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Abstract. Let G be a complex connected reductive group which is defined over R,
let G be its Lie algebra, and T the variety of maximal tori of G. For ξ ∈ G(R), let
Tξ be the variety of tori in T whose Lie algebra is orthogonal to ξ with respect to
the Killing form. We show, using the Fourier–Sato transform of conical sheaves on
real vector bundles, that the “weighted Euler characteristic” (see below) of Tξ(R) is

zero unless ξ is nilpotent, in which case it equals (−1)
dimT

2 . This is a real analogue
of a result over finite fields, which is connected with the Steinberg representation of
a reductive group.

1. Introduction and notation

Let X be a complex algebraic variety which is defined over R (see [BT, Bo, Spr]
for background concerning this notion). The Galois group Γ := Gal(C/R) = 〈σ〉
acts on X continuously (in fact anti-holomorphically), and we speak of the fixed
points Xσ := X(R) as the variety of real points of X. This is known [W] to have
a finite number of path connected components, each of which is an analytic variety
of dimension equal to dimX. In this work, we present two results concerning the
“weighted Euler characteristic” of X(R), when X is a certain variety associated with
a complex reductive group G which is defined over R. Specifically, our varieties X
will be closed subvarieties of the variety of maximal tori of G. Here “weighted Euler
characteristic” means the sum of the Euler characteristics of the components of X(R),
each one weighted by a sign which will be defined shortly.

Our results here are analogues of those of [Le2], where the varieties considered were
over fields of positive characteristic, and where the Frobenius endomorphism played
the role of complex conjugation. The weighted Euler characteristics which we compute
are real analogues of the character formula for the Steinberg function on a finite Lie
algebra and its Fourier transform (see [Le2, Le1]). Our main results below may be
regarded as a realisation of the remarks [Le2, p. 49].

The proof of these results depends on the construction of two complexes of equi-
variant sheaves on the Lie algebra of G, one of which is known to be perverse, which
have equal “characteristic functions” (see §7.2 below). We then employ an equivariant
version of the Fourier–Sato transform functor on the derived category of the category
of equivariant conical sheaves on a real vector bundle, as expounded by Kashiwara
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and Schapira [KS]. After showing that the Fourier transform functor respects charac-
teristic functions, we apply the Fourier transform to our complexes, and our results
emerge when the respective characteristic functions are identified.

It is an interesting question whether the complexes mentioned are actually equal in
the derived category of equivariant sheaves.

1.1. Description of the main results. Let X be a complex variety with a real
structure as above. Let F be a field of characteristic zero, and suppose L is a local
system (i.e. locally constant sheaf) of F-vector spaces on X, which is Γ-equivariant in
the sense that we have an isomorphism of sheaves ασ : L ∼−→ σ∗L. Then ασ induces
endomorphisms which we refer to as σ, of the cohomology of L with compact supports,
H i
c(X,L), and we define

(1.1) Λc(σ,X,L) =
∑
i

(−1)i Trace(σ,H i
c(X,L)).

Our main results give explicit values of Λc(σ,X,L) for particular pairs X,L. In §4
we explain how Λc(σ,X,L) may be interpreted as a weighted Euler characteristic
(see Theorem 4.5), as follows. The subspace of real points of X is a finite disjoint
union Xσ = qCC of connected components, and for x ∈ C, the value of Trace(σ,Lx)
depends only on C. Writing Trace(σ,L|C) for this common value, we have

(1.2) Λc(σ,X,L) =
∑
C

Trace(σ,L|C)χc(C),

where χc denotes the Euler characteristic with compact supports.
Let G be a connected reductive linear algebraic group over C, which is defined

over R. We write B for the variety of Borel subgroups of G, T for the variety of
maximal tori of G and P for the variety of “Killing pairs” (cf. [SGA3, Exposé XXII])
{(B, T ) | B ∈ B, T ∈ T , B ⊇ T}. The varieties B, T and P all have real structures,
and the second projection p : P −→ T is a Galois covering whose Galois group is the
“absolute Weyl group” W of G. If F denotes the constant sheaf on P, the pushdown
p!F is the local system on T which corresponds to the regular representation of W .
Assuming F to be algebraically closed, we have a decomposition

(1.3) p!F = ⊕E∈ŴE ⊗ SE ,
where SE is the irreducible local system on T which corresponds to the irreducible
representation E of W . The local system SE is Γ-equivariant precisely when the
representation σE of W is equivalent to E (in the obvious notation).

The automorphism which σ induces on W is realised as a linear conjugation in the
representation of W as a reflection group. Hence reflections are taken to reflections,
and it follows that the invariance condition above is satisfied when E = ε, the sign (or
alternating) representation of W . This leads to the

Definition 1.4. The Γ-equivariant local system Sε on T is the local system SE of
(1.3), with E = ε.

Now let G be the Lie algebra of G. Clearly G is also defined over R and inherits
a σ-action. Moreover G has an Ad(G) invariant non-degenerate form which we may
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assume is defined over R. When G is semisimple, this may be taken to be the Killing
form. We write this form 〈 , 〉 : G×G −→ C, and note that 〈G(R),G(R)〉 ⊂ R.

Definition 1.5. Let ξ ∈ G(R) and define R-varieties T ξ and Tξ as follows.

(1.6) T ξ = {T ∈ T | LieT 3 ξ}

(1.7) Tξ = {T ∈ T | 〈LieT, ξ〉 = 0}.

Observe that T ξ is empty if ξ is not semisimple.
Our main results are the next two theorems.

Theorem 1.8. With notation as indicated above, we have for any semisimple element
ξ ∈ G(R),

(1.9)
∑

C⊂T ξ(R)
connected
component

χc(C) · ε(C) = ε0(G)Λc(σ, T ξ,Sε) = ε0(ZG(ξ)0)ε(vξ)(−1)N(ξ) = ±1,

where ε(C) is the common value of the sign (see (2.3)) of the maximal tori in the
connected component C, ε0(H) is the index (2.7) of any connected reductive group H
defined over R, vξ is the type (2.6) of a maximally split torus of ZG(ξ)0, and N(ξ) is
the number of positive roots of ZG(ξ)0.

Theorem 1.10. Maintaining the above notation, we have for any element ξ ∈ G(R),

(1.11)
∑

C⊂Tξ(R)
connected
component

χc(C) · ε(C) = ε0(G)Λc(σ, Tξ,Sε) =

{
(−1)N ε0(G) if ξ is nilpotent
0 otherwise ,

where N is the number of positive roots of G.

1.2. Outline of the basic strategy. For any σ-stable maximal torus T of G, the
covering G/T → T is a Galois twist (see (3.20), (3.18) in §3) of p : P → T . Among the
G(R)-conjugacy classes of maximal tori in T σ, there is a distinguished one consisting
of “maximally split” tori (see Lemma 2.1 below); this enables us to attach a sign ε(T )
to any maximal torus T ∈ T (R). Sections 2 and 3 are devoted to the study of these
signs and twists, and their Galois cohomological classification using H1(Γ,W ). This
leads to the proof in §5 of Theorem 1.8, which is fairly straightforward, and proceeds
essentially by induction on the semisimple rank of G.

The proof of Theorem 1.10 involves the Fourier–Sato transform construction men-
tioned above. Let E be a complex vector bundle defined over R with its anti-
holomorphic involution σ. The category Db

cc(E;σ,F) is the category of complexes
of σ-equivariant F-vector space sheaves on E, whose cohomology sheaves are conical
(see (6.1.1) below) and constructible with respect to some σ-equivariant semi-algebraic
stratification. Sections 6 and 7 are devoted to an exposition of the basic properties
of this category, and of the Fourier–Sato transform functor FE : Db

cc(E;σ,F) −→
Db

cc(Ě;σ,F), where Ě is the dual of the bundle E. This is based largely on [BBD, KS].
If K• is a complex in Db

cc(E;σ,F), we define the orbit characteristic function χK• :
E/Γ −→ R(Γ), where R(Γ) is the representation ring of Γ (see (7.13)), and the
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associated characteristic function ΛK• : E(R) → F, which is given by taking the trace
of σ on χK•(ξ), for ξ ∈ Eσ = E(R) ⊆ E/Γ. A key property (see Proposition 7.15) of
these functions is that if K• and M• are complexes in Db

cc(E;σ,F) such that χK• =
χN• , then χFEK• = χFEN• . This is used in the proof of Theorem 1.10 as follows.

First, we define a complex K• ∈ Db
cc(G;σ,F) for which it is easy to see that the

characteristic function χK• : G(R) −→ F coincides with the function ξ 7→ Λc(σ, T ξ,Sε)
(for ξ ∈ G(R)). We then show that there is a shift M• ∈ Db

cc(G) of a perverse sheaf in
Db

cc(G), whose orbit characteristic function coincides with that of K•. The complex
M• arises from Lusztig’s construction of the Springer representations of W from the
Grothendieck-Springer covering of G. This is carried out in §8. Finally we compare
the characteristic functions of the Fourier–Sato transforms of the two complexes and
use Proposition 7.15 to obtain the formula (1.11) of Theorem 1.10.

1.3. Notation. If H is a subgroup of G and x ∈ G, we denote by xG the conjugate
xGx−1. If α is an automorphism of H, we write α(h), or equally αh, for its action,
and αM for the twist of an H-module M by α (where h ∈ H acts on M via αh).

For any complex variety X with a real structure as above, a point x ∈ X or
subvariety Y ⊆ X will be called real if it is σ-stable.

2. Maximal tori in algebraic groups defined over R

As in §1, let G be a complex connected reductive linear algebraic group defined
over R. Let T0 be a real maximal torus of G which contains a maximal R-split torus
S of G.

Lemma 2.1. The maximal torus T0 is unique up to conjugacy under G(R).

Proof. If T is another real maximal torus containing S, then T0/S and T/S are
anisotropic maximal tori of ZG(S)/S, which is again a reductive group defined over R.
Since two compact maximal tori of a connected reductive Lie group H are conjugate
in H, it follows that T0/S and T/S are conjugate by an element of (ZG(S)/S)(R).
Since S is R-split, the Galois cohomology H1(R, S) is trivial by Hilbert’s Theorem 90
(cf. [Se, p. 51]), the map ZG(S)(R) −→ ZG(S)/S(R) is surjective, and hence T and
T0 are conjugate under G(R). Finally, by [Spr, 15.2.6], any two maximal split tori of
G are also conjugate under G(R), which proves the assertion. �

It follows from Lemma 2.1 that there is a distinguished G(R) conjugacy class of
“maximally split” real maximal tori in G. Suppose T0 is as above, and let N0 :=
NG(T0), and W0 := N0/T0. These groups all have a Γ action. The Weyl group W0

has a natural action on T0, and hence on the character group X(T0) = Hom(T0,C×)
and on the co-character group Y (T0) = Hom(C×, T0). The involution σ also acts on
T0, and we denote by 〈W0, σ〉 the group of automorphisms generated by σ and the
elements of W0. If w ∈W0, σ(w) denotes the image in W0 of w under the σ-action on
W0, while σw denotes the composite homeomorphism σ ◦ w of T0.

Suppose T is any real maximal torus of G. Then T = gT0g
−1 for some g ∈ G,

and since σT = T , g−1σ(g) ∈ N0, and using the surjection N0 −→ W0, we obtain
an element w ∈ W0, which is easily checked to be uniquely determined by T up
to σ-conjugacy, where w1, w2 are σ-conjugate if there exists w ∈ W0 such that w2 =
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ww1σ(w−1). If ε is the sign character ofW0, then since σ takes reflections to reflections,
we have for w ∈W0, ε(σ(w)) = ε(w), whence

Lemma 2.2. If w1 and w2 are σ-conjugate elements of W0, then ε(w1) = ε(w2).

It follows from Lemma 2.2 and the above discussion, that we may now make the

Definition 2.3. Let T be a maximal torus of G which is defined over R. The sign
ε(T ) of T is defined as ε(w), where w ∈ W0 is any element of the σ-conjugacy class
of W0 corresponding to T as above.

