
Data assimilation for networks of coupled oscillators: Inferring unknown model
parameters from partial observations

Lauren D. Smith1, ∗ and Georg A. Gottwald2, †
1Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand

2School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
(Dated: September 7, 2023)

We develop a data-driven method combining a forecast model with unknown parameters and par-
tial noisy observations for networks of coupled oscillators. Employing network-specific localization
of the forecast covariance, an Ensemble Kalman Filter with state space augmentation is shown to
yield highly accurate estimates of both the oscillator phases and unknown model parameters in the
case where only a subset of oscillator phases are observed. In contrast, standard data assimila-
tion methods yield poor results. We demonstrate the effectiveness of our approach for Kuramoto
oscillators and for networks of theta neurons.

Many natural phenomena and engineering applications
can be described as networks of coupled oscillators, for
example, the firing of neurons in the brain1–3 and the dy-
namics of power grids4–7. However, mathematical mod-
els for these systems are often incomplete, with unknown
parameters and simplifying physical assumptions. Sci-
entists are now seeking data-driven methods to estimate
unknown parameters and provide an improved estimate
of the dynamic state from partial observations.

A pertinent question is: Can one accurately estimate
all the oscillators’ phases as well as unknown model pa-
rameters, such as oscillator natural frequencies, if only a
subset of the oscillator phases are observed? For example,
in a power grid, we may be able to observe all the power
stations, but none of the consumers. The framework of
data assimilation (DA) provides a unifying framework
that has the potential to achieve this by estimating a
system’s state and unknown parameters through a com-
bination of uncertain forecasts from a given model and
noisy partial observations.

We focus specifically on the Ensemble Kalman Filter
(EnKF)8–14 as a DA method. Although the framework of
Kalman filters can strictly only be applied to linear sys-
tems, the EnKF has been successfully used in numerous
non-linear settings15. In particular, the Kalman filter has
been widely used in the weather forecasting community
combining model forecasts and noisy observational data
to yield improved forecasts8–14. To date, there are no
applications of DA to the broad class of non-linear sys-
tems that model coupled oscillators on complex networks.
Indeed, we find that the standard EnKF algorithm per-
forms poorly for networks of coupled oscillators unless
very large ensembles are used. However, we show that
when a novel localization method is incorporated, specific
to dynamics on networks, the method is highly effective
at estimating both oscillator phases and unknown model
parameters, even when a small ensemble is used and only
a fraction of the phases are observed. This sets DA apart
from other data-driven parameter estimation methods
that require all oscillator phases to be observed16–19. We
demonstrate our method for two models of coupled oscil-

lators; 1. The Kuramoto model20,21 which is a simplifi-
cation of power grid dynamics and captures the synchro-
nization phenomena observed in many coupled oscillator
systems, and 2. Networks of theta neurons22–25 which
model neural dynamics of the brain.

Kalman filters aim to estimate the posterior distribu-
tion of the state given a model forecast and noisy obser-
vations. The distributions are parametrized by the mean
and the covariance of the variables, assuming a multivari-
ate Gaussian distribution. In ensemble Kalman filters the
mean and covariances are approximated by an ensemble
of independent forecasts. In particular, at each discrete
time step tk, the mean (called the “analysis”) is provided
by

X̄a
k = X̄ f

k +Kk(Yk −HX̄ f
k),

where Yk is the vector of observations, H is the observa-
tion matrix that projects from state space to observation
space, X̄ f

k is the ensemble mean of the model forecast,
obtained by simulating the ensemble with the full non-
linear model from time tk−1 to tk initialized with the
previous analysis ensemble with mean X̄a

k−1 and covari-
ance P a

k−1 = (I−KkH)P f
k−1, and Kk is the Kalman gain

matrix

Kk = P f
kH

T (HP f
kH

T +R)−1, (1)

where R is the observational error covariance matrix.
The forecast error covariance matrix P f

k is estimated
at each time step from the ensemble as a Monte-Carlo
approximation. It is this estimation of the error co-
variance matrix via the ensemble which is propagated
using the full nonlinear dynamics which sets ensemble
methods apart from classical Kalman filters which of-
ten assume a constant background error covariance ma-
trix. In order to estimate unknown model parameters
in addition to the state space variables, we employ state
space augmentation11,12,26. Letting X = (φ1, . . . , φn) de-
note the state variables and ξ1, . . . , ξm denote the un-
known parameters, the new state variables are X̃ =
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FIG. 1. (a) Average correlation matrix Q for a large ensemble (M = 10100), and (b) for a small ensemble (M = 101), obtained
by applying the standard EnKF to the Kuramoto model (4). The augmented state space is (φ1,...,50, ω1,...,50), hence the block
matrix substructure (indicated by red lines) in Q with φ-φ correlations, φ-ω correlations, ω-φ correlations and ω-ω correlations.
The Kuramoto model parameters are κ = 27 and ωi ∼ N (0, 0.1). (c) The localization matrix L (6) for the ring topology with
N = 50 and r = 3 using λ = 0.46.

(φ1, . . . , φn, ξ1, . . . , ξm), with dynamics ξ̇j = 0 (see Ap-
pendix A for full details).

