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Abstract

In this chapter we review stochastic modelling methods in climate science. First we
provide a conceptual framework for stochastic modelling of deterministic dynamical
systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain
a Markov term, a memory term and a term suggestive of stochastic noise. Within
this framework we express standard model reduction methods such as averaging and
homogenization which eliminate the memory term. We further discuss ways to deal
with the memory term and how the type of noise depends on the underlying determin-
istic chaotic system. Secondly, we review current approaches in stochastic data-driven
models. We discuss how the drift and diffusion coefficients of models in the form of
stochastic differential equations can be estimated from observational data. We pay
attention to situations where the data stems from multi scale systems, a relevant topic
in the context of data from the climate system. Furthermore, we discuss the use of dis-
crete stochastic processes (Markov chains) for e.g. stochastic subgrid-scale modeling
and other topics in climate science.

1 Introduction

The climate system is characterized by the mutual interaction of complex systems each
involving entangled processes running on spatial scales from millimeters to thousands of
kilometers, and temporal scales from seconds to millennia. Given current computer power
it is impossible to capture the whole range of spatial and temporal scales and this will
also not be possible in the foreseeable future. Depending on the question we pose to the
climate system - be it forecasting regimes in the atmosphere or simulating past ice ages
- we have to make a decision as to what components to include in the analysis and as to
what scales to resolve. A corollary of this decision is that each numerical scheme inevitably
fails to resolve so called unresolved scales or subgrid-scales. However, typically one is only
interested at the slow processes active on large spatial scales. For example, for weather
forecasts it is sufficient to resolve large scale high and low pressure fields rather than small
scale fast oscillations of the stratification surfaces, whereas for climate predictions with a
coupled ocean-atmosphere model we may want to distill the slow dynamics of the ocean
ignoring weather systems interacting with the ocean on fast time-scales of days.

The dynamics of the unresolved scales, however, have a significant impact on the large
scales and simply ignoring them has detrimental effects on reliably simulating the slow
large scale variables of interest. For example, Dawson and Palmer (2014) showed that the
ECMWF model produces unrealistic spatial patterns of atmospheric weather regimes due
to not sufficiently resolving the small-scale processes. This has implications for the current
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global circulation models used for the intergovernmental Panel on Climate Change fifth
assessment report (IPCC AR5) which typically use coarser resolutions.

The question we are concerned with in this chapter is whether it is possible to obtain
reliable simulations of the slow large-scale characteristics of the climate system without
having to resolve the small fast scales accurately by employing computationally very costly
high-resolution simulations but rather by parametrizing them by judiciously chosen noise,
and if so, under what conditions? Heuristically this should be possible in the following
situations (Givon et al., 2004): 1.) time scale separation and 2.) weak coupling to a large
system.

In a time-scale separated system, during one slow-time unit the fast uninteresting
variables y perform many “uncorrelated” events (provided the fast dynamics is sufficiently
chaotic). The contribution of the uncorrelated events to the dynamics of the slow inter-
esting variable x is as then a sum (or integral) of independent random variables. By the
Central Limit Theorem this can be expressed by a normally distributed variable. Similarly,
if a large number of uninteresting variables y are weakly coupled to the resolved interesting
variables x, it takes many uncorrelated events of the unresolved variables to have a signif-
icant effect on the dynamics of the resolved variables. The resolved variables x experience
a cumulative contribution of those events, which again by the Central Limit Theorem
allows us to parameterise the unresolved “heat bath” y by a random process. Here the
randomness is not mediated by chaotic dynamics and time-scale separation, but by a large
number of weakly coupled variables with random initial conditions drawn typically from
some thermodynamic equilibrium density.

Note that in both cases, the stochasticity arises only asymptotically, by either infinite
time scale separation or by an infinitely large heat bath. Real life applications never satisfy
these limits and care has to be taken. DelSole (2000) pointed out, for example, that on
short time scales stochastic models are not able to capture deterministic dynamics. Short
meaning here that the fast chaotic variables have not sufficiently decorrelated to allow for
the central limit theorem to act.