For any group H with a σ-action, let us write Hσ for the set {x ∈ H | σ(x) = x−1},
and denote by λ : H → H the map λ(x) = x−1σ(x). Clearly λ(H) ⊆ Hσ. Moreover,
the set of σ-conjugacy classes of Hσ can be indentified with the Galois cohomology
group H1(Γ,H) (see §3.1). If T is a maximal torus defined over R as in Definition (2.3),
the element w ∈W0 associated above to T lies in (W0)σ, and so the above construction
associates with T a well-defined element of H1(Γ,W0). It is easy to see from the
definition that this map is constant on G(R)-conjugacy classes of tori.

Proposition 2.4. The map T (R)/G(R) −→ H1(Γ,W0) described above is injective.

Proof. Suppose g, h ∈ G are such that λ(g) and λ(h) are in the same σ-conjugacy
class of W0. We want to show that gT0 and hT0 are conjugate under G(R). After
modification by some v ∈ W0, we may suppose that λ(g) = λ(h)t, for some element
t ∈ T0. Then writing y = gh−1, we have y−1σ(y) = σ(h)tσ(h)−1 = t′ ∈ (T )σ, where
T = σ(h)T0σ(h)−1 = hT0h

−1. By [She, Cor. 2.3], it follows that y−1σ(y) ∈ T 0
σ ,

where T 0
σ is the connected component of the identity of the real Lie group Tσ. Since

λ : T → T 0
σ is surjective for any complex torus T defined over R, a fact which is easily

checked, there is an element t ∈ T such that λ(y) = λ(t), whence λ(ty−1) = 1, i.e.
Gσ 3 ty−1 = r ∈ G(R). But t = ht0h

−1 for some t0 ∈ T0, so that ty−1 = ht0g
−1 = r,

whence ht0 = rg. Hence hT0 = ht0T0 = r(gT0) as required. �

Remark 2.5. Although the map of (2.4) is not generally surjective, it can be shown to
be surjective in certain cases, e.g. when G = GLn (a straightforward calculation) or
when G is quasi-split (cf. [Gi], [R]).

Definition 2.6. (i) If T ∈ T (R), we shall refer to the image of T under the map
in Proposition 2.4 as the type of T . By abuse of notation, we regard the type
as an element of (W0)σ ⊂W0.

(ii) If ξ is a semisimple element of G(R), the connected centraliser ZG(ξ)0 is a
connected reductive group defined over R. It therefore has a maximally split
maximal torus Tξ, unique up to conjugacy by ZG(ξ)0(R). The type of Tξ as a
maximal torus of G will be referred to as the type of ξ.

(iii) Similarly, we speak of the sign ε(T ) (see 2.3) (resp. ε(ξ)) of a σ-stable max-
imal torus (resp. a semisimple element ξ ∈ G(R)), the latter being the sign
of Tξ.

To complete the definitions of terms used in the introduction, we define the index
ε0(G) of G. For this we choose a Borel subgroup B0 containing the fixed maximally
split torus T0. Note that unless G is quasi-split, there is no Borel subgroup defined
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over R, so B0 is not necessarily σ-stable. Let v0 ∈ W0 be the element such that
σ(B0) = v0B0. It is not hard to check that the σ-conjugacy class of v0 does not
depend on the choice of B0 ⊃ T0. Hence by Lemma 2.2 the following definition is
unambiguous.

Definition 2.7. Let G be a reductive group over R. We define the index ε0(G) of G to
be the sign ε(v0) ∈ {−1, 1} of the v0 ∈W0 such that σ(B0) = v0B0 for any maximally
split torus T0 and any Borel subgroup B0 containing T0.

3. Galois cohomology, twisting and W -torsors

In this section we recall some of the terminology and results of [Se, §5], adapted to
our situation. We take the group “G” of [Se, loc. cit.] to be Γ = 〈γ〉, where γ acts
as an involutory automorphism on the group W , denoted by w 7→ γw = γ(w). Our
starting point is therefore a pair (W,γ), where W is a finite group and Γ ∼= Z/2Z = 〈γ〉
acts on W as an automorphism group. We shall refer to this as a “Galois pair”.

3.1. Galois Cohomology. Since Γ = {1, γ}, a 1-cocycle a of Γ with values in W
is determined by its value aγ at γ ∈ Γ. This must satisfy aγ2 = aγ(γaγ) = 1, i.e
γaγ = a−1

γ , so that aγ ∈ Wγ := {w ∈ W | γ(w) = w−1}. Thus a is determined by
aγ ∈ Wγ and it is easily checked that w1, w2 ∈ Wγ represent cohomologous cocycles
precisely when w2 = vw2

γv−1 for some v ∈W . We say that w1, w2 are γ-conjugate if
they are so related.

The above observation leads to

Lemma 3.1. (i) The set of Galois cocycles Z1(Γ,W ) of the pair (W,γ) is nat-
urally isomorphic to the pointed set Wγ with the identity of W being the
distinguished (‘trivial’) element.

(ii) The Galois cohomology set H1(Γ,W ) of the pair (W,γ) is naturally isomor-
phic to the pointed set of γ-conjugacy classes of Wγ with the γ-conjugacy class
of the identity being the distinguished (‘trivial’) element.

Definition 3.2. (i) A (left) (W,γ)-torsor (cf. [Se, 5.2]), is a finite set X with a
regular (left) W action, and a compatible (left) Γ action. Thus for x ∈ X and
w ∈W , we have γ(w ·x) = γ(w) · γ(x). When there is no danger of confusion,
we shall speak simply of W -torsors.

(ii) A pointed (left) (W,γ)-torsor is a pair (X,x), where X is a (left) (W,γ)-
torsor and x is any point of X.

Two W -torsors X,X ′ are equivalent if there is a bijection φ : X → X ′ which satisfies
the obvious requirements. Similarly, we have an obvious notion of equivalence of
pointed W -torsors.

If (X,x) is a pointed W -torsor, then γx = v(X,x) · x for some (unique) element
v(X,x) ∈ W . It is easily verified that v(X,x) ∈ Wγ , and that the cohomology class of
v(X,x) depends only on X.

Definition 3.3. For any W -torsor X define [X] ∈ H1(Γ,W ) by [X] :=
(
v(X,x)

)
γ, the

γ-conjugacy class of v(X,x), where γx = v(X,x) · x as above.
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Proposition 3.4. (i) ([Se, Proposition 33, p. 47]) The map X 7→ [X] defined
in (3.3) induces a bijection between equivalence classes of (W,γ)-torsors and
the set of cohomology classes H1(Γ,W ).

(ii) The map (X,x) 7→ v(X,x) used in (3.3) induces a bijection between equivalence
classes of pointed (W,γ)-torsors and the set of cocycles Z1(Γ,W ).

Recall that we refer to (1)γ ∈ H1(Γ,W ) as the trivial cohomology class. The next
statement is clear.

Lemma 3.5. The W -torsor X corresponds to the trivial cohomology class under the
map of Lemma 3.4(i) if and only if γ has a fixed point on X.

3.2. Galois pairs and group extensions. Let (W,γ) be a Galois pair. Consider
the semidirect product W̃ := WoΓ. The element (1, γ) ∈ W̃ which corresponds to
γ ∈ Γ will be denoted γW , or simply γ when there is no risk of confusion. We have
an extension of groups

(3.6) 1 →W → W̃ → Γ → 1

with a distinguished section that sends γ ∈ Γ to γW ∈ W̃ . Conversely, any exten-
sion (3.6) with a section ψ : Γ → W̃ defines a Galois pair (W,γ), where γ acts on W
as conjugation by ψ(γ).

Let X be a (W,γ)-torsor. If x ∈ X, then x
γ7→ γx

w7→ w · γx γ7→ γw · x. Hence among
the transformations of X we have the relation γ ◦ w ◦ γ = γw, from which the next
statement is evident.

Lemma 3.7. There is a natural 1–1 correspondence between (left) (W,γ)-torsors and
(left) W̃ -sets that are regular as W -sets.

Corollary 3.8. Let (W,γ) and (W ′, γ′) be two Galois pairs. Any isomorphism
ρ : W̃ → W̃ ′ compatible with the projections W̃ → Γ and W̃ ′ → Γ naturally gives
rise to a bijection between the set of (W,γ)-torsors and the set of (W ′, γ′)-torsors.

The corresponding isomorphism

H1(Γ,W ) ∼→ H1(Γ,W ′)

is given by (v)γ 7→ (v−1
ρ ρ(v)), where vρ ∈W ′ is such that ρ(γW ) = vργ

′
W ′.

Proof. The first part follows immediately from the preceding lemma; the second part
is then easy to verify. �

The extension (3.6) comes with the section γ 7→ γW . For an arbitrary section
ψ : Γ → W̃ , define vψ ∈W by ψ(γ) = vψγW .

Lemma 3.9. We have vψ ∈ Wγ. Further, the map ψ 7→ vψ defines a 1–1 correspon-
dence between sections

ψ : Γ → W̃

of the extension (3.6) and cocycles vψ ∈ Z1(Γ,W ).

Proof. Since ψ(γ) is an involution, we have γW vψγW = v−1
ψ , proving the first assertion.

The bijective nature of this correspondence follows easily. �
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Corresponding to the section ψ : Γ → W̃ , we have the Galois pair (Wψ, γψ) in which
γ ∈ Γ acts on W via the involution γψ := int vψ ◦ γ, where int vψ denotes conjugation
by vψ.

In general, a twist of the Galois pair (W,γ) (cf. [Se]), is a Galois pair of the form
(W,γv) := (W, int v ◦ γ), for some v ∈ Wγ . Observe that W acts both on the set of
Galois pairs (via (W,γ) w7→ (W, intw−1 ◦ γ ◦ intw)), and on the set of sections ψ of
the extension (3.6), by conjugation. In each case the set of equivalence classes may
be identified via (3.9) with H1(Γ,W ). We summarise this in the following extension
of (3.9).

Lemma 3.10. Let (W,γ) be a Galois pair. The following sets are in canonical bijec-
tion:

(i) The twists (resp. equivalence classes of twists) of (W,γ).
(ii) The sections (resp. equivalence classes of sections) ψ of the extension (3.6).
(iii) The set Z1(Γ,W ) (resp. H1(Γ,W )).

Now by Corollary 3.8, the identity map on W̃ induces an isomorphism

(3.11) H1(Γ,W ) → H1(Γ,Wψ)

given by (v)γ 7→ (v−1
ψ v)γψ .

The next two lemmas are simple observations, which will be used to relate repre-
sentations of W̃ to W -torsors.

Lemma 3.12. Let (X,x) be a pointed (W,γ)-torsor, and let W̃x ≤ W̃ be the stabiliser
of x in W̃ . Then there is a canonical isomorphism of pointed (W,γ)-torsors

(W̃/W̃x, W̃x) ∼→ (X,x).

In particular γW W̃x = v(X,x)W̃x.

To identify the stabiliser groups, we have

Lemma 3.13. Let (X,x) be a pointed (W,γ)-torsor with corresponding cocycle
v(X,x) ∈ Z1(Γ,W ) (Def. (3.2)). Then W̃x = ψ(Γ), where ψ : Γ → W̃ is the section
corresponding to v−1

(X,x) (Lemma (3.9)).

We apply this to give a convenient way of describing the cohomology of a torsor
(considered as a topological space endowed with the discrete topology). Here we take
coefficients in an arbitrary field F of characteristic zero.

Corollary 3.14. Let (X,x) be a pointed W -torsor. Let W̃x ⊂ W̃ be the stabiliser of
x. Then the W̃ -representation

H0(X,F) =
⊕
y∈X

F

is isomorphic to the induced representation IndfWfWx
F.

We shall use the following explicit calculation in §5 in the proof of Lemma 5.2.
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Lemma 3.15. Let (X,x) be a pointed (W,γ)-torsor. Let α : W̃ → F∗ be a 1-
dimensional representation of W̃ in which the element γW ∈ W̃ acts trivially. Then
the Γ-module HomW (α,H0(X,F)) has dimension 1, and γ acts as α(v(X,x)), where
v(X,x) is the cocycle corresponding to (X,x) considered as an element of Wγ ⊂W .