For networks of coupled oscillators, the state variables
are typically phases which are 2π-periodic. As such, care
needs to be taken when computing ensemble means and
covariances. Consider an ensemble of M N -dimensional
phase vectors, φ1, . . . ,φM , with φk = (φk1 , . . . , φ

k
N ). We

assume that for each j = 1, . . . , N , the ensemble φkj , k =
1, . . . ,M , is relatively concentrated to one region of the
unit circle. The ensemble mean φ̄j for each j = 1, . . . , N
(and, hence X̄ f) is computed as the mean in the complex
plane, i.e.,

ρeiφ̄j =
1

M

M∑
k=1

eiφ
k
j . (2)

The ensemble forecast error covariance matrix is com-
puted as

P f
jl =

1

M − 1

M∑
k=1

F
(
φkj − φ̄j

)
F
(
φkl − φ̄l

)
, (3)

for j, l = 1, . . . , N , where F (θ) = mod(θ + π, 2π) − π is
used to ensure that the differences are centered at 0 and
are in the interval [−π, π).

Since the distributions of Xa and X f are estimated
by ensembles, there is a trade-off between the ensem-
ble size and computational speed. Large ensembles are
desired to accurately estimate the covariances P f

k, but
small ensembles enable faster computation. For small
ensembles, spurious correlations can have a significant
effect at each DA step. To suppress the effect of spurious
correlations so-called localization is employed, whereby
geographical/topological information is used to predeter-
mine which correlations will be spurious27. In standard
applications, such as weather forecasting, correlations are

deemed spurious if the grid points are far apart. It is less
clear how to best incorporate localization for dynamics
on networks. The following examples illustrate the need
for localization in networks of coupled oscillators, as well
as how localization should be performed.

Example 1: The Kuramoto model. To demonstrate DA,
spurious correlations, and appropriate localization for
networks of coupled oscillators, we begin with the Ku-
ramoto model20,21. For N oscillators, the dynamics of
the i-th oscillator is

φ̇i = ωi +
κ

N

N∑
j=1

Aij sin(φj − φi), (4)

where ωi is the oscillator’s natural frequency, κ is the
coupling strength and A is the network adjacency ma-
trix. This model approximates the dynamics of many
engineering, biological and chemical processes with inter-
acting oscillators21,28, for example, it models the power
grid wherein the nodes represent the electrical phases of
power stations and consumers, and the network edges
represent power lines5–7.

We return to the question posed in the introduction:
Can DA accurately estimate all the phases φi and all the
natural frequencies ωi if only a subset of the phases are
observed? We assume that κ and A are known.

Before addressing the above problem, we begin with a
simpler problem that illustrates spurious correlations and
how they can be mitigated: Can DA accurately estimate
all the phases φi and all the natural frequencies ωi if all
of the phases are observed? For illustrative purposes we
assume a ring network topology, such that nodes are ar-
ranged in a circle, and each node is connected to its 2r
nearest neighbors (coupling radius r). To demonstrate
spurious correlations, we record the covariance matrices
P f
k at each step of the DA process, and normalize them
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to generate correlation matrices Qk. For the DA process,
we generate noisy observations Yk by first simulating the
model and then adding noise with prescribed covariance
R = η2I (here η = 0.02). Averaging the Qk over the
whole DA process yields the average correlation matrix
Q, shown in Fig. 1(a,b) for both a large ensemble size
M = 100(2N + 1) = 10100 and a small ensemble size
M = 2N + 1 = 101. Since the augmented state space is
2N -dimensional, the minimum ensemble size to ensure a
full rank covariance matrix is M = 2N + 1. For the large
ensemble (Fig. 1(a)), we observe a rapid decay in corre-
lation away from the leading diagonal in each sub-block
matrix, which reflects the network connectivity of the un-
derlying ring topology. On the other hand, for the small
ensemble (Fig. 1(b)), there is a high correlation region
close to the diagonal, but there are also large spurious
correlations far from the diagonal, i.e., large correlations
between nodes that are poorly connected. Moreover, the
information about the network topology appears to be
completely lost in the φ-ω correlations, which are cru-
cial for estimating the ωi (see Appendix A). To suppress
these spurious correlations for small ensembles, we pro-
pose using localization: At each DA step, the covariance
matrix P f

k is replaced by

P̃ f
k = L ◦ P f

k

where ◦ denotes the Schur (elementwise) product, and
the localization matrix L has the following properties:

• L encodes the network connectivity, i.e., Lij is large
if nodes i and j are well connected, and small oth-
erwise,

• L is a correlation matrix, i.e., Lii = 1 and L is
positive semi-definite.

Consider the matrix exponential E = exp(λA), where λ
is a tunable parameter and A is the network adjacency
matrix (assumed to be symmetric). Since

E = exp(λA) =

∞∑
n=0

λn

n!
An

is a weighted sum, with decreasing weights, of powers An,
each counting the number of paths of length n, E encodes
the network topology. Moreover, E is guaranteed to be a
symmetric positive semi-definite matrix, i.e., a covariance
matrix. E can be converted to a correlation matrix by
renormalizing, i.e.,

L = (diag(E))
− 1

2 E (diag(E))
− 1

2 , (5)

where diag(E) denotes the matrix of diagonal elements
of E . Thus, L is a correlation matrix that encodes the
network topology, fulfilling our requirements of a local-
ization matrix. L would be sufficient if we only aimed to
estimate phases via DA, for the augmented state space

with both phases and frequencies, we use the block ma-
trix

L =

(
L L
L L

)
. (6)

An example of L is shown in Fig. 1(c) for the ring topol-
ogy with N = 50 and r = 3 using λ = 0.46. The param-
eter λ controls the rate of decay for distant nodes and is
chosen to suppress spurious correlations (see Appendix B
for full details on the choice of λ). We will show that ap-
plying this localization significantly reduces the impact
of spurious correlations on the DA process. We note that
the matrix exponential for the ring topology has a similar
profile to standard localization functions27,29, however,
the standard localization functions do not yield correla-
tion matrices when applied to networks, as they rely on
Euclidean geometry (see Appendix D for full details).

