a product of
where 1 < ky < --- <k, <r. Let w = s;, ---s;, be a fixed reduced
expression for w € W. By [19, Theorem 5.10], v < w if and only v can be obtained as a

the form Sig, * " Six,

sub-expression of this reduced expression.
PROPOSITION 7.2.1. Let v,w € W with v < w. If w(0) € II, then ©(0) € II, too.

PROOF. Suppose first that © = s, with ¢(0) < ¢(w). Then by [27, (2.3.3)] Hax
separates Cy and wCy, and thus (0(0), a) — k is between 0 and (w(0), ) (inclusive). Thus
by the definition of saturated sets

0(0) = w(0) — ((@(0), &) = k)a* € 1L,

and the result clearly follows by induction. 0

7.3. Sectors

Let 2" be an irreducible regular affine building. A sector of 2" is a subcomplex S C Z~
such that there exists an apartment A such that S C A and a type preserving isomorphism
¥ A — ¥ such that ¢(8S) is a sector of X. The base verter of S is 1p~1(\), where \ € P
is the base vertex of ¥(S).

If S and &' are sectors of 2" with &' C S, then we say S’ is a subsector of S. The
boundary €2 of 2 is the set of equivalence classes of sectors, where we declare two sectors
equivalent if and only if they contain a common subsector. Given x € Vp and w € €2, there
exists a unique sector, denoted S*(w), in the class w with base vertex x [35, Lemma 9.7].
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LEMMA 7.3.1. Let § be a sector in an apartment A of Z . There exists a unique
type-rotating isomorphism Y as : A — X such that 14 s(S) = Sp.

PROOF. Let x be the base vertex of S, and let ¢/ : A — X be a type preserving iso-
morphism. Writing A = ¢/(x) we see that t_, o4’ : A — X is a type-rotating isomorphism
mapping S to a sector of 3 based at 0. Thus (t_, 0 ¢’)(S) = wS, for some w € Wy, and so
wlot_yot' : A— Y is a type-rotating isomorphism satisfying the requirements of the
lemma.

Let 1 and 9’ be two such isomorphisms. It follows from Lemma 4.1.3 that ¢’ o)™t = w
for some w € Wy (it is important that 1) and ¢ are type-rotating here). We have w(Cy) =
Cy, and so w = 1 since W acts simply transitively on the chambers of ¥ [7, p.142], and
thus ¢’ = 1. O

7.4. Retractions and the Coweights h(zx,y;w)

Given an apartment 4 and a sector S of A, let pas: & — A be the retraction onto
A centered at S [7, pages 170-171]. This is defined as follows. Given any chamber ¢ of 2",
there exists a subsector &’ of § and an apartment A’ such that ¢ and S’ are contained in
A’ [7, page 170]. Writing ¢4 : A" — A for the isomorphism from building axiom (iii), we
set pas(c) = Ya(c), which is easily seen to be independent of the particular S’ and A’
chosen.

Recall that if f = 4;---i, € I* (the free monoid on I), we write s; for the element
Si, -+ 8;, € W. For A € Pt let wy and fy be as in Section 3.7.

THEOREM 7.4.1. Let x € Vp, w € Q and write S = S*(w). Let A be any apartment
containing S. Then (Yas 0 pas)(y) € Iy for all y € Vy(z).

Proor. It follows easily from Proposition 4.1.2 that there exists a gallery ¢y, ..., ¢, of
type o;(fy) from x to y, where i = 7(x). Write ® = 1450 pas. Then ®(cp),..., D(c,) is
a pre-gallery of type fy from 0 to u = ®(y). Removing any stutters, we have a gallery of
type f1, say, from 0 to pu, and sf; 1s a sub-expression of sy,. Thus sy < sy, and so sy g <
spg1, where [ = 7(X). Since (s7,¢,)(0) = A € 11, it follows from Proposition 7.2.1 that
1= (s5,91)(0) € I\ too. Since ®(cy) = wCy for some w € Wy, we have ®(c,) = ws; Co,

and so by considering types of vertices we have
= wsyg (@(0)) = wp.
Thus p € II, by (7.2.1). O
For each x € Vp, w € Q and A € P, the intersection V) (z) N S*(w) contains a unique
vertex, denoted v{(w) € Vp.

The coweights h(z, y; w) in the next theorem are the analogs of the well studied horocycle
numbers of homogeneous trees.
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THEOREM 7.4.2. Let w € Q and let x,y € Vp.
(i) Let z € §%(w) N SY(w) and write z = vj(w) = v)(w). The coweight v — 1 is
independent of the particular z € §*(w) NSY(w) chosen. We denote this common
value by h(xz,y;w). If w € PT and p— v € PT then

Uﬁ<w> = szh(x,y;w) (w)

(ii) Suppose that y € V\(x). Write S = §%(w) and let A be any apartment contain-
ing 8. Then h(z,y;w) = (Yas 0 pas)(y) € 1.

PROOF. (i) We have vy, ,

Thus, writing ;4 = ¢’ + v we have

(w) = UZJFM, (w) for all i/ € P*, since both are equal to v (w).

vpw)=v)_, (w)  whenever y—ve P". (7.4.1)

If we instead choose 2’ € S%(w) N &¥(w), where 2’ = v}, (w) = v;,(w), then following the

above we have

V(W) = v (W) whenever  — v/ € PT. (7.4.2)

By choosing 1 € P* such that both 4 — v and g — v/ are dominant, it follows from (7.4.1)
and (7.4.2) that v —n = v/ — /. Then (7.4.1) proves the final claim.

(ii) Write p = (Yas0pas)(y). By [7, page 170] there exists a subsector S’ of S = §%(w)
such that &’ and y lie in a common apartment A’. The restriction of pss to A’ is thus
a type preserving isomorphism. Pick v € P* such that v*(w) € §', v — p € PT and
vEi(w) € 8Y(w). The map ¢ =t_,0¢asopas: A — X is a type-rotating isomorphism
such that ¥(y) = 0 and (vl (w)) = v —p € PT. Thus v} (w) € V,_,(y) N SY(w), and so
h(z,y;w) = p. The fact that h(x,y;w) € 11\ now follows from Theorem 7.4.1. O

ProOPOSITION 7.4.3. For all x,y,z € Vp and w € Q we have the ‘cocycle relation’
h(z,y;w) = h(z, z;w) + h(z,y;w). Thus h(z,z;w) =0 and h(y, z;w) = —h(x,y;w).

PROOF. For = kyA\ + -+ k,\, € P with each k; sufficiently large we have

vﬁ(w) = U;—h(x,z;w) (w) = szh(x,z;w)fh(z,y;w) (w)

and the result follows. O

The following theorem shows that if y € V) (x), then for any w € Q, S¥(w) contains all
vertices vﬁ(w) for 4 € P* large enough, where large enough depends only on A, not on the
particular x,y and w.

For A € P, write p > A to mean that y — Iy C P (in particular, u € P*).

THEOREM 7.4.4. Let v € Vp, A € P* and y € Vi(z). Then vi(w) € SY(w) for all

w € Q and all p> A, and so vj(w) = v, ., . (W) for allw € Q and all p>> A.
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REMARK 7.4.5. The proof of Theorem 7.4.4 will be given at the end of this section.
We are thankful to an anonymous referee of a paper drawn from this thesis for sketching
this proof of the present form of Theorem 7.4.4, which replaces our less sharp version of
this result.

LEMMA 7.4.6. Suppose that A; and As are apartments containing a common sector S.
Then the maps pa,.sla, : As — Ay and pa,sla, : A1 — Az are mutually inverse isomor-
phisms which fix A1 N A pointwise.

PROOF. Fix any chamber ¢ C S, and let ¢ : A; — A; be the unique isomorphism fixing
A; N Ay pointwise. Then by definition we have p4, sl4, = ¢, and since p=! : Ay — A; is
the unique isomorphism fixing A; N Ay pointwise we have pa, s|l4, = ¢ " O

LEMMA 7.4.7. Let A be an apartment in 2, let S be a sector in A, and let H be a
wall in A. Then ezxactly one of the two closed half-apartments in A determined by H, H
say, contains a subsector of S. If x € Vp N HY, then the sector based at x and equivalent

to S is contained in HT.

PROOF. Let ¢ = ¢4 (see Lemma 7.3.1). Then ¢)(H) = H,y, for some a € R and
k € Z. Since H_, = Ha.—1, we may suppose that « € RT. If £ < 0, then Sy C H;’;k =
{z:(z,0) > k}. f k> 1, then A+ Sy C H, for A= k(A + -+ \n).

The final statement follows from [35, Lemma 9.1]. O

PROPOSITION 7.4.8. Let cq, ..., ¢, be a gallery of type j1 -+ jm, and let w € Q. Let A be
an apartment containing co and a sector S in the class w. Let p = ps a, and let e, = p(cy,)
for k =0,....,m. Fork =1,...,m, let H, denote the wall in A containing the panel
in ex—1 and in ey of type jr. Let H denote the half-apartment in A bounded by Hj, which
contains a subsector of S (see Lemma 7.4.7).

Then there exists an apartment B containing c,, and
m
()
k=1
(and therefore B contains a sector in the class w).

Proor. By induction on m. If m = 1, the panel of cotype j; common to ey = ¢y and e;
is contained in ¢; and in Hy. So by the proof of [35, Lemma 9.4], there is an apartment B
containing H; and c;.

Now suppose that m > 1 and that there is an apartment B’ containing ¢, ; and
NP HE . Let 8 be any sector in the class w contained in N ' H,", and let o = pgr . If
7 is a common subsector of S and &', then p = pr 4 and p' = pr . So by Lemma 7.4.6,
the maps p|p : B’ — A and p/|4 : A — B’ are mutually inverse isomorphisms.
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Let H denote the wall in B’ containing the panel of cotype j,, in ¢,,_1 and in ¢,,, and
let H* denote the half-apartment in B’ bounded by H and containing a subsector of S.
The half-apartment p/(H,}) in B’ is bounded by H. To see this, let 7 denote the panel in
Cm—1 and ¢, of cotype j,,, and let 7’ denote the panel in e,, 1 = p(c,,—1) and e, = p(c,,)
of cotype j,. Then 7" = p(¢;n_1 Nep), and so p/(7') = ¢1 N ¢y = . Now 7' is in the
wall of A bounding H,", and so m = p/(7’) is in the wall of B bounding p'(H;"). But 7 is
in the wall H of B bounding H*. Furthermore, p'(H,}) contains a subsector of S, because
H N B’ contains such a subsector, and is fixed by p’. Thus

p(HD) =H*. (7.4.3)

By the proof of [35, Lemma 9.4], there is an apartment B containing ¢, and H*. Since
Hfn---NH | is contained in B, it is fixed by p/, and so

Hy 00 Hy = p'(H 0N Hy ) NV H) Cpl(H).
Thus by (7.4.3), Hf n---N H} C H" C B, completing the induction step. O

LEMMA 7.4.9. Suppose that Cy = Dy, ..., D,, is a gallery in X joining 0 to X of minimal
length, and that Cy = Fy, ..., E,, is a pre-gallery in X. If both the gallery and the pre-
gallery have the same type, then each type | = T(\) vertex of any of the D;’s and E;’s is
m H)\.

Proor. For k = 0,...,m, define ug,vy € W by D, = upCy and Ey = vCy. Then
the type [ vertices of Dy and FEj are uxg;(0) and vg;(0) respectively (see the proof of
Theorem 7.4.1). In particular, u,,g,(0) = X € II,.

Since the gallery Cy = Dy,...,D,, and the pre-gallery Cy = FEy,..., E,, have the
same type, ji ... Jm, say, each u; and each vy is a subexpression of the reduced expression
Up, = Sjy -+ S4,- Thus uggr, vgr < Upgr (With respect to the Bruhat order on W) for each
k=0,...,m.

The result now follows from Proposition 7.2.1. U

COROLLARY 7.4.10. Suppose that x,y € Vp, w € Q, A € P*, and y € Vy\(z). Consider
a minimal gallery co, ..., ¢y from x to y and an apartment A containing co and a sector in
the class w (and hence containing S*(w)). Let ¢ : A — X be the type-rotating isomorphism
mapping S¥(w) to Sy (see Lemma 7.3.1). Finally, let H; and H;" be as in Proposition 7.4.8,

and write p = pase(w). Then:
(i) ¥~ Y(I1y) contains all the type j = T(y) vertices in each p(c;), and so in particular

it contains y' = p(y).

(it) If p>> A, then vi(w) € M2, H;".

PROOF. (i) Let ¢; = p(¢;) and E; = ¢(e;) for i = 0,...,m. Let p' = p. 4 denote
the retraction of center ¢y onto A (see [7, §IV.3]). Let d; = p/(¢;) and D; = (d;) for
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1 = 0,...,m. Then the gallery Cy = Dy,...,D,, and the pre-gallery Cy = Ey,..., E,,
satisfy the hypotheses of Lemma 7.4.9, and the result follows.

(ii) For i = 0,...,m, let v; be the type j vertex of e;, and so {v;}7, C ¥~ }(II,).

Let 1 <i<m. If v;_y = v;, then ¥(v;) € I, NY(H;), and so ¥ (v;) + Sy is contained
in ¢(H;)" by Lemma 7.4.7 (here ¢)(H;)" is the half-space of ¥ bounded by v(H;) and
containing a subsector of Sy = (S%(w))). Hence SV (w) is contained in H;". By our
hypothesis, u — Iy C P*, and so p = v (v;) + v; for some v; € P*. Hence ¢(vi(w)) = pu €
Y(vi) +So C (H;)". Hence vii(w) € H;".

If v;—1 # v;, then ¥ (v;_1) and 1 (v;) lie on opposite sides of ¢)(H;). Then by Lemma 7.4.7,
either ¥ (v;_1) + Sp or ¥(v;) + Sy is contained in 1p(H;)". Let us assume that ¢ (v;) + Sy C
W(H;)*. Since p — Iy € PT, we can write u = ¥(v;) + v; for some v; € P*. Hence

Y(i(w)) = p € P(vy) + S C Y(H;)T, and so again vl (w) € H;'. O
PrROOF OF THEOREM 7.4.4. Let cg, ..., c, be a gallery of minimal length from x to y,

and let A, B and H;,...,H be as in Proposition 7.4.8. By Lemma 7.4.6, the map
¢ = pastw)|s : B — Ais an isomorphism. It maps y to ¥ = pase(w)(y) and fixes
ANB >N, H;", which contains a sector in the class w. Hence ¢ maps S§¥(w) to 8 (w).
Moreover, if p > A, then by Corollary 7.4.10(ii), ¢ fixes vj;(w).

Let ¥ : A — X be the type-rotating isomorphism mapping S*(w) to Sy. Then by
Corollary 7.4.10(i) we have y’ € ¢ ~I(II,), and so we can write u = ¢(y') + v for some
v € PT. Therefore vjj(w) € SY(w), and applying ¢, we see that vi(w) € §¥(w). So

T(w)=11Y_ (w) by the definition of h(z,y;w). d

U p—h(z,y;w)

7.5. The Boundary of 2" and the Measures v,

Let < denote the partial order on P* given by p < X if and only if A — pu € P*. Fixing
x € Vp, there is a natural map 6 : Q — [, p+ Va(x), where one maps w to (v§(w))rep+. For
each pair A\, € Pt with u < A, let ¢, 5 : Vi(z) — V,,(x) be the map y — v, (x,y), where
v,(x,y) is the unique vertex in V,(x) N conv{xz,y} (see Section 7.1). Then (Vi(x), ¢, ) is
an inverse system of topological spaces (where each finite set V) (z) is given the discrete
topology). The inverse limit lim(Vi (), ¢,,2) is a compact Hausdorff topological space [6,
1.9.6], and the map 6 is a bijection of € onto this inverse limit, thus inducing a compact
Hausdorff topology on €2, which we show in Theorem 7.5.5 is independent of x € Vp. See
Appendix B.2 for a sketch of the proof that ¢ is a bijection of £ onto Lim(Vy(z), pp,)-

With = € Vp fixed as above, for each y € Vp let Q,(y) = {w € Q| y € S*(w)}. The
sets Q.(y), v € Vp, form a basis of open and closed sets for the topology on €2, and the
functions w — h(x,y;w) are locally constant on (2, as we see in Lemma 7.5.1.

To each x € Vp there is a unique regular Borel probability measure v, on {2 such
that v,(Q.(y)) = Ny' if y € Vy(x). To see this, for each A € Pt let 65(Q) be the
space of all functions f : €@ — C which are constant on each set Q,(y), y € Vi(z). For
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each A € P define J\ : YA(2) — C by Jiy(f) = > yevi (@) C(f), where ¢, (f) is the

N

constant value f takes on €,(y). The space of all loéally constant functions f : Q@ — C
is € () = Usep+ GA(Q). Define J : €o(Q2) — C by J(f) = L(f) if f € (). The
map J is linear, maps 1 € €5 (€2) to 1 € C and satisfies |J(f)| < || f]|« for all f € €5 (Q).
Since € () is dense in €(Q), J extends uniquely to a linear map J : €(Q) — C such
that |J(f)| < ||f]le for all f € €(Q) (here €(Q) is the space of all continuous functions
f :Q — C). Thus by the Riesz Representation Theorem there exists a unique regular
Borel probability measure v, such that

J(f) = /Qf(w)dl/x(w) for all f € €(Q).

In particular, Ny ' = v,(Q.(y)) if y € V().
In Theorem 7.5.5(ii) we show that for z,y € Vp, the measures v, and v, are mutually

absolutely continuous, and we compute the Radon-Nikodym derivative.

LEMMA 7.5.1. Let y € V,(x) and suppose that z € V\(z) NV, (y) with X\ > v. Then
(1) Qu(2) C Qy(2), and
(i7) h(z,y;w) = A — u for all w € Q,(z).

PRrOOF. (i) Let w € ©,(2), and so z = v}(w), and by Theorem 7.4.4 z € §Y(w). Thus
w € Q,(2) and so Q,(z) C Q,(2). Note that if 1 > v* too, then Q,(z) = Q,(2).

Since Q,(z) C Q,(2) and z € Vi(2)NV,(y) we have v} (w) = 2 = v}|(w) for all w € Q,(2),
and so (ii) follows from Theorem 7.4.2(i). O

LEMMA 7.5.2. Let x,y € Vp. In the notation of Section 7.1, if z € conv{x,y}, then
Q:(y) C Qa(2).
PROOF. Let w € ,(y). Then the sector S*(w) contains = and y, and hence z. Thus

w € Q(2). O

Let Pt denote the set of all strongly dominant coweights of R, that is, those A € P
such that (A, a;) > 0 for all i € I.
We note that since g, = ¢uq, whenever ((uv) = £(u) + £(v), by [27, (2.4.1)] we have

Qiry, = G2t and so g, = H‘L&:ai) (7.5.1)
i=1

for all A\, u,v € PT.

PROPOSITION 7.5.3. Let pn € P be fized. For all A € Pt such that A — u € PT™ we

have
n

N, g a
T IR IR

i=1 aceRt
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PROOF. By (4.3.3) we have NAN/{_lu = qtkqgli , and so by (7.5.1)

n

N, at o) —(A—p,a) i)
Noes == H%i qus )

Q- 30

proving the first equality. On the other hand, by Proposition B.1.5,

N]I\]u H T —A—ma) H 7'()([“"”. O

th n o aeR+ aER+

LEMMA 7.5.4. Let \,ji € P*. Then TIy + I, C Iy,
Proor. Let X' €Il and ' € II,,. Then
wN +p) =wN +wp 2 X+p for all w e Wy

By choosing w € W, such that w(\ + p') € Pt we have w(N + /) € I,;, by (7.2.1), and
so N+ €Il O

THEOREM 7.5.5. Consider the topologies and measures defined above on §2. Then

(i) The topology on ) does not depend on the particular x € Vp.
ii) Forx,y € Vp, the measures v, and v, are mutually absolutely continuous, and the
y
Radon-Nikodym derivative is given by

n

dyy (h(z,y3w),0) (h(z,y;w),c)
d—ux(w) = qu = H Ta
i=1 aERT
PrOOF. (i) Let z,y € Vp, with y € V,(z), say, and choose A\ > v + v*. Notice that
this implies that A > v. Furthermore, for each v/ € II,, using Lemma 7.5.4 we have

A=v/) =T CA=TI, — s C A =1L, .-,

and so A — v/ > v,

Let wy € €2,(v), a basic open set for the topology using x, where v € V, (), say. Since
A > v, by Theorem 7.4.4 we have v§(wo) € 8Y(wp). Let z = v{(wo) = V5_j(, yu) (o), and
50 z € VA\(x) N Va_h(aywo) (). Now h(z,y;w,) € II,, (see Theorem 7.4.2(ii)), and so by the
above, A — h(z,y;wp) > v*. Since A > v too, by Lemma 7.5.1 we have Q,(2) = Q,(2).
Choosing A perhaps larger still so that A—n € Pt we have Q,(z) C Q,(v) by Lemma 7.5.2.
Thus, since 2 = v5_, ..., (o), we have wy € Qy(2) = Qu(2) C Q(v), which shows that
the x-open sets are y-open, and the first statement follows.