Proof. (Compare the proof of [Le2, Lemma 7.12].) Observe that since H0(X,F)
is just the regular W -module, HomW (α,H0(X,F)) is one-dimensional, with ba-
sis element

∑
v∈W α(v)−1vW̃x, where the basis elements of H0(X,F) are iden-

tified (3.14) with cosets of W̃x. By the last sentence in Lemma 3.12,
γW

∑
v∈W α(v)−1vW̃x =

∑
v∈W α(v)−1γ(v)γW W̃x = α(v(X,x))

∑
v∈W α(v)−1γ(v)W̃x,

which equals α(v(X,x))
∑

v∈W α(v)−1vW̃x by the hypothesis on α. �

3.3. Unramified coverings and the absolute Weyl group. Let p : P → T be
an arbitrary unramified Galois covering of nonsingular complex algebraic varieties
defined over R (i.e., P, T and p are all defined over R). Let W be the Galois group of
covering transformations of the covering p : P → T . Then Γ := Gal(C/R) = 〈σ〉 acts
via antiholomorphic involutions σP and σT respectively on P and T , compatibly (i.e.
commuting) with the projection p. Hence the involution σP normalises the group W

of covering transformations, and the semidirect product W̃ = 〈W,σP〉 acts on P as a
group of transformations respecting the projection P → T /Γ.

Remark 3.16. Readers familiar with orbifold theory will recognise W̃ as the Galois
group of the covering P → T /Γ of the orbifold T /Γ; readers familiar with Galois
theory of schemes will recognize this as the Galois group of the covering P ×Spec R
Spec C → T of the R-scheme T .

The covering p : P → T defines an exact sequence

(3.17) 1 →W → W̃ → Γ → 1

with a section Γ → W̃ given by σ 7→ σP , and an action of Γ on W given by σ · w =
σP ◦ w ◦ σP . This data defines a Galois pair (W,γ) as in §3.

Definition 3.18. A (Galois) twist of the covering p : P → T is a covering p′ : P ′ →
T , where P ′ is a complex variety with real structure corresponding to an involution
σP ′ and p′ commutes with the real structures σP ′ and σT on P ′ and T respectively,
such that there is an isomorphism of complex varieties φ : P → P ′ with p = p′◦φ. The
isomorphism φ canonically identifies the groups W and W̃ with W ′ and W̃ ′ respec-
tively, since W = φ−1W ′φ, etc. We say that p′ : P ′ → T is equivalent to p : P → T
if φ can be chosen so that φ−1σP ′φ = σP . This clearly defines an equivalence relation
on the set of Galois twists.

Proposition 3.19. (cf. (3.10)) There is a bijection between the set of equivalence
classes of twists of the covering P → T and the Galois cohomology set H1(Γ,W ).

Proof. Any section ψ : Γ → W̃ of the extension (3.17) gives rise to a an antihomolo-
morphic involution σψ = ψ(σ) on P, hence to a different real structure on P which
still commutes with the projection p and the real structure of T . We therefore obtain
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a covering p′ : P ′ → T , where p′ = p and P ′ = P, but with the new real structure σψ.
This is a twist (see (3.18)) of the original covering, and since W is the group of all
automorphisms of the covering p, ψ and ψ′ give equivalent twists if and only if they
are conjugate in W .

By Lemma 3.10, it remains only to show that every twist is equivalent to one
arising from a section as above. If P ′ → T is any Galois twist of the covering p,
then there is an isomorphism φ : P ∼→ P ′, which defines a section Γ → W̃ given by
ψ : σ 7→ σ′ = φ−1 ◦ σP ′ ◦ φ ∈ W̃ . It is easily checked that P ′ → T is equivalent to p,
with P having real structure given by σ′ = ψ(σ).

�

Now take P and T as in §1. Then, as the notation suggests, the Galois group W can
be considered as the ‘absolute’ Weyl group of G. Indeed, any pair (T,BT ) consisting
of a maximal torus T ⊂ G defined over R and a Borel group BT ⊂ G containing
T determines isomorphisms G/NG(T ) ∼→ T and G/T

∼→ P of complex algebraic
varieties defined by sending the coset gNG(T ) ∈ G/NG(T ) (resp. gT ∈ G/T ) to the
torus gT (resp. the pair (gT, gBT ) ∈ P). These isomorphisms are clearly compatible
with the covering projections G/T → G/NG(T ) and P → T . The isomorphism
G/NG(T ) ∼→ T is clearly defined over R. However in general there may be no BT
which is defined over R. Thus the natural covering G/T → G/NG(T ) of complex
algebraic varieties defined over R is a twist (see (3.18)) of the covering P → T .
Now the Galois group of the covering G/T → G/NG(T ) is canonically isomorphic
to WT = NG(T )/T , with the Γ-action on NG(T )/T corresponding to conjugation by
the antiholomorphic involution σG/T of G/T . Hence our choice of BT determines
isomorphisms W ' WT and W̃ ' W̃T . If BT is replaced by B′

T , then B′
T = intwBT

for some element w ∈ WT . Hence the isomorphism G/T → P is composed with an
element of the Galois group of the covering P → T , and the isomorphism W 'WT is
composed with conjugation by w ∈WT .

This discussion is summarised in the next result.

Lemma 3.20. Let T be a σ-stable maximal torus of G, and write WT for the Weyl
group of G with respect to T . Then

(i) There is a canonical isomorphism, uniquely determined by T , of Γ-varieties
G/NG(T ) ' T .

(ii) Any Borel subgroup BT ⊇ T determines an isomorphism of complex varieties

G/T
φT−→ P. This isomorphism is uniquely determined by T up to composition

with an element of the Galois group W of P → T .
(iii) If pT : G/T → T ' G/NG(T ) is the covering arising from the identification

(i), then pT = p ◦ φT for any choice of φT . Thus pT is a well-defined Galois
twist of p.

(iv) (cf. (3.18)) The isomorphism φT defines isomorphisms WT
∼→W and W̃T →

W̃ . These isomorphisms are uniquely defined by T , up to (composition with)
conjugation by an element of WT .
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We are particularly interested in the case where T = T0 as in §2. We then write
B0 := BT0 , W0 := WT , etc. We will identify G/NG(T0) and T .

Remark 3.21. We have adopted the convention that Galois groups of Galois coverings
act on the left. This means that the Galois group WT = NG(T )/T acts on G/T by
w · gT = gw−1T .

Lemma 3.22. With notation as above, we have
(i) The coverings p : P → T and p0 : G/T0 → T are twists of each other (3.18).
(ii) The two coverings are isomorphic over R if and only if G is quasi-split.
(iii) Under the isomorphism W̃ ' W̃0 determined by B0, σP = v−1

0 σG/T0
, where

v0 ∈W0 is such that σ(B0) = v0B0.
(iv) The class in H1(Γ,W0) corresponding to the twist P → T of the covering

G/T0 → T is represented by the cocycle v−1
0 defined above.

Proof. This is all clear from the above discussion, provided we know that if G is quasi-
split then G has a σ-stable Borel subgroup containing T0. This last assertion may be
justified as follows. Let B be a σ-stable Borel subgroup of G. Then B contains
a maximal torus T which is σ-stable (see [BT, Théorème 2.14(i)]), and clearly the
unipotent radical U of B is σ-stable. It follows from [BT, Corollaire 3.18, p.82] that
U is split over R, from which it follows that T = S0Z, where S0 is a split torus of rank
equal to the semisimple rank of G, and Z = Z(G), which is also σ-stable. It follows
that if Zs is the split part of Z, then S = S0Zs is a maximal split torus in G. Thus T
is G(R)-conjugate to T0, and the assertion follows. �

Corollary 3.23. Let G be a connected reductive group defined over R. The index
ε0(G) of G with respect to the maximally split maximal torus T0 (as defined in (2.7))
equals the sign of the class in H1(Γ,W0) of the twist P → T of the covering G/T0 → T .

Remark 3.24. Similarly, for any T ∈ T (R), the sign ε(T ) coincides with the sign of
the class in H1(Γ,W0) of the fibre of the covering G/T0 → T at T ∈ T (R), which in
turn coincides with the sign of the cohomology class in H1(Γ,W0) associated to the
twist G/T → T of the covering G/T0 → T .

4. Lefschetz numbers and weighted Euler characteristics

In this section we prove the Lefschetz trace formula for local systems on quasi-
projective varieties over R. In particular, we make a connection between Lefschetz
numbers for local systems and “weighted Euler characteristics”.

Let us fix a field F of characteristic zero. The Lefschetz trace formula for endomor-
phisms of compact topological manifolds yields the following formula for a nonsingular
projective variety X over R:∑

i

(−1)i Trace(σ,H i(X(C),F)) = χ(X(R)),

where χ denotes the ordinary Euler characteristic. Since the spaces Tξ(C) and T ξ(C)
are not compact (and possibly singular), the more general formula that we need, no
longer follows from a statement about arbitrary endomorphisms. Instead, we will use
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the fact that we actually have an involution and an equivariant simplicial decomposi-
tion.

Definition 4.1. Let F be a field of characteristic zero. Let X be a finite dimensional
locally compact topological space with an action of Γ = Z/2 = {1, σ}. A Γ-equivariant
sheaf of F-vector spaces on X is a sheaf S of F-vector spaces together with a collection
of isomorphisms

{αg : S ∼→ g∗S}g∈Γ

such that α1 is the identity map and αgh = h∗(αg) ◦ αh for all g, h ∈ Γ.

Since Γ is generated by σ, we shall use the terminology ‘σ-equivariant’ interchange-
ably with ‘Γ-equivariant’.

Definitions 4.2. Let V be a locally constant Γ-equivariant sheaf of F-vector spaces
on X(C) (i.e., a local system).

(i) The Lefschetz number of σ acting on (X,V) is the alternating sum of the
traces:

Λc(σ,X,V) :=
∑
i

(−1)i Trace(σ,H i
c(X,V)).

Here we assume that all cohomology groups occurring in the sum are finite-
dimensional.

(ii) For any two points x, y in the same path connected component of the fixed
point space Xσ := {x ∈ X | σ(x) = x}, the stalks Vx and Vy are isomor-
phic as Γ-representations and we write VC for the equivalence class of the
representations Vx.

(iii) The weighted Euler characteristic of (Xσ,V) will be the sum∑
C⊂Xσ

connected
component

χc(C) · Trace(σ,VC).

Here χc(C) is the compact support Euler characteristic
∑

i(−1)i dimH i
c(C,F),

always assuming this sum is finite.

We shall show that the weighted Euler characteristic is equal to the Lefschetz num-
ber Λc(σ,X,V).

4.1. The trace formula for involutions of simplicial complexes. Suppose we
have a finite simplicial complex K and a simplicial subcomplex L ⊂ K, such that our
topological space X has the form

X = |K| − |L|

and such that the involution σ : X → X comes from a simplicial automorphism of K.
We will denote this simplicial endomorphism by σ as well. Possibly after replacing
K by its barycentric subdivision, we may assume that any simplex stable under σ is
actually pointwise fixed by σ (see [Br, §III.1]). This implies in particular that the
fixed point set of σ is a simplicial subcomplex of K: |Kσ| = |K|σ.
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Proposition 4.3. Let X and σ be as above. Let V be a σ-equivariant locally constant
sheaf of F-vector spaces on X. We have

(i)
Λc(σ,X,V) = Λc(σ|Xσ , Xσ,V|Xσ),

(ii)
Λc(σ|Xσ , Xσ,V|Xσ) =

∑
C⊂Xσ

connected
component

χc(C) · Trace(σ,VC).

Proof. (i) Putting U = X −Xσ, it follows from the excision long exact sequence

· · · → H i
c(U,V|U ) → H i

c(X,V) → H i
c(X

σ,V|Xσ) → · · ·
that the Lefschetz trace can be written as a sum

Λc(σ,X,V) = Λc(σ|U , U,V|U ) + Λc(σ|Xσ , Xσ,V|Xσ).

Hence it is sufficient to prove that Λc(σ|U , U,V|U ) = 0.
Let X = |K| − |L| be as above. For any i, let Ki be the union of simplices of K of

dimension ≤ i, and let
|Ki|◦ := |Ki| − |Ki−1|

be the ‘interior’ of |Ki|. We write

Ui := U ∩ |Ki|,
U◦
i := U ∩ |Ki|◦.

Using the excision long exact sequence as above, we see by induction that we have

Λc(σ|U , U,V|U ) =
n∑
i=0

Λc(σ|U◦i , U
◦
i ,V|U◦i ).