Returning to the more difficult problem of determining
the φi and ωi from limited observations, we consider the
case where only 70% (35 out of 50) of the phases are ob-
served. We find, remarkably, that even with this limited
information, DA with localization does an excellent job
at determining all of the phases and all of the unknown
parameters ωi, whereas the standard EnKF algorithm
without localization performs poorly. This is shown in
Fig. 2. Fig. 2(a) shows the root mean square (RMS) er-
rors between the true values and the DA estimated values
for both the phases φi (dashed) and the frequencies ωi
(solid), using both the standard EnKF algorithm (blue)
and the EnKF algorithm with localization using (6) (red).
The RMS error for the phases at time t is

Eφ(t) =
1√
N

√√√√ N∑
i=1

(
φi(t)− φ̂i(t)

)2

, (7)

where φ̂i(t) is the DA estimated value and φi(t) is the
true value. The RMS error for the frequencies, Eω, is
computed analogously. We see that localization greatly
reduces the error in both the phases and the frequen-
cies compared to the standard algorithm, with almost
10 times less error in each. The normalized residu-
als (differences between the true and estimated values,
normalized by the maximum value) at the final time
t = 15 for the respective DA approaches are shown in
Fig. 2(b,c) for φi and ωi, respectively. As well as ob-
serving that localization (red circles) greatly reduces the
error compared to the standard algorithm (blue trian-
gles), we see that for each approach (standard or local-
ized) DA performs, as expected, better for the nodes
that are observed (filled circles/triangles) compared to
the unobserved nodes (open circles/triangles). Compar-
ing the median residuals (solid and dashed horizontal
lines in Fig. 2(b,c)), localization without node observa-
tion (dashed red line) yields a smaller median residual
than the standard algorithm with node observation (solid
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blue line), which again highlights the importance of lo-
calization. We note that DA struggles the most in the re-
gion with a large number of unobserved nodes, i.e., in the
range i = 20 to i = 40. This is expected because there
is less information available to unobserved nodes, and
this is compounded if unobserved nodes are clustered to-
gether and their estimates are not sufficiently controlled
by incoming observations.

We have used the ring topology here to illustrate spu-
rious correlations and network-specific localization. Our
methodology readily extends to general networks, and
network-specific localization yields a great improvement
in estimation accuracy (see Appendix C for a discus-
sion of the localization method applied to Erdős-Renyi
graphs).

In Appendix E we discuss the effect of changing the
fraction of observed nodes. As expected, the estimation
accuracy increases with the fraction of observed nodes.
Localization amplifies this effect, and allows for a much
smaller set of observed nodes to achieve the same esti-
mation accuracy compared to the standard approach.

We remark that synchronization presents a challenge
for data-driven problems in general when applied to mod-
els similar to the Kuramoto model. For sufficiently large
coupling strengths κ, the phases will tend to a syn-
chronous rotating state, which is effectively a stationary
state in a rotating reference frame. Once synchroniza-
tion occurs, observational data becomes degenerate, as
no new information is being fed to the DA process. In
the examples here, we show results for the transient pe-
riod before synchronization occurs.

We now present a second example in which synchro-
nization does not generally occur, and which is used to
model activity within the brain:

Example 2: Networks of theta neurons22–25. For N neu-
rons, the dynamics of the i-th neuron is given by

φ̇i = 1− cosφi + (1 + cosφi) (ζi + κIi) , (8)

where κ is a coupling strength, ζi is an intrinsic parameter
that determines the neuron’s propensity to fire, and Ii is
the input from other neurons to neuron i given by

Ii =
2π

N

N∑
j=1

BijP (φj),

where P (φ) = a(1 − cosφ)2, with a such that∫ 2π

0
P (φ)dφ = 2π, and Bij is the connectivity between

nodes i and j, which may be negative for inhibitive cou-
pling. When a neuron receives sufficient input from its
neighbors, it fires, completing a revolution of the unit cir-
cle. This firing provides input to the neuron’s neighbors
which in turn may cause them to fire. In such a network,
many irregular and sustained firing patterns are possi-
ble depending on the model parameters and the initial
condition.
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FIG. 2. (a) RMS errors (7) in φ (dashed) and ω (solid) for
DA applied to the Kuramoto model (4) with 35 out of 50
phases observed. Results are shown for the standard EnKF
with state space augmentation (blue) and EnKF with state
space augmentation and network-based localization (6) with
λ = 0.46 (cf. Fig. 1(c)) (red). (b), (c) Normalized residuals of
φi and ωi, respectively, at final time t = 15 for the standard
EnKF algorithm (blue triangles) and for the EnKF algorithm
with localization (red circles). Filled symbols indicate ob-
served nodes, and open symbols indicate unobserved nodes.
Medians of the residuals are shown as horizontal lines; blue for
standard, red for localized, solid for observed, dashed for un-
observed. Note the logarithmic scale on the vertical axes. The
Kuramoto model parameters are κ = 10 and ωi ∼ N (0, 0.1)
with the ring topology with r = 3.
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FIG. 3. Time evolution of the phase variables φi of the theta
neuron model (8) showing a bump state. The theta neuron
model parameters are N = 50, κ = 2 and ζi ∼ N (−0.4, 0.1),
with connectivity matrix B described in the main text.