(ii) With z,y, z and wy as above, since ,(z) = Q,(z), and since v,(Q,(z)) = Ny ' and
vy(y(2)) = Ny 1h($yw )» we see that

1%

y(Qx(z)) = Vy(Qy( )) N)\ 1h(1;yw0) N)\_—lh($7y7wO)N)\V$(Q$(z))7
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and so the measures are mutually absolutely continuous, and the Radon-Nikodym deriva-
tive is given by
dVy A&
W) = —"
dVJ: N)\fh(a:,y;w)

for any A € Pt such that A > v + v*.
The result follows from Proposition 7.5.3 by choosing A perhaps larger still so that both A
and A\ — h(z,y;w) are strongly dominant. O
Let r € Hom(P,C*) be the map
poe e = I =" (7.5.2)
i=1

a€ERT
Following our usual convention we write * in place of r(u).

Proposition 7.5.3 immediately gives the following.

COROLLARY 7.5.6. Let € P be fized. Then for any A\ € Pt such that A\ — p € PT,

1/2
rt = ( N ) .
Ni_y

7.6. The Integral Formula

For A € PT, let us write i >> A to mean that p— 1Ty, C P™" (in particular, notice that
if 4 >> A, then > X and p € P™1). The reason for this is that we will want to ensure
that the formula in Corollary 7.5.6 is applicable in the following results.

Recall the definition of the numbers ay ., from (4.4.3).

LEMMA 7.6.1. Let A\ € P™. For each x € Vp, w € Q, u € Il and v >> ),

1 _
F‘{y € () | h(z, ysw) = p}] = ran, .
A
In particular, the value of the left hand side is independent of x € Vp and w € €.
ProoOF. We will first show that whenever v > A,
{y e Va(@) [ (2, y;0) = py = Va(@) 0 Vippy- (07 (w))- (7.6.1)
If y € Va(z) N Viy_py(vi(w)), then by Theorem 7.4.4, vi(w) € S¥(w) N V,_.(y), and so
vl (w) = v,_,(w). Thus h(z,y;w) = p.
Conversely, if y € Vi(z) and h(z,y;w) = p, then v)(w) = v,)_,(w) once v > X by
Theorem 7.4.4. Thus y € Vi(x) N V- (v (w)).
Now suppose that v >> A. By (4.4.3), (7.6.1) and Corollary 7.5.6 we have
N,_,
N,

We now describe the algebra homomorphisms h : &/ — C in terms of zonal spherical

1 -
W E@) [h(w,ysw) = pi| = Uiy = T Ay O

functions.
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DEFINITION 7.6.2. Fix a vertex x € Vp. A function f : Vp — C is called spherical with
respect to x € Vp if
(i) flz) =1,
(ii) f is z-radial (that is, f(y) = f(y') whenever y,y" € V)\(z)), and
(iii) for each A € & there is a number ¢4 such that Af = caf.

The following is proved in [11, Proposition 3.4] in the A, case, and the proof there
generalises immediately.

PROPOSITION 7.6.3. An x-radial function f : Vp — C is spherical if and only if the
map h : o/ — C given by h(A) = (Af)(z) defines an algebra homomorphism. Moreover,
each h € Hom(</, C) arises in this way.

Let x € Vp be fixed and let u € Hom(P,C*) and y € Vp. Define

Fiy) = / (ur) 5y, (),

where (ur)* = u*r* for all A € P. The integral exists by Theorem 7.4.2(ii) and the fact
that N, and |IT,| are finite for each A € P™.

In the following theorem we provide a second formula h!, u € Hom(P,C*), for the
algebra homomorphisms &/ — C. In Theorem 7.7.2 we will show that !, = h,,.

THEOREM 7.6.4. Let x,y € Vp with y € Vi(x). Then for all u € Hom(P,C*)
(i) Fi(z) =1,

(i) F*(y) = F¥(y') whenever o',y € Vp satisfy y' € Vx(2'), and
(i) ANE? = px(u)EF?, where for any v >> A
o) = 3 rHay,
HEITy
which is independent of x € Vp.
Thus the map hl, : o/ — C given by hl,(A) = (AF?)(x) defines an algebra homomorphism
(by Proposition 7.6.3).

PROOF. Since v, is a probability measure, (i) follows from Proposition 7.4.3.
We now prove (ii), which we note is stronger than the claim that F? is z-radial. Let
A € P*. Since Q) is the union of the disjoint sets 2,(z) over z € V,(x), we have

Fo)= Y [ @)

zeVy, (x) @ (Z)

=> > / (ur) ") duy (w).

H€P+ ZeVu ﬂ‘/u
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Now take v > A, and so by Lemma 7.5.1 h(z,y;w) = v — p for all w € Q,(z) and
z € V,(x) NV,(y). Since v,(2,(2)) = N, 1 we have

)= Y 2 Vula) AV (w)l(ur) .

pep+ =Y

and the result follows from (4.4.3).
We now prove (iii). Let v >> A. By the cocycle relations (Proposition 7.4.3), Theo-
rem 7.4.2(ii) and Lemma 7.6.1 we have

1 W
WEDW) =5 3 [ (),
A zeviy) e
1
— /Q <E Z (ur)h(y,Z;w)) (ur)h(x’y?“’)dyx(w)
zEVA(y)
= ( Z r“a,\J,W,u“) /(ur)h(x’y;w)dl/x(w). O
HEIN @
COROLLARY 7.6.5. Let y € Vi\(x). Then for any w € §2,
1 W
M) = F) = 3 3 @) = y(w)
z€Vy ()

PRrROOF. By Theorem 7.6.4(ii) and the definition of A, we have (A\FF)(z) = F*(y),
and by Theorem 7.6.4(i) we have ¢)(u)FF(xz) = @x(u). The result now follows from
Theorem 7.6.4(iii) and the proof thereof. O

7.7. Equality of h, and A, and the Norms ||A,||

In this section we show that h, = h! for all v € Hom(P,C*), where R is as in
Theorem 7.6.4 (see also Corollary 7.6.5). To conveniently state our results we will write
U = U in the standard case. Thus U = U in the standard case and U = U U U’ in the

exceptional case.

LEMMA 7.7.1. Let A\, u,v € PT. Then
(i) Ji; Pa(u)Py(u)dmo(u) = S, Ny, and
(i) arpw = N [y, Pa(u) Pu(u) P, (w)dmo(u).
PROOF. (i) Since each h,, u € U, is continuous with respect to the ¢?-operator norm

(see Corollary 6.3.5 and Corollary 6.3.8) we have Py(u) = Ay(u) for all A\ € P and all
u € U. Thus by (6.3.1) in the standard case, and (6.3.4) in the exceptional case,

|| P B dma(w) = (A A0 = N7
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(ii) Using the previous part we have

[ P p Pt = 3 (s [ BRG0G0 ) = N

nepP+

completing the proof. O

THEOREM 7.7.2. hl, = h,, for all w € Hom(P,C*).

PRrROOF. From (5.2.13) we have
ha(Ay) = =)yt (7.7.1)
ReETl,

for some numbers ay ,. On the other hand, by Corollary 7.6.5 we have

hl(Ay) = Z rHay e ut for any v >> . (7.7.2)
HEIN
We will show that for all x4 € IIy, ay, = r~*ax,_,, provided that v >> X. Comparing
formulae (7.7.1) and (7.7.2) this evidently proves that h, = h, for all u € Hom (P, C*).
Let us first consider the standard case, so U = U. Let p € II, and v >> A\. By Corol-
lary 7.5.6 we have r# = /N, _,/N,, and so by (4.3.3) we have r#N,, = Wo(q_l)qgfqu/i
Thus by Lemma 7.7.1(ii),

T_Ma)\7u—u;u — T_MNV / P)\(U)PV—M(U)PV(U)dWO(U)
- (7.7.3)

o 1/2 57N u

= Wola "), /PA(U)PV(U)WCZU-
Since |c(wu)|? = |e(u™!)|? for all u € U we see that c(wu')/c(u™t) € L*(U) for all
w € Wy, and so by (7.7.3) we have

P O = Y / ( ‘“Cézbu:;)) du. (7.7.4)

weWy

We claim that the integral in (7.7.4) is 0 for all w # 1. To see this, notice that by
Lemma 7.6.1, v #ay,—u., o € IIy, is independent of v >> A, and so we may choose

= N(A\;1 + -+ + \,) for suitably large N € N. Suppose w # 1. Since w(A; + -+ \,) #
AL+ -+ A, we see that

‘<)\1+...+)\n—w()\1+-"+)\n)704io>‘21

for at least one iy € Iy, and so |(v —wv, ;)| > N. Thus by the Riemann-Lebesgue Lemma
lmy oo [ u? ™" f(u)du = 0 for all f € L'(U). Thus using (7.7.1) we have

rran = / Py\(uw)u™"du = ay,.
U
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Let us now prove the result in the exceptional case, where U = U U U’. Following the

above we have

rtayy—pw = ax, + 17 N, | Py(u)P,_,(uw)P,(u)dmy(u) (7.7.5)
w
whenever v 3> A. We will show that the integral in (7.7.5) is zero.

The group Wy acts on {e;}!; as the group of all signed permutations. Since t; = u®,
for each w € Wy we have w(ty,...,t,) = (t;‘:((ll)), Ce t::((z))) where 0, is a permutation of
{1,...,n} and ¢, : {1,...,n} — {1,—1}. By directly examining the formula for c(u) we
see that if €,(0,(1)) = —1 then c(wu)|;=—p = 0. Write W™ = {w € Wy | €,(0,(1)) = 1}.
Note that for all A\ € Pt X\* = A. Thus Py(u) = Py(u) for all u € U. Following the

calculation in the standard case, and using the above observations, we see that

r sy — arp = 1N, PA( )Py (u) By (u)dmo(u)
wrtw'v U ufw,uc(wu)c(w/u) /
] ZW ferr e (mianee g v

Since wy = —1 it is clear that if w € W then wow ¢ W;". Take any w,w’ € W. As before,
let v = N(A1+---+\,) for sufficiently large N. Since w’ # wow we have that wv+w'v # 0.
The same argument as in the standard case now shows that |(wv + w'v,e;)| > N for at
least one iy € Iy. Furthermore, since w,w’ € Wy~ we have (wv + w'v,e;) > 0. The
result now follows by taking N — oo, noting that b < 1, and using the Riemann-Lebesgue
Lemma. O]

By Theorem 7.7.2, for A € Pt we have

hu(Ay) = Py(u) = /Q () ) iy () (7.7.6)

for any pair x,y € Vp with y € Vy(z).
As an application of (7.7.6) we compute the norms ||A,||, A € PT.

THEOREM 7.7.3. Let A € PT. Then ||A,\|| = P\(1).
PROOF. Since A — A is an isometry, by Corollaries 6.3.5 and 6.3.8 we have
1AM = [ 4]l = sup{|P(AN)] : b € Mo} = sup{|hu(A))] : u € U},

where, as usual, U = U in the standard case and U = U U U’ in the exceptional case.
In the standard case this implies that ||A,|| = P\(1), for by (7.7.6) we have P\(1) > 0
and |Py(u)] < Py(1) for all w € U and A € P*. In the exceptional case we only have
| Ax|| > Pa(1), and so it remains to show that ||A,|| < P(1) in this case.
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To see this, fix 0 € Vp and A € P*. By Theorem 7.6.4(iii), Corollary 7.6.5 and (7.7.6)
we have (AyFY)(x) = Py(1)F7(x) for all z € Vp. Similarly, since A* = X here,

(ANET)(2) = (Ax-F7) () = (ANFY) (2) = PA(1) FY()

for all z € Vp. Since FY > 0 by (7.7.6), the Schur test (see [32, p.103] for example) implies
that ||Ax]] < Py(1) (see also [11, Lemma 4.1]). O

REMARK 7.7.4. See Lemma 8.2.7 for a description of Py(1).

REMARK 7.7.5. Observe that our proof of the integral formula for the algebra homo-
morphisms h : &/ — C did not depend on the isomorphism & = C[P]"° (note that we
give an alternate proof Lemma 7.1.2 in Appendix B.4). Thus Theorem 7.7.2 provides an
alternative proof of the Macdonald formula for the algebra homomorphisms h : o/ — C.
Such a proof is rather unsatisfactory though, for it requires the Macdonald formula to be
‘guessed’, and then verified (by Theorem 7.7.2).



CHAPTER 8

A Local Limit Theorem for Random Walks on Affine Buildings

8.1. Introduction

A random walk consists of a finite or countable state space X, and a transition matriz
(p(%,Y))a,yex, where p(z,y) > 0 for all z,y € X, and > p(z,y) =1 for all z € X. The
functions p(x,y) are called the transition probabilities of the random walk.

The natural interpretation of a random walk is that of a random walker taking discrete
steps in X. Then for z,y € X, p(x,y) represents the probability that the walker, having
started at site x, moves to site y in one step.

For k > 0, the k-step transition probability p*)(z,vy) is the probability that the walker,
having started at site x, is at site y after k steps. A local limit theorem is any theorem
giving an asymptotic formula for p®*)(z,y) as k — oo (for fixed z,y € X).

A random walk is called irreducible if for each pair z,y € X there exists k = k(z,y) € N
such that p® (z,y) > 0. The period of an irreducible random walk is

p=ged{k >1|p¥(z,2) > 0}.

This is easily seen to be independent of € X, by irreducibility (see [45]). An irreducible
random walk is called aperiodic if p = 1.

When | X | = oo it is often more desirable to regard a transition matrix A = (p(x,¥))syex
as an operator (also called A), acting on appropriate spaces of functions f : X — C, by

(Af) (@) => pla,y)fly) forallzeX. (8.1.1)

We call the operator in (8.1.1) the transition operator for the random walk. Note that
p® (z,y) = (AFS,)(2) for all z,y € X and k € N. (8.1.2)

Let 2" be a thick (locally finite, regular) affine building (of irreducible type), and as
usual write Vp for the set of all good vertices of 2. A random walk on Vp is called radial
if it has a transition operator of the form

A= Z a A, where ay > 0 for all A € P, and Z ay = 1. (8.1.3)

AeP+ XeP+
To avoid triviality we always assume ay > 0 for at least one A # 0. In this chapter we will
prove a local limit theorem for such random walks, generalising the work of [36] (where
homogeneous trees are studied) and [12] (where A, buildings are studied).

88
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When 2 is a homogeneous tree, it is easily seen that a random walk on Vp is radial
if and only if p(x,y) depends only on the graph distance d(x,y) between = and y; hence
the word radial. In the general context, a random walk on Vp is radial if and only if
p(x,y) = p(z’,y") whenever y € V,(z) and y' € V,(2') for some A € P.

The basic approach is as follows. Since ||A|| < 1 (see the beginning of Section 6.2), we
may regard A in (8.1.3) as in %, and so h,(A), u € U, is defined. Writing A\(u) = hy(A)
(as in Section 6.2) we have A\,\(u) = P\(u), and so

Aw) = Y axPi(u). (8.1.4)
repP+
By Corollaries 6.3.5 and 6.3.8, if y € Vi(z) then (Ad,)(z) = [, A\(u)mdwo(u), and so
by (8.1.2),

PO () = /U (Aw))* Prlw)dmo(u). (8.1.5)

We will prove the local limit theorem by determining the asymptotic behaviour of the
integral in (8.1.5) (as k — 00).

8.2. Preliminary Results

LEMMA 8.2.1. Let A\ € P*, A #0, x € Vp, and y € Vy(x). Then

(1) there exists z € Vy(x) N Vav(y), and
(i) with z as in (i), there exists w € Q such that h(y, z;w) = &".

ProoF. Note first that if ¢ and d are distinct i-adjacent chambers, i € Ip, with type @
vertices u and v respectively, then v € Vv (u) (and u € Vv (v)). To see this, let A be any
apartment containing ¢ and d, and let ¥ : A — ¥ be a type-rotating isomorphism such
that ¢ (u) = 0 and ¥ (c) = Cy. Since ¥(d) is 0-adjacent to ¥ (c) we have (d) = s5.1(Ch),
and so ¥(v) = s5,1(0) = &". Thus v € Vav(u).

Part (i) now follows exactly as in [12, Lemma 5.1], using thickness.

Part (ii) is a consequence of the following more general fact. Let u,v € Vp with
v € Vy(x). Then there exists w € Q such that h(u,v;w) = A. To see this, let A be any
apartment containing u and v, and let ¢ : A — X be a type-rotating isomorphism such
that ¥ (u) = 0 and 1(v) = A. Let w be the class of ¥~1(Sp). Since ¥ 1(Sp) = S*(w) and
PN+ So) = S¥(w), we have ¢~ (u) = vji(w) = v),_(w) for sufficiently large p € P,
and so h(u,v;w) = A. O

Recall that we write U = {u € Hom(P,C*) : |u*| = 1 for all A € P}. Let
Ug = {u € Hom(P,C*) | u” =1 for all v € Q}.

Then Ug is isomorphic to the dual of the finite abelian group P/Q, and so Ug = P/Q.
Thus Ug, is finite, and Ug C U.
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PROPOSITION 8.2.2. Let u € Hom(P,C*), and suppose that u*®" =1 for all w € Wj.
Then u € Ug.

PROOF. Observe that if o, € R have the same length, then by [5, VI, §1, No.4,
Proposition 11] there exists w € Wy such that 8 = wa. Thus in the cases where there
is only one root length (A, Dy, E,), Wya¥ = RY, and the result follows. Consider the
remaining cases (see Appendix D).

Let R be a root system of type B,. Then &" = e; + e, and so Wya" contains the
vectors e; xe; for 1 <7 < j <n. Thus if " =1 for all w € Wy, it follows that u¢te =1
and u%~% =1forall 1 <i< j <mn,andsou?* =1forall 1 <k<n. Thus u® =1 for
all @ € R, and the result follows.

The cases C,,, F, and G5 are similar. Finally, if R is of type BC,, then @" = e;, and so
if uw®" =1 for all w € Wy then u% = 1 for all 1 < i < n, completing the proof. 0

As usual, if u,v € Hom(P, C*), define uv € Hom(P, C*) by (uv)* = u*v* for all A € P.

LEMMA 8.2.3. Let u € U and A € P*. Then |P\(u)| < Py(1), and equality holds for
A # 0 if and only if w € Ug. Moreover, if ug € Ug then Py(upu) = uyPx(u) for all
u € Hom(P,C>).

PrROOF. (cf. [12, Lemma 5.3]) Let z,y € Vp be any vertices with y € Vy(x). The
inequality is clear from the integral formula (7.7.6). Suppose equality holds for some
A # 0. Write f(w) for the integrand in (7.7.6). Then f is a continuous function on  and
f(w) #0forall w € Q. So | [, f(w)dvy(w)] = [, |f(w)|dv,(w) implies that f(w)/|f(w)]
is constant, since 1,(O) > 0 for all non-empty open sets O C Q. Thus u"®¥%) takes the
constant value Py(u)/Px(1) for all w € €. Let z be as in Lemma 8.2.1(i). Since the value of
the integral in (7.7.6) is unchanged if y is replaced by z it follows that u®¥%) = @) for

all w € Q. Choosing w € Q as in Lemma 8.2.1(ii) and using the cocycle relations we have
u® = uM¥*%) = 1. Furthermore, since the value of the integral in (7.7.6) is unchanged
if u is replaced by wu for any w € Wy, then u*® = 1 for all w € Wy. It follows from
Proposition 8.2.2 that u € Ug.

Conversely, if vy € Ug and y € V)(z), then uf @Y — ) for all w € , because
h(z,y;w) € I\ (Theorem 7.4.2(ii)), so that A —h(z,y;w) € Q. Thus it follows from (7.7.6)

that Py(ugu) = uyPy(u) for all u € Hom(P,C*). In particular, |Py(uo)| = Pr(1). O
For each w € Q, z,y € Vp and 1 < j < n, define hj(z,y;w) = (h(z,y;w), a;). For
A€ P*owrite A =37 (\, a;).
In the following series of estimates, we will write C' for a positive constant, whose value

may vary from line to line.

LEMMA 82.4. Let v € Vp and A € P*. Then |h(z,y;w)| < C|A|| and |hj(z, y;w)| <
C|A]| for allw € Q, ally € Vi(z), and all j =1,...,n
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PROOF. Recall that h(z,y;w) € II, for all w € Q and y € Vy(x), and by [27, (2.6.2)]
II C conv(WpA) (the usual convex hull in E here). Since |wA| = || for all w € Wy, this
implies that |h(x,y;w)| < |A| for all w € Q and for all y € Vy(x). Thus |h(z,y;w)| < C||A]]
(with C' = max{|\;|},).

We have |(h(z,y;w), ;)| < |h(z,y;w)||a;|, proving the final claim. O

NOTATION. Let 6y, ...,60, € R and write § = 0,0y +- - -+ 0,0, (so 0 € E). Write e? for
the element of Hom(P, C*) with ()} = ™9 for all A € P*. With this notation (7.7.6)

gives
Py(e") = /ﬂ'r’h(x’y;“’)e“h(x’y;‘")’wdym(w) for all y € Vy\(z), (8.2.1)
and since Py(w'e?) = Py(e?) for all w € Wy, it follows that
Py(e") = /Qrh(m’y;“’)ei<h(m’y;“’)’“’9>dum(w) for all w € Wy, y € Vi(z). (8.2.2)

COROLLARY 8.2.5. PA(ew) = P\(1)(1 4+ E\(09)), where |Ex(0)| < CJ|A]||6]-
Proor. We have

[Pa(e”) = PA(1)] < / v |l evield) — 1 dy, (w),
Q

and the result follows from Lemma 8.2.4 since |e** — 1| < |z| for all z € R, O

Let A € Pt and y € V)(x). For each 1 < j, k < n define

1

b =3 / hy (@, y; @) (, y; 0)r" O dy, (w). (8.2.3)
Q

2
This is independent of the particular pair z,y € Vp with y € V)(x), for by (8.2.1)

62 P (€i6>
80,00,

= —/ hy(, y; w)he (0, y; w)r" @V dy, (w).
6=0 Q

(Indeed any expression [, p(hi(z,y;w), ..., hy(z, y; w))r*@v@)dy, (w), where p is a polyno-
mial, is independent of the particular pair z,y € Vp with y € V) (z)).