Each U◦
i is a finite disjoint union of open i-simplices, and σ permutes them without

fixing any connected component. It follows that Λc(σ|U◦i , U
◦
i ,V|U◦i ) = 0. Taking the

sum over all i we obtain Λc(σ|U , U,V|U ) = 0, hence Λc(σ,X,V) = Λc(σ|Xσ , Xσ,V|Xσ).
(ii) It is sufficient to prove that for any connected component C ⊂ Xσ we have

Λc(σ|C , C,V|C) = χ(C) · Trace(σ,VC).

With notation as above, we have by excision that

Λc(σ|C , C,V|C) =
∑
i≥0

Λc(σ|C◦i , C
◦
i ,V|C◦i ).

For any i ≥ 0 the space C◦
i is a disjoint union of of copies of the open simplices

∆◦
i . Since ∆◦

i is contractible, the restriction of V to any connected component of C◦
i

is Γ-equivariantly isomorphic to the Γ-equivariant constant sheaf associated to the
representation VC . By definition Trace(σ,Vx) = Trace(σ,VC) for any x ∈ C, this
implies that for any q, i ≥ 0 we have

Trace(σ,Hq
c (C◦

i ,V|C◦i )) = dimHq
c (C◦

i ,F) · Trace(σ,VC).

Hence
Λc(σ|C , C,V|C) = χc(C) · Trace(σ,VC)
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by excision. �

Remark 4.4. The above approach is straightforward and has been used before (see for
example [Kaw91, Th. 5.59] for the case where X is a compact simplicial complex and
the local system V is trivial), but in this generality we have not been able to find the
result in the literature.

Theorem 4.5. Let X be a quasi-projective algebraic variety over R, and let V be a
σ-equivariant locally constant sheaf of F-vector spaces on X(C). Then

Λc(σ,X(C),V) =
∑

C⊂X(R)
connected
component

χc(C) · Trace(σ,VC),

Proof. This is a special case of Proposition 4.3. In order to show that X(C) is the
difference between two simplicial complexes with a σ-action, we observe that X(C)
has a natural semi-algebraic structure and that the antiholomorphic involution σ is
semialgebraic itself. It is then a fairly straightforward consequence of the triangulis-
ability of semi-algebraic sets, originally due to  Lojasiewicz ([ L], see also [H]) that we
have a finite simplicial complex K with a σ-action and a σ-equivariant subcomplex
L ⊂ K such that X(C) is equivariantly homeomorphic to |K| − |L|; see for example
[PS, Th. 4.5, Th. 4.6]. Hence Proposition 4.3 applies. �

5. The varieties T ξ

We shall deal in this section with the varieties T ξ, defined in 1.5. Our basic strategy
is to effectively reduce their study to the case ξ = 0.

Lemma 5.1. Let G, G etc. be as in §1, and let ξ be a semisimple element in G(R).
Let ZG(ξ)0 be the connected component of the identity in the centraliser ZG(ξ) of
ξ in the adjoint representation. Then in the obvious notation, we have a canonical
isomorphism of Γ-varieties, T ξ(G) ∼−→ T (ZG(ξ)0), where the Galois action on the
reductive R-group ZG(ξ)0 is the restriction of the Galois action on G.

Proof. Observe first that by [Spr, 11.2.8], ZG(ξ)0 is a reductive group which is defined
over R. Next, a maximal torus T ∈ T satisfies LieT 3 ξ (i.e. is in T ξ) if and
only if LieT is contained in the centraliser ZG(ξ). But by [Bo, pp. 225 and 321],
ZG(ξ) = LieZG(ξ)0 and hence T ∈ T ξ if and only if T is contained in ZG(ξ)0. Thus
the varieties T ξ(G) and T (ZG(ξ)0) are equal, with the Γ-action on the latter being
the restriction of the action on the former. �

We next wish to relate the Lefschetz numbers of σ acting on the cohomology of
the two local systems on T ξ which arise from the identification (5.1), viz. Sε = Sε(G)
above, and the local system Sε(ZG(ξ)0) on T (ZG(ξ)0) obtained by considering the
case “ξ = 0” for the group ZG(ξ)0.

Lemma 5.2. The trace Trace(σ,Sε,T ) of σ on the stalk Sε,T at T ∈ T (R) of the local
system Sε is ε0(G)ε(T ), where ε0(G) is the sign defined in (2.7) and ε(T ) is the sign
of T as defined in (2.6).
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Proof. On the one hand, it follows from the definitions that ε(T ) is the sign of the
Galois cohomology class in H1(Γ,W0) of the fibre at T of the covering G/T0 → T . On
the other hand, we have by Lemma 3.15, that Trace(σ,Sε,T ) is the sign of the Galois
cohomology class in H1(Γ,W ) of the fibre at T of the covering P → T . Hence the
statement follows from Corollary 3.8 and Lemma 3.22. �

Proposition 5.3. Maintain notation as in (5.1), and let ξ be a semisimple element
in G(R). Then

(5.4) Λc(σ, T ξ(G),Sε(G)) = ε0(G)ε0(ZG(ξ)0)ε(vξ) Λc(σ, T (ZG(ξ)0),Sε(ZG(ξ)0)),

where vξ ∈W0 is the type (see (2.6) of a maximally split torus in ZG(ξ)0.

Proof. Let L = ZG(ξ)0. By (4.5) and (5.1), we need to compare, for any torus T ∈
T (L)σ, the values of Trace(σ,Sε(G)T ) and Trace(σ,Sε(L)T ).

For any element w ∈ W0, we use the notation ẇ to indicate an element in N0 ⊂ G
which represents the coset w of T0. Let Tξ be a maximally split torus of L and suppose
that g ∈ G and v = vξ ∈ W0 are such that Tξ = gT0 and g−1σ(g) = v̇. Note that
the Weyl group W (G,Tξ) may be identified with gW0, and W (L, Tξ) with a parabolic
subgroup of the former.

Now T = lTξ, for some element l ∈ L, and l−1σ(l) = gẇLg
−1 ∈W (L, Tξ), for some

element wL ∈W0. By (5.2) applied to (L, σ), it follows that

(5.5) Trace(σ,Sε(L)T ) = ε0(L)ε(wL).

Further, T = lTξ = lgT0, and (lg)−1σ(lg) = g−1gẇLg
−1σ(g) = ẇLv̇ξ. Hence again

by (5.2),

(5.6) Trace(σ,Sε(G)T ) = ε0(G)ε(wL)ε(vξ).

Combining (5.5) with (5.6), we therefore obtain, for any maximal torus T ∈ T ξ(R),

(5.7) Trace(σ,Sε(G)T ) = ε0(G)ε0(L)ε(vξ) Trace(σ,Sε(L)T ).

Now (5.4) follows immediately from (4.5) and (5.1), applied respectively to G and to
L. �

Proposition 5.8. The value of the Lefschetz number of Sε is given by

Λc(σ, T ,Sε) = Trace(σ,H2N
c (G/T,F)) = (−1)N ,

where N is the number of positive roots of G.

Proof. By definition, Λc(σ, T ,Sε) is equal to
∑

j(−1)j Trace(σ,Hj
c (P,F)ε), where the

superscript denotes the ε-isotypic component. Using (3.22)(i), it follows from the
corresponding statement for G/T0 ([Le1, Cor. 1.9]), which uses the minimally pure
nature of G/T0, that

H i
c(P,F)ε =

{
H i
c(P,F) ∼= F if i = 2N

0 otherwise,

Since σ is an involution, it acts as ±1 on H2N
c (P,F).
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To determine the sign, observe that there is a σ-equivariant fibration P −→ B given
by (T ⊆ B) 7→ B, which has fibre U ∼= AN , where N is the number of positive roots
of G. Hence H2N

c (P,F) ∼= H0
c (B,F) ⊗ H2N

c (AN ,F). Now σ clearly acts trivially on
the first factor H0

c (B,F), while its action on H2N
c (AN ,F) is multiplication by (−1)N

(the N th Tate twist of the trivial module). The result is now clear. �

Combining the last two results, we obtain

Corollary 5.9. (cf. Theorem 1.8 above.) Maintaining the above notation, let ξ ∈
G(R). Then, writing N(ξ) for the number of positive roots of L := ZG(ξ)0, we have

(5.10) Λc(σ, T ξ(G),Sε(G)) = ε0(G)ε0(L)ε(vξ)(−1)N(ξ).

Note that Corollary 5.9, together with Theorem 4.5 and Lemma 5.2, complete the
proof of Theorem 1.8.

6. Fourier–Sato transform of equivariant sheaves

In this section we will treat the theory of Fourier–Sato transform for conical
constructible sheaves on Γ-equivariant vectorbundles over topological spaces with a
Γ-action. Since Γ is discrete, this is a straightforward generalisation of the non-
equivariant theory.

We begin with an exposition which follows very closely that of Kashiwara and
Schapira [KS], including, largely, their notation. In the next section (7) below, we
introduce the notation for Fourier–Sato transform which we shall continue with, and
state its essential properties, particularly as they pertain to complex vector bundles
which have a real structure, which is where we shall apply them.

6.1. Definitions. Let X be a locally compact topological space with a (left) action
of a discrete group Γ. For g ∈ Γ we denote the corresponding automorphism of X by
x 7→ gx.

Let F be a field of characteristic zero. Recall that a Γ-sheaf (or Γ-equivariant sheaf)
of F-vector spaces on X is a sheaf S of F-vector spaces together with a collection of
isomorphisms

{αg : S ∼→ g∗S}g∈Γ

such that α1 is the identity map and αgh = h∗(αg) ◦ αh for all g, h ∈ Γ. With the
obvious notion of equivariant morphisms, this gives us an abelian category with enough
injectives. We denote the corresponding derived category of bounded complexes of
Γ-equivariant sheaves by

Db(X; Γ,F).
When f : X → Y is a continuous equivariant map such that f∗ and f! have finite
cohomological dimension, then we have the usual functors Rf∗, Rf!, f

∗, f ! between
Db(X; Γ,F) and Db(Y ; Γ,F) and we also have the internal derived functors RHom
and ⊗L. For the inclusion of a locally closed subspace i : V ↪→ X we will often write

(−)V := Ri!i
∗

(−)′V := Ri∗i
!.
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We say that a Γ-sheaf of F-vector spaces S on X is constant if S is the pullback
of a representation V of Γ under the constant mapping X → pt. We will then write
S = VX . In particular we have the trivial constant Γ-sheaf FX associated to the trivial
representation F.

6.1.1. Conical sheaves. Let π : E → X be a Γ-equivariant real vector bundle (i.e., E is
a real vector bundle on X, with an action of Γ on E compatible with the action on X
and linear on the fibres). Fibre-wise multiplication gives an action of the multiplicative
group of strictly positive real numbers R>0 on X which commutes with the action of
Γ. We say that a Γ-sheaf S of F-vector spaces on the vector bundle E is conical if S is
locally constant (hence constant) on each R>0-orbit. Denote by Db

R>0(E; Γ,F) the full
subcategory of the derived category of bounded complexes of Γ-sheaves of F-vector
spaces on E consisting of the complexes whose cohomology sheaves are conical.

6.1.2. The equivariant Fourier–Sato transform. Let

π : E → X

be a Γ-equivariant real vector bundle. Let

π̌ : Ě → X

be the dual of E with its canonical Γ-action. Let

E ×X Ě

be the Whitney sum, with p1, p2 the projections onto the first, resp. second factor
and let

µ : E ×X Ě → X × R
be the duality map. We write

〈−,−〉 : E ×X Ě → R

for µ followed by the projection onto the second factor. Then 〈ζ, ξ〉 = 〈g · ζ, g · ξ〉, so
the subspaces

P≥0 :=
{

(x, y) ∈ E ×X Ě | 〈x, y〉 ≥ 0
}

P≤0 :=
{

(x, y) ∈ E ×X Ě | 〈x, y〉 ≤ 0
}

are Γ-equivariant.
Define:

ΨP≥0 := Rp2∗ ◦R(−)′P≥0 ◦ p∗1 : Db
R>0(E; Γ,F) → DbR>0(Ě; Γ,F)

ΦP≤0 := Rp2! ◦ (−)P≤0 ◦ p∗1 : Db
R>0(E; Γ,F) → DbR>0(Ě; Γ,F)

ΨP≤0 := Rp1∗ ◦R(−)′P≤0 ◦ p!
2 : Db

R>0(Ě; Γ,F) → DbR>0(E; Γ,F)

ΦP≥0 := Rp1! ◦ (−)P≥0 ◦ p!
2 : Db

R>0(Ě; Γ,F) → DbR>0(E; Γ,F)

It follows from the definitions that ΦP≤0 is left adjoint to ΨP≥0.
The following statement is much less formal (and probably the key to many of the

deeper properties of the Fourier–Sato transform).
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Theorem 6.1. [KS, Theorem 3.7.7] There are natural isomorphisms of functors
ΨP≥0 ' ΦP≤0 and ΨP≤0 ' ΦP≥0.