We consider a similar problem to that posed for the
Kuramoto model: Can DA accurately estimate all the
phases φi and all the intrinsic firing parameters ζi if only
a subset of the phases are observed?

For the connectivity matrix B, we consider a similar
topology to the ring topology, such that nodes are ar-
ranged in a ring and positively coupled with Bij = 1
if they are within a coupling radius r = 3. We also in-
clude negative (inhibitory) long range coupling, such that
Bij = −0.4 for the three furthest nodes from each node.
All other entries of B are zero. Similar connectivity as-
sumptions are often made in modeling studies30, and typ-
ically produce “bump states” such as that shown in Fig. 3,
with a region of neurons that fire approximately period-
ically and another region of neurons that do not fire at
all. Such bump states are thought to be connected to
short term memory31.

As for the Kuramoto model, correlation matrices for
large ensembles reflect the underlying network connec-
tivity. The localization matrix (6) is chosen, with Aij =
|Bij | since B has negative entries. We again use λ = 0.46
based on the coupling radius r = 3.

We find that localization again significantly improves
the estimation capability of the EnKF, and yields ac-
curate estimates for both the phases φi and the intrinsic
parameters ζi when only 35 out of 50 phases are observed.
This is shown in Fig. 4. Similar to Fig. 2(a), the RMS
errors in phases φi (dashed) and intrinsic parameters ζi
(solid) are shown in Fig. 4(a) over the course of the DA
process. Results are shown for both the standard EnKF
algorithm (blue) and the EnKF with localization (red).
By time t = 30, localization has reduced the RMS er-
rors in both the phases and the intrinsic parameters by
more than a factor of 10. Similar to Fig. 2(b,c), the nor-
malized residuals at the final time t = 30 are shown in

Fig. 4(b,c) for the φi and ζi, respectively. The residu-
als clearly show the excellent performance of the EnKF
approach with localization. Comparing the respective
median residuals (horizontal lines in Fig. 4(b,c)), the lo-
calized algorithm yields more than a 100-fold decrease
in error compared to the standard algorithm. As with
the Kuramoto model, there is greater discrepancy for the
unobserved nodes (open circles/triangles) compared to
the observed nodes (filled circles/triangles), as expected.
We note that for the quiescent, approximately stationary,
nodes in the bump state (between i = 30 and i = 40), DA
performs slightly worse. This is similar to the problem
of synchronization discussed previously, though the per-
sistent small fluctuations that occur in the theta neuron
model allow better approximation than a purely station-
ary synchronized state.

Comparing the results for the theta neuron model (8)
and the Kuramoto model (4), DA performs better, yield-
ing smaller RMS errors, for the theta neuron model. This
is because the dynamics of the theta neuron model are ir-
regular, and, thus, the DA approach does not suffer from
the data degeneracy issue that arises due to synchroniza-
tion that plagues the Kuramoto model.

To summarize, data assimilation via the Ensemble
Kalman Filter with network-specific localization and
state space augmentation (and other minor modifications
to account for periodicity of phase variables) can accu-
rately determine both the phases and unknown model
parameters in networks of coupled oscillators when only
a subset of the phases are observed. Our novel localiza-
tion approach utilizes the matrix exponential of the net-
work’s adjacency matrix, which encodes the connectivity
between nodes. We have demonstrated the efficacy of our
method for two types of oscillators; Kuramoto oscillators
which approximate power grid dynamics, and theta neu-
ron oscillators which approximate the dynamics in the
brain. In both examples, data assimilation yields excel-
lent approximations that closely agree with the truth.

Here we have taken random subsets for the observed
nodes, but it is likely that there are optimal sets of nodes
that should be observed. Real-world applications such
as the power grid will also have physical limitations on
which nodes can be observed. More work is needed to
determine an optimal choice of observed nodes.

Here we have focused on using DA to learn the un-
known intrinsic parameters for each oscillator (natural
frequency or firing propensity). Future work should in-
vestigate whether DA can be used to determine unknown
coupling functions or unknown network connectivity ma-
trices. Unknown coupling functions can be estimated via
Fourier series, with the unknown Fourier coefficients es-
timated via DA. Determining the network structure and
the adjacency matrix is more challenging, since there
is a greater number of unknowns, and the localization
method presented here is dependent on an a priori known
network structure. However, we believe that in cases
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FIG. 4. (a) RMS errors (7) in φ (dashed) and ζ (solid) for
DA applied to a theta neuron network (8) with 35 out of 50
phases observed. Results are shown for the standard EnKF
with state space augmentation (blue) and EnKF with state
space augmentation and network-based localization (6) with
λ = 0.46 (red). (b), (c) Normalized residuals of φi and ζi,
respectively, at final time t = 30 for the standard EnKF algo-
rithm (blue triangles) and for the EnKF algorithm with local-
ization (red circles). Filled symbols indicate observed nodes,
and open symbols indicate unobserved nodes. Medians of the
residuals are shown as horizontal lines; blue for standard, red
for localized, solid for observed, dashed for unobserved. Note
the logarithmic scale on the vertical axes. The theta neuron
model parameters are κ = 2 and ζi ∼ N (−0.4, 0.1) with the
coupling topology B described in the main text.

where the network topology is known reasonably well,
e.g., it is known where power lines are in the power grid,
but the non-zero weights of the adjacency matrix are
not known, the localization can still be performed and
the filter will converge. We remark that there has been
significant progress in inferring the underlying network
topology from incomplete observations32–37.