LEMMA 8.2.6. Let A\ € P*, andb,,...,0, € R, and as usual write 0 = 61a1+- - -+0,a,,.
Then

Py(e) = P\(1) = > b2,0,0; + Rx(0) (8.2.4)
g.k=1

where [Ry(0)] < C|APIOFPPa(1).  Furthermore, 3 7, 0200k > 0, and when X\ # 0,
equality holds if and only if 6 = 0.



8.2. PRELIMINARY RESULTS 92

PROOF. For ¢ € R we have '¥ = 1+ip — 1% + R(¢) where |R(p)| < &|¢[*. Applying
this to ¢ = (h(x,y;w),d) and using (8.2.1) we have

Py(e") = P\(1) +i /Q<h(x, yiw), ) rt @I dy, (W)

1

2 /<h(3¢,yw),9>27’h(x’y”")d%(w) + Ra(0),
Q

where |Ry(0)] < F[(h(z,y;w), 0)*Py(1) < g|h(x,y;w)[*|0]*Pr(1). The bound for |R(6)]
follows from Lemma 8.2.4.
We claim that for all 7 =1,...,n and for all y € Vp,

/ hy(x,y; w)r" @V dy, (W) = 0.
Q

To see this, let j € {1,...,n} and set § = ;«; (that is, 6, = 0 for all k¥ # j). By
differentiating (8.2.2) with respect to 6;, and then evaluating at 6; = 0, firstly with w =1

and secondly with w = s;, we see that

/ hi(a, y; w)r"EVdy, (w) = — / hy(a, y; w)r" v du, (w),
Q Q

proving the claim.
It is now clear that (8.2.4) holds, and that > 7, b}0;0 > 0. If equality holds, then

/(h(az, y:w), 0)2 @) dy (W) = 0.
Q

Thus (h(x,y;w),d) = 0 for almost all w € €, and thus for all w € Q. Thus, since
(h(z,y;w),t0) = 0 for all t € R and w € Q, we have Py(¢!™) = Py(1) for all t € R by
(8.2.1), and so ¢! € Ug for all t € R by Lemma 8.2.3. Hence e!"* =1 for all v € Q
and all ¢ € R, and so (v, 0) = 0 for all v € @, implying that § = 0, since @) spans E. O

LEMMA 8.2.7. There exists a polynomial p(x1,...,x,) of degree at most M such that
P)\(1> = Q;\l/2p(<A7 O41)7 R <)\7 Qn)) (825>

for all X\ € P*, where M > 0 is some integer depending only on the underlying root system.
Furthermore, q;, > ¢ where ¢ = min{q;}?_, > 1, and so

P\(1) < C(JA| + 1)Mg 2N, (8.2.6)

PROOF. Assuming that u=®" # 1 for all @ € R, by (5.2.11) we have

(8.2.7)
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Write 0 = Ay + - - - + Ap,. It follows from [5, VI, §3, No.3, Proposition 2] that
H (1 _ u—wav) _ (_1)Z(w)ua—wa H (1 _ u—ocv)
a€RY a€RY

for all w € Wy, and so by (6.1.1) and (8.2.7) we have

o F(N)
Pi(u) = ¢, / HaeR;(l — )

(8.2.8)

where F'()\) equals
1 w), WA+wo—o —1,_-1/2  —waV =-1/2_ —waV
TR D IR (ST | (R R ]

W
o(q welo weRt

We know that Py(u) is a Laurent polynomial in wuq,...,u,, and so (8.2.5) follows from
(8.2.8) by repeated applications of L’Hopital’s rule.

To prove (8.2.6), recall from (7.5.1) that ¢, =[], qé;\,’a'). Now ¢, > g since {(t,) >0
for all 1 # 0. Thus ¢, > ¢/l completing the proof. Z U

Let A be as in (8.1.3) and E(u) = hy,(A) be as in (8.1.4).
It follows from Lemma 8.2.4 that [b},| < C|[A|*Py(1). Hence the inequality (8.2.6)
implies that >, p+ a,\b?’ . 1s absolutely convergent for each 1 < 5,k < n. We define

1
bjr = —=— axb} g (8.2.9)
A(1) g.; ’
COROLLARY 8.2.8. Let A be as in (8.1.3), and let 01, ...,0, € R. Then
Ewﬂza&n(1—§:@#m%+Rw0,
j k=1

where Y77, b k00, > 0 unless 0 = 0, and where |R(0)| < C|0]°.

Proor. This follows from Lemma 8.2.6, using (8.2.6) to bound R(6). O

LEMMA 8.2.9. Let 0,...,0, € R. Then

SR o9 (Lt Ea(8))

()P i PP )

aER;r ( 2a 'a @

where |E,(0)] < C(aV,0)? for each o € Ry .

PROOF. Observe that for x € R and p > 1

:——Ei—%1+Eﬂ@L (8.2.10)

1 — efz'm
(I—p71)?

1— pflefim
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where |E;(z)| < Cz?, and for p > 0

2

14e™ 4
— =1+ E 8.2.11
| e Bl 5211
where |Ey(x)| < Cz? (indeed, we may take C' = 1/4).
The result follows by using (8.2.10), (8.2.11) and the formula (8.2.7) for c(e®). O

8.3. The Local Limit Theorem
Let A be as in (8.1.3), and write Uy = {u € U : |A(u)| = A(1)}.

LEMMA 8.3.1. Uy ={u e Ug | u* = u” for all p,v € PT with a,,a, > 0}. Ifug € Uy
then A(ugu) = vt A(u) for all u € Hom(P,C*), and all p € P* such that a, > 0.

PRroOOF. For u € U we have

Z a)\P)\(u)

AepP+

|A(u)| = <Y alP@] < Y anP(1) = A1), (8.3.1)

AepP+t AepPt

If u =wuy € Uy, then since equality must hold in the second inequality in (8.3.1) we have
| Px(ug)| = Px(1) whenever a) > 0. Since we assume that a) > 0 for at least one nonzero
A € Pt we have uy € Ug by Lemma 8.2.3. Thus by Lemma 8.2.3 we have Py (ug) = u) Py(1)
for all A € P, and so since equality must hold in the first inequality in (8.3.1) we have

ufy = uf whenever a,,a, > 0, proving that
Us C{u€Uqg | u"* =u" for all p,v € PT with a,,a, > 0}.

Conversely, if vy € Ug and ufy = uf for all u,v € PT with a,, a, > 0, then by Lemma 8.2.3
we see that A(uou) = uyA(u) for all w € U and any g € P* such that a, > 0, and so
taking v = 1 we have |;1\(u0)| = A\(l), so ug € Uy. O

For k e Nand A € P let

Tox = /U (Aw)* Pra)dmow).

If y € Vi (x), then by (8.1.5)

Ii z in the standard case, and
P (x,y) = , _ (8.3.2)
Ipx+ ;. in the exceptional case,

where

I, = / (Alw)* Prlwidro(u). (8.3.3)

Thus to give an asymptotic formula for p*) (x, i) we need to give estimates for I, y and I k-
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Given € > 0 and uo € U, let N.(ug) = {u € U : [ut — u)’
|U4| < oo we may choose € > 0 sufficiently small so that

< eforallie Iy}. Since

N(ug) N Ne(ug) =0 whenever ug, ug € Uy are distinct. (8.3.4)

Write Ne = Ne(1) and N(Ua) = U,,cu, Ne(uo)-
Define p; = py(€) = max{|A(u)|/A(1) : u € U\N.(U,)} and let

I, = /N (A(w))* Prlw)dmo(w).

LEMMA 8.3.2. Fiz i € Pt such that a, > 0, and let € > 0 satisfy (8.3.4). If u* = u)
for all ug € Uy, then

Tpa = [UalIf 5 + O (pf A()F).
Otherwise, Iy = 0.

PROOF. It is clear from the formula for c(u) (see (5.2.10)) that c(uou) = c(u) for all
ug € Ug and v € U. Thus by Lemmas 8.2.3 and 8.3.1, if ug € Uy we have

Iy = ulg“)‘/ (A\(ualu))k Pa(ug 'u)dmo(ug 'u) = ulg“*AIkM\. (8.3.5)
U
This shows that Ij y = 0 if there exists uy € Uu such that uﬁ“_)‘ # 1.
Suppose now that ulg“ A =1 for all up € Uy. Tt is clear that
Tor — / (A(w))" Pr(u)dmo(u) + O(oFA(1)), (8.3.6)
NS(UA)

and since N (ug) = uoNe, the calculation in (8.3.5) shows that for each ug € Uy,

/N oy (A Pilu)dmo(u) = g™ / (Aw) " Palu)dmo(u) = If 5,

€

since ug"~* = 1. The result follows from (8.3.6) by the choice of e. O

It is clear from Corollary 8.2.8 that if each |0;], j = 1,...,n, is sufficiently small, then
A(e®) = A1)~ Thim bus¥i+60)  where  G() = 0( Z b@-,ﬂiﬁj). (8.3.7)
ij=1

Writing § = 2sin™!(¢/2) we have N, = {e¥ : |0;| < § for j =1,...,n}, and so we may

choose € > 0 sufficiently small so that

1 n
GO)] < 5 > bi0:0; (8.3.8)

i,j=1

whenever € € N, and |0;| <7 for j=1,...,n.
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Define constants K, Ky and K3 by K; = Wy(q~ ) |[Wo|™1(27)™

Y

1
o Ly

a€RY 2a 'a

K = / e im bt [T (¥, )y - - dipy, (8.3.9)
Rn

aERS
where ¢ = @1a1 + - - + ©pa,.
LEMMA 8.3.3. Let € > 0 be such that (8.3.4) and (8.3.8) hold. Then
It = KP\(1)AQ)F k11072 (14 0 (k7112))
where K = K1 Ky K.

PROOF. Let § = 2sin"!(e/2) as above. By the results of Section 6.2 we have

- P
[;A_Kl/ / (A(e))" Ae )d61~-~d9n,

629)|2
and so by making the change of variable ¢; = \/Eﬁj for each 7 =1,...,n we see that
Py(e7/VF)
I, = Kk (VNP2 Ly, - di,, 8.3.10
koA 1 / / ) |C(6W’/\/E)|2 ¥1 Pns ( )

where ¢ = praq + -+ + V0.
By Corollary 8.2.5 we have
By Cx
P = )L+ Eulp) where ()] < S

and it follows from Lemma 8.2.9 that

1 +
— =Kk R4+ E V. p)?
(VB (1+ Ex(0)) H+<a )
a€ER;
where |Ey(p)| < k7 'p(p1, ..., ¢,) for some polynomial p(xy, . .. n) Using these estimates

(along with (8.3.7)) in (8.3.10), we see that I} , equals KlKQP,\( YA(1)F k1B 1=n/2 times

/ 6™ L= i thGlo/VE) ( IT (o, 90>2) (14 Er(9))(1 + Ea()) dipy - - - dpn.
[— VS,V k]

aER;
By (8.3.8), the above integrand is bounded by
e—ézztj_lbi,msaj( 11 <av’¢>2) (1 N CIMHM) (1 pLCIE --,son))’
a€RY \/E K

and the lemma follows by the Dominated Convergence Theorem. U
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LEMMA 8.3.4. Let A € P* and k € N. In the exceptional case, there exists 0 < py < 1
such that

/, (A(u)" Pr(w)dmo(u) = O(psA(1)Y).

We prove Lemma 8.3.4 in Appendix B.3. We now give the local limit theorem.

THEOREM 8.3.5. Let y € V)\(z) and k € N, and suppose that a, > 0. If upt = ) for
all ug € Uy, then

p(k)(l,’ y) = |[UA|[(P)\(1)A\(1)]C k;_‘R;\—”/Q(l + (9(/{:_1/2)),
where K is as in Lemma 8.3.5. If u’gﬂ £ ua\ for some uy € Uy, then p* (z,y) = 0.

PROOF. In the standard case the result follows from (8.3.2) and Lemmas 8.3.2 and 8.3.3.
In the exceptional case, Q = P, and so Ug = {1}, and so U4 = {1}. The result now follows
from (8.3.2) and Lemmas 8.3.2, 8.3.3, and 8.3.4. O

COROLLARY 8.3.6. Let A be as in (8.1.3), and suppose that a, > 0. Then
(i) A is irreducible if and only if for each X € PT there exists k = k(\) € N such that

upt = u} for all ug € Uy, and

(ii) A is irreducible and aperiodic if and only if |U| = 1.

PRroOF. First let us note that in the exeptional case it is easy to see that any walk
with a, > 0 for some p # 0 is both aperiodic and irreducible, and since Q = P we have
U4 = {1}. Consider the standard case. Suppose that a, > 0.

Let y € Vi(z). If A is irreducible, then there exists ¥ € N such that p®(z,y) > 0,
and so uf* = u) for all uy € Uy, by (8.3.2) and Lemma 8.3.2. Conversely, if for each
A € P there exists ko € N such that uf® = u) for all ug € Uy, then writing r = [Uy| we
have u{®"™* = ud for all uy € Uy and all [ > 0. As k — oo through the values ko -+ 71,
Theorem 8.3.5 implies irreducibility.

If |U4s| = 1 then A is clearly irreducible, and Theorem 8.3.5 shows that A is aperiodic.

Conversely, if A is irreducible and aperiodic, then
1=ged{k>1]p®(z,2) >0} = ged{k > 1| ug" =1 for all ug € Uy},

and so Uy = {1}. O]

8.4. An Explicit Evaluation of K3

In this section we compute the integral K3 from (8.3.9) in the B,,C,, D, and BC,
cases (we have been unable to perform the calculations in the A, case). The first step is to
remove the b;;’s from the quadratic form szzl b rpjer. The key to this is the following
proposition.
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PROPOSITION 8.4.1. Let b;:k be as in (8.2.3). For each \ € P there exists a number
b > 0 such that b?’k = (aj, )b for all 1 < j k <n.

PRrOOF. Fix x € Vp and y € V)(z), and abbreviate h(z, y;w) to h and h;(z,y;w) to h;,
where y € V)\(z) is fixed. We first prove that

1
Y= —=by, forall1<jk<n. (8.4.1)

‘2 J:J ‘ ‘2

|
To see this, observe that if || = |ay| then there exists w € W, such that wa; = ay. Thus
Py(e*) = Py(e*r), and so differentiating twice with respect to ¢, and then setting
¢ =0, gives — [, h3r"dv, = — [, hjr"dv,, that is, b}; = bp,. Thus (8.4.1) holds when
laj| = |oul. Suppose now that |a;| # |agl|, and write ¢;, = (o, ). Since s,, () =
a; — cjro we have Py(e%%) = Py(e(@~cre)) and so following the above we have
fQ h2 hdy, = fQ — ¢, whi)?rid,. 1f ¢k 7 0 then this implies that ¢; kb ek = 2bj e oince
b)‘k = b,”, and since c;; # 0 implies that ¢ ; # 0, we also have ck]b“ = Qb)‘ Thus
(if cjx # 0) cjabpyr = cr by, that is, (8.4.1) holds. Finally, if ¢;; = 0, 1rredu(:1bility
implies that there exists j' and &’ in {1,...,n} such that |a;| = |ay/|, || = |ous|, and
cjr i = (ayr, oy # 0. The result therefore follows in this case too by the above observations.

|ij‘] for j = 1,...,n. Clearly ¥ > 0 and

Let b be the constant value taken by
b;"j = (aj,a;)b* forall j =1,...,n.

We now show that b)‘ = (aj, ag)b* for j # k too. Suppose first that c;; # 0. Then
the calculation made above shows that b] p = & ’“bk x = (aj, a)b*. Finally, suppose that
cjr = 0. In this case s, (a;) = a; and s, (qr) = —ai, and so Py(el@ioiteren)) =
Py (e'¥ics—¢rar)) - By differentiating this once with respect to ©;, then once with respect
to ¢k, and then setting ¢; = ¢ = 0 we see that — fQ hjhkThdl/x = fQ hjhkThdl/x, that is,
b} =0 = (aj, )b O

Recall the definition of b, from (8.2.9).

COROLLARY 8.4.2. Let b = ﬁ Y ep+ axb*. Then b > 0, and b;j, = (a;, g )b for each
1<g,k<n.

By making the change of variables 6; = v/bp; for each j = 1,...,n in (8.3.9) we have
K3 = b~1B21=n/2 [ where

L= / e~ 25.k=1(05:0)0 0% H (¥, 0)2db; - - - db,, (8.4.2)
8 a€RY
where 6 = 61aq + - - - + 0,,. The integral L depends only on the underlying root system,
and not on the building parameters.
We now discuss a method of diagonalising the quadratic form in the integrand of (8.4.2).

Let {v;}"_; be any orthonormal basis for the underlying vector space E (see Appendix D).
Let A = (<04j704k>)j,k:17 and let M = ((\i,v;))7;=; (so M is invertible). Then
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(i) MTAM = I (the n x n identity matrix), and

(11) 0 = Z?:l €T;U;.
Let t be the column vector (6;)™,, and let x = M~'t. Thus by (i) above, tT At = x'x.
By making the change of variable t = Mx we have

— | det(M)] / e~irad) TT (o, a)day - da, (8.4.3)
Rn

a€RY

where x = v + - - + T,U,.

Of course we would like to choose the orthonormal basis {v;}; such that the product
in the integrand of (8.4.3) has a neat formula. Let us restrict ourselves to the infinite
families of types B,, C,, D, and BC,. In these cases, let v; = ¢; for i = 1,...,n. Then
det(M) =1, ;, ;, 1 in the B,, C,, D,, and BC,, cases respectively.

Writing

(22 fta?
[n:/ g2 .. ple@ittan) H (7 — a3)?dxy - - - day,
Rn

1<i<j<n

Jn :/ 6—($%+..~+$%) H ([L‘Q — 2 ) de‘l d

1<i<j<n

we have L = 2?"[, if R is of type B, or BC,, L = {1, if R is of type C,, and L = 3.J, if R
is of type D,,. Note that the integrals make sense for n > 1. We now show how to evaluate
I, and J,. The trick is to convert the integral calculation into a determinant calculation,
using Gram’s Identity (see Proposition 8.4.5).

The following is an elementary calculation.

LEMMA 8.4.3. Let o € R, and suppose that C = (c; ;)7 ,=, is a matriz such that ¢; j4, =
(i+j+a)c; foralll<i<nandl<j<n-—1. Thendet(C)=T[_(@—1)lc;1.

COROLLARY 8.4.4. For1<1i,j <nlet

. (20 +2j —2)! wnd b — (20 +25 —4)!
W 2i42j-2(5 4§ — 1)] W22 4 — 2)1
and let A = (a; ;)7 =, and B = (b;;)};—;. Then
det(A) = —27 "D TT(2i)! and det(B) =27V ] (20)!

=1

PROOF. The numbers a; ; (respectively b; ;) satisfy the conditions of Lemma 8.4.3 with

o = —1 (respectively & = —2), and the result follows. O

The following is well known (in the context of random matriz theory). We provide a
proof for completeness.
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PROPOSITION 8.4.5 (Gram’s Identity). For each i = 1,...,n let a;(x) and b;(x) be
real valued functions such that c;; = ffooo a;(z)bj(x)dx is finite for each i and j. Let
A(z) = (Cbi(xj))?,j:l and B(z) = (bi(xj))zjzl. Then

/ det (A(z)) det(B(z)) day - - - d, = n! det(C),
where C' = (c;5)7 -

PROOF. Observe that

det(A(z)) det(B(x)) = Y sgn(o)sgn(r H i (24i)b (+7)

0,7€6, hj=1

— Z sgn H (l'm)b (xaT J)
o,7€6, i,j=1

= > seu(r) || ail@oi)bei(0s)
0,76, 4,j=1

= Z Sgn H xoz)bﬂ'<x0i)
0,7€6, i=1

(on the second line we replace 7 by 7! in the summation, on the third line we replace j
by 7j in the product). Thus

/n det(A(z)) det(B(x)) dx = n! Z sgn(r H/ z)dr =nldet(C). O

TEG),

THEOREM 8.4.6. For alln > 1 we have

n n—1
L, =720 T @) and  J, = 72270 Dl T](20)!
i=1 =1

PROOF. We consider I, first. Let a;(z) = 22" and b;(z) = 22, and write A(x) =
(ai(z;))f;=1 and B(z) = (bi(7;))i';=1- By the Vandermonde determinant formula we see
that

det(A(z)) det(B(z)) = 27 - - .xief(:v?r---ﬂ%) H (22 — x?)Q
1<i<j<n
Now, in the notation of Corollary 8.4.4,

| @@ = v,

[e o]

and so by Proposition 8.4.5 we have I, = n!z"/?det(A) (where A = (a;;)7;_,), and the
result follows (using Corollary 8.4.4).
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A ) A
To evaluate J,, let a;(x) = % 2e7*" and b;(z) = *~2. Then

det(A(z)) det(B(z)) = e~ =it 4w T (a? —22)?,
1<i<j<n

and the result follows as above, using Corollary 8.4.4 and Proposition 8.4.5. U

REMARK 8.4.7. In the A, case it is not difficult to see (by taking M to be the nx (n-+1)
matrix ((\;, e;)) and modifying the discussion after Corollary 8.4.2 accordingly) that the
integral L from (8.4.2) may be written as

" 1<i<j<n+1
(up to some constant factors), where x, .1 = —(x; + --- + x,,). We have been unable to

compute this integral. In principle, the integrals for the Eg, Er, Fs, Fy and G5 cases could
be computed from (8.4.3).