Proof. It is easy to check that all the isomorphisms in the proof of [KS, Theorem 3.7.7]
are equivariant. �

We now define the Fourier–Sato transform

(6.2) (−)∧ := ΨP≥0 = ΦP≤0 : Db
R>0(E; Γ,F) → DbR>0(Ě; Γ,F),

and the inverse Fourier–Sato transform

(6.3) (−)∨ := ΨP≤0 = ΦP≥0 : Db
R>0(Ě; Γ,F) → DbR>0(E; Γ,F).

It is clear from the definitions that both functors are functors of triangulated categories
(i.e., they respect distinguished triangles).

Using the canonical isomophism E ' ˇ̌E, We also get functors

(−)∨ : Db
R>0(E; Γ,F) → DbR>0(Ě; Γ,F),

and

(−)∧ : Db
R>0(Ě; Γ,F) → DbR>0(E; Γ,F).

It is easy to see that we have the relation [KS, equation 3.7.9]

(6.4) S∨ ' inv∗(S∧)⊗L π̌!FX
where inv denotes multiplication by −1 on the vector bundle.

6.2. Basic properties. The equivariant Fourier–Sato transform has all the basic
properties of the non-equivariant version. Below we list the most important ones.
Proofs in the non-equivariant context may be found in [KS]; it is easy to verify that
all the constructions and morphisms that are used in loc. cit. carry over to the
equivariant situation.

The main result in the theory of the Fourier–Sato transform is the result below.
The proof is not purely formal. Formal methods reduce the proof to the case of FU
for a convex open cone U .

Theorem 6.5. [KS, Theorem 3.7.9] Let E → X be a Γ-equivariant vector bundle over
a locally compact Γ-space. The Fourier–Sato transform ∧ and the inverse transform
∨ are mutually inverse equivalences between the triangulated categories Db

R>0(E; Γ,F)
and Db

R>0(Ě; Γ,F).

The following three results are purely formal consequences of the definitions, stan-
dard properties of the functors involved, and the two main Theorems above.

For a locally compact Γ-space V of finite cohomological dimension we denote by
DV the Verdier dualising complex on V and let D: Db(V ; Γ,F) → Db(V ; Γ,F) be the
Verdier dualising functor RHom(−,DV ). Since the cohomology sheaves of DV are
conical, the functor D sends (Γ-equivariant) complexes with conical cohomology to
(Γ-equivariant) complexes with conical cohomology.



REAL POINTS OF VARIETIES OF TORI 19

Proposition 6.6. [KS, Proposition 3.7.12.iv] Let E → X be a Γ-equivariant vector
bundle over a locally compact Γ-space of finite cohomological dimension. We have an
isomorphism of functors

∨ ◦D = D ◦ ∧ : Db
R>0(E; Γ,F) → DbR>0(Ě; Γ,F).

Proposition 6.7. [KS, Proposition 3.7.14] For any equivariant morphism f : E1 →
E2 of Γ-equivariant vector bundles over X with dual morphism tf : Ě2 → Ě1 we have
functorial isomorphisms

tf∗(S∧1 ) ' (Rf!S1)∧,
tf !(S∧1 ) ' (Rf∗S1)∧ ⊗ tf !FĚ1

,

(f !S2)∧ ' R tf∗(S∧2 ),

(f !FE2 ⊗L f∗S2)∧ ' R tf!(S∧2 ),

for Si ∈ DbR>0(Ei; Γ,F). Analogous formulae hold when ∧, ∗ and ! are respectively
replaced by ∨, ! and ∗ above.

The next result states that the Fourier–Sato transform is essentially independent
of the base.

Proposition 6.8. [KS, Proposition 3.7.13] Let f : Y → X be an equivariant contin-
uous map of locally compact Γ-spaces such that f! and f∗ have finite cohomological
dimension. Let EX be a Γ-equivariant vector bundle on X, and let EY = Y ×X EX
be the pull-back. Let pE : EY → EX and pĚ : ĚY → ĚX be the canonical projections.
We have canonical isomorphisms of functors

∧ ◦R(pE)∗ ' R(pĚ)∗ ◦ ∧ : Db
R>0(EY ; Γ,F) → DbR>0(ĚX ; Γ,F)

∧ ◦R(pE)! ' R(pĚ)! ◦ ∧ : Db
R>0(EY ; Γ,F) → DbR>0(ĚX ; Γ,F)

∧ ◦R(pE)∗ ' R(pĚ)∗ ◦ ∧ : Db
R>0(EX ; Γ,F) → DbR>0(ĚY ; Γ,F)

∧ ◦R(pE)! ' R(pĚ)! ◦ ∧ : Db
R>0(EX ; Γ,F) → DbR>0(ĚY ; Γ,F).

7. Fourier–Sato transforms of sheaves on complex vector bundles
with real structure

We shall apply the above constructions when E and X are complex algebraic vari-
eties defined over R, with Γ = Gal(C/R) acting via the antiholomorphic involution σ.
Specifically, we shall restrict attention to a certain subcategory of Db

R>0(E(C); Γ,F)
(which in this setting is denoted Db

R>0(E(C);σ,F)) to be defined below.
Let V be a semi-algebraic space with an involution σ. Recall that a sheaf S on

a semi-algebraic variety V is called semi-algebraically constructible if V admits a
finite semi-algebraic stratification such that S is locally constant on each stratum. If
S is σ-equivariant, it is not hard to see that this stratification can be refined to a
σ-equivariant stratification, with each stratum either in V σ or in V − V σ.
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Let X be a complex algebraic variety defined over R and let E → X be a complex
algebraic vector bundle defined over R. As above, fix a coefficient field F (of charac-
teristic zero) for our sheaves. As pointed out in the proof of Theorem 4.5, the sets of
complex points X(C) and E(C) have a canonical semi-algebraic structure for which
complex conjugation is a semi-algebraic morphism.

Let Db
cc(E(C);σ,F) be the full subcategory of Db

R>0(E(C);σ,F) consisting of the
complexes of which the cohomology sheaves are semi-algebraically constructible with
respect to some R>0-equivariant semi-algebraic stratification of E. We will refer to
the objects of Db

cc(E;σ,F) as complexes with conical constructible cohomology.
It is easy to check from the definitions that the Fourier–Sato transform

F : Db
R>0(E(C);σ,F) → Db

R>0(Ě(C);σ,F)

sends complexes with constructible cohomology to complexes with constructible co-
homology. Hence it induces a Fourier–Sato transform

F : Db
cc(E(C);σ,F) → Db

cc(Ě(C);σ,F).

We shall deal with bundles E −→ X as above which are Γ (or σ)-equivariant;
then σ acts on the cohomology sheaves, which are equivariant in the sense of the
above discussion. In this section we shall first reformulate the basic properties of the
Fourier–Sato transform functor for this context, and since we shall be interested in
the stalks of the cohomology sheaves of Fourier–Sato transforms and their connection
with Euler characteristics, we discuss below certain constructible functions associated
with objects in Db

cc(E;σ,F).

7.1. Basic properties of the Fourier–Sato transform. To formulate the basic
properties of the Fourier–Sato transform efficiently, we shall require the functors tt
(Tate twist) and sh (shift) which take a complex S ∈ Dbcc(E;σ,F) to S(1) and S[1]
respectively, where the former is S, with σ action twisted by the sign representation,
and the latter is S, shifted one degree to the left.

The Fourier–Sato transform in this special setting will be denoted F =
FE : Db

cc(E;σ,F) −→ Db
cc(Ě;σ,F), where (−)∧ = FE(−) (see 6.2). We also write

F ′
E : Db

cc(E;σ,F) −→ Dbcc(Ě;σ,F) for the functor defined by F ′
E(−) = (−)∨. Note

that both FE and FE′ commute with tt and sh.
We will repeatedly use the following observation.

Lemma 7.1. Let X be an algebraic variety defined over R. Let π : E → X be a
complex algebraic vector bundle of rank r defined over R. Then

π!FE = FX(−r)[−2r]

π!FX = FE(r)[2r].

Proof. The first formula follows from the fact that for the real vector bundle Ar := Cr

with Γ acting via complex conjugation, we have that H i
c(Ar,F) is isomorphic to F(−r)

when i = 2r and 0 otherwise. The second formula follows from Verdier duality. �
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We shall now reformulate the basic properties of the Fourier–Sato transform for
this context. First observe that (6.4) may be written as

(7.2)
S∨ ' inv∗(S∧)⊗L π̌!FX ' inv∗(S∧)(rankE)[2 rankE]

' ttrankEsh2 rankE inv∗(S∧),

where rankE denotes the rank of E as a complex vector bundle. It follows that

(7.3) F ′
E ' ttrankE ◦ sh2 rankE ◦ inv∗ ◦ FE .

Writing (6.5) in the present notation, we have

(7.4) FĚ ◦ F
′
E = idDbcc(E;σ,F) .

It follows that

(7.5) FĚ ◦ FE = tt− rankE ◦ sh−2 rankE ◦ inv∗.

The Verdier dualising functor preserves the category Db
cc(E;σ,F), and hence induces

D : Db
cc(E;σ,F) −→ Db

cc(E;σ,F). It follows from (6.4) and (6.6) that, if E −→ X
above is a complex vector bundle with Γ-equivariant real structure over a Γ-space of
finite cohomological dimension, then

(7.6) D ◦ FE = ttrankE ◦ sh2 rankE ◦ inv∗ ◦ FE ◦D.

To describe the behaviour of Fourier–Sato transform under maps of equivariant
complex bundles, suppose that f : E1 −→ E2 is a morphism of Γ-equivariant complex
vector bundles over X, and let f̌ : Ě2 −→ Ě1 be the dual morphism. Then the first
line of the equation in Proposition 6.7 may be written

(7.7) f̌∗ ◦ FE1 = FE2 ◦Rf!.

Now suppose that L is a local system on X, that π : E −→ X is a vector bundle
of rank r satisfying the conditions of the first two paragraphs of this section, and let
i0 : X −→ Ě be the zero section. Then the fourth line of (6.7) becomes

(7.8) FEπ∗L = sh−2rtt−ri0!L

We next describe the effect of base change on Fourier–Sato transform. Let f : Y −→ X
be a morphism of complex algebraic varieties defined over R, let EX → X be a complex
vector bundle defined over R, and let EY := Y ×X EX be the pull-back of EX . We
have maps as in the diagrams (7.9) below.

(7.9)

EY
p−−−−→ EXy y

Y
f−−−−→ X

ĚY
p̌−−−−→ ĚXy y

Y
f−−−−→ X

Then we have from Proposition 6.8,

(7.10) FEX ◦Rp! = Rp̌! ◦ FEY .

Finally, we shall require the observation that a shift of the Fourier–Sato transform
above preserves perversity.
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Proposition 7.11. (cf. [Sho, 16.5]) The functor shrankE ◦ FE takes perverse sheaves
in Db

cc(E;σ,F) to perverse sheaves in Db
cc(Ě);σ,F.

The reason why the shift is necessary in (7.11) may be seen by comparing [Sho,
16.3.2] and our (7.7) above.