Our novel localization method is specific to dynamics
on networks, but not necessarily to coupled oscillators.
We expect our localization approach to also improve DA
when applied to other types of dynamics on networks,
such as spreading processes (e.g., contagions)38.

Appendix A: Ensemble Kalman filter

We describe here in detail the implementation of the En-
semble Kalman filter (EnKF). We recall that the states
are labelled as φ ∈ RN and the parameters are ζ ∈ RN
(here ζ represents either the natural frequencies ωi of
the Kuramoto model or the intrinsic parameters ζi of
the theta neuron model). To incorporate parameter esti-
mation into an EnKF analysis step, an augmented state
space X = (φT, ζT)T ∈ R2N is used.

In a Kalman filter, the analysis Xa
n at time tn is the

optimal estimate of the state given a forecast X f
n and an

observation Yn. Treating X f
n and Xa

n, n ≥ 0 as random
variables and assuming a Gaussian distribution forX f

n+1,
the analysis step for the mean X

a

n is given by

X
a

n = X
f

n −Kn(HX
f

n − Yn), (9)

where the observation matrix H = (Hφ 0) ∈ RNobs×2N

projects from (augmented) state space to the observation
space. Here Nobs denotes the number of observed state
variables, and Hφ ∈ RNobs×N projects the phases onto
observation space. If, for example, only the first phase
φ1 is observed, i.e Nobs = 1, then H = (1, 0, · · · , 0) ∈
R1×2N . The Kalman gain matrix Kn is given by

Kn = P f
nH

T
(
HP f

nH
T +R

)−1
(10)

with forecast covariance matrix P f
n and observational er-

ror covariance matrix R. We assume a diagonal observa-
tional error covariance with R = η2I.

We employ here a stochastic EnKF11,13,39,40 to imple-
ment the Kalman analysis step. Ensemble Kalman filters
allow for a dynamically adapted estimation of the fore-
cast covariances, and they proved to be advantageous for
nonlinear forward models, such as the Kuramoto model
and the theta neuron model considered in this work, and
for the non-Gaussian augmented state variables. Con-
sider an ensemble of states X ∈ R2N×M consisting of M
members X(i) ∈ R2N×1, i = 1, . . . ,M , that is,

X =
[
X(1), X(2), . . . , X(M)

]
, (11)
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with empirical mean

X =
1

M

M∑
i=1

X(i), (12)

or, for phase variables, the mean given by (2), and asso-
ciated matrix of ensemble deviations

X̂ =
[
X(1) −X,X(2) −X, . . . ,X(M) −X

]
. (13)

Ensembles for the forecast are denoted again by super-
script f and those for the analysis by superscript a. In the
forecast step the φ-component of each ensemble member
is propagated independently using the non-linear fore-
cast model (i.e., either the Kuramoto model or the theta-
neuron model), updating the previous analysis ensemble
Xa
n−1 to the next forecast ensemble X f

n. The parame-
ter component ζ of each ensemble member is considered
constant during the forecast step, i.e. ζ̇ = 0. The fore-
cast covariance matrix P f

n used in the analysis step (9)
is estimated as a Monte-Carlo approximation from the
forecast ensemble deviation matrix X̂ f

n via

P f
n =

1

M − 1
X̂ f
n (X̂ f

n)T ∈ R2N×2N . (14)

For periodic phase variables we apply the function
F (θ) = mod(θ + π, 2π) − π to the deviations of phase
variables as in (3).

To ensure that the analysis ensemble is statistically
consistent with the Kalman filter, and, in particular,
with the analysis error covariance P a = (I − KH)P f ,
in the stochastic ensemble Kalman filter11,39 observa-
tions Yn receive a stochastic perturbation η(i)

n ∈ RNobs×1,
i = 1, . . . ,M , drawn independently from the Gaussian
observational noise distribution N (0, R). The associated
ensemble of perturbed observations Zp

n ∈ RNo×M is given
by

Zp
n =

[
Yn − η(1)

n , Yn − η(2)
n , . . . , Yn − η(M)

n

]
. (15)

The EnKF analysis update step is then given by

Xa
n = X f

n −Kn∆In, (16)

with the Kalman gain defined by (10) using (14) and the
stochastic innovation

∆In = HX f
n −Zp

n. (17)

To mitigate against finite ensemble size effects we employ,
as is typically done, covariance inflation with P f

n → δP f
n

with δ = 1.00141. This multiplicative inflation does not
effect the ensemble mean but increases the forecast error
covariance. In finite ensembles members may align, on
short time scales, with the most unstable direction lead-
ing to an ensemble collapse in which many ensembles be-
come indistinguishable. This leads to filter divergence in

which the filter believes its own forecast since P f is small,
and the forecast is not corrected by new incoming obser-
vations. Apart from this ensemble collapse, finite ensem-
bles typically generate spurious correlations. If two vari-
ables are not correlated, the Monte-Carlo approximation
of the covariance yields entries of O(1/

√
M). To mitigate

against those spurious correlations which may spoil the
analysis, localization is employed. Here, as outlined in
the main text we use P f → L ◦ P f where ◦ denotes the
Schur product and

L =

(
L L
L L

)
(18)

is the localization matrix, where

L = (diag(E))
− 1

2 E (diag(E))
− 1

2 , (19)

and E = exp(λA), where λ is a tunable parameter and
A is the network adjacency matrix, as in the main text
(5)-(6). Since

E = exp(λA) =

∞∑
n=0

λn

n!
An (20)

is a weighted sum, with decreasing weights, of powers An,
each counting the number of paths of length n, E encodes
the network topology. Moreover, E is guaranteed to be a
symmetric positive semi-definite matrix, i.e., a covariance
matrix. The choice of λ will be discussed in Appendix B
below.