APPENDIX A

The Reducible Case

In this appendix we will extend the results of Chapter 4 to reducible (locally finite
regular) affine buildings.

A.1. Reducible Coxeter Groups

A Coxeter group is said to be irreducible if its Coxeter graph is connected, and reducible
otherwise [5, IV, §2, No.9]. A reducible Coxeter group W decomposes naturally as a direct
product W' x .-+ x W7 where {D*}7_, are the connected components of D, and for each
k=1,...,7, W¥ is the Coxeter group with Coxeter graph D*. We call the groups W¥*,
k=1,...,r, the irreducible components of W. For each k = 1,...,r, let I* be the vertex
set of D¥, so I = |J;_, I*, where the union is disjoint.

In the reducible case, the group Aut(D) is often too large for our purposes. Thus we
define Aute,(D) to be the group of all component preserving automorphisms of D. That
is, Aute, (D) consists of all those o € Aut(D) such that o(D*) = D* for each k=1,...,r.
Clearly we have Aut.,(D) = Aut(D') x --- x Aut(D").

A.2. Direct Products of Chamber Systems

Given chamber systems C!, ..., C" over pairwise disjoint sets I',...,I", the direct prod-
uct C* x -+ x C" is a chamber system over I = | J;_, I* with chambers given by r-tuples
(ct,...,c"), ¥ e CF and (..., c") is i-adjacent to (d,...,d") for i € I* if & = d/ for
j # k and c* ~; d* in C*.

A.3. Reducible Buildings

We call a building 2" irreducible (respectively reducible) if the corresponding Coxeter
group W is irreducible (respectively reducible).

Let 2" be a building as in Definition 1.6.1 of reducible type W = W1 x ... x W", and
write I* for the vertex set of D* for each k = 1,...,r. Fix any chamber a € 2", and for
each k =1,...,r, let 2% denote the I*-residue of a. The following theorem describes the
structure of reducible buildings from the point of view of chamber systems.

102
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THEOREM A.3.1. [35, Theorems 3.5 and 3.10]. With the notation above,

(i) 277 is a building of type W7 for each j =1,...,d, and
(i) 222V x - x 2" (direct product of chamber systems).

The buildings 271, ..., 2" are called the irreducible components of 2 . The isomor-
phism in Theorem A.3.1(ii) is constructed as follows. Given ¢ € C, write §(a,c) = w'---w"
where w* € W* for each k = 1,...,r. By commutativity (of elements of W with elements
of W7 for i # j) and Definition 1.6.1(ii) it follows that for each k = 1,...,r there exists a
chamber c* such that c* lies in a minimal gallery from a to ¢ and d(a,c*) = w*. By [35,
Chapter 3, Exercise 4] the chamber c* is unique, and we set ¢(c) = (¢!,...,¢"). The map
W X — X x - x 27 is then an isomorphism of chamber systems.

It should be noted that the particular choice of the fixed chamber a € C above is
immaterial. To see this, fix b € C. By Theorem A.3.1 we have 2 = &1 x ... x #" where
Wk = Ry (b) for each k = 1,...,7. Suppose first that b ~; a (and b # a) for i € I, say.
Then 277 = Ryi(a) = Ry (b) = #7. If k # j and ¢ € 2%, it can be shown that there exists
a unique chamber ¢(c) € #* such that §(c, o(c)) = s; and d(b, p(c)) = §(a,c). The map
0 : % — &% is a chamber system isomorphism for each k& # j. It follows by induction
on £(5(a,b)) that Z*F 2@k forallbeCand k=1,...,r.

We will discuss the structure of reducible buildings from the ‘simplicial’ point of view
shortly. Let us first discuss the algebra Z of Chapter 2 in the reducible case.

A.4. The Algebra #

Recall that for algebras A; and Ay over a ring R, the direct product Ay x Ay of A
and A, is the algebra over R with operations a(z,y) + b(z’,y’) = (ax + ba’, ay + by’) and
(z,y) (2, ) = (z2’,yy’) for all z, 2" € Ay, y,y' € Ay and a,b € R.

Let 2 be a locally finite regular reducible building of type W. In the notation of
Section A.3, each 2%, k = 1,...,r, is an irreducible regular building. Foreachk =1,...,r,
let %* be the algebra from Definition 2.1.2 associated to the building 27*.

LEMMA A4.1. Let bﬁk gk (u®, % wk € WF) be the structure constants of the alge-

bra ", and buvw (W, v,w € W) be the structure constants of . Then

b =b
uk wkwk = UL uk 1), (1 0k 15wk 1)

PROOF. Induction on £*(v*). When ¢*(v*) = 1 the result is true by Theorem 2.1.6, since

77777777

and suppose that ¥ = s* ... s*¥ € W* has length n. Write y* = sfl .5 and sk = s¥

(51 in tn—1 in"

Following the method used to derive (2.1.4) we have
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uk akawk = E buk Zkbzk ,sk:wk

zkeWk
and the result follows by induction since £*(y*) < n and ¢*(s¥) = 1. O

LEMMA A.4.2. For all u,v,w e W,
uvw Hbuk vk wk

-----

By Lemma A.4.1

and so it follows that

B,B, = Z Z b 1ylogpl u'r T er(wl Lw”)

wleWwl  wrewr
- § (Hbukvkwk> - O
weW

THEOREM A4.3. B2 B x - x A",

PROOF. By the multiplication and addition laws in %! x --- x %" and the fact that
>k U ke = 1 for all u¥, v% € W (see Corollary 2.1.8) we have

(BL,...,B")(Bk,...,B")
— (BLBL,...,B".B")

:<Z Dot Bit s Y Ve e Bl )

u

1€W1 wreWwr
= > bhgit U (Bl B)
wl, .. wr
Thus by Lemma A.4.2
(BL,....,B")(BL, ..., = buww(Bhi, - Ble) |
wew

and so the homomorphism induced by B, — (BL,,..., By,) is an isomorphism. O
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A.5. Polysimplicial Complexes

Unlike chamber systems, a (Cartesian) product of simplicial complexes is not necessarily
a simplicial complex. Thus we make the following definition. Given simplicial complexes
Y1 ..., X" with vertex sets X!, ..., X", the polysimplicial complex ¥ = X! x - - - x X" with
vertex set X = X! x .- x X" is the collection of all polysimplices 0 = o' x - - x ", where
o is a simplex of ¥* for each 1 < k < r. If each ¥ is a labelled simplicial complex with
type map 7 : V¥ — I* then we say that ¥ = X! x --- x X7 is a labelled polysimplicial
complex. The set of types of ¥ is J = I' x --- x I", and the associated type map is
given by 7(z) = (t!(z'),...,7"(2")) for each x = (x',... 2") € X. Define type preserving
1somorphisms of labelled polysimplicial complexes in the obvious way. We call maximal
polysimplices of a labelled polysimplicial complex chambers. It is clear that each chamber
of ¥ is of the form C! x --- x O™ where C* is a chamber of XF for each 1 < k < r.

An automorphism of a polysimplicial complex X = X! x -+ x X" is a bijection 1 such
that

Y(@) = (@ (ah), ..., ¥ ("),

where each ¢* : ¥¥ — ¥¥ is an automorphism. In particular, automorphisms are assumed
to be component preserving.

Given a direct product C! x --- x C" of chamber systems C!,...,C" over disjoint sets
I', ..., I" one can construct a labelled polysimplicial complex. For each (i,...,i") € J =
It x - - x I" form the set

Xi1’___7ir = {(R[l\{il}(cl), ceey Rp\{p}(CT)) | (Cl, cee, Cr) S Cl X oo X CT},

and let X be the disjoint union over (i',...,:") € J of these sets. Let 7(x) = (i',...,d") if
x € X . Declare polysimplices to be subsets of the maximal polysimplices

{(R[l\{il}(cl), o Ry (€h)) | (il, i) e JY
where (¢!,...,¢")€C x -+ x C".

Conversely, given a labelled polysimplicial complex ¥ = ¥ x -+ x 3" with vertex set
X=X'x---xX"and typemap 7: X — J =I' x --- x I" we may construct a direct
product of chamber systems as follows. Let [ = I'U---U I" (we assume the sets I* are
pairwise disjoint), and for ¢ € I*, declare maximal polysimplices C' and D to be i-adjacent
if either C' = D or if all the vertices of C' and D are the same except for those vertices
(zb,...,2") with 7%(2*) = 4.

With the conditions of Section 1.4 applied component-wise, the above operations are

mutually inverse.

EXAMPLE A.5.1. Let X! be the labelled simplicial complex with vertex set X! =
{x1, 19, 23,74}, maximal simplices {{x1,z3}, {72, z3}, {73, 24}}, and type map 7! : X! —
I' = {0,1} given by 7'(x;) = 7!(x9) = 7(z4) = 0 and 7!(z3) = 1. Let X2 be the labelled
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simplicial complex with vertex set X2 = {1, y»}, maximal simplices {{y1,v>}}, and type
map 72 : X2 — I? = {2,3} given by 72(y;) = 2 and 7%(y,) = 3.
We can draw ©! and X2 as in Figure A.5.1.

T n
: XT3 Ty
T2 Y2
FIGUuRE A.5.1
Thus Y can be drawn as in Figure A.5.2.
(3717 y1)
(3737 yl)
(21, 9o) C (24, 71)
(2, 91) E
D (5704, ?/2)
($3, ?/2)
($2, y2)
FIGURE A.5.2

The maximal polysimplices C', D and E are mutually 0-adjacent. For example, to see that
C ~¢ D, observe that C' and D share all vertices, except for those vertices (x,y) with
H(z) = 0.

In particular, if W = W! x --. x W", we have a natural description of the Coxeter
complex as a polysimplicial complex, with a natural labelling 7 : X — J, where J =
I''x - x I" and 7(z) = (t4(z1),...,7"(z")), where 7F : X* — [*.

A.6. Polysimplicial Buildings

Let us now consider reducible buildings from the polysimplicial point of view. Consider
the building 2" = 271 x -+ x 27" of Theorem A.3.1(ii) as a polysimplicial complex, as in
Section A.5. Call a sub-polysimplicial complex A of 2" an apartment if A = A x---x A",
where A" is an apartment of 2% (as in Definition 1.6.2) for each k =1,... 7.

Write (W) for the polysimplicial Coxeter complex. The following Proposition follows
from Definition 1.6.2.
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PROPOSITION A.6.1. Let 2 be a reducible building considered as a polysimplicial com-
plex as above. Then (with the natural labelling 7:V — J=1"x --- x I")

(i) each apartment of 2 is isomorphic to X(W) in a type preserving way,
(ii) given any two chambers of 2, there exists an apartment containing them both,
and
(iii) given apartments A and A" of X~ containing a common chamber, there exists a

type preserving isomorphism ¢ : A — A’ fixzing AN A" pointwise.

A.7. Reducible Root Systems

Suppose E = @@,_, E* is the direct sum of a family {E*}7_, of vector spaces. For
each k =1,...,r, let R* be a root system in E*. Then R = |J,_, R* (disjoint union) is a
root system in £ with dual RV = J,_,(RF)Y. We say that R is the direct sum of the root
systems RF.

Every root system R in E is the direct sum of a family {R*}7_, of irreducible root
systems [5, VI, §1, No.2, Proposition 6]. Furthermore, this decomposition is unique up to
permutation of the index set {1,...,7}. We call the R* the irreducible components of R.

For each irreducible component R* of R choose a base B¥ = {af | i € I}} (and
we take the sets I,...,I5 to be pairwise disjoint). Let Q* and P* be the coroot and
coweight lattices of R*. One easily verifies that B = |J;_, B" is a base of R. Furthermore,
Q=@ Q" P=@,_, P and P* =P, (P")".

We have the direct product decomposition Wy = W x - -+ x W{, and similarly for the
groups W, W, and G. We define

AUttr<D) = AUttr<D1) X X Auttr(Dr).

In particular, Auty, (D) C Aute, (D).
The hyperplane construction of Chapter 3 now yields a geometric realisation of the
polysimplicial Coxeter complex. For example, in the A; x A; case the hyperplanes H form

a grid, and the chambers are represented as squares.

A.8. Reducible Affine Buildings

Suppose that 2 is a reducible regular locally finite affine building. Then the irre-
ducible components 2!, ..., 2" are irreducible regular locally finite affine buildings. Let
R, ..., R" be the associated root systems, as in Section 3.8. Then we associate the direct
sum R of the family {R*}7_, to 2". We define the special and good vertices of 2" as in
the irreducible case. Write Jp for the set of all good types (we use this notation instead
of Ip, for in the reducible case, Jp C J).
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A.9. The Algebra &/

Define operators Ay, A € P, as in the irreducible case, and let </ denote the linear span
over C of {Ay}rep+. Following the proof of Theorem 4.4.8 we see that &7 is a commutative
algebra.

Here we will show that &/ = &' x --- x &, where &% k = 1,...,r, is the vertex
operator algebra as in Definition 4.4.7 associated to the building 2°%.

LEMMA A.9.1. Foreachk =1,...,r, let U* CW¥* and write U = U' x---xU". Then
the Poincaré polynomial of U satisfies U(q) = [,_, U*(q).

Proor. We have

U(q)zZ%ZH(Z qa,... k..., 1)>:HUk(Q)- N

uel k=1 \ukeUFk

LEMMA A.9.2. Let a¥, bk Mook VR e (PR)T) be the structure constants of the alge-
bra 7%, and ay .., A\, p,v € PT, be the structure constants of «7. Then

T
_ k
(OWEES Ak phoph -
k=1

PROOF. We prove the lemma using Proposition 4.4.10 (which also holds in the reducible
case). Observe that

Wor = {w € Wy | W\ =\ for all k=1,...,7},

and so by Lemma A.9.1 we have Wox(¢) = [T,_; W« (¢). Similarly the terms Wo,(q),
Wou(q) and Wy(q) factorise. Let I = (I*,...,1") = 7()\) € J, and write W; = Wy x - - - X Wjr.
Notice that

Wowy W, = (Worwa Wik, ..., Wiawa- W)
and similarly for the double cosets Wjo;(w,)W,, and Wyw,W,, (where n = 7(v)). Putting
all of this together, and using Lemma A.9.1, Lemma A.9.2 and Lemma A.4.2, we see that

the entire expression for ay ,, factorises, and the result follows. 0

THEOREM A.9.3. & 2 o/t x --- x ",

PROOF. Recall that Pt = @) _,(P*)*, and by Corollary 4.4.6 3~ . a%, e = 1 for all
Mook e (P¥)*. The theorem now follows in the same way as Theorem A.4.3, bearing in
mind Lemma A.9.2 above. U

A.10. Algebra Homomorphisms

Theorem A.9.3 allows us to extend all of our results on the algebra homomorphisms
h: o/ — C to reducible (locally finite regular) affine buildings.
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ProrPoOSITION A.10.1. The algebra homomorphisms h : o/ — C are precisely the maps
h: o — C with

h(A) = RY(AY)---h"(A")  for all A= (A',..., A"),
where each h¥ : o/* — C is an algebra homomorphism.

PROOF. First suppose that h : &/ — C is an algebra homomorphism. Then
h(A) = h((A*,... A"))
=h((A', ... 1) (1,..., A")
=h((A',...,1))---h((1,..., A")).
For each k = 1,...,r, define h*(A¥) = h(1,...,A¥ ... 1). This is clearly an algebra
homomorphism, and A is of the prescribed form.

On the other hand, if for each k = 1,...,7, h* : &/¥ — C is an algebra homomorphism,
then h : & — C defined by h(A) = h'(A')---h"(A") is an algebra homomorphism too. [J



APPENDIX B

Some Miscellaneous Results

As the title suggests, this appendix contains some results and formulae whose proofs
were omitted from the main body of text.

B.1. Calculation of ¢,

To make the formula (5.2.1) completely explicit we need to compute gy, .

LEMMA B.1.1. Let H be a wall of Z. Suppose that w1 is a cotype i panel of H and
that 7y is a cotype j panel of H. Then ¢; = g;.

PROOF. If ¢ is any simplex of 2" and ¢ any chamber of 2", then there is a unique
chamber, denoted proj,(c), nearest ¢ having o as a face [35, Corollary 3.9]. We show that
the map ¢ : st(m) — st(m2) given by ¢(c) = proj,,(c) is a bijection (here st(7;), i = 1,2,
denotes the set of chambers of 2" having m; as a face). Observe first that if ¢ € st(m)
then proj, (proj,,(c)) = c¢. To see this, let A be any apartment containing ¢ and H (see
[35, Theorem 3.6]), and let H" denote the half apartment of A containing ¢. Let d be the
unique chamber in st(my) N HT. It follows from [35, Theorem 3.8] that proj,,(c) = d, and
so by symmetry proj,. (d) = c. Similarly we have proj,, (proj,, (d)) = d for all d € st(m).
So the map ¢ is bijective. O

Lemma B.1.1 allows us to make the following (temporary) definitions. Given a wall H
of 2", write qg = q;, where 7 is the cotype of any panel of H. Now choose any apartment
Aof 27, and let ¢ : A — X be a type-rotating isomorphism. For each a € R and k € Z,
write ¢o.; = qu, where H = "1 (H,). We must show that this definition is independent
of the particular A and 1 chosen. To see this, let A’ be any (perhaps different) apartment
of 2, and let ¢’ : A’ — ¥ be a type-rotating isomorphism. Write H' = ¢'~!(H,.;). With
H as above, let ™ be a panel of H, with cotype 7, say, and so qg = ¢;. The isomorphism
P roy: A— A is type-rotating and sends H to H'. Thus (¢/~!o1))(n) is a panel of H’
with cotype o (i) for some o € Aut, (D), and so qg' = qoi) = ¢; = qu, by Theorem 3.8.4.

LEMMA B.1.2. Let R be reduced. Then each wall of 3 contains an element of P.

PROOF. Each panel of each wall H,.,, o € R, k € Z, contains n — 1 vertices whose
types are pairwise distinct. Since R is reduced, the good vertices are simply the special
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vertices, that is, the elements of P (see [5, VI, §2, No.2, Proposition 3]). Thus when there
are two or more good types the result follows.

This leaves the cases Eg, Fy and Gs. Since H_,, = H,._, it suffices to prove the result
when a € R*. Using the data in [5, Plates VII-IV] we see that for each o = Y7 | a0, € RT
there is an index 4; such that a;, = 1, or a pair of indices (is,i3) such that a;, = 2 and

a;, = 3. In the former case k\;, € H,, and in the latter case g)\m € H,, if k is even, and
%)\Zé + Ny, € Hyye if £ is odd. O

PROPOSITION B.1.3. If R s reduced, then qo.x = qo for alla € R and k € Z.

PRrROOF. The proof consists of the following steps:
(1) quwa:0 = qao for all @ € R and w € W,

(i) Qa;;0 = qo,; for each i =1,... n.

(iii) a0 = ¢o for all a € R.

(iV) Gak = a0 for all @ € R and k € Z.

(i) Let A be an apartment of 2", and let ¢ : A — X be a type-rotating isomorphism.
Write H = ¢~ (Hg.), so that ¢a.0 = qu. Let w € Wy. Now the isomorphism ¢ = w o 4 :
A — ¥ is type-rotating, and '~ (Hyao) = " (Hao) = H. ThUs Gua0 = 95 = Gao-

(ii) Let Cy be the fundamental chamber of ¥, and for each i = 1,... ,nlet C; = 5;Cy. Let
Aand ¢ : A — Y beasin (i), and write H = ¢! (Ha,). Then §(¢~1(Co), v HC))) = soqr)
for some o € Auty, (D), and s0 Ga;0 = ¢H = Go(s), and so by Theorem 3.8.4 qa,:0 = ¢i = ¢a,-

(iii) Each o € R is equal to wa; for some w € W, and some ¢, and so (iii) follows from
(i) and (ii).

(iv) Let @ € R and k € Z. By Lemma B.1.2 there exists A € H,; N P, and so H,y =
tx(Hao). Let A and ¢ be as in (i), and write H = "' (H,), so that gu.x = qg. The map
Y =t' o1 A — X is a type-rotating isomorphism, and '~} (H,) = ¢ (Ha) = H.
Thus ok = g5 = Gaso- O

We need an analogue of Proposition B.1.3 when R is of type BC, for some n > 1.
Observe that if o € R\ Rs, then o/2 € Ry\R3, and Hyop = Hyyoy for all k € Z. Thus
we define Hy = {Hax | @ € Ri\Rs, kodd}, Hy = {Hax | @ € R)\Rs, k € Z} and
Hs = {Huox | @ € R3}. Then H = Hy U Hy U Hs, where the union is disjoint. We have

qo if Ha;k € H;
Qask = § @ if Hop € Ho (B.1.1)
Qo if Ha;k € Hs

We omit the details of this calculation.