7.2. Geometric Fourier–Sato transform and constructible functions. Let
R(σ) be the F-representation ring of Γ := 〈σ〉 and let Fcc(E(C)/σ,R(σ)) be the
group of R(σ)-valued functions on the orbit space E(C)/σ which are R>0-invariant,
semi-algebraically constructible, and whose value at the orbit of x 6∈ E(R) is a multiple
of the regular representation of 〈σ〉. For any complex K• in Db

cc(E(C);σ,F) we define
the orbit characteristic function χK• ∈ Fcc(E(C)/σ,R(σ)) of K• to be the function
whose value at the orbit x of a point x ∈ E(C)/σ is the element of R(σ) given by

(7.12) χK•(x) =
⊕

y∈{x,σ(x)}

∑
i

(−1)i[Hi(K•)y].

Note that if x 6∈ E(R), the σ-equivariance of K• implies that χK•(x) is induced from
the trivial subgroup of 〈σ〉, and hence is a multiple of the regular representation of
〈σ〉.

Our strategy will be to identify the weighted Euler characteristics in which we
are interested with “characteristic functions” of σ-equivariant complexes of sheaves,
and apply the Fourier–Sato transform to obtain our main result. For the following
definition, observe that for any Γ-equivariant sheaf S on a Γ-space X we have an
induced isomorphism Sx

∼→ Sσ(x) of stalks at x, σ(x) ∈ X. In particular, we have a
Γ-action on the stalks Sx at the fixed points x ∈ Xσ.

Definition 7.13. Let K• ∈ Db
cc(X;σ,F), where X is a complex algebraic variety

which is defined over R. Define the characteristic function ΛK• : Xσ = X(R) −→ F
by

(7.14) ΛK•(x) =
∑
i

(−1)i Trace(σ,Hi(K•)x).

We shall require the following key result.

Proposition 7.15. Let X be a complex algebraic variety defined over R and let E →
X be a complex algebraic vector bundle defined over R. Let M•, N• be two complexes
of sheaves in Db

cc(E(C);σ,F) which have equal orbit characteristic functions.
Then F(M•) and F(N•) have equal orbit characteristic functions

χF(M•) : Ě(C)/σ → R(σ).

Proof. We are given that
χM• = χN• .

Let Kcc(E(C);σ,F) be the Grothendieck group of the triangulated category
Db

cc(E(C);σ,F). The orbit characteristic function map induces a homomorphism

χ : Kcc(E(C);σ,F) → Fcc(E(C)/σ,R(σ)).

Since the semi-algebraic topology is sufficiently fine, this homomorphism is an iso-
morphism. (This is the equivariant analogue of [KS, Th. 9.7.1] using semi-algebraic



REAL POINTS OF VARIETIES OF TORI 23

rather than subanalytic constructibility.) Indeed, surjectivity is easy to check, and
the injectivity follows from the fact that semi-algebraic triangulation gives us for any
complex K• in Db

cc(E(C);σ,F) a (finite) R>0-equivariant semi-algebraic stratification
of E(C), with each stratum either contained in E(R) or equal to a disjoint union of the
form U

∐
σ ·U , such that every cohomology sheaf of K• is constant on each stratum.

By the injectivity of χ, our hypotheses imply that

[M•] = [N•] ∈ Kcc(E(C);σ,F).

Since F is a functor of triangulated categories, F descends to a homorphism of
Grothendieck groups. In particular, this implies that

[F(M•)] = [F(N•)] ∈ Kcc(Ě(C);σ,F).

Applying χ, it follows that F(M•) and F(N•) have the same orbit characteristic
function Ě(R) → R(σ). �

For practical application of Proposition 7.15 it is useful to note

Lemma 7.16. With notation as in Proposition 7.15, let M• and N• be complexes in
Db

cc(E(C);σ,F) which satisfy
(i) For every x ∈ E(C) − E(R), the stalks of M• and N• have equal Euler-

Poincaré characteristics:∑
i∈Z

(−1)i dimFHi(M•)x =
∑
i∈Z

(−1)i dimFHi(N•)x.

(ii) For every x ∈ E(R), the virtual representations of Γ on the stalks at x of M
and N are equal in the Grothendieck group:∑

i∈Z
(−1)i[Hi(M•)x] =

∑
i∈Z

(−1)i[Hi(N•)x].

Then M• and N• have equal orbit characteristic functions and hence the conclusion
of Proposition 7.15 holds.

Proof. For x ∈ E(C) − E(R), both χM•(x) and χN•(x) are multiples of the regular
representation of Γ, and (i) implies that they are equal. If x ∈ E(R), (ii) states that
χM•(x) = χN•(x). �

The next result, which will be the principal application of these considerations,
follows immediately.

Corollary 7.17. With notation as in Proposition 7.15, if M• and N• are complexes
in Db

cc(E(C);σ,F) which satisfy the hypotheses (i) and (ii) of Lemma 7.16, then the
characteristic functions ΛFM• and ΛFN• : Ě(R) −→ Z are equal.

8. Varieties of tori and Springer representations

In this section, we discuss situations in which we shall apply (7.13) and (7.17). To
simplify the discussion we take our coefficient field F (of characteristic zero) to be
algebraically closed (although this is not needed to define the local system Sε or to
prove the main results).
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Let G be a connected reductive R-group, and as in §1, write G for the Lie algebra,
T for the variety of tori, P for the variety of Killing pairs, and B for the variety of
Borel subgroups. We write W for the absolute Weyl group, i.e., the Galois group of
the covering P → T , and W̃ for the corresponding extension of Γ by W as in (3.2).

Let Ṽ , V be the varieties

(8.1)
Ṽ = {((T ⊆ B), ξ) | ξ ∈ LieT} ⊂ P ×G,

V = {(T, ξ) | ξ ∈ LieT} ⊂ T ×G.

Clearly the obvious map ω : Ṽ −→ V is a Galois W -covering of V defined over R, and
we have a commutative square

(8.2)

Ṽ
ω−−−−→ V

π̃1

y π1

y
P ω−−−−→ T

where the horizontal arrows are W -coverings, and the vertical maps are fibrations
with fibre Ar, where r = dimT0 is the rank of G (as complex algebraic group). We
therefore have irreducible local systems SVE on V for each irreducible representation
E of W , which are the pullbacks of the corresponding local systems on T . In analogy
with (1.3), if F denotes the constant sheaf on Ṽ , we have

(8.3) ω!F ∼= ⊕E∈ŴE ⊗ SVE .

In general Γ permutes the summands of (8.3), and SVE is in Db
cc(V ;σ,F) precisely

when the equivalence class of E is fixed by Γ. As remarked in §1, this is the case when
E = ε, the sign representation of W . Thus SVε is Γ-equivariant.

Now let ρ : V −→ G be the first projection; of course ρ is not proper.

Lemma 8.4. Let K• = ρ!SVε in Db
cc(G;σ,F), where ε is the sign representation of W .

Then
(i) The orbit characteristic function χK• (see 7.12) is supported on the Γ-orbits

in the variety of semisimple elements of G, and its values are given by

χK•(ξ) =
∑
i∈Z

(−1)i
⊕

α∈{ξ,σ(ξ)}

[H i
c(T α,Sε)],

for ξ ∈ G, where Sε is the local system on T defined in (1.4).
(ii) For ξ 6∈ G(R), the Euler-Poincaré characteristic is given by∑

i∈Z(−1)i dimFHi(K•)ξ =
∑

i∈Z(−1)i dimH i
c(T ξ,Sε).

(iii) For ξ ∈ G(R) the characteristic function is given by ΛK•(ξ) =∑
i∈Z(−1)i Trace(σ,H i

c(T ξ,Sε)) = Λc(σ, T ξ,Sε) (cf. 1.1).

Proof. It is clear that the stalks of Hi(K•) have an R>0-action under which they are
invariant, so that K• ∈ Db

cc(G;σ,F).
The stalk Hi(ρ!SVε )ξ at ξ ∈ G is isomorphic to H i

c(ρ
−1(ξ),SVε ) = H i

c(T ξ,SVε ). But
the commutative square (8.2) shows that SVε coincides with the local system Sε of 1.4.
The statement (i) now follows immediately from the definition (7.12).
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Bearing in mind the definitions (1.1) and (7.14), the above observations also prove
(ii) and (iii). �

Our next objective is to show that K• above has, up to sign, the same characteristic
function as a well-known perverse sheaf in Db

cc(G;σ,F). To set the scene, consider the
following diagram:

(8.5)

G̃
π−−−−→ G

incl

x incl

x
G̃rs

πrs−−−−→ Grs ,

where
G̃ = {(B, ξ) | ξ ∈ LieB} ⊂ B ×G,

Grs is the variety of regular and semisimple elements of G, π, πrs are the respective
second projections, and G̃rs = π−1

rs (Grs). Note that the bottom row of (8.5) is an
unramified covering with group W . Similarly, we have that the map ρ : V → G
induces an isomorphism

ρrs : ρ−1(Grs) ∼→ Grs

and the corresponding map ρ̃ : Ṽ toG̃ (that sends a triple (B, T, ξ) to the pair (B, ξ))
induces an isomorphism

ρ̃rs : ρ−1(Ṽ ) ∼→ Grs .

The relationship between the various spaces and Galois covering which have oc-
curred in this work, is summarised in the following two diagrams.

(8.6)

P p−−−−→ T

eπ1

x π1

x
Ṽ

ω−−−−→ V

eρ−1
rs

x ρ−1
rs

x
G̃rs

πrs−−−−→ Grs

(8.7)

G̃
π−−−−→ G

eρx ρ

x
Ṽ

ω−−−−→ V

eρ−1
rs

x ρ−1
rs

x
G̃rs

πrs−−−−→ Grs

Here the maps πrs , ω and p are all Galois W -coverings, whereas the maps π̃1 and
π1 are affine fibrations. Let us stress that π is not a Galois W -covering.
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Write Y for the Γ-equivariant local system (πrs)∗F on Grs , which corresponds to the
regular representation of the covering group W . It is a result of Lusztig [Sho, 4.2,
p.76] that

(8.8) IC (G,Y)[dim G] ∼= Rπ∗F[dim G],

where IC denotes the intersection complex extension [BBD]. This includes the state-
ment that both sides are perverse. It is easy to check that both the construction of
IC (G,Y) and the proof of the isomorphism generalise to the Γ-equivariant context, i.e.
that the statement (8.8) may be interpreted as an isomorphism in the Γ-equivariant
category Db

cc(G;σ,F).
Since Y clearly has a Γ-equivariant W -action, so does the right side of (8.8) and

hence so does the cohomology of this perverse sheaf. This is the Springer action. In
particular, we obtain an action of W on the stalk of Riπ∗F at each ξ ∈ G(R), which
is isomorphic to H i(π−1(ξ),F) = H i(Bξ,F), where Bξ = {B ∈ B | ξ ∈ LieB}.

Observe that since Γ acts as an automorphism group of W , it permutes the irre-
ducible F-representations of W . Say that the irreducible representation E of W is
Γ-invariant if each element of Γ takes E to an equivalent representation.

Definition 8.9. Write M• for the shift Rπ∗F of the perverse sheaf in (8.8). For any
irreducible Γ-invariant representation E of W , we write M•

E for the E-isotypic direct
summand of M• corresponding to the intersection complex extension IC (YE) of the
(Γ-equivariant!) direct summand YE of the local system Y.

Observe that for E as above, we have an isomorphism

(8.10) M•
E
∼= RHomW (E,M•).

of Γ-equivariant perverse sheaves (cf. [Sho, §5]).

Theorem 8.11. Let G be a complex algebraic group which is defined over R. Let
K• = ρ!SVε be as in Lemma 8.4 and M•

ε as in Definition 8.9, with E = ε. Then K•

and M•
ε are objects in Db

cc(G;σ,F), and have the same orbit characteristic function:
G(C)/σ −→ R(σ).

Before giving the proof, we need several results, some of which are Γ-equivariant ver-
sions of standard results from the literature. The latter are due to Borho-MacPherson
and Lusztig, but the exposition by Shoji [Sho] is a good reference, although the treat-
ment there is oriented towards the case of finite characteristic. The references in [op.
cit.] suffice for a complete exposition of the proofs. We begin with the following
observation concerning the action of σ on the Springer representations.

Lemma 8.12. The action of σ on B induces an action of σ on Bξ for any ξ ∈ G(R).
The Springer action of W defined above and this action of σ generate an action of the
group W̃ (as in (3.3)) on H i(Bξ,F), with γ acting via σ.