The data assimilation cycles are initialized with an ini-
tial ensemble Xa

0 at t = 0 with φa
0 ∼ N (φ0 + ηφ, σ

2
φ,1I),

such that φ0 is the true value at t = 0 and ηφ ∼
N (0, σ2

φ,2) ∈ RN . In essence, σφ,2 controls the per-
turbations of the ensemble means away from the truth,
and σφ,1 controls the spread of the ensemble around the
ensemble means. The initial ensemble for the parame-
ters ζ has the analogous form ζa

0 ∼ N (ζ0 + ηζ , σ
2
ζ,1I),

such that ηζ ∼ N (0, σ2
ζ,2) ∈ RN . For the Kuramoto

model DA example in Fig. 2 we use σ2
φ,1 = σ2

φ,2 = 0.25,
and σ2

ω,1 = σ2
ω,2 = 0.25σ2

ω = 0.025, where σ2
ω = 0.1

is the variance of the natural frequency distribution.
For the theta neuron network example in Fig. 4 we use
σ2
φ,1 = σ2

φ,2 = 0.04, and σ2
ζ,1 = σ2

ζ,2 = 0.04σ2
ζ = 0.004,

where σ2
ζ = 0.1 is the variance of the intrinsic parameter

distribution.
To test our DA methods we generate noisy observa-

tions Yk by first simulating the model and then artifi-
cially adding noise with prescribed covariance R = η2I
with η = 0.02. To quantify the skill of the DA procedure,
we compare in our numerical experiments the analysis
mean with the true values.
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Splitting of the analysis step into phase and pa-
rameter components
For our ensemble X =

[
X(1), X(2), . . . , X(M)

]
, we can

write each ensemble member in the form

X(j) =

(
Φ(j)

Ξ(j)

)
, (21)

such that Φ(j) =
(
φ

(j)
1 , . . . , φ

(j)
N

)T
and Ξ(j) =(

ζ
(j)
1 , . . . , ζ

(j)
N

)T
. Analogous to (13), we can define en-

semble deviations for the phases and parameters sepa-
rately, i.e.,

Φ̂ =
[
Φ(1) − Φ̄, . . . ,Φ(M) − Φ̄

]
,

Ξ̂ =
[
Ξ(1) − Ξ̄, . . . ,Ξ(M) − Ξ̄

]
, (22)

so that

X̂ =

(
Φ̂

Ξ̂

)
. (23)

From (14), it follows that the forecast covariance matrix
is given by

P f
n =

1

M − 1

(
Φ̂f
n(Φ̂f

n)T Φ̂f
n(Ξ̂f

n)T

Ξ̂f
n(Φ̂f

n)T Ξ̂f
n(Ξ̂f

n)T

)
=

(
P f
φφ P f

φζ

P f
ζφ P f

ζζ

)
,

(24)
such that P f

φφ is the covariance matrix of the phases only,
P f
φζ is the covariance between the phases and parameters,

etc.
Since we only observe the phases φ, we can separate

the state and parameter update of the Kalman analysis
step (9) as

φ
a

n = φ
f

n − P f
φφH

T
φ

(
HφP

f
φφH

T
φ +R

)−1
∆In (25a)

ζ
a

n = ζ
f

n − P f
ζφH

T
φ

(
HφP

f
φφH

T
φ +R

)−1
∆In (25b)

with innovation

∆In := Hφφ
f

n − Yn. (26)

We note that the covariance matrix P f
ζζ , between the

parameters and themselves, does not enter this equation.

Appendix B: Choosing λ for ring topology
localization

The parameter λ in the localization matrix L (5) (cf.
(19)-(20)) is important for controlling the rate of decay
of correlations for distant nodes. The optimal value of λ
could be found through numerical optimization, minimiz-
ing the RMS error of the DA algorithm across many sim-
ulations. Here we present a heuristic method to choose a
value of λ for ring network topologies, and in Appendix C
the method is generalized to random network topologies.

Our heuristic is based on the typical decay of correlations
that is observed from DA for large ensembles.

Considering a ring topology with connectivity radius
r, we find that the correlations for large ensembles are
negligible beyond a radius of 2r. That is, for a node
j, only the nodes k that have shortest path length from
j to k less than or equal to 2 have significant correla-
tions, and all other correlations can be considered spu-
rious. This is shown in Fig. 5, which shows the aver-
age correlation as a function of distance from the node,
scaled by the connectivity radius r. This data is ob-
tained from the standard EnKF algorithm applied to the
Kuramoto model with N = 50 and with a large ensemble
M = 100(2N + 1), as in Fig. 1(a) which shows correla-
tions for r = 3. Fig. 5 shows that correlations become
spurious beyond a distance of 2r (d/r = 2). Using this
information, considering node j = 1, the nodes within a
radius of 2r, and which will have significant correlations
are k = 1, . . . , 2r + 1 and k = N − r + 1, . . . , N , and all
other nodes, i.e., k = 2r + 2, . . . , N − r will have spu-
rious correlations. Knowing which correlations we wish
to suppress, the next question is how much do we need
to suppress them? For this, we choose an 0 < ε < 1,
which will be the upper bound for the entries in L (5)
beyond a radius of 2r from each node. Here we have cho-
sen ε = 0.1. Due to the symmetry of the ring topology,
and the fact that exp(λA) decays away from its diagonal,
we require that

L1,2r+2 =
exp(λA)1,2r+2

exp(λA)1,1
≤ ε, (27)

where exp(λA)i,j denotes the i, j component of exp(λA).
Changing the inequality in (27) to an equality gives an
equation that can be solved (numerically) for λ in terms
r and ε. This is demonstrated schematically in Fig. 6,
where the orange squares are the first spurious correla-
tions, and have Lij = ε. In particular, in the first row we
have L1,2r+2 = ε.