REMARK B.1.4. Proposition B.1.3 and formula (B.1.1) give the connection between
our definitions of R and 7, and Macdonald’s definitions of ¥; and ¢, [23, §3.1].
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Recall that for @ € W we define H(w) = {H € H | H separates Cy and wCp}. Also,
observe that each H € H is equal to H, for some a € R and some k € Z, and if
Hgyp = Hy g with o,/ € Rf and k, k' € Z, then a = o/ and k = k'

PROPOSITION B.1.5. Let A € Pt. Then

di, = H Té)\’a>-

a€ERT

PrROOF. Write ¢, = t\g;, where t|, € W and | = 7(\). Then H(t\) = H(t)) and

Gty = qu, - Suppose that t\ = s;, ---s;,, is a reduced expression for t\. Writing H; = H,,.o

m

ifi=1,...,n and Hy = Hs;1, we have
H(t)\) = {Hha SilHiza e ey 82‘1 .. 'Sim—lHim}

B.1.2
={Hut, | o € Rf and 0 < ko, < (N, a)} ( )

where the hyperplanes in each set are pairwise distinct ([19, Theorem 4.5)). If 1 <r <m
and if s;, ---s;,_,Hi, = Hay then it is easy to see that ¢ = ¢,. Then using (B.1.2),
Proposition B.1.3, (B.1.2), and the fact that (A, a) € 2Z for all @ € R\ R3, we have

m A\, a)
4ty = HQir = H H ok = |: H qéA,a):| [ H (QOQn)<>\7a>/2:|>
r=1

aeR] ka=1 aERT a€RT\R}

and the result follows by direct calculation. 0

B.2. The Topology on (2

Here we give a sketch of the following theorem, which was used in the construction of
the topology on 2. Recall the definition of the maps ¢, » made in the opening paragraphs
of Section 7.5.

THEOREM B.2.1. Fiz x € Vp and define § : Q@ — [ cps Va(z) by w — (v5(w))rep+-
Then 6 is a bijection of Q onto Him(Vi(x), ¢u,)-

PROOF. It is not too difficult to see that if S and S’ are sectors with the same good
vertices, then & = &’. Thus it is clear that # is injective. To show that 6 is surjective,
let (v,)yep+ € Um(Va(z),0pun). For each m > 1 let p, = m(Ar + -+ + Ay), and let
C(x;m) denote the set of chambers contained in the intersection of all half-apartments
containing = and v,,,. Since p, € P*" the sets C(x;m) are nonempty for all m > 1,
and C(z;m) C C(x; k) whenever m < k. Furthermore, for m > 1 write C,, for the set of
chambers of ¥ contained in the intersection of all half-spaces containing 0 and i,,.

For each m > 1 there exists an apartment A, containing « and v, , and a type-rotating
isomorphism v, : A, — X such that ¥,,(z) = 0 and ¢,,(v,,,) = . Furthermore, if A7,
and v/ also have these properties, then it is easy to see that wm\c(x;m) = w;n\c(x;m). Also,
1/Jm+1|c(m;m) = wm‘C(:v;m) for all m Z 1.
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For each m > 1 define &, : C,, — 2" by &n = ¥, e,,- Since &nyile,, = &n we have
kle,, = &m for all k > m. We may therefore define £ : C(Sy) — 2 by £(C) = &,,(C) once
C € C,,. By replacing the type map 7 : V(X) — [ on X by o; o 7 where ¢ = 7(x), we may
take all of the above isomorphisms to be type preserving, and so by [35, Theorem 3.6] we
see that & extends to an isometry & : C(X) — 2. Then £(C(X)) is an apartment of 2,
and S = £(C(Sy)) is a sector. Let w be the class of S. Then 8(w) = (v, )yep+. O

B.3. The Exceptional Case

In this section we prove Lemma 8.3.4. Let R be a root system of type BC,, for some
n > 1, and suppose that ¢, < qo.

LEMMA B3.1. Ny, = (1+ ¢ ') 1+ ¢+ + ¢ Do

PROOF. Note that \; = e; = @", and it follows from Proposition 3.7.3(ii) that wy, = s,
and so ¢y, = ¢o. Thus by Theorem 4.3.4, Ny, = Wola) .. By [24, §2.2] we have

WO)q(Q)
n—1
Wolg) = [T+ diga) A+ a1 + - + ),
=0

and since \; = e; we easily see (using Lemma 4.2.1 with A = X = \;) that W,, is a
Coxeter group of type C),_1, and so by the same formula

n—2

=0

The result follows. O

Let u € Hom(P,C*) be parametrised by the numbers ¢; = u%, j = 1,...,n, as in
Section 6.3.2. In the following lemma we obtain a more explicit formula for Py, (u) (in

terms of the numbers {£;}7_,).

LeEmMMA B.3.2. Let w € Hom(P,C*). Then

n

P = 5 (0= D0 ) D0+ 65))
j=1
PROOF. Since \; = & we have II,, = {0}UW A, and so by (7.7.2) (and Wy-invariance)
we have
Py, (u) = ax, v + rdlakw_h;y Z tY‘vel) .. .t;uvem
pnEWH A1
for suitably large v € P*. Since Wy, = {%e; | 1 < j < n} we have

n

P>\1 (U) = a)\l,y;y + 7”_)\1@)\1,11—)\1;V Z(t] + t‘;l)
7j=1
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It remains to compute the constants.
Let us first consider r*’\la,\hy_,\l;y. Recall that A\* = X for all A € P* in the BC,, case.
By (4.4.3), Lemma 7.1.2, and Corollary 7.5.6, if v € P* is suitably large, and if y € V,,(z),

then
N

N Ny—x,
Since RT = {e;,2¢;,e; e, |1 <i<n,1<j<k<n} by (7.5.2) we compute

l)\,a n—
T)\1: HTC%<1 >:mq1 1’

a€ERT
and so r*)‘la,\hy_h;y = N)\_ll1 /qoqnq{‘_l.
Let us now consider ay, ;. We have ay, ,,, = Ny-'|[Va, (2) NV, (y)| where y € V,,(z). It
follows from (7.7.1) and (7.7.2) (and Wy-invariance) that for v suitably large

o Vi (@) N Voo ()] = r N

Ay -2 =T

—A
axy p—p = T ax por  forall p e Wy,

and so (using (4.4.3) and Corollary 7.5.6)

Vi (2) N Vi_u(y)] =m0 74 Vi, (2) N Vi, ()] = 72 (B.3.1)
Also note that
7 V(@) N Visu()] = Ny, (B.3.2)
HEIN

To see this, by the proof of Theorem 7.7.2 (and in the notation used there) we have
Axy - = THay, , for sufficiently large v € PT, and since ay, , = 0 if p ¢ II,, (see (7.7.1)),
it follows from (4.4.3) that V), (z) = Uu€HA1 Vi—u(y), and (B.3.2) follows.

Thus by (B.3.2) and (B.3.1) we have

Va (@) Vo)l = Ny = D [Va(@) N Viu(y)|

HEWOHA1

:N,\I—T)‘1 g rH.

neEWpA

(B.3.3)

A short calculation shows that

1 n e s " (n—ij)e;
P = (qogn)? o0 i (Ie) (B.3.4)

Thus by (B.3.3) and (B.3.4) we deduce that

Vi, (2) NV, (y)| = Ny, — 1M E (w/q gy "+ q’_”)

= N)\1 - (QOQnQ?_l + 1)(1 +q 4+ q?_l)'

(B.3.5)

The result follows from Lemma B.3.1, (B.3.5), and (4.4.3). O
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Recall that U’ consists of those v € Hom(P,C*) such that t; = —b = —+/¢,/qo and
ty, ... t, € T. Write & = (=b,ta,...,t,), where to,...,t, € T. Writing ¢; = € for
2 < j <n, from Lemma B.3.2 we have

qo + Gn g
Py, (&) = — cy + 2c cos b, B.3.6
(&) = Jaoq, 2 e ;2 j (B.3.6)

where ¢; = Ny (g0 — 1)(14+q1 + -+ ¢7") and ¢ = N\ /Qogng;
Note that since A* = A for all A € P*, Py\(u) € R for all u € U.

THEOREM B.3.3. Let & be as above. Then

|P>\1(§t)| < P)\1(1)'

PRrOOF. Note that |WpA| = 2n, and so Py,(1) = ¢; + 2ncy, with ¢; and ¢y as above
(alternatively, take t; = --- = t, = 1 in Lemma B.3.2). Since ¢;, ¢y > 0, the inequality
Py, (&) < Py, (1) is clear from (B.3.6). We now show that —Py, (&) < Py, (1). We have

+qn
N, (P)“(l) + Py, (gt)) > Ny, <201 + 2¢9 — q\o/% C2>

=2 — VD1 +aq+ - +¢ ")+ vVt + (VWtn — a)q7 " — qogy !
>2q -0 +q+-+¢" ")+ Vot @ — qat !

=2(qo— )14+ q +-+ ¢+ (Vaodn — Dy ™" + (g0 — g™

>0,

where the strict inequality holds since ¢y > ¢,,, completing the proof. Il

LEMMA B.3.4. ]f)\ 7é 0 then QXM 7é 0.

PrROOF. By Lemma 8.2.1 and the fact that A\] = Ay we have ay ,.n # 0 for all X # 0.
The result now follows from Proposition 4.4.11, since A* = A for all A € P™.
Alternatively the result may be proved in a similar way to Lemma 8.2.1. O

THEOREM B.3.5. Let & be as above. For all X # 0 we have |Py(&)] < Px(1).

ProoFr. For any v € Hom(P, C*) we have
|PR(u)] = [hu(AD)] < D annul Pulu)]- (B.3.7)
pep+
Since the algebra homomorphisms hg, are continuous with respect to the ¢?-operator norm
(see Corollary 6.3.8), and since [|A,| = P,(1) (see Theorem 7.7.3) we have
|P.(&)| < P,(1) forall pe Pt

By Lemma B.3.4 we have ay ., > 0, and so Theorem B.3.3 and (B.3.7) imply that
|P3(&)| < PE(1), proving the result. O
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PrOOF OF LEMMA 8.3.4. Since E(u) is continuous on U’; and since U’ is compact,
pr = max{[A(u)|/A(1) : u € U} = max{|A(&)|/A(1) : t € T" '} < 1

by Theorem B.3.5, and the result easily follows. OJ

B.4. A Building Proof

In this section we give a ‘building theoretic’ proof of Lemma 7.1.2. The author would
like to thank Donald Cartwright for the results of this section.

LEMMA B.4.1. Let x € Vp and let S be a sector in 2 based at x. Let
Dy, ..., D, (B.4.1)

be a reduced gallery in Z such that x € Dy. Then either

e there is an apartment A containing S and Dy, ..., Dy, or
o there is an apartment A containing S so that, writing p = pas, the sequence
p(Dy), ..., p(Dy) has p(D;—1) = p(D;) for some 1 < j < L.

ProoFr. By Lemma C.4.3, there is an apartment containing S and Dy. Suppose that
for some k < /¢ there is an apartment A such that S, Dy, ..., D, C A, but no apartment
containing S, Dy, ..., Dxy1. Let H be the wall in A which contains a panel common to Dy,
and Dj,. Let H™ be the closed half-space of A containing Dy, and let H be the other
closed half-space of A determined by H.

Let f be the type of the gallery (B.4.1). There is a unique gallery in A of type f
starting at Dy. Let us denote this gallery by

D) =Dy, D,,...,D, (B.4.2)

If ¢g is the word of length k at the beginning of f, then since there is a unique gallery
in A of type g starting at Dy, we must have D; = D’ for j = 0,..., k. Being reduced,
the gallery (B.4.2) crosses H at most once. If Dy ~; Dy, then Dy ~; Dj_, because
galleries (B.4.1) and (B.4.2) are of the same type. So H separates Dy and D;_,,. Therefore

(B.4.2) crosses H precisely once, and
Dy,....DyCH™ and Dj,y,...,D,C H".

By Lemma 7.4.7, either H~ or H' contains a subsector of S. If H~ contains a subsector
of S, then since x € Dy C H~, the whole sector S is contained in H~ [35, Lemma 9.7].
By the proof of [35, Lemma 9.4], there is an apartment A" containing H~ and Dy;. But
then S, Dy, ..., Dy, Dy 1 C A’, contrary to hypothesis.

So H" must contain a subsector S; of S. Pick an apartment A’ containing H* and Dy ;.
By the building axioms, there is an isomorphism ¢ : A" — A which fixes AN A’, and in
particular H*, and therefore S;. Since D) ., C H, we have ¢(Dj_ ) = Dj.,;. S0 ¢(Dj41)
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cannot be Dj_ ., and so must be Dy. Let p = pas. Then p(Dyi1) = ¢(Dit1) = Dy, =
p(Dy), proving the result. d

LEMMA B.4.2. —II, = Iy« for all A\ € P™.

PROOF. It is clear from the definition that —II) is saturated. Furthermore, the highest
coweight of —II, is A*. To see this, observe first that A\* = —wg\, and so A* € —II,. Let
v € —II,. Then v* = wo(—v) € II,, and so A — v* € QT. Since wyB = —B we have
A —rve@', and so v < \*. O

PROPOSITION B.4.3. Let x,y € Vp, and let y € Viy,(x), where A\, € PT. Then
the set V\(z) N'V,=(y) contains exactly one element. This element lies in any apartment

containing x and y.

PROOF. Let z € V\(z) N V,-(y). Let 7(x) = ¢, and let Dy, ..., Dy be a gallery of type
o:(fx) such that z € Dy and z € D,. Choose a sector S containing x and y, based at x, and
such that y € S. Let A be any apartment containing S. Let p = pas and ¢ = ¢ 4s. Now
let §Y be the subsector of & based at y. It is clear from their definitions that p4sv = p
and that 14 s =t_x_, 0.

Let v = (¢ o p)(2). By Theorem 7.4.2(ii), v € I and (¢ a,sv 0 pasyv)(z) € II,+, so that
v—A—p€ll, Hence A+ p —v € II, by Lemma B.4.2. Since we have both v < A and
A+ —v = p. If either of these “<” were “<”, then adding we would have A+ y < A+ u,
a contradiction. Hence v = A.

Writing ® = 1 o p, by the proof of Theorem 7.4.1, the sequence ®(Dy), ..., P(D,) is a
pre-gallery in ¥ of type fy from 0 to A. So p(Dy), ..., p(Dy) is in fact a gallery. Since this is
true for any apartment A containing S, by Lemma B.4.1 there is an apartment containing
S and Dy,...,D,, and in particular x, y and z.

So let A be an apartment containing x, y and z, and let S be a sector in A based at x
and containing y. Let ¢ = ¢4 s. Then ¢(x) =0, ¥(y) = A+ p, and ¥(z) = wA for some
w € Wy. Since y € V,,(2), we have A + . = wA +w'p for some w’ € Wy. Since wA = A and
w'p < p, we must have wA = A and w'p = p. Hence ¥(2) = X\ € Sy, so that z € S.

So we have shown that any z € Vy(x) NV« (y) lies in any sector S containing x and y
and based at z. In particular, any such z lies in any apartment containing x and y.

Suppose that z, 2" € Vy(z) NV« (y). Choose any apartment A containing x and y, and
any sector S in A based at x and containing y. Let ¢ = 104 5. Then the above shows that
z and 2’ are both in S, and that ¥ (z) = A = ¢(2’). Hence z = 2. O



APPENDIX C

Some Elementary Calculations in Low Dimension

In this appendix we show how the algebra o7 can be studied in an ‘elementary’ way in
low dimensional cases. We also demonstrate how the Macdonald formula for the algebra
homomorphisms h : &/ — C can be computed without the machinery of affine Hecke
algebras in these cases.

The method here involves explicitly computing the numbers a, y,,, for all A\, p € Pt and
i € Iy, thus providing explicit formulae AyA,, = > pep+ aspAp. This gives an analogue
of [25, (3.2)] for these low dimensional buildings, and is certainly of some independent
interest (for our Hecke algebra methods give no such explicit formulae). Our arguments
follow [11], where affine buildings of type A, are studied.

In Section C.1 we consider affine buildings of type BC; and A;, where the calculations
are relatively straightforward. In the context of semi-homogeneous trees (the BC; case)
and homogeneous trees (the A; case), these calculations have a rather long history: see
[16] for semi-homogeneous trees, and see [8], [36], and [14] for homogeneous trees. See
also [44] for calculations involving infinite distance regular graphs (cf. Remark 3.8.3).

In Sections C.4 and C.7 we discuss affine buildings of types BCy and G5, where the
technique becomes rather complicated. We will deduce the results for affine buildings of
type Cy from the BCy case. For the sake of completeness we also list some results from
[11] in the A, case.

C.1. The B(C, Case

Let R be a root system of type BC;. Thus we may take £ = R, B = {e;}, and
Rt ={e1,2¢1}. We have \; = e, and so P = {key | k € Z} and P™ = {ke; | k € N}. The
fundamental chamber of ¥ is Cy = (0,1/2), and the vertices of ¥ are the elements k/2,
where k € Z. The set of good vertices of ¥ is Z; these vertices are shown as solid circles
in Figure C.1.1 (note that hyperplanes are zero dimensional).

Hd;l
oooooccoo/oooo
-2 —1 0 1 2
Ficure C.1.1
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Let 2 be an affine building of type BC, with parameters ¢y = p and ¢; = ¢q. Thus 2~

is a semi-homogeneous tree, as shown in Figure C.1.2 for the case p = 3 and ¢ = 2.

A

Ficure C.1.2

The vertex o in Figure C.1.2 is a good vertex (since qo = 3), and writing V' for the vertex
set of 27, Vp ={z € V | d(o,x) € 2Z}.
For x € Vp and k > 0, write Vi(z) in place of Vi, (x). Thus

Vi(x) ={y € V | d(z,y) = 2k}. (C.1.1)
Let us study the algebra o7 in elementary terms.

LEMMA C.1.1. The numbers Ny = |Vi(z)| are independent of x € Vp, and are given by
No=1, and for k > 1
Ni = (g + Dp(pg)* .

Proor. Using (C.1.1) we have |Vy(z)| = 1 and |Vii1(z)| = |Vi(2)|pg if £ > 1. Since
[Vi(z)] = p(q + 1) the result follows. O

LEMMA C.1.2. Letx € Vp and k > 1. Then

;

Pq if z € Vi_q1(x) and k > 2
plg+1) ifz€Vii(z) and k =
Val@) N V()] = |
p—1 if z € Vk(ZL‘)
1 if z € Vi ().
PROOF. These counts are obvious from (C.1.1). ]

COROLLARY C.1.3. Fork>1andl=k—1,k ork+1, let

Ny
NN,

|Vi(x) N Vi(2)| where z € Vi(x).

Q.11 =
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The numbers ay 1, depend only on k,l,p and q, and are given by

L ifl=k—-1

plg+1)
Q10 = pf)q;—i—ll) if l =k
q—}—Ll ifl=k+1.
ProOOF. This is immediate from Lemmas C.1.1 and C.1.2. O

For k € N, write Ay, in place of Ay, (see Definition 4.4.1). Thus
(Apf)(x Z f(y forall f:Vp — C and z € Vp.
yEVk(x)
For all m € N, u € V,,,(v) if and only if v € V,,,(u), and so for k,I € N we compute

@%Aﬁxm=a§-§j<Aﬁxw

k yem )

NkNl > fG (C.1.2)

y€Vi(z) 2€Vi(y)

2)|f(2)-
zEV
The key to this section is the following theorem.
THEOREM C.1.4. Let k > 1. Then
1 p—1 q
AgAi = ——Ap 1 + A + A
kA1 plg+ 1) k—1 @+ 1) k P k41

PROOF. Let z,z € Vp. If y € Vi(x) N Vi(z), then since |d(x,z) — d(z,y)| < d(y, 2)
we have d(z,z) = 2k — 2,2k — 1,2k, 2k + 1 or 2k + 2. Thus, since z € Vp, we have
2 € Vi—1(x) U Vi(2) U Viyi(x). Using Corollary C.1.3 and (C.1.2) we have

wwmzfm( Zf)

I=k—1 zeVl(:v

and the result follows. O
Let <7 be the linear span over C of {A}ren-
COROLLARY C.1.5. & is a commutative algebra, generated by A;.
PrOOF. This is a simple induction using Theorem C.1.4. U

LEMMA C.1.6. For each z € C there is a unique algebra homomorphism h®) : o/ — C
such that h?)(A;) = z.
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PRrROOF. Let C[X] be the algebra of polynomials in the indeterminate X. We claim that
o/ = C[X]. Since o is generated by A;, there is a unique surjective algebra homomorphism
¢ : C[X] — & such that p(X) = A;. To see that ¢ is injective, by Theorem C.1.4 we
easily see that for each k € N there exists a number ¢; > 0 such that

A’f = ¢, Ay, + a linear combination of the A; with [ < k.
Thus ¢ maps nonzero f =Y,y uX' € C[X] to
arcrLAp + a linear combination of the A; with [ < k,

where & € N is maximal amongst the [ € N such that a; # 0. Thus, since {Ag}ren iS
linearly independent, ¢(f) # 0. The result follows. O

In order to give a formula for the homomorphism A% : &7 — C from Lemma C.1.6, we
introduce a parameter u € C* related to z € C by

_ Vo
VPlg+1)

and we write h, in place of h®. It is clear that h, = h,, if and only if v = v or v = u~".

p—1

(u+u~ )+p(q+1)’

(C.1.3)

Thus the algebra homomorphisms h : &7 — C are indexed by the set C*/ ~ of equivalence

classes in C* of the relation v ~ u 1.

We may now prove the Macdonald formula for the algebra homomorphisms h : &7 — C.