Proof. The lemma is a restatement of the fact that the action of W on H i(Bξ,F) =
(Rπ∗F)ξ is Γ-equivariant for ξ ∈ G(R), which follows immediately from the fact that
the Springer action of W on Rπ∗F is Γ-equivariant. �
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Lemma 8.13. (cf. [Sho, Prop. 5.4 and its proof]) We have for each i ∈ Z, an
isomorphism of W̃ -modules

H i(B,F)
∼=−→ HomF(H4N−i

c (P,F),F),

where the action on the left arises from the Springer action of W̃ (see (8.12) above)
and the action on the right arises functorially from the action of W̃ on P.

Proof. Since the map P −→ B is a fibration with fibre AN , we have, for each integer
i, an isomorphism of vector spaces

(8.14) H i(B,F)
∼=−→ H i(P,F)

Now W acts on both sides, the action on the left side being the Springer action, while
the action on the right side is the classical action. But by [Sho, loc. cit.], these two
actions of W coincide, i.e., the isomorphism (8.14) respects the W action on both
sides. Since the map P −→ B is defined over R, the isomorphism (8.14) also respects
the Γ-action, whence by (8.12), the isomorphism (8.14) respects the respective actions
of W̃ .

By Poincaré duality for P we have a canonical W̃ -equivariant isomorphism

H i(P,F) ∼= Hom(H4N−i
c (P,F),H4N

c (P,F)).

The assertion of the Lemma now follows from the fact that W̃ acts trivially on
H4N
c (P,F), since this vector space is generated by the orientation class of the complex

manifold P and σ preserves the orientation, since P has even complex dimension. �

Suppose ξ ∈ G is semisimple. Let L = Lξ = ZG(ξ)0 and L = Lie(L), a Levi
subalgebra of G. Let T be a maximal torus of L. Then T is also a maximal torus of
G. If WT := NG(T )/T and WT (L) := NL(T )/T , then WT (L) ⊂WT . Recall from §3.3
that WT and WT (L) are the respective Galois groups of the coverings G/T → T and
L/T → T (L). Write W (resp. W (L)) for the Galois group of automorphisms of the
covering p : P → T (resp. pL : P(L) → T (L)).

Choose a Borel subgroup BT of G which contains T . Then BT (L) := BT ∩ L is a

Borel subgroup of L, and thus BT determines isomorphisms (cf. (3.20)(ii)) G/T
φT−→

P and L/T
φT (L)−→ P(L). Using the inclusion L/T ↪→ G/T , we identify P(L) as a

subvariety of P, uniquely up to transformation by an element of W . Moreover BT
also determines isomorphisms WT

∼= W and WT (L) ∼= W (L) as in §3.3 (3.20), and
hence an embedding

W (L) ↪→W,

in which W (L) is identified as the group of covering transformations in W which
stabilise the subvariety P(L). By (3.20)(iv), this embedding of groups depends on the
choice of BT , up to conjugation by an element of W .

If ξ ∈ G(R), then L ⊂ G is defined over R, and T may (and will) be taken to be
defined over R. Note that in the above identification of P(L) as a subvariety of P,
since the maps φT and φT (L) are twists, they do not necessarily respect the actions of
σ on the various spaces. In fact the involution σ of P does not generally stabilise the
subvariety P(L) identified as above. Nonetheless, WT (L) is a σ-stable subgroup of
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WT , and T (L) and P(L) inherit σ-actions, as do W (L) ⊆ W , and WT (L) ⊆ WT . As
in (3.20)(iv), the choice of BT determines extensions of the above group isomorphisms
to

(8.15) W̃T
∼= W̃ and W̃T (L) ∼= W̃ (L),

and hence an embedding
W̃ (L) ↪→ W̃ ,

which extends the above embedding W (L) ↪→W . Again, this embedding depends on
the choice of BT up to conjugacy by an element of W .

Lemma 8.16. With notation as above, we have, for every i ∈ Z, an isomorphism of
W -modules

H i
c(p

−1T (Lξ),F) ∼=W IndWW (Lξ)
H i
c(P(Lξ),F).

If ξ ∈ G(R), then we have, for every i ∈ Z, an isomorphism of W̃ -modules

H i
c(p

−1T (Lξ),F) ∼=fW IndfW
W̃ (Lξ)

H i
c(P(Lξ),F).

Proof. The first assertion follows from the fact that the isomorphism of complex va-
rieties G/T ∼= P determined by BT gives a WT -equivariant isomorphism

p−1T (Lξ) ∼= WT ×WT (L) L/T.

Note that we may identify the set WT /WT (L) with the set of parabolic subgroups P
of G that contain L as a Levi subgroup. For each such P , the variety {(T ′, B) | T ′ ⊂
L, T ′ ⊂ B ⊂ P} is isomorphic to P(L) ∼= L/T via the map (T ′, B) 7→ (T ′, B ∩ L).

Now assume ξ ∈ G(R). First observe that we have a W̃T -equivariant isomorphism

p−1
T T (Lξ) ∼= W̃T ×W̃T (L) L/T.

Now apply twisting of coverings as introduced in §3.3, which leads to the identification
Indeed, the choice of BT identifies p : P → T as a twist of pT : G/T → T and
P(L) → T (L) as a twist of L/T → T (L). Hence, using the isomorphisms (8.15) we
may twist the W̃T -equivariant isomorphism above into a W̃ -equivariant isomorphism

(8.17) p−1T (Lξ) ∼= W̃ ×W̃ (L) P(L),

and the result follows. �

For an arbitrary element ξ ∈ G with Jordan decomposition ξ = ξs + ξn where ξs is
semisimple and ξn is nilpotent, write L = Lξ = ZG(ξs)0.

Proposition 8.18. (cf. [Lu4, Lemma 2.4 and its proof]) Let ξ ∈ G. We have an
isomorphism of W -modules,

(8.19) H i(BGξ ,F) ∼= IndWW (L)H
i(BLξξn ,F),

where BG denotes the flag variety of G, BGξ = {B ∈ BG | ξ ∈ Lie(B)}, etc.

If g ∈ G(R), then we have an isomorphism of W̃ -modules,

(8.20) H i(BGξ ,F) ∼= IndfW
W̃ (L)

H i(BLξξn ,F),
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where Lξ = ZG(ξs)0.

Proof. Since ξs is in the centre of L, BLξξn = BLξξ . Hence the first assertion is precisely
Lemma 2.4 in [Lu4], the proof of which we now briefly recall. The variety BGξ is a
disjoint union of copies of BLξ indexed by the set of parabolics P ⊂ G that contain
L as a Levi subgroup. In fact, if U ⊂ L is the variety of elements ζ ∈ L such that
ZG(ζ) ⊂ L, then U is Zariski-dense in L, ξ ∈ U and BGU := π−1(U) ⊂ G̃ is a disjoint
union of copies of BLU (defined similarly, with G replaced by L) which are indexed by
the set {P ⊂ G | L ⊂ P} as above. As pointed out in the proof of (8.16), the set
{P ⊂ G | L ⊂ P} has a natural transitive W -action and is isomorphic to W/W (L).

Now from the intersection cohomology construction of the W -action on the coho-
mology of BLξ , and of the W (L)-action on the cohomology of BLξ (see (8.8) et seq.),
we see that the first assertion follows from the fact that if Lrs is the variety of reg-
ular semisimple elements of L, then Lrs ⊆ U , and π−1

0 Lrs ⊂ G̃ is W -equivariantly
isomorphic to W ×W (L) L̃rs (here L̃rs is a subvariety of L̃ ⊆ G̃).

When ξ ∈ G(R), the same argument shows that we have a W̃ -equivariant isomor-
phism π−1

0 Lrs
∼= W̃×fW (L) L̃rs , which follows from the isomorphism (8.17) and diagram

(8.6). This implies our assertion through application of the intersection cohomology
functor, as above. �

The next result says that under the Springer correspondence, the nilpotent orbit
corresponding to the sign representation is the orbit of 0 ∈ G. A consequence is the
following special case of a result of Borho-MacPherson (which may be found in [LS]).

Lemma 8.21. If ξ ∈ G is nilpotent, the sign representation of W occurs in H i(Bξ,C)
if and only if ξ = 0 and i = 2N (recall N = dimB, the number of positive roots).

Corollary 8.22. If ξ ∈ G, the sign representation of W occurs in Hj(Bξ,F) if and
only if ξ is semisimple.

Proof of Corollary. Let notation be as above. The multiplicity of the sign represen-
tation εW in H i(Bξ) is given by

(8.23)

〈εW ,H i(Bξ)〉W = 〈εW , IndWW (L)H
i(BLξn)〉W by (8.18)

= 〈εW (L),H
i(BLξn〉W (L) by Frobenius reciprocity

6= 0 if and only if ξn = 0

(i.e. ξ is semisimple) by (8.21).

�

Corollary 8.24. Let ε be the sign representation of W . For each i, we have

Trace(σ,H i(B,F)ε) = Trace(σ,H i
c(P,F)ε),

Both sides are equal to Trace(σ,H i
c(T ,Sε)).

Proof. It follows from Lemma 8.13 and Corollary 8.22 that both sides of the equation
are zero unless i = 2N . In this case we need only check that σ acts with the same
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sign, and this follows from Lemma 8.13. The last assertion is immediate from the
definition of the coefficient system Sε. �

We are now able to give the

Proof of Theorem 8.11. From (7.16), to prove the theorem it suffices to show that

(i) For every ξ ∈ G, the stalks of K• and N• have equal Euler-Poincaré charac-
teristics:

∑
i∈Z(−1)i dimHi(K•)ξ =

∑
i∈Z(−1)i dimHi(N•)ξ.

(ii) For every ξ ∈ G(R) = Gσ, the stalks of K• and N• give equal virtual repre-
sentations

∑
i∈Z(−1)i[Hi(K•)ξ] =

∑
i∈Z(−1)i[Hi(N•)ξ].

Let L = ZG(ξ)0 and let T ⊂ L be a maximal torus. As we saw in the proof of Lemma
8.4, the stalk Hi(K•)ξ is canonically isomorphic to H i

c(T ξ,Sε), and if ξ ∈ G(R),
then this isomorphism respects the Γ-action. By (5.1), if ξ ∈ G(R) is semisimple,
T ξ = T (L) where T (L) denotes the variety of maximal tori of L. Hence for any
element ξ ∈ G, we have a vector space isomorphism

(8.25) Hi(K•)ξ
∼=−→ H i

c(T (L),Sε),

and if ξ ∈ Gσ, this is an isomorphism of Γ-modules.
On the other hand, if we write Fε for the sign representation of W , we have by

(8.10), M•
ε
∼= RHomW (Fε,M•), where M• is as in Definition 8.9. So for any ξ ∈ G,

we have, using the notation of (8.18), the following linear isomorphisms, which are
isomorphisms of Γ-modules if ξ ∈ G(R).

(8.26)

Hi(M•
ε )ξ ∼= HomW (Fε,Hi(M•)ξ)

∼= HomW (Fε,H i(BGξ ,F))

= 0 if ξ is not semisimple, by (8.22)
and if ξ is semisimple,

∼= HomW (Fε, IndfW
W̃ (L)

(H i(BL,F)) by (8.18)

∼= HomW (Fε, IndfW
W̃ (L)

(H4N(ξ)−i
c (P(L),F)∗) by (8.13)

∼= HomW (Fε,H4N(ξ)−i
c (p−1T (L),F)∗) by (8.16)

∼= HomW (Fε,H4N(ξ)−i
c (p−1T (L),F)) since Fε is self-dual

∼= H4N(ξ)−i
c (T (L),Sε)

where N(ξ) = dimBL.
Hence combining (8.25) and (8.26), we see that for any ξ ∈ G, we have linear

isomorphisms

Hi(M•
ε )ξ

∼=−→ H4N(ξ)−i(K•)ξ,

and that for ξ ∈ G(R), these isomorphisms respect the action of Γ. This implies a
fortiori the statements (i) and (ii) above, and hence completes the proof of Theorem
8.11. �
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Corollary 8.27. The complexes K• and M•
ε = N• ∈ Db

cc(G;σ,F) (see Theorem 8.11)
have equal characteristic functions : G(R) −→ F.