For a fixed value of ε, we find that 1/λ scales ap-
proximately linearly with r, independent of N provided
r � N . This is shown in Fig. 7. Fig. 7(a) shows that
for fixed ε = 0.1, the value of λ obtained from (27) does
not depend on N , provided that r � N . Fig. 7(b) shows
different approximately linear scalings between 1/λ and
r for various values of ε (all using N = 200). This ap-
proximately linear scaling will be utilized to determine
appropriate values of λ for general network topologies in
Appendix C.

Appendix C: Data assimilation for random
graphs

In this section we show results for DA applied to the
Kuramoto model with random network topologies. First
we discuss the localization procedure, then we show that
localization greatly improves estimation accuracy.



9

0 1 2 3 4 5 6

10-2

10-1

100

FIG. 5. Average forecast correlation (averaging P f
k over all nodes and all time steps) as a function of distance d from the node,

scaled by the coupling radius r, for r = 2, 3, 5, 10. All results are obtained from runs of the standard EnKF algorithm applied
to the Kuramoto model (N = 50, κ = 80/r, ωi ∼ N (0, 0.1) in a ring topology), with a large ensemble M = 100(2N + 1). Note
the coupling strength κ = 80/r is used to maintain a constant effective coupling strength κ/〈d〉, where 〈d〉 is the mean degree.

Adjacency matrix

Non-spurious correlations

First spurious correlations

Spurious correlations

FIG. 6. Schematic diagram for the condition (27) that defines λ. Shown is the top right corner of the matrix L, the gray
squares indicate the underlying adjacency matrix (here a ring with r = 2), the green squares indicate correlations that should
not be considered spurious because they are within a distance of 2r from the node, and orange/red squares indicate correlations
that should be considered spurious because the distance from the node is greater than 2r. The orange squares are those whose
value will be ε for λ satisfying (27) with equality, e.g., in the first row L1,2r+2 = ε.
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FIG. 7. 1/λ as a function of r for various values of N and ε. In all cases λ is obtained from (27). (a) Fixed ε = 0.1,
N = 50, 100, 200. (b) Fixed N = 200, ε = 0.05, 0.1, 0.2, 0.5.

Localization method for random graphs
In the main text it was shown that localization using (6)
greatly improves the estimation accuracy of the EnKF
algorithm for the Kuramoto model (4) with a ring net-
work topology. Here we show that localization also yields
a large improvement for random graphs. We focus on
Erdős-Renyi (ER) graphs, for which each pair of nodes
are coupled with probability p (here we us p = 0.1).

We determine the value of λ to use in the localization
matrix (5) based on a ring topology with the equivalent
mean degree. For an ER network withN nodes, the mean
degree is (N−1)p. The corresponding ring topology with
the same mean degree has connectivity radius r∗ = (N −
1)p/2 (ignoring for now that this is likely not an integer).
We now find λ∗ corresponding to the ring topology with
r = r∗. If r∗ is an integer, we follow the procedure from
Appendix B, otherwise, we interpolate to find λ∗. We
could linearly interpolate between the two nearest integer
values of r, but we can do better by noting that 1/λ scales
approximately linearly with r, as shown in Fig. 7. Thus,
we find the fit of the form

1

λ
= mr + c, (28)

passing through (r1, 1/λ1) and (r2, 1/λ2), where r1 =
br∗c and r2 = dr∗e are the two nearest integers to r∗,
and λ1 and λ2 are the corresponding values of λ obtained
from Appendix B That is,

m =
1/λ2 − 1/λ1

r2 − r1
, c =

1

λ1
−mr1. (29)

The value λ∗ is then given by

λ∗ = (mr∗ + c)−1. (30)
As an example, for an ER network with N = 50 and
p = 0.1, the mean degree is 4.5. The equivalent ring

topology has r∗ = 2.45. The two nearest integers are
r1 = 2 and r2 = 3. From the method in Appendix B we
obtain λ1 = 0.627 and λ2 = 0.460. Substituting these
values into (29)-(30) yields λ∗ = 0.539.

The effect of localization for Erdős-Renyi net-
works
To show the improvement that is gained by employing lo-
calization, we consider 500 realizations of the Kuramoto
model with a random network topology (ER graph with
N = 50, p = 0.1) and natural frequencies ωi (drawn
from N (0, 0.1)). For each realization we run the EnKF
algorithm with 35 out of 50 nodes observed, both with
and without localization. We record the RMS errors in
both the phases φi and the frequencies ωi at the end time
t = 15 (which is the typical synchronization time for such
a network with coupling strength κ = 10). The results
are shown in Fig. 8, which shows histograms of RMS er-
rors in (a) φ, and (b) ω. As for the ring topology, we
see a significant improvement in the estimation accuracy
when localization is employed.