THEOREM C.1.7. If u # +1 then

hU(Ak‘> = (fi) g !

where, writing a = \/pq and b = +\/q/p,

(1—atu™H)(1+b1u™)
1—u2 '

(c(w)u + c(u™)u™), (C.1.4)

clu) =

If u = =£1 the value of h,, may be found by taking an appropriate limit

(C.1.5)

PROOF. Let z € C, and for each k € N write x,(f) = (pq)*?h'*)(Ay). Applying h*®) to
the formula in Theorem C.1.4 we have

—1
= _ V4 (2) p =, Vi e forall k > 1,

Zx, = T, T, + x
Fypla+ )T plg+ 1) plg+ )T
and so
() VPla+1)  p- 1) (), ()
- o . +x =0 forall k>0. C.1.6
k+2 ( \/a \/p—q k+1 k ( )
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Let u be a root of the auxiliary equation of the recurrence relation (C.1.6). Then u~!

is also a root, and

u+u_1:\/ﬁ(q+1)z—p_1. (C.1.7)

Vi VPa
Thus if u # £1, the solution of (C.1.6) is

xl(:) = a(u)uf +b(u)u™ forall k>0

for some a(u),b(u) depending on z (and hence on u). Observe that ;1:(()2) = h)(A) =1
and by (C.1.7)

Vil —1)
V(g +1)
An elementary calculation shows that a(u) = gc(u)/(q + 1) and b(u) = ge(u™)/(q + 1),
where c(u) is as in (C.1.5). Since h,(A4;) = h*)(A;) (see (C.1.7) and (C.1.3)) the result
follows. 0

(2) q -1
Ty = z=——uw+u ")+
1 =/Pq q+1( )

C.2. The A, Case

Let 2 be an affine building of type A; with parameter ¢y = ¢; = q¢. Thus 2 is a
homogeneous tree with degree ¢ + 1, which can be considered as an affine building of type
BC, with parameters qo = 1 and ¢; = ¢ by adding a vertex in the middle of each edge.
For example, in Figure C.2.1 an affine building of type A; with parameter ¢y = ¢; = 3 is
considered as a BC; building with parameters ¢o = 1 and ¢; = 3.

———

R

Ficure C.2.1

Thus the results of the previous section are applicable. We have

q 1
AA] = ——Ap 1 + ——Ap_ for k > 1.
kAL 7+ 1 k+1 7+ 1 k-1 =
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C.3. The A, Case

In the interests of completeness, in this section we will list some results from [11]. Let

R be a root system of type As, and let 2 be an affine building of type A, with parameter
Go=q =¢=q. If A\=mA +nly, m,n €N, write V,,, ,(x) and A,,, in place of Vy(x)
and A,. In [11, Corollary 2.2] it is shown that N, ,, = |Vi,.(2)| is independent of x € Vp,
and is given by Nyo = 1, and for m,n > 1,

Nuww = (¢* +q+1)(@* + q)g?™ "2

Nino = (¢ +q+1)g*™ Y

Now = (¢* + g+ 1)g*" .

In [11, Proposition 2.3] it is shown that for m,n > 1, the operators A,, , satisfy

2
q q 1
Am nA == 714777, n + 714771— n + Y . 4 m,mn—
2
q q 1
Am nA == 7Amn + 714771 n— + 714771— n
’ 071 q2+q+1 ,+1 q2+q+1 +17 1 q2+q+1 17
2
q qg+1
ApoAio= ——A,, + A,
,0411,0 Ztg+1 +1,0 Z+qrl 1,1
2, . (C.3.1)
AO,nAl,O = 2(17(] 1,n 27140,71—1
¢ +qg+1 ¢ +qg+1
2
+ 1
AmoAor = 26"7(] m,1 27141%71,0
¢ +qg+1 ¢ +qg+1
2
q qg+1
AppnAor = ————Aont1 + ——— A1 1.
0,n410,1 q2+q—i—1 0,n+1 q2+q—i—1 1,n—1

Let o/ be the linear span of {A,, , }mnen over C. A simple induction using the equa-
tions (C.3.1) shows that &/ is a commutative algebra, generated by A;, and Ag; (see
[11, Proposition 2.3] for details). The Macdonald formula for the algebra homomorphisms
h: e/ — C can be deduced from (C.3.1) in a similar (although more complicated) way as
in Theorem C.1.7. See [11, Proposition 3.1] for details. The final result is as follows.

THEOREM C.3.1. Let uy,us,uz € C be pairwise distinct numbers with ujusuz = 1.
Then for any ny,ns,ng € Z with m = ny — ny and n = ny — N3,

—m-—-n

_ q n n n
Py s (Amn) = = = Ug@g (Uo(1)s Ua(2), Uo(3)) Up(1) Yy (o) U (3)
where )
Ui — q U
C('LLI,'LLQ,'U/?,): H U/‘—'U/'J .
i j

1<i<;j<3
In the singular cases the formula for hy, v, ., may be obtained from the above by taking an
appropriate limait.
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C.4. The B(C, Case

Let R be a root system of type BCy, and let 2" be a building of type B~CQ, with
parameters p = qo,q = q; and r = go. Let Vp be the set of good vertices (that is, type 0
vertices). An apartment of 2" can be viewed as in Figure C.4.1, where the dashed lines

1 1 . 1 1 .. .
1 1 1 - . 1
] ] R S
L : bz vy
JEN RS LN X EONPRP IR KU RN ORI S
| | S |
1 1 1 1
1 1 1 1
e . 1, L
RN PN U U A 1 %A AP S AP,
T e i T
B i T |
1 1 1 1
1 1 1 1
P i i |
S PR R TSR UG SRR QR SOy
| | | |
1 1 1 1
1 o L 1
PR R S KL A LA e -
) I I 1
1 1 | 1
1 1 1 1
1 ! ! 1
1 1 1 1
1 1 1 1
Ficure C.4.1

represent walls of valency p 4+ 1, the dotted lines represent walls of valency ¢ + 1, and
the solid lines represent walls of valency r + 1. Let us fix this convention throughout this
section.

For z € Vp, define V) (x) as in Definition 4.2. If A = kA + Ao, write Vj () in place of
Vi(z). Thus, in Figure C.4.1, y € Voa(z), 2 € Vi1(2), and 2 € Vio(y).

Let us give a general lemma which will be useful in the following.

LEMMA C.4.1. Let 2 be a building of type 2 o, with parameters q1 and q». Then

Cl=1+q)1+g)d+qage+-+(ae) ).

PROOF. Let Wy = ({s1, s2} | s% = 52 = (5189)* = 1). In the notation of Section 1.7,
for fixed ¢ € C we have C =

Cw(c) where the union is disjoint. Thus

wEW(k)
IC| = Z Z Gw = Wiy (q).
wEW(k) WEW(k)

For k > 1 we have W11)(q) = Wiy (@) + a¥dk + a7 a5 + 4 af + ¢f ' g5, and the result
follows by induction. O
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LEMMA C.4.2. The numbers Ny, = |Vii(x)| are independent of x € Vp and are given
by Noo =1, and for k,1 > 1

Nig = (g+1)(r+1)(gr + 1)(pg®r)* ' (p°*r*) ' pPgPr
Nio=(qg+1)(gr+ 1)(]0(]27’)]67127
Noy = (r+1)(gr + 1)(p*¢*r*)'p’q.

PrOOF. Let x € Vp. We have

Vio(z)| = (¢+1)(¢gr+ 1)p (C4.1)
Vo ()] = (r +1)(qr + 1)p*q (C4.2)
Virr,j ()| = pg?r|Vij(2)] i>1,j>0 (C43)
Vi (@)| = par(q + 1)|Vo;(2)] j=1 (C4.4)
\Viji(7)] = p*@r?|Vi ()] i>0,7>1 (C.4.5)
Via(@)] = p*r(r + 1)|Vio(2)] i>1. (C.4.6)

We will prove (C.4.1) and (C.4.3), the other proofs are similar.

FiGure C.4.2

By Lemma C.4.1 there are (¢ + 1)(r + 1)(gr + 1) chambers in 2" containing x, and so
we count (¢ + 1)(r + 1)(gr + 1)p chambers in the position of D as shown in Figure C.4.2.
The ‘good’ vertex of each such D chamber is in Vj ¢(z), and for each y € Vi ¢(z) there are
exactly r + 1 chambers in the position of D containing y (since the edge zy is common to
r + 1 chambers). Thus |[Vio(x)| = (¢+ 1)(gr + 1)p.

Let us prove (C.4.3) in the case i, j > 1. Let y € V; ;(z); there are |V; ;(x)| such y’s.
There are ¢ choices for the chamber C' as shown in Figure C.4.3. Having chosen C, there are
then r choices for the chamber D, then ¢ choices for the chamber E, and finally p choices
for the chamber F. Thus for each y € V;;(x) we have counted pg*r (pairwise distinct)
vertices w in the configuration shown. Since each z € V;4 j(x) may be reached from some
y € Vi j(z) by a gallery C, D, E, F as considered, we have Vi1 ;(z)| = pg®r|V; ;(x)]|.
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______

A N

R R

FiGure C.4.3

Formulae (C.4.1)-(C.4.6) and induction show that

(pg*r)" L (p*Pr?) Y Via(z)| i mon > 1
Vi ()| = (pg®r)™ | Vio(x)| ifm>1n=0
P*¢*r®)" Vo ()| if m=0,n2>1

By (C.4.4) and (C.4.2) we have |Vi1(z)| = (¢ + 1)(r + 1)(gr + 1)p*¢*r, and the result
follows. OJ

For each k,l € N, define an operator Ay, by

(Anf)(@) == Y fly) forallzeVp.

e yEVi, (@)
Since y € Vi, () if and only if x € Vi ;(y), we have

1

(Ak,lAm,nf)(x) = m

D WVaa(@) N Vn(2)1£(2). (C.4.7)

z€Vp

The following lemma is stated for all affine buildings.

LEMMA C.4.3. Let § be a sector based at x € Vp in an affine building, and let ¢ be a
chamber such that x € c. Then there exists an apartment containing S U c.
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PROOF. By [35, Lemma 9.4] there exists a subsector &’ C S such that S’ U ¢ lies in an
apartment A, say. In particular, z € A, and so there is a sector §” C A based at z in the
class of §'. Now §” = S by [35, Lemma 9.7], completing the proof. O

We have the following analogue of Lemma C.1.2.

LEMMA C.44. Let v € Vp and z € Vj ().

(i) If k,l > 1, then

1 if (1,7) = (k—1,1)
(¢+D-1) if(4) = (k1)
Vis(2) N Viof2)] = q if (1,j) = (k+1,01—1)
Vsl Vi) pgr if (i,7) = (k+1,1)
pqr if (1,7) = (k—1,141)
\O otherwise.
(ii) If k=0 and | > 1, then
(4 +1 if (i,5) = (1,1= 1)

(¢g+D)p—1) if(i,j5)=(0,1)
pqr(q+1) if (i,7) = (1,1)

0 otherwise.

Vi) N Vio(2)] =

(iii) If k> 1 and 1 = 0, then

1 if (,5) = (k—1,0)
p—1 if (i,7) = (k,0)

Vij(@) N Vip(2)] =< pg(r +1) if (i,5) = (k—1,1)
pg’r if (,5) = (k+1,0)
\O otherwise.
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(iv) If k> 2 and 1 > 1, then

(

! if (i,5) = (k,1-1)
p—1 if (i,5) = (k= 1,1)
plg—Dr+1)+qlp—12% if (i,5) = (k1)
(p=1)g if (i,5) = (k+1,1—1)
Visl) A Vo) = 4 70 7,7) = (62,0 -1)
pgr(p—1) if (1,7) = (k+1,1)
e if (i,5) = (k,1+1)
b if (5,§) = (k= 2,1+ 1)
par(p=1) if (i,5) = (k= 1,1+ 1)
0 otherwise.

\

(v) Ifk =1 andl > 1 the counts are as in (iv), with the definition V_y 111 (x) = V1,(2).
(vi) If k=0 and |l > 1, then

;

1 if (i,7) = (0,1 —1)
(¢+1Dp-1) if (i,5) = (1,1 —1)
(¢—Dp+alp—1)* if(i,5) = (0,0)
Vij(@) N Vou(2)| = ¢ par(qg+1) if (i,5) =(2,1-1)
(g+(p—Vpgr  if (i,5) = (1,1)
p*gir? if (4,5) = (0,0 + 1)
0 otherwise.
(vil) If k > 2 and 1 = 0, then
(r+1)p if (i,4) = (k= 2,1)
(r+1(g—1Vp if (i,7) = (k,0)
Vii(@) N Vor(2)l = § (r + D)(p— Dpg if (4,5) = (k —1,1)
(r+ p*g*r if (i,7) = (k, 1)
\O otherwise.

(vill) If k =1 and l = 0 the counts are as in (vii), with the definition V_1 1(x) = V1 o(x).

Proor. We will prove (i). Numbers (ii) and (iii) are of a similar difficulty. Numbers
(iv)-(viii) are a little more complicated.
Let y € Vi ¢(2). This is shown in Figure C.4.4 (possibly in two different apartments).
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FiGure C.4.4

Let & be a sector based at z which contains z (as shown in Figure C.4.4). By
Lemma C.4.3 there exists an apartment A containing S and C, and so we may suppose

that the chamber C' is in the position of one of C;, i = 1,2, ..., 8 as shown in Figure C.4.5.
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Ficure C.4.5

It is clear that every y € Vp reachable from a gallery C' ~¢ D (see Figure C.4.4) with
C = (4, is also reachable from a gallery C" ~q D" with C' = Cg. Similarly for galleries
with C' = Cy, (5, C' = C4, C5 and C' = Cg, C7. Thus we need only consider those galleries
with C' = C1, Cy, Cy or C5.

Suppose C' = (. There is exactly one chamber in the position of C7, and so there are
p choices for the D chamber. One of these chambers has its type 0 vertex in Vj_1,(z), and
the remaining p — 1 of the chambers can be folded back across the wall Hy, and so their
type 0 vertices are in Vi (z).
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Suppose now that C' = C5. There are g chambers in the position of Cy, each with p
possible D chambers. Thus there are pq (distinct) vertices y € Vj ¢(2) reachable by a gallery
of C' ~y D with C in the position of Cy. Of these vertices, exactly ¢ are in Vj41,-1(z), and
the remaining ¢(p —1) vertices may be folded ‘leftwards’ across Hs, placing them in Vi ;(z).

Now, considering galleries with C' in the position of Cy we find pg?r vertices y € V; o(2)
which are in Vj41,(x), and for galleries with C' in the position of C7 we find pgr vertices
y € Vio(2) which are in Vi_q ;41(2).

Combining these results proves (i). To check that no vertices have been overlooked,
note that the sum of the contributions equals V; . O

THEOREM C.4.5. Write A} = NioAio and Ay, = No1Aoy. Then
Ar0A01 = Ao141p (C.4.8)
Apn A o= Amin + 007 A1 + (@ +1)(p— 1) A

(C.4.9)
+qAmiin—1 + pq27’Am+1,n
ApoAl o= Am—10+pq(r + D)Ap_11+ (p — 1) Ao + PP Ami1o (C.4.10)
ApnAlg= (¢ + 1)[A1 o1+ (p — 1) Ao + par Ay, (C.4.11)
A Ay = pr(p = DAmsin + (0 = DAn 10 +0ar(p — VA1
+q(p — DAmsrn + 2@ Amson-1 + P21 A (C.4.12)
+ prAm—oni1 + Apnet + [(¢—D(r+ Dp+q(p — 1)°] A
AmoAg = p(r + 1) [(p = 1)gAn-11 + (¢ = D) Ano + Aoy +pg*rAn] (C.4.13)
AonApr= (¢ +1) [quAz,n—1 +(p—1)A+ (p— 1)pQTA1,n] (C414)

+ Aon-1 + P’ Ao + [(p— 1)’q + p(g — 1) Ao
AipAgs= At +qlp— 1) Az + PP Az 1 + D2 A
+(p = 1) Aon +pgr(p — D) Aonir +pa’r(p — 1) Az (C.4.15)
+ (g = Dp+ (p—1)%q + pgr] Ar,
where in each case the indices m,n are required to be large enough so that the indices

appearing on the right are all at least 0. For example in (C.4.12) we require m > 2
andn > 1.

PRrOOF. These formulae follow from (C.4.7) and Lemma C.4.4. For example, we will
derive (C.4.9), so suppose that m,n > 1. From (C.4.7) we have

(AmnAiof)(z) Z Z ) N Vio(2)| f(2).

k‘ JeN zeV, l(:)))

By Lemma C.4.4 we see that |V, ,(x) N Vio(z)| = 0 unless:
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e 2 €V 1,(x); if m > 2, Lemma C.4.4(i) implies that |V, ,(z) N Vio(2)] = pg?r,
whereas if m = 1 we use Lemma C.4.4(ii) to see that |V}, ,(x)NV10(2)| = pgr(¢+1).

o 2 € Vi1 pr1(x); if m > 2 then |V, (x) N Vip(2)| = ¢, whereas if m = 1 then
[Vinm () N Vip(2)| = g+ 1.

o 2 € Vyn(x); in this case |Vn(x) N Vip(2)| = (¢+1)(p—1) for all m,n > 1.

o 2 € Viyrinoa(z); if n > 2 then |V, ,.(z) N Vio(2)] = pgr, whereas if n = 1,
|Vm,n(x) N ‘/1,0(2)| = pQ(T + 1)

o 2 € Viyi1n(2); in this case |V, n(z) N Vig(z)| = 1 for all m,n > 1.

Equation (C.4.9) follows by recalling the formulae for Ny ; in Lemma C.4.2. O
Let o denote the linear span of { A} en over C.
COROLLARY C.4.6. &7 is a commutative algebra, generated by Ay and Ag ;.

PRroOOF. Declare (k,l) < (m,n) if either k+1 <m-+n, or k+1=m+n and | < n, and
write (k,1) =< (m,n) if (k,1) < (m,n) or (k,1) = (m,n). This defines a total order on N2.

Assume that m +n > 2 and that for each (k,l) < (m,n) we can write Ay, as a
polynomial in A; o and Ay ;. We claim that A,,,, itself is a polynomial in A; ¢ and Ay ;. If
m > 2 and n > 1 one sees this from (C.4.9), with m there replaced by m — 1. If m > 2
and n = 0 we use (C.4.10), and if m > 1 and n > 1 we use (C.4.11) in the same way.
Finally, if m = 0 and n > 2, we use (C.4.14), with n replaced by n — 1, noting that
(2,n—2) < (1I,mn—1) < (0,n). Thus each A,,, is a polynomial in A,y and Ag;, and so
</ is commutative by (C.4.8). O

Let < be the total order defined in the proof of Corollary C.4.6.
LEMMA C.4.7. For each (m,n) € N? there is a number ¢, > 0 so that
AT0AG L = CmnAmn + a linear combination of those Ay, with (k,1) < (m,n). (C.4.16)

PROOF. First note that for each (m,n) € N? there exist ¢, ,,c’ ,, > 0 so that

m,n) ~m,n

AmnAro = pAmiin (C4.17)
+ a linear combination of the Ay, with (k,[) < (m + 1,n), and
ApnAog = o Amnst
+ a linear combination of the Ay ; with (k,l) < (m,n+ 1). (C.4.18)
We see (C.4.17) using (C.4.9) through (C.4.11), and (C.4.18) using (C.4.12) through
(C.4.15), noting that (m+2,n—1) < (m+1,n) < (m,n+1).

Now (C.4.16) is obvious if (m,n) = (0,0), (1,0) or (0, 1), and so assume that m+n > 2
and that formula (C.4.16) holds when (m,n) is replaced by any (m’,n’) < (m,n). If m > 2
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and n > 1, then by (C.4.9) we can write
AToAG = Avo(AT " AG,)
= A (Cm—l,nAm—l,n + terms in Ay with (k,1) < (m —1, n))
= CpnAmn + terms in Ay with (k,1) < (m,n), by (C.4.17),
where ¢y = ¢_1.,0¢*r/N1o. If m > 2 and n = 0, we use (C.4.10) instead. If m = 1 and

n > 1 we use (C.4.11). Finally, if m = 0 and n > 2, we use (C.4.14). O

COROLLARY C.4.8. Let C[X,Y]| denote the algebra of polynomials in two commuting
indeterminates X and Y. Then there is an isomorphism ¢ : C[X,Y]| — & such that
QO(X) = Al,O and QO(Y) = AO,l'

PROOF. Since &7 is commutative (see Corollary C.4.6), there is a unique algebra homo-
morphism ¢ : C[X,Y] — & such that p(X) = Ay and (YY) = Ap1. Since Ay and Ay,
generate &, ¢ is surjective. To see that ¢ is injective, suppose f(X,Y) = >, ar X*Y"' €
ker ¢ is nonzero, and suppose that (m,n) is maximal with respect to < amongst the (k, ()
for which ay; # 0. By Lemma C.4.7, ¢ maps f(X,Y) to

U nCmnAmn + @ linear combination of the Ay, with (k,1) < (m,n)
and this cannot be zero because the Aj;’s are linearly independent. O

Since the algebra homomorphisms C[X, Y] — C are just the evaluation maps f(X,Y) —
f(z1,22), where 21, 29 € C, we see that the algebra homomorphisms o/ — C are indexed
by C2. That is,

COROLLARY C.4.9. For each pair (z1,2,) € C?, there is a unique algebra homomor-
phism h = h*1%2) 1 of — C such that h(A ) = 21 and h(Ag,) = 2.

In order to give a formula, for h(31:22) (Am.n), we introduce parameters uy, us € C* related
to 21, 2o by the equations

1

2= 5 |+ D -1+ ayprin + ! +ue )] (C.4.19)
1,0
1

%= 5 [pqr(ul Fur Y (us +uz) + (p— Dgy/pr(un +urt +us +uy')  (C.4.20)
0,1

+qp—12+(¢—1)(r+1p|.

The reason for this parametrisation will become apparent in the following theorem.