This is immediate from Theorem 8.11 and the definition (7.13).

Corollary 8.28. The complexes FGK
• and FGM

•
ε = FGN

• ∈ Db
cc(G;σ,F) (see The-

orem 8.11) have equal characteristic functions : G(R) −→ F.

The statement (8.28) follows immediately from Theorem 8.11 and Corollary 7.17.

9. Proof of the main theorem

Notation is as established in §8 above. Observe that V is a vector bundle over T with
fibre t ∼= Ar. Moreover since the restriction of the invariant form to t is non-degenerate,
V may naturally be identified with its dual bundle V̌ . The inclusion i : V ↪→ G×T is
a map of vector bundles over T , and we may therefore use property (7.7) to compare
the Fourier–Sato transforms FV and FT ×G. Consider the following diagram:

(9.1)

V
i−−−−→ T ×G

pG−−−−→ G

π1

y pT

y y
T id−−−−→ T f−−−−→ point

In the notation of Lemma 8.4 and Theorem 8.11, ρ = pG ◦ i. We start by proving

Lemma 9.2. Let A• ∈ Db
cc(V ;σ,F). Then

(9.3) FG(ρ!A
•) = pG!ǐ

∗(FVA•).

Here FG denotes the Fourier–Sato transform on Db
cc(G;σ,F), where G is regarded

as a self dual vector bundle over a point, and FV is the Fourier–Sato transform on
Db

cc(V ;σ,F), where V is regarded as a (self dual) vector bundle over T .

Proof. Since, in (9.1) i is a morphism defined over R of vector bundles over T , we
may apply (7.7) to deduce that for A• ∈ Db

cc(V ;σ,F),

(9.4) FT ×G(i!A•) = ǐ∗(FV (A•).

Take f to be the map f : T −→ point as shown in the diagram. Then applying (7.10),
we obtain for any C• ∈ Db

cc(T ×G;σ,F)

(9.5) FG(pG!C
•) = pG!(FT ×G(C•)).

Using the fact that ρ = pG ◦ i, we may combine (9.4) and (9.5) as follows. For
A• ∈ Db

cc(V ;σ,F),

(9.6)

FG(ρ!A
•) = FG(pG!(i!A

•))

= pG!FT ×G(i!A•) by (9.5)

= pG!ǐ
∗FV (A•) by (9.4),

which is the required statement. �
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Next we investigate the Fourier–Sato transform of the complex K•. Observe, that
the map ǐ : T ×G → V̌ is given by the restriction of the Killing form

(T ×G)×T (T ×G) = T × (G×G) → T × C
to the pairing

(T ×G)×T V → T × C.
Thus ǐ(T, ξ) = (T, pT (ξ)), (for (T, ξ) ∈ T × G), where pT : G −→ t = LieT is the
orthogonal projection with respect to the Killing form. In particular, ǐ(T, ξ) = (T, 0)
if and only if ξ is orthogonal to every t ∈ Lie(T ).

Proposition 9.7. Let SVε be the Γ-equivariant local system on V introduced in §8.
Then

(9.8) Hi(FGρ!SVε )ξ ∼=Γ H
i−2r
c (Tξ,Sε)⊗ F(r),

where r = dimT0 is the rank of G and F(r) is the rth Tate twist of F.

Proof. First observe that by applying (7.8) to the local system SVε = π∗1(Sε), we obtain

(9.9) FV (SVε ) ∼= sh−2rtt−rS0
ε ,

where S0
ε = i0!Sε is the restriction of SVε to T × {0} ⊆ V , extended by zero.

Note that the stalks of ǐ∗(S0
ε ) are given by

(9.10)

ǐ∗(S0
ε )(T,ξ) = (S0

ε )̌i(T,ξ)

=

{
0 if ǐ(T, ξ) 6= (T, 0)
(Sε)T otherwise

Hence ǐ∗(S0
ε )(T,ξ) is zero unless T ∈ Tξ, and on Tξ it is (Sε)T . It follows that

(9.11)

Hi(FGρ!SVε )ξ = Hi(pG!ǐ
∗(FV SVε ))ξ by (9.3)

∼= H i
c(p

−1
G (ξ), ǐ∗(FV SVε ))

∼= H i
c(p

−1
G (ξ), sh−2rtt−r ǐ∗(S0

ε )) by (9.9)
∼= H i−2r

c (p−1
G (ξ), ǐ∗(S0

ε ))⊗ F(−r)
∼= H i−2r

c (Tξ,Sε)⊗ F(−r) by (9.10).

�

The next result follows immediately from (9.7).

Corollary 9.12. With notation as in (9.7) above and Theorem 8.11, if ξ ∈ G(R), we
have ΛFGK•(ξ) = (−1)rΛ(σ, Tξ,Sε), where ΛFGK• is the characteristic function (see
(7.13)) of the Fourier–Sato transform FGK

•.

We now turn to the Fourier–Sato transform of the object N• ∈ Db
cc(G;σ,F).

Proposition 9.13. For any representation E of W , let M•
E be the complex of (8.10).

Then in the notation of (8.11), we have

FG(M•
ε ) = ttN−dim G(M•

1 [−dim G− r])|Gnil
,
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where r = dimT0 = rank(G) and |Gnil
denotes the restriction to the nilpotent cone,

extended by zero and N = dimB is the number of positive roots of G.

Proof. It follows from (7.11) and [Sho, Proposition 17.7] (the right side of which should
have (νG) added) that since M•

ε [dim G] is perverse,

(9.14) (shdim GFG)−1(M•
ε [dim G]) = ttN (M•

1 [dim G− r])|Gnil
.

But from (7.3), noting that F , sh and tt all commute,

(9.15)
(shdim GFG)−1 =sh− dim GF ′

G

= ttdim G ◦ shdim G ◦ inv∗ ◦ FG.

Combining (9.14) with (9.15), and using the fact that inv∗ leaves M•
1 invariant, we

obtain the statement of the proposition. �

We are now able to complete the

Proof of Theorem 1.10. It follows from (8.28) that the complexes FGK
• and FGM

•
ε

have the same characteristic functions, i.e. that, in the notation of (7.13), ΛFG(K•) =
ΛFG(M•

ε ). But by (9.12), ΛFGK•(ξ) = (−1)rΛc(σ, Tξ,Sε), while from (9.13) it follows
that FG(M•

ε ) is the constant sheaf F on Gnil extended by zero, concentrated in degree
−(dim G + r), with σ acting as (−1)dim G+N . It follows that for ξ ∈ G(R),

Λc(σ, Tξ,Sε) =

{
(−1)N if ξ ∈ Gnil

0 otherwise,

as required. Taking (5.2) into account, the statement about weighted Euler charac-
teristics follows from Theorem 4.5. �

10. Explicit computations for SL2, and concluding remarks

10.1. The case of SL2. We carry out explicit computations to illustrate Theorem
1.10 in the case G = SL2.

Take G = SL2(C) with σ acting as coordinate-wise complex conjugation and let T0

be the diagonal subgroup. In this case G is split, so in particular, P ∼= G/T0 over R
and we may indentify W with W0 = NG(T0)/T0.

We have W0 = {1, r}, represented by{
1 =

(
1 0
0 1

)
, r =

(
0 1
−1 0

)}
⊂ NG(T0).

Let

ξ0 :=
(

1 0
0−1

)
∈ G.

Then the map G → G given by g 7→ gξ0g
−1 induces an isomorphism of P with the

G-orbit of ξ0. Since ξ0 is semisimple, this G-orbit consists of all 2 × 2 matrices with
the same characteristic polynomial as ξ0. Hence we get an embedding

(10.1) P =
{(

a b
c−a

)
| a2 + bc = 1

}
⊂ G ∼= A3.
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The W0-action on P is given by the involution

gξ0g
−1 7→ grξ0r

−1g−1

Hence if we write the matrix in (10.1) as (a, b, c) ∈ A3, the non-trivial element r of
W0 takes (a, b, c) to (−a,−b,−c). It follows that T ∼= {[a, b, c] ∈ P2 | a2 + bc 6= 0} and
p : P −→ T is given by (a, b, c) 7→ [a, b, c].

For ξ ∈ G, define Pξ := p−1T ξ and Pξ := p−1Tξ.

The Killing form on G is given by 〈ξ, η〉 = Trace(ξη), and hence for ξ =
(
x y
z −x

)
∈

G the subvariety Pξ ⊂ P is given by

Pξ :=
{(

a b
c−a

)
∈ P | 2xa+ yc+ zb = 0

}
.

Suppose now that ξ ∈ G(R). Since Tξ = Pξ/W0, and W0 = {1, r}, the space Tξ(R)
of real points admits a decomposition

T Γ
ξ = p

(
Pσξ

)
∪ p

(
Prσξ

)
,

Clearly Pσξ = Pξ(R), the space of real points of Pξ, while

Prσξ =
{(

a b
c−a

)
∈ Pξ | a, b, c ∈

√
−1R

}
.

It is easy to check that T +
ξ := p(Pσξ ) is the space of tori in Tξ(R) of type +1, while

p(Prσξ ) := T −
ξ is the space of tori in Tξ(R) of type −1.

Now Theorem 1.10 asserts that

Λc(σ, Tξ,Sε) =
∑
C⊂T Γ

ξ

connected
component

χ(C) · ε(C) = χ(T +
ξ )− χ(T −

ξ ),

is −1 if ξ is nilpotent, and 0 otherwise. On the other hand, since Pσξ → T +
ξ and

Prσξ → T −
ξ are unramified double coverings, we have

Λc(σ, Tξ,Sε) =
1
2

(
χ(Pσξ )− χ(Prσξ )

)
.

In the following table we list all cases, verifying the Theorem. For ξ ∈ G(R), we
represent Pσξ by the equations defining it as subset of G(R) ∼= R3 and we represent



REAL POINTS OF VARIETIES OF TORI 35

Prσξ by the equations defining it as subset of
√
−1R3.

ξ Λc(σ, Tξ,Sε) Pσξ χ(Pσξ ) Pwσξ χ(Pwσξ )

(
0 0
0 0

)
−1 a2 + bc = 1 0 a2 + bc = −1 2

(
0 1
0 0

)
−1

{
a2 = 1
c = 0 −2 ∅:

{
a2 = −1
c = 0 0

(
1 0
0−1

)
0

{
a = 0
bc = 1 −2

{
a = 0
bc = −1 −2

(
0 1
−1 0

)
0

{
b = c
a2 + b2 = 1 0 ∅:

{
b = c
a2 + b2 = −1 0

10.2. Concluding remarks and open problems. The results presented here raise
several questions, among which are the following.

The formula for Λc(σ, T ξ,Sε) bears a striking resemblance to the character formula
for the Steinberg representation of a reductive group over Fq, with ‘q repaced by −1’.
We therefore ask

10.2. Is there a representation of G(R) with a “trace” whose value at x ∈ G(R) is
±Λc(σ, T x,Sε)?

In general, there are other σ-equivariant local systems on T and on B. For example
when G = SLn(C) and σ is complex conjugation, all the local systems Sρ are σ-
equivariant. The following question therefore arises naturally.

10.3. Compute Λc(σ, T ξ,Sρ) for other representations ρ of W , There are analogies
with the case of Fq which suggest that the values of Green functions at q = −1 may be
involved.

In the case of a finite field, the analogues of the results here were proved by using
characteristic functions, without reference to sheaves. This was possible because there
is a notion of “Fourier transform” for functions on a vector space over Fq, whose
properties suffice for the proof. We therefore ask

10.4. Is there a “Fourier transform” on the space of constructible functions on a real
vector bundle E, which is defined without reference to sheaves, which may be used to
prove Theorem 1.10 directly, in analogy with the finite characteristic case (cf. [Le2])?
Such a transform on the space of constructible functions would presumably have the
property that for K• ∈ Db

cc(E;σ,F), the Fourier transform of χK• is χFE(K•).
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Boston, Inc., Boston, MA, (1998).
[W] H. Whitney, “Elementary structure of real algebraic varieties”, Ann. of Math. (2) 66, (1957),

545–556.

School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
2006.

Department of Mathematics, KULeuven, Celestijnenlaan 200B, B-3001 Leuven (Hev-
erlee), Belgium.