Appendix D: Comparison between matrix
exponential localization and Gaspari-Cohn

localization functions

Localization has been widely employed in applications
of the EnKF. However, most applications assume an un-
derlying Euclidean geometry such that the distance be-
tween nodes is their Euclidean distance. Based on the
assumption of Euclidean geometry, methods have been
created to generate localization functions. One method
is that of Gaspari & Cohn29, which yields the commonly
used localization function
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FIG. 8. RMS errors at t = 15 in (a) φ, and (b) ω for 500 realizations of DA applied to the Kuramoto model with 35 out of 50
phases observed, and an Erdős-Renyi network topology (N = 50 and p = 0.1). Histograms are shown for the standard EnKF
algorithm (blue) and the EnKF algorithm with network-specific localization (5) with λ = λ∗ = 0.539 obtained from (30). For
both algorithms the ensemble size used is M = 101. Also shown are the respective median values for each distribution – blue
vertical lines show medians for the standard algorithm, and red vertical lines show medians for the localized algorithm. The
coupling strength for all simulations is κ = 10 and the natural frequencies are drawn from N (0, 0.1).
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(31)

where |z| is the Euclidean distance between the nodes and
c is a length-scale that controls the decay of correlation.
The function C is a 5th-order piecewise rational function
with compact support. In generating a localization ma-
trix L, one would define Lij = C(|xi − xj |, c), where xi
is the position of node i in space, and |x| denotes the
Euclidean norm. Note, the proof that C is a correlation
function relies on the Euclidean distance being used.

When considering localization on networks, there are
many possible definitions of the “distance” between two
nodes. Possibly the simplest definition is the short-
est path length, that is, the distance d(i, j) between
nodes i and j is the length of the shortest path con-
necting i to j. With this definition, one can, in princi-
ple, define the function C from (31), and create a ma-
trix L̃ij = C(d(i, j), c), where here c is a characteristic
length for meaningful correlations. However, this con-
struction does not in general yield a correlation matrix,
in particular, the matrix L̃ is not always positive semi-
definite. Nevertheless, we can compare the matrix L̃ with
L obtained from (5). In the previous section we noted
that for ring topologies correlations appear to be spuri-
ous for node distances greater than 2, so a choice c ≈ 2
is logical. Fig. 9 shows the first rows of the respective

localization matrices L and L̃ for the ring topology with
N = 50 and r = 3 using the matrix exponential construc-
tion (5) (black crosses) compared to the Gaspari-Cohn
construction with shortest path length distance (red cir-
cles). There is very good agreement between the two
constructions. We note that the matrix exponential has
a ‘smoother’ decay, which more accurately reflects the
decay of correlations observed in Fig. 5.

The similarity between the matrix exponential and
the Gaspari-Cohn function with shortest path length
distance (31) suggests that the matrix exponential is
a good choice for localization. One advantage of the
Gaspari-Cohn construction (31) is that the function is
compactly supported, resulting in a sparse localization
matrix, which in turn reduces the computational cost of
data assimilation. One could produce a sparse matrix
from the localization matrix L derived from the matrix
exponential (5) by setting all entries below a threshold
value equal to zero, however, the resulting matrix is not
guaranteed to be positive semi-definite. Alternatively, a
sparse localization matrix can be obtained by considering
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FIG. 9. Values L1i from the first row of the matrix exponential correlation matrix shown in Fig. 1(b) using (5) (cf. (19)) with
λ = 0.46 (black crosses) and values L̃1i = C(d(1, i), c) using the Gaspari-Cohn function with shortest path length distance (31)
with c = 2 (red circles). Both use an underlying ring topology with N = 50 and r = 3.

a normalization of a matrix of the form

B =

n∑
i=0

αiA
i (32)

which is positive definite provided that A is symmetric
and

∑n
i=0 αnη

i ≥ 0 for all eigenvalues η of A, and is
sparse provided that n � N . This construction allows
for n+ 1 tunable parameters αi. For example, using the
matrix exponential as a guide, one could consider the
truncation

B =

n∑
i=0

λi

i!
Ai (33)

for n � N and with one parameters λ. However, one
would have to check that

∑n
i=0

λi

i! η
i is non-negative for all

eigenvalues η of A. Consideration of sparse localization
matrices of this form is left as an avenue for future work.

Appendix E: Varying the number of observed
nodes

In the main text we considered a ring network topol-
ogy such that the observed nodes were chosen at random,
with 35 out of 50 phases being observed. Here we again
use a ring topology, and we investigate the effect of chang-
ing the number of observed phases when DA is applied
to the Kuramoto model. To simplify the analysis, we do
not choose observed nodes at random, but rather require
that they are evenly distributed, e.g. every fourth node
in the ring is observed/unobserved. Note, there is still
inhomogeneity in the natural frequencies ωi.

We consider here N = 60 which allows more data
points for evenly distributed observed/unobserved nodes.

Note that all natural frequencies remain unobserved and
are initially unknown, as is assumed in the main text.
RMS errors in φ (dashed) and ω (solid) are shown in
Fig. 10 for different fractions of observed phases, for both
the standard EnKF algorithm (blue) and the EnKF algo-
rithm with network-specific localization (red). Both DA
methods use M = 2N + 1 = 121 ensemble members. As
for the results presented in the main text, we see a signif-
icant decrease in the RMS error when localization is em-
ployed, and the improvement in accuracy becomes most
pronounced when at least half of the phases are observed.
The standard EnKF algorithm shows little reduction in
RMS errors until the fraction of observed nodes is very
close to 1, whereas the localized algorithm shows an im-
proving trend starting when approximately one third of
the phases are observed.

The observed non-monotonic trend in the RMS error
is likely due to the inhomogeneity in the natural frequen-
cies.
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