The group C of signed permutations of {1, 2} acts on (C*)? by o-(u1, u2) = (Uyq1, Us(2)),
where we use the convention that u_; = uj_1 for j = 1,2. Given any z1, 20 € C, it is el-
ementary that we can find (uy,us) € (C*)? so that (C.4.19) and (C.4.20) hold, and any
other pair (u},u)) satisfying these equations is equal to (us1), us(2)) for some o € Cs.
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NOTATION. If (uy,us) are related to (z1, 22) as in (C.4.19) and (C.4.20), we shall write
Py up 0 place of A2 Clearly bt iy, = Py if and only if (u), uh) = (o1, Ug(z)) for
some o € Cy. Hence the algebra homomorphisms &7 — C are indexed by the set (C*)?/C,
of orbits in (C*)? under the action of Cy. In symbols;

Hom(g/,C) = ((CX)Q/CZ_
Let p1 = q./pr, p2 = pqr, a = /pr and b = r/p.

THEOREM C.4.10. If uy, uy', us and uy* are pairwise distinct we have

pfmpgn m+n n
hu u Amn = § o o
g 2

where c(uy, uz) equals

(1 =g rurtuy (1 =g hug tug) (1 —a A+ (1 —a a1+ 07y )
(1 —uy 1“21)(1_U1 ug) (1 —uy )(1_U22) .

PRrROOF. Let h : o/ — C be an algebra homomorphism, and apply h to both sides of
the equations in Theorem C.4.5. For each pair m,n, form x,,,, = p"p5 h(A., ). Write

o= N1,opf2$1,0 —(¢+1)(p— 1)Pf17 and
B=2+ Noapz*zor — q(p = 1)Niopy *zro + (0= 1)* = (¢ = D(r +1)p) p3!
Then
Tmtdn — QTma3n + BTmion — QTmyrn + Tmp =0 for m,n > 0. (C.4.21)
Let us derive (C.4.21) in the case n > 1. From (C.4.9) we have
(a1210 — 2)Tmn = Tm-1n + Tm—10+1 + Tmt1n-1 + Tmt1ns (C.4.22)
where a; = p; 2Ny and ag = p; (¢ + 1)(p — 1). Thus if m,n > 1 we have
Tmt1n—1 + Tm—1n41 = (A1%10 — Q2)Tmm — Tm—1n — Tmtin - (C.4.23)

The important thing to notice is that the terms on the right hand side of (C.4.23) all have

second index n. Supposing m > 2, from (C.4.12) we may write
(a3x0,1 - a4)xm,n = Tm+4+2,n—1 + Tm,n—1 + Tm,n+1 + Tm—2,n+1 (0424)
+ a5(xm71,n + xmfl,nJrl + merl,nfl + merl,n) )

where az = p;°No1, as = py ' (¢ —1)(r + Dp+q(p—1)?) and a5 = p;'q(p — 1). From
(C.4.22) and (C.4.24) we have

(a'3x0,1 - a4)xm,n = (xm—l—Q,n—l + xm,n-{—l) + (l‘m,n—l + xm—Q,n—&—l) (C425)

+ a5(a1l’1,0 - Gz)ﬂfm,n ;
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and by using (C.4.23), firstly with m replaced with m + 1, and secondly with m replaced
by m — 1, we find from (C.4.25) that
Tmyon — (1210 — Q2)Tmi1n + (24 a3T01 — A10521,0 — Q4 + A205) Ty,
— (a121,0 — A2)Tp—1,n + T2 =0
valid for n > 1 and m > 2. Equation (C.4.21) follows by replacing m by m+2 and recalling
the formulae for the constants a1, as, ..., as. In the case where n = 0, a similar calculation
works using (C.4.10) and (C.4.13).
Fixing n we are led to consider the auxiliary equation of (C.4.21), namely

M—aN+ BN —ad+1=0. (C.4.26)

Let uy, ug, us, uy € C* be the roots of (C.4.26). Notice that

M—aX 4+ —ad+1=(N+EA+1) (P +EA+1)

where §1,§ = —5 /2 + %2 — 3, and so if u; and ug are the roots of the first quadratic,

and uy and uy are the roots of the second, we have us = ufl and uy = uqy ! Furthermore,
since o = g +us +uf1+u§1, we find 19 = p121, where 21 is as in (C.4.19). Similarly, since
B =2+ (us+u; ") (ug+uyt) we find o1 = pazo, where w is as in (C.4.20). Thus h(A,,,) =
Py s (Ap) for (m,n) = (1,0) or (0,1) and hence for all (m,n) by Corollary C.4.6, where
Iy uy Was defined in the notation section before the theorem.

Now, if u, us and their inverses are pairwise distinct we have
T = Crpul" + Copuy’ + Csuy™ + Cypuy ™ for all m,n >0 (C.4.27)
for suitable functions C;,, = C;,(u1,us) which are independent of m. For each o € Cy,
T = P P8 My s (Amyn) is unchanged if (uy, ug) is replaced by (ue(1), Uo(2)), and so
Cop = Crn(ug,uy), Csz, = Crp(uit uyt), and Cy, = Chp(uyt uit).

For the same reason, C1 ,(u1,u; ") = Oy, (ur, uz). Write C,, = C4 ..
Using (C.4.22) with n replaced by n + 1 we find

u ' Chyg — (g +uyHChyt +uyC,y =0 for n > 0. (C.4.28)

The roots of the auxiliary equation of (C.4.28) are ujuy and ujuy*, which are distinct by
hypothesis. Thus

Crn. = D(uy, uz)uful + D' (uy, ug)uiuy"
for suitable functions D(uq, us) and D'(uq, us) independent of m and n. Since C,,(u1, ug) =
Cp(uy,uyt), we have D'(up, up) = D(up,usy ). Thus

= 3 Doty oy
oceCs
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All that remains is to evaluate D(uq,us). Unfortunately this step, although straight-
forward, is computationally messy. One proceeds as follows. First find Cy by writing z,
Z1,0, T20 and a3 in terms of u; and up. We have z9 = 1 since h is required to map the
identity Ao of & to 1, and we have already noted that x; 9 = p121 and zp1 = p22z2. The
required formulae for x9¢ and z3 follow from the recursive formulae in Theorem C.4.5.
Once we have these we know the four initial conditions of the recurrence (C.4.21) when

n = 0, and thus we calculate

(quiug — 1)(quy — ug)(auy — 1)(bug + 1)

Cotn2) = 0 D g+ Dl — e — )7~ 1)

Furthermore, from (C.4.10) and (C.4.27) we evaluate

paur(uz + q(p — Dpr ' +uz )
(r+1)pq

01(101,%2) = CO(U1,U2),

and so we know the initial conditions of the recurrence (C.4.28). Thus we calculate

c(uy, ug)
D(uq,uz) =
(1, 02) (' + D)+ 1) (gt + 1)
where c(uq,us) is as in the statement of the theorem. O

C.5. The Cy Case

Let 2" be an affine building of type Cy with parameter system (qo,q1,q0). As Fig-
ure C.5.1 suggests, by adding new walls 2" may be considered as an affine building of type
BC5 with parameter system (1, qo, ¢1) (see Section C.2 for a similar discussion). Thus the
results of the previous section are applicable.

Ficurk C.5.1

(Note that we have strayed from our conventions regarding dotted, dashed and solid lines).
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C.6. Another Algebra in the C; Case

Let 2" be an affine building of type Cy with parameters (qo, ¢1,qo). For i =0,1,2, let
V; denote the set of type i vertices of 2. Thus V; consists of all non-special vertices of 2.
We will explain below how it is possible to study vertex set averaging operators acting on
the space of all functions f : V} — C.

As in Section C.5 we add new walls into 27, making a new building 2" of affine
type BCy. The vertex set of 27 is V! = Vj U V] UV}, where Vj = V;, Vj = V5 U V4, and
V] consists of new wvertices resulting from the new walls. For example, in Figure C.6.1,
x € Vi, y € Vyand z € V, (considered as vertices in Z°), and z € Vj, y,z € V] and v € V/

(considered as vertices in Z”).

Y Y
v
X z T V4
4 Z
Ficurk C.6.1

For each k,l € N we define an averaging operator Aj;, acting on the space of all functions
f: Vi =V] — C, as in Section C.4. The results of that section are now applicable (the
parameter system of 2 is (¢, ¢}, ¢5) = (¢1,¢2, 1)).

C.7. The G5 Case

We conclude with the most difficult ‘low dimension’ case, the affine buildings of type Gs.
We give a large diagram of the Gy Coxeter complex in Figure C.7.1, which the reader may
find helpful if they wish to verify any of the counts we make.

Let 2" be an affine building of type G5 with parameters g = ¢ = q and ¢; = r.

LeEmMMA C.7.1. The numbers Ny, , = |Vi.n(x)| are independent of x € Vp, and are
given by Noo =1 and for m,n > 1

N = (0 D0+ D7 + a7 + D)™ g2y
Npo = (r+1)(¢*r* + qr + 1)(¢%")™ g*r
Now = (¢ +1)(*r* +qr + 1) (g"r*)" q.
PRrROOF. This is very similar to Lemma C.4.2. Figure C.7.1 is useful here. 0

The following rather complicated counts are proved as in Lemma C.4.4.



C.7. THE G2 CASE 137

LEMMA C.7.2. Lex x € Vp and z € Viy(x). Write aﬁ’f = |V () N Vha(z)| and
ﬁf}l = |Vij(x) " Vio(2)|. Then the numbers afj and 55}1 are independent of the particular
pair x, z with z € Vi (x), and are given by the following.

(i) If k> 1 and 1 > 2, then

;

q if (i,7) =(k—1,1+1)
e if (1,7) = (k— 1,1+ 2)
if (i,7) = (k,1—1)
ki J@=Dlgr+q+1) if (i,5) = (k1)
A P if (i,5) = (k,1+1)
qr if (1,5) = (k+ 1,1 —2)
qr? if (i,7)=(k+1,1—1)
0 otherwise.

(ii) If k > 1 and l = 1 the counts are as in (i), with the definition Vi1 —1(z) = Vi1(x).
(iii) If k> 1 and 1 = 0, then

(q+1 i (i.) = (k= 1,1)
¢*r(q+1) if (i,5) = (k—1,2)
ol =1 a-Dlg+1) 0,5 = (k0
1) i) = (1)
\0 otherwise.
(iv) If k=0 and l > 2, then
(1 if (i.4) = (0,1—1)
(¢—(gr+q+1) if (i,7) =(0,1)
N q*r? if (i,7) = (0,14 1)
R (Gt if (i,4) = (1,1 = 2)
¢’r(r+1) if (i,5) = (1,1 =1)
0 otherwise.

\

(v) If k=0 and | =1 the counts are as in (iv) with the definition Vi _1(z) = Vo1 (z).
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(vi) If k> 2 and | > 3, then

(¢ = 1)(r + D)g’r if (i) = (k= 1,1+2)
(¢ =1+ Dgr+(r—Dg*(gr +r+1) if (i,5) = (k1)
(4 - 1D)r + ar Fid)= (h+1,0-2)
(4 - 1)+ 1)g i Gg) = (k— 11+ 1)
(4 - 1)+ 1) i () = (1 — 1)
1 if (i,9) = (k—1,1)
i _ =D+ gt i ) = (k.1 + 1)
Y g if (i,§) = (k= 2,1+ 3)
q®r? if (i,§) = (k— 1,1+ 3)
qSrt if (i,7) = (k+ 1,1)
(g —1)(r+ 1)g3r? if (i,7)=(k+1,1—1)
e>r? if (4,5) = (k+2,1—3)
r if (i,5) = (k+ 1,1 —3)
U otherwise.

(vii) Ifk > 2 and | = 2 the counts are as in (vi) with the definition Vi1 —1(x) = Vi1 (x).
(viii) If k > 2 and | = 1, then

(4~ )(r +1)gr if (i.4) = (k—1.3)
2¢°r(qr — 1)+ ¢*(r = 1) if (i,5) = (k, 1)
q(gr+q—1) if (¢,7) = (k—1,2)
q—1 if (i,7) = (k,0)
1 if (i,7) = (k—1,1)
B = a*r(ar +q - 1) if (i, ) = (k,2)
¢r if (i,7) = (k—2,4)
q¢°r? if (i,7) = (k—1,4)
qbrt if (1,7) = (k+1,1)
(¢ —D)g*r? if (i,5) = (k+1,0)
\O otherwise.
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(ix) If k > 2 and | = 0, then

(¢~ D(g+1)(r+ Vg if (i,5) = (k—1,2)
(r=1(gr+r+1g  if (i,5) = (k0)
(- Dg+1) i) = (k—1,1)
1 if (i,7) = (k—1,0)
B =< (a—Dlg+ e’ if (i, j) = (k. 1)
(q-+ Dr i) = (k—2,3)
(¢ +1)g°r? if (1,7) = (k—1,3)
q°rt if (i,5) = (k+1,0)
0 otherwise.
(x) If k=1 and l > 3, then
(¢ =1+ 1Dg’r if (,5) = (0,1 +2)
(@ =1*(r+1Dar+(r=1(r+1)¢* +¢*r* if (i,5) = (1,1)
(¢ —=1)(r+ Lgr if (i,7) = (2,1 =2)
(g—1)(r+1)q if (1,5) = (0,1 +1)
(¢—1)(r+1) if (1,5) = (L1 =1)
1 if (i,4) = (0,1)
B = (g = D)(r+ )g'r? if (i,9) = (1,1+1)
qbr3 if (1,7) = (0,14 3)
q°r if (i,4) = (2,1)
(¢ = 1)(r+ 1)gr? if (i,5) = (2,1 = 1)
¢’r’ if (i,5) = (3,1 —=3)
r if (i,7) = (2,1 —3)
0 otherwise.
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(xi) If k=1 and [ =2, then

k1
Pij =

\

(¢=D(r+1)g’r

(=120 +Dgr+(r—1)(r+1)g* + ¢’r?
(¢ = 1)(r+1)gr

(¢—1)(r+1)g

qgr+q—1

1

(¢ = D(r+1)g*r?

q6T3

q6T4

@ri(qgr+r—1)
0

(xii) Ifk=1andl =1

k1
/67'7] -

(¢ 1)(r+ D

2(q — D)@ + (r — 1)(qr + 1)¢* + ¢3r?
qlgr+q—1)

qg—1

1

¢'r*(qr+q—1)

q6T3

q6T4

(¢ —1)g*r?
0

<

~.

<=

o~

~
AAAA/:/‘\/—\/—\A
< < < < < < < < <

~.

~— O T N N N~
~~ /N /N /N /N /N

.
N I e e L e R

.

~.

~.

<

~.

<
\‘@ .
|

if (1,5) =

otherwise.

~— N N N N~ N~
~~ N I~ /N I~ /N

<
—~ —~ —~ /3 —~ — — —~

"w < < < < < < <
l\D \’l\') \’O J—‘ \’O “i—‘ uO \.#—‘ \’O
o = =~ NN o= O (N} _ W
N—— S~— SN— S~— SN— SN— S~— N—— SN—

if (2 j) =

otherwise.

— NN Ot W NN = WO N
_ D D O DD 2D
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(xiii) If k=1 and | = 0, then

—~ o~ o~ o~ o~ o~~~

N o A o A ™ o
S 4 S o 4 S ™
SN— N— SN— SN— N— N— SN— .
| | | | [
R e e
&S S S S S S 1)
D
B e S s e S % 3T
~
[a\] [a\]
>
—~ &

—

YammS
+ — o
=

= + o
—~ N ™~ —~
— ~— —

+ + + +

= W = =
—~ —~ —~ —~ —~
— Al — — i
| _ | I+
S EE LSS o

N

I
-
< .3
Na)

=0 andl > 3, then

(xiv) If k

o~ o~ o~ o~ —~

—~
— NN —~4 M — M
[ R T I S
llllllll
—_ S —H O H S N -
((((((((.
L |
))))))))W
S S S S S S S s B
.Z? .Z./ teS e .Z? oS o~ .Z./ (8]
— N Y Y N N
BT BT RS % e w w3
N
=
—~
—
|
~
~—
—~
—
+
“
S~—
+
[aN}
3TT ~
S <t
~—/ N q
L R T e —~
— — —
L Y
[wy j=))
M ©
S = = S v
~—~~ I/ N —~~ —~
- = = = = =
+ 4+ + + 7+ + +
~ KX S 0« ~ S &
A N I S e e e e |
Il
~
<. <
Q.

(xv) If k=0 and |l = 2, then

o~ o~ o~ o~ o~ o~
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A~~~ /N /N /N
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o

—

—

+

~
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|
Y
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— —

T |5
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S5 E e &
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+ 1+ + o+
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otherwise.
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(xvi) If k=0 andl =1, then

(r+1)(g— Vg’ if (4,5) = (1,0)
(r+1)g’r if (i,3) = (0,1)

B = (r+ Dgr? if (i,5) = (0,2)
(r+1)g°r? if (4,5) = (L, 1)
0 otherwise.

Define

cg=(—-1(gr+q+1)
co=(q—1)*r+Dgr+(r—1(gr+r+1)¢* and
s = (q—1)’qr+ (r —1)g*.

Using the Lemma C.7.2 we obtain the following theorem.

THEOREM C.7.3. The operators A,,,, satisfy

No1AmnAor = qAm 1ni1 + ECrAm 1ni2 + Amn1 + ¢'r* A
+ qrAmiin—s + @r* Aot + c1Amn
NipAnnAig = qsrAmf2,n+3 +Ap_ 1+ q6T3Am71,n+3 + QBTBAerQ,nflS
+ 1t Appin + A 1ns + (= 1) (r+1) [qu,LnH + @' Ay
+ q37’Am71,n+2 + A1+ qriAmiin—2 + q3T2Am+1,n71} + oA,

where m > 1 andn > 2 in (C.7.1) and m > 2 andn > 3 in (C.7.2).
The special cases of Ay, nAoq1 are given by

NotAmi1Aor = qAm—12+ @1 Am_13+ Amo + ¢ Apo + ¢*r° Apgao
+ (c1 +qr)Ama

NogAmoAor = (¢+1) [Am_m + @A, 12+ (q—1)Apo + q3T2Am,1]

NoaAonAo1 = Aot + 1o, + Q4T2Ao,n+1 +q(r+1)A; 2
+@r(r+ 1A

No,1Ag1 Aoy = Agp + q4r2A0,2 +(r+1)¢°rAi o+ [01 +q(r + 1)}140,1 )

142

(C.7.1)

(C.7.2)

(C.7.6)

where in each case m and n are required to be large enough so that the indices appearing

on the right are all at least 0.
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The special cases of Ay, A1 are given by

NioAmaAio = 1Am o5+ Am12+ ¢°r* A1 5+ ¢®r* A0 (C.7.7)
+ (¢ —1)(r+1)[gAm—13+ ¢*rAm_14 + ¢’ Aps + qrAmi1,0]
+(qgr+q—1)(Apn1 + Er*Amii) + Co A2
NioAmi1Aig = @rAn oa+ Ap11 + @3 A 14+ ¢°r* A (C.7.8)
+(gr+q = 1)(qAn12+¢"mAs) + (g = D(Apo + ¢*r* A o)
+ (= D+ 1D)g*rAn 15+ [ea+ (¢ — 1)(r + 1)gr] Apa
NioAmoAig = Am_10+ " Aniio+ (@ + D)(P*rAn oz + ¢r*Ap_13) (C.7.9)
(@ = D)(Am11 + P’ Ann) + (& = 1)(r + 1D)@PrAn i
+(r=1)(gr +r+1)g* Ao
NipAipnArp = Ao + q6T3A0,n+3 +7rAs -3+ q6r4A2,n + q3r3A37n_3 (C.7.10)
+(@—1D)(r+1) [Al,n—l + @' A1+ qrion o+ ¢Pr* Ay,
+ qAons1 + @ rlonsn] + (2 +¢°r)Avy
NipAonAro = (r+1)[(¢ — 1) (Ao + ¢*1* Agns1) + csdoy + Ar s (C.7.11)
+ (= D)+ 1)(qA1n—2 + 1AL 1) + AL, + PP Ay, ]
NipAipA1 0= A+ q6r3A075 + q67“4A272 +(qgr+q—1)(A11+ q3r2A271) (C.7.12)
+ (2 + @*r)A1o + (g — 1)(r + 1)(qAos + ¢°rAgs + ¢*'r*Ar 3+ qrAsy)

Nl,OAO,QAl,O = (r + 1) [qAQJ + q6T3A172 + (q - 1)(_]47“2/10’3 + 03A072 (0713)
+ (¢ —1)(r+1)qAio+ (gr + ¢ — 1)¢°r A1,
Nl,OAl,lAl,O = A(),l + C]6T3A074 + C]6T4A271 + (q — 1)(14170 + q3r2A2,0) (0714)

+(gr + g —1)(qAoz + ¢*r*A1z) + (¢ — 1) (r + 1)¢*r Ag 3
+ [02 + Q3T +(g—1)(r+ 1)q7‘} Ay
NipgAp1Aip = (r+ 1)q37“ [AOJ + qerO’Q +(g—1Ai 0+ q?’rzALl] (C.7.15)
NioAigAip = Ao+ (¢* — 1) [Ao,1 + (r+1)¢°rAga + q3T2A1,1} (C.7.16)
+(q+1)¢°r* Ao 3 + [("“ —1*+ (¢ + 1)‘]27’2}141,0 + q6T4A2,0 )

where again in each case m and n are required to be large enough so that the indices
appearing on the right are all at least 0.

Let o be the linear span over C of { A}k ien-

COROLLARY C.7.4. &/ is a commutative algebra, generated by Ay and Ag ;.
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PROOF. It is an induction on (k,[) to see that o7 is the algebra generated by A; and
Ap1. By comparing (C.7.4) (with m = 1) and (C.7.15) we see that A; A1 = Ao141,

and so &7 is commutative. U

As in the BC, case, it is easy to see that the algebra homomorphisms h : &7 — C are
indexed by X/Ga, where X = {(21, 29,23) € (C*)? : 212923 = 1}, and the action of Gy on
X is given by permutations along with taking inverses of all entries.

Let p; = ¢*r% and p, = ¢*r. Suppose h : &/ — C is an algebra homomorphism, and
write T, = pLpsh(Amn). Let & = Nigpr*z1 and & = No1p; *2o1-

The following definitions will be useful.

ar=(q—1)(gr+q+1)py" =cipy’,
az = [(¢ = 1)*(r+ D)gr+ (r = 1) (gr +r+ 1)¢*] py' = copi ",
as = (¢g—1)(r+1)g 'rt.

LEMMA C.7.5. The complex numbers x,,, satisfy

Tmn+6 — ALm n4t5 + ﬁxm,n+4 + YT n+3 + ﬁxm,n—i—Q — OTmn+1 + Tmn = 0 )

where

a=E& —a
B=E&— (a3 —1)(§& —ar1) +3 —ay
’72251—(52—a1+2a3)(£2—a1)+4—2a2.

PrOOF. From (C.7.1) we have

(& — a1)Tpy = Tp—1041 + Th—1042 + Ty (C.7.17)
+ Trir1 + T2+ Ty
for k> 1 and [ > 2, and using (C.7.2) and the above we have
Krpg = xp 0143+ Tp—10 + Tho1043 + Thg1,-3 + Ty + Tpyoi-3 (C.7.18)

for kK > 2 and [ > 3, where K = & — a3y + aja3 — ay. We will use variations of the
fundamental formulae (C.7.17) and (C.7.18) to prove the lemma. Our aim is to give a
formula with all the first indices being m.
Adding two copies of equation (C.7.18), one with (k,[) = (m,n) and one with (k,[) =
(m,n + 1) gives
K(xm,n + $m,n+1) - $m—2,n+3 + :L‘m—Q,n+4 + xm—l,n + xm—l,n—i—l (6719)
+ Tm—1,n+3 + Tm—1,n+4 + Lm+1,n—3 + Tm+1,n—2

+ merl,n + xm+1,n+1 + xm+2,n73 + xm+2,n72
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valid for m > 2 and n > 3. Using (C.7.17), with (k,l) = (m — 1,n + 2), on the first two
terms on the right hand side of (C.7.19), and with (k,l) = (m + 1,n — 1) on the last two

terms gives

(K 4+ 2)(@mn + Tmnt1) = (&2 — a1) (Tm—1n12 + Tmt1n—1) (C.7.20)
+Tm1n + Tmi1n-3+ Tm_1ntda + Tt
valid for m > 2 and n > 3. Adding two copies of (C.7.20), one with (m,n) replaced by
(m,n — 1), gives
(K +2)(2%mn + Tmnt1 + Timpn—1)
= (& — a1)(Tm_1n12 T Tmt1n—1 + Tm—1.041 + Tmt1n—2)
+Tm1n + Tmrin—3 + Tm_1nra + Tt nrl
+ Tm—1n-1 1T Tmirin-ia T Tm-1,n+3 T Tmiin,
valid for m > 2 and n > 4, and so by using (C.7.17) with (k,l) = (m,n) we have
(K +2)2%Tmpn + Tmnt1 + Tmnn—1) (C.7.21)
= (& — a1)’tpp — (§2 — @) (Tmn1 + Tnntr)
+ Tomin + Tmgrin—3 + Tm—1nra + Tt nr
+ Tm—1n-1+ Tmiin-a+ Tm_1n+3 + Tmiin
for m > 2 and n > 4. Now, the last 8 terms on the right hand side of (C.7.21) may be
handled using (C.7.17), once with (k,l) = (m,n + 2) and once with (k,l) = (m,n — 2).
The result is
(K +2)(2%mn + Tmnt1 + Tmn—1)
= (& — 1)’ tpmn — (&2 — @) (@1 + Tnni1)
+ (&2 — a1)Tmnt2 — Tmpt1 — Tomynts
+ (€2 — @1)Tmn—2 = Tmn-3 — Tmn—1

valid for m > 2 and n > 4, which, after replacing n by n+ 4, proves the lemma in the case

m > 2. Similar arguments work using the lower order formulae in the cases m =0,1. [

THEOREM C.7.6. The algebra homomorphisms h : &/ — C are indexed by X/Go. If
21, 22, 23 and their inverses are pairwise distinct complex numbers with z1z023 = 1, then

pImpgn 2m—+n m

hz 22,2 Amn = E : ’ )

1,22, 3( s ) (1+q71)(1+7ﬁ71)<1+q717“71—'—q727’72) — C<U Z)Zo—l 20.2
g 2

where
c(z) =

(1—q 'z —q2) (A —q  z) (1 —r 2 2) (1 —r 2y tzg) (1 — 2y ' 2g) .
(1= 21— 2z) (1 — z3) (1 — 2z ") (1 — 2y M) (1 — 2 ' 23)
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Proor. With «, 3 and v as in the previous lemma, observe that v = 23 —2 —a? — 2a.

Thus if we set w to be a root of the quadratic 22 — az + 3 — a = 0, we have
A — N+ BAT AN+ BN —ad + 1 (C.7.22)
=(N-wN—(w-—a)A=1) (X + (w— )N +wr—1)
and so if z1, 29 and z3 are the roots of the first cubic, we have z12923 = 1. Since

Pt (w—a)z P twr T — =2 (P —wl — (w—a)z—1) =0

for z = 21, 2y, 23, we see that 2;', 2" and 23" are the roots of the second cubic on the

right hand side of (C.7.22). Thus the six roots of the sextic polynomial on the left hand
side of (C.7.22) are 21, 20, 23, 2, *, 25 |, 23 - Furthermore z;2p23 = 1.

Thus if 21, 20, 23, 27 1, 25 *, 25 ! are pairwise distinct, then
Tonn(21, 22, 23) = OV £ C@ 0 4 €O 0 L CWprn 4 OB om 4 CO)on - (C.7.23)
for all m,n > 0. By root-coefficient relations of (C.7.22) we calculate

Z1 Z9 Z9 z3 z3 Z1 1 1 1
SL=—+—"F—"+—"4+—F+—7Fa|xnt+tn+txnt+—+—+—|+ta
22 21 z3 22 21 z3 21 ) Z3

1 1 1
§2221+22+23+—+—+—+0J1,
Z1 Z9 z3

thus giving formulae for x; ¢ and xo ;. The symmetries in these formulae imply that

Cr(r?) (’217 22, Z3) = CT()%) <Z27 215 Z3) Cr(r?) (Zh 292, 23) = Cﬂ’%) (Z37 21, 22)
C,(:Ll)<2;1, 22, Z3) = Cﬁi)(Z’fl, 2517 zgl) Cr(r?)(zlv 22, 2’3) = Cr(r%)('z;lv Zflv zgl)
Cr(r?)<zl7 29, 23) = Cﬁi)(zg’l, 2t 2) Cy(i)(zh 29, 723) = Cy(i)(zh 23, 22) »

reducing the calculation to finding oW,
By (C.7.17) we see that for m > 1

(€= a1)C = 208, + ACH + 2700 + 200 + 27200, + 271 C5,
and so with some simplification we have
5200, — (o + )0 + 200 =0, m>0.
Solving the associated auxiliary equation we see that

Cf) = di(21, 22, 23) 21" 25" + do(21, 22, 23) 21" 24 (C.7.24)

for suitable functions d;(z1, 29, 23) and dy(z1, 22, 23). Since C’,(nl)(zl, 29,23) = C’%)(zl, 23, 22)
we see that dy(21, 20, 23) = dy(21, 23, 22)-
From (C.7.5) and (C.7.23) we have

(r+ Dr a7z + DO = [ —ar— 21— 276



C.7. THE G2 CASE 147

and so

iV (C.7.25)

The next thing to do is explicitly calculate 00(1). To do this, we need the initial con-
ditions of the recurrence in Lemma C.7.5, with m = 0. Thus we need to find zyy for
k=0,1,2,3,4 and 5. Firstly we have x99 = 1, 201 = p3N,1& and 219 = piN; g&. The
other formulae may be read off the following list;

(C 7.6) = To2 = 5237071 — [Cl + Q('f’ + 1)]p51$071 — (T + 1)7’711’170 — 20,0
(C.7.4
(C.75

)
) = 211 = qlqg+ 1) 10 — xo1 — o2 — (¢ — 1)g ' a1
) = w03 = Eaop — Tog — c1py Too — (r+ 1) [gpapi 1o — r w4 ]
(C.7.13) = 210 = r(r + 1) &m0 — w01 — (¢ — 1)g ‘w03 — rpy ' es200
—(qg=D(r+Dg v e —(gr+q—1)g 'r o,
(C.7.5) = o4 = Ea03 — Too — C1Py Toz — (r+ 1) topy — (r+ 1) 1oy,
(C.7.16) = 299 = & 1110 — 700 — (2 — 1)p5 ! [%,1 + (r+ 1)xoa + IE1,1}
— (g + 1 wos = [(r = 1) + (¢ + 1)g*r?| pr w1
(C.711) = 13 =r(r+ 1) " &mos — (¢ — g ‘w02 — (¢ — 1)g 204
— c3py pros — w10 — (@ = D(r + 1)g r e,
—(g=1D)(r+1)g 'r twp — a20
(C.7.5) = o5 = Eaoa — Tosz — C1py Toa — (1 + 1) oy — (r+ 1)r oy 3.

Plugging all of this information into Mathematica we see that

o _ (gz1 — 1)(20 — q) (121 — 20)(qz120 — 1)(rziz0 — 1)
(¢ +1D)(*r%+qr+ 1) (21 — 1)(21 — 22)(22 — 1) (2122 — 1)(2722 — 1)

Thus by (C.7.24) and (C.7.25) we are able to find

_ oar—1 (6121 - 1)(22 - C])(Zs - Q)(ml - 22)(7”21 - 23)(7”22 - 23)
ez z) = M = Do — ) (51— 20) (22 — )

where M = (¢ + 1)(r + 1)(¢*r* + qr + 1). The result follows. O

REMARK C.7.7. Let us recover the above formula from the general formula for A, (A)).
As in Appendix D we take F = {£ € R® | & + &+ & = 0}, a1 = e; — €9, and ay =
—2e1 + €5 + e3, and

RT = {e1 — €9, —€1 + €3, —ey + €3, —2€1 + e + €3, —2e5 + €1 + €3,2e3 — €1 — e}

Thus A\; = e3 — e (note the typo in [5, Plate IX]) and Xy = 3(2e3 — €1 — €3).
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Let u € Hom(P,C*) and write u; = u™ and uy = u?2. Let t3 = ug, ty = uguj’,
and t; = t;ltgl. Thus t1,ta,t3 € C*, titats = 1, and if ae; + bey + ce3 € P then
uaelerngrceg — tatbtc

1lal3-

Recall from (6.1.1) that

\

c(u) = H ﬂ’

1 —u2
acRt

@ in terms of ¢y, ta, t5, for « € RT. For example, u~(17¢2)" =

and so we need to compute u~
umerter = 71, and u~(F2erteates) — g zQe—er—es) — M2 — 952 = ty't;' =t,. Thus
we see that
() = (1-g ') —qg ')~ q’lti)(l - r’lflltgl)(l —jltltgl)(}l— T’thtgl)'
(1= t)(1 = t2)(1 = t3 ) (1 = taty ) (1 = tatzg ") (1 — tat3™)

Now umM+nde — oy = ¢m2m+" - By Proposition B.1.5 we see that q;:A/iMQ =p; "y ",

and by Lemma C.4.1 we have Wy(¢™") = (1+¢ A +r HQ+ ¢ rt + ¢ %72).
Finally, after permuting (1, t2,t3) — (3,1, t2) (which is fine, since h, is Gy-symmetric)

we see that the formula (6.1.1) agrees with the formula we obtained in Theorem C.7.6.
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APPENDIX D

The Irreducible Root Systems

The material in this appendix is taken from [5, Plates I-IX]. We give the following data.
(i) The underlying vector space E, and the root system R.
(ii)) A base B = {a;}", of R.
(iii) The set RT of positive roots (relative to B).
(iv) The highest root & (relative to B), and &".
(v) The set {\;}7, of fundamental coweights (relative to B).
(vi) A description of P/Q).
We write {e;}I".; for the canonical basis of R™. In expressions like te; £ e;, the £ signs
are to be taken 1ndependent1y.

D.1. Systems of Type A, (n > 1)

1) E={¢eR"™ &G+ + & =0}, and R={%x(e; —e;) | 1 <i<j<n+1}
i) a; =e; — e for 1 <v < n.

d:av—el—en+1:a1+ +an:)\1+)\n(:2)\11fn:1).
Ai = n:ill(ﬁ +-4e) — n+1 (€z+1 + - +epy) for 1 <i<n.

)
)
(iii) Rt ={e; —e; |1 <i<j<n+1}.
)
)
i) P/Q=Z/(n+ 1)Z and is generated by A+ Q.

D.2. Systems of Type B, (n > 2)

(i) E=R" and R={+e;,xejxe; |1 <i<n,1<j<k<n}

) a; =¢e; —eipg for 1 <i<n-—1,and o, = €.

(ili) RT ={ejej e |1 <i<n, 1<j<k<n}

Ja=a"=e +e=a;+2ay+ -+ 20, = \o.

)/\Z_e1+ +eifor1<i<n
i)

D.3. Systems of Type C, (n > 2)
E=R" and R ={%£2¢;,xe; te, |1 <i<n,1<j<k<n}

)
) =¢e;—eg for 1 <i<n-—1, and o, = 2e¢,.
(iii) Rt ={2¢e;,ej+e, |1 <i<n, 1<j<k<n}
)6[:261220414—20[24—"‘4—20(”,14-0[”, andciv:el:)\l.
150
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(V) i=e1+--+eforl<i<n-—1,and )\n:%(el+~-~+en).
(vi) P/Q = Z/2Z, and is generated by A, + Q.
D.4. Systems of Type D,, (n > 4)
(i) E=R" and R={£e; +e; |1 <i<j<n}

)
(i) oy =e; —e;p for 1 <i<m—1,and o, = €,,_1 + €.
(iii) R+—{eliej|1<z<]<n}
(IV) a = —61+€2—O&1+2062+ +2an—2+@n71+an:)\2-
VIN =e+--+e forl <i<n—2 A1 = 21+ +e,.1 —e,), and
2
An 5(61+---+6n).

(vi) If n is odd, then P/Q) = Z/4Z, and is generated by A\, + Q. If n is even, then
P/Q = (Z)2Z) x (Z)27), and is generated by A,_1 + @ and \, + Q.

D.5. Systems of Type Fjs
(i) E={R®| & = & = —&s}, and R consists of e; +¢; (1 <i < j <5), and

5 5
1 .
j:§ (eg —e7 — e+ Z(—l)”(’)ei) with Z v(1) is even.
i=1 i=1

.- 1

(i) a; = 5(61—62—63—64—65—66—67+68), Qg = €1+ €2, g = €3 — €1, iy = €3 — €2,
a5 = ey — ez, and ag = e5 — ey.

(iii) R* consists of the vectors e; +¢; (1 <1i < j <5), and

5
1
5 (68 —er —eg+ Z ”(Z 6,) with ; v(i) is even.

(IV) o= ON./V = %(61+62+63+64+65—66—67+68) = a1+2a2+2a3+3a4+2a5+a6 = /\2.
(v) The fundamental coweights are

2
)\125(68_66_67)
)\2:5(61—|—62+63+e4—|—e5—66—e7+68)

1 5
)\3 = 5(—61 + €92 —+ €3 + €4 —+ 65) —+ 6(_66 — €7 —+ 68)
Ay =e3+es+e5—eg—er+eg
2

)\5 =e4+e5+ §<_€6 —67—|—€8)

1
)\6 = €5 —+ 3(
(vi) P/Q = Z/3Z, and is generated by A\ + Q.

6—€7+€8)
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D.6. Systems of Type E;

(i) E={£€R®| & = —&}, and R consists of +e; £ e; (1 <i<j<6), £(er — es),

and
1 6 6
i§ (67 —es+ Z(—l)”(")ei) with Z v(i) odd.
i=1 i=1

.o o 1 o . .
(11) = 5(61—62—63—64—65—66—€7+€8), Qo = 61"—62, Q3 = €9 — €1, Oy = €3 — €9,
a5 = ey — €3, Qg = €5 — €4, and a7y = eg — e5.
(iii) R* consists of te; +e; (1 <i< j<6), —er +es, and

6 6
1 A
3 <e7 —es+ Z(—l)”(z)ei) with Z v(i) odd.
i=1 i=1

(IV) O~Z:O~1V :68—67:20(1+2(I2+30(3+40[4+30[5+2(16+O[7:)\1.
(v) The fundamental coweights are

)\1268—67
1
)\2:5(61+62+63+64+65+66—267+268)

1
)\3:5(—61—|—€2+€3—|—€4+€5—|—€6—367—|—368)

)\4:63+64+65+66—267+268
3

)\5:€4+€5+€6+5(€8—67)

)\6:€5+€6—€7—|—€8

1
)\7 = €4 + 5(68 — 67).

(vi) P/Q = Z/2Z, and is generated by \; + Q.

D.7. Systems of Type Fjs
(i) E = R®, and R consists of te; £¢; (1 <i < j <8),and 137 (~1)"@e; with

8 .
> g (i) even.

(i) ay = %(61_62_63_64_65_66_67+68)7 Qg = e1+e, 3 = €3 — €1, iy = €3 — €2,
5 = €4 — €3, Qg = €5 — €4, 07 = €g — €5, anda8:e7—66.

(iii) R consists of +e; +¢; (1 <i< j<8) and

7 7
1 .
5 <68 + ;(—1)”(Z)ei) with ; v(i) even.

(iv) @ = @Y = e7 + eg = 201 + 3 + dag + 6y + bas + dag + 3 + 20 = As.
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(v) The fundamental coweights are

)\1:268
1
)\2:5(61+€2+63+€4+65+66+€7+5€8)

1
A3=5(—61+62+eg+e4+e5+66+e7+7es)

Ay =e3+e4+ e5+ eg+ er + beg
As = es +es5+eg+er+4deg

A¢ = €5 + e + e7 + 3eg

A7 = €6 + e7 + 2eg

Ag = e7 + esg.

(vi) P =@, and so P/ is trivial.

D.8. Systems of Type F}

(i) E=TR* and R = {*e;,+e;tey, s(Ferteateztes) |1 <i<4,1<j<k<A4}

(il) ap = e — €3, ag = €3 — €4, (i3 = ey, and ay = ;(61—62—63—64)

(iii) Rt = {el,ejiek,z(eli@iegi&l)|1<z<4 1<j<k<4}.
)
)
)

=y

(IV =e; + ey = 20(1 + 30(2 + 40[3 + 20&4 )\1
(V 1= 61-'-62, )\2—2€1+€2—|—€3, )\3—3€1+€2—|—€3+€4, and )\4—261
(vi) P =@, and so P/ is trivial.

’@ygz
||

D.9. Systems of Type G,

1) E={eR| &+ &+ & =0}, and R consists of +(e; —e;) (1 <i < j < 3),
+(2e1 — ey —e3), £(2e5 — €1 — e3), and +(2e3 — 1 — €3).
il) ag = e —eg, and ay = —2e1 + €5 + e3.

~~

)
) R™ ={e; — ey, —e1 +e3,—ea + €3, —2e1 + €3 + €3, —2e5 + €1 + €3,2e3 — €1 — €3}
(iv) @ =2e3 —e; — ey, and &Y = %(263 —ep —e3) = \a.
) /\1 = —e9 + €3, and /\2 = %(263 — €1 — 62).
(vi) P =@, and so P/Q is trivial.

D.10. Systems of Type BC, (n > 1)

(i) E=R" and R = {£e;,+2¢;,te; £ e, |1 <i<n, 1 <j<k<n}
i) y =e; —epq for 1 <i<n—1, and o, = €.
(111) Rt ={e;,2¢,e; e, |1 <i<n, 1<j<k<n}
iv) @ =2e; =2(a1 + -+ ), and @Y = e; = \;.

YAMi=e +--+e forl <i<n.

i) P=@Q, and so P/Q is trivial.



APPENDIX E

Parameter Systems of Irreducible Affine Buildings

For an )?n building there n + 1 vertices in the Coxeter graph. The special vertices are

marked with an s. If all the parameters are equal we write ¢; = q.

~ q o 4 ~ do oo 41
All g—g BC'1: g—g
q
S
~ q q q
An(n = 2) 5 - 5
qo0
- Nl D Q% Q4 Gn
Bn(n > 3) 0 e o o ———o—o
S
~ do 4 1 ¢ ¢ q1 4 4o
C’n(n > 2) Se———e 9 o o 0o o— o @S
~ do 4 q1 ¢ ¢ Q1 4 4gn
BCn(n > 2) Se——e—9 o o ¢ o——o—0S
q q
- N ¢ q q
Dn<n > 4) q e o o q
S S
qS
q
EGZ
q
~ q q q g q q q
E7Z S S
q
~ q q (g q q q q q
Egl S
~ o qo do 4 44 G4
F4 So———o—o—o
~ o do 6 Q1
G2 Se—eo—o
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