In the climate science community it has been realized that stochasticity may be used
to parametrize subgrid-scale phenomena. In climate modeling, the idea of modeling fast
chaotic dynamics by stochastic processes and thereby reducing the effective dimension of
the full system goes back to the seminal works by Hasselmann (1976) and Leith (1975). In
their work Hasselmann (1976) and Leith (1975) have suggested studying climatic regime
switches by introducing in an ad-hoc way a stochastic driver for the slow dynamics. Such
an approximation describes the deviations from an averaged climatological system. Of
course, it is natural to expect such behavior only if the fast variables (eg. weather in a
coupled climatic ocean-atmosphere model) are sufficiently chaotic.

These ideas have been used to simulate systems of increasing complexity including the
barotropic vorticity equation (Duan and Nadiga, 2007; Franzke et al., 2005), a 3-layer
quasi-geostrophic prototype climate model (Franzke and Majda, 2006) and a primitive
equation model (Zhang and Held, 1999).

The effective dimension reduction achieved if a large number of fast equations are
replaced by only a few stochastic process, and the associated computational advantage of
such a reduction is a huge driving force behind this research. Such reduction strategies
also provide insight into the underlying dynamics of the climate system and pose new
challenging mathematical problems.

The “Hasselmann program”, as coined by Arnold (2001), of stochastic model reduc-
tion, which has received renewed attention in the past few years, has not been finished
yet, and poses a fascinating challenge for mathematicians. In particular, how can we make
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the transition from a purely deterministic system to a stochastic system in a controllable
way. In the following we will introduce a formalism which allows us to rewrite a deter-
ministic system in a way that “looks like” a stochastic system in the form of generalized
Langevin equations, and which may be a formal starting point for controlled stochastic
model reduction.

2 Conceptual framework for stochastic modeling: TheMori-

Zwanzig formalism

In a series of seminal papers Mori (1965b,a) and Zwanzig (1973) developed a formalism to
rewrite a deterministic dynamical system in a form which resembles a general Langevin
equation of the form

dz

dt
= f(z(t)) +

∫ t

0
K(z(t− s), s)ds + Ẇt . (1)

The first term is Markovian, the second term describes possible memory of the process
and Wt denotes a stochastic process. The Mori-Zwanzig formalism provides a conceptual
framework to study dimension reduction and to parametrize uninteresting variables by a
stochastic process.

We first briefly review the Mori-Zwanzig formalism before formulating standard deter-
ministic and stochastic parameterization techniques such as averaging and homogenization
within this framework.

2.1 The Mori-Zwanzig projection operator formalism

The main idea behind the reformulation of deterministic dynamics is simple and can be
understood by the method of variation of constants. The following illustrative example is
taken from the book by Zwanzig (2001). Consider the coupled linear system

ẋ = L11x+ L12y

ẏ = L21x+ L22y .

Suppose we are only interested in the dynamics of x, and only have climatic knowledge of
the initial condition of the variable y, i.e. its mean and variance. We can then solve for y
to obtain

y(t) = eL22ty(0) +

∫ t

0
eL22(t−s)L21x(s) ds ,

which we may use to express the dynamics of the “interesting” variable as

ẋ = L11x+ L12

∫ t

0
eL22(t−s)L21x(s) ds+ L12e

L22ty(0) .

This is of the form of a generalized Langevin equation (1), where the first term is Marko-
vian, the second term a memory term, and the third term is a noise term if we treat the
initial conditions y(0) as noise.

Let us now consider the general nonlinear case. Consider the deterministic dynamical
system

ż = f(z) , (2)

3



with initial condition z(0) = z0. Here z is either a finite-dimensional state vector z ∈ R
d or

an element of a Hilbert space. Associated with the typically nonlinear dynamical system
(2) is the following linear partial differential equation for the temporal evolution of an
observable v(z , t)

∂v

∂t
= Lv with v(z , 0) = Φ(z ) , (3)

with the generator

L = f(z ) · ∇ , (4)

where ∇ denotes the gradient in phase space, i.e. f(z ) · ∇ = fi(z )∂zi . The solution of (3)
is formally written as

v(z , t) = eLtΦ(z ) . (5)

The equivalence of the nonlinear ordinary differential equation (2) and the linear partial
differential equation (3) can be seen mathematically by employing the chain rule on v(z(t))
or by the following heuristic consideration. To determine the value of an observable at
time t one may either follow a trajectory and evaluate the observable along the trajectory
or one may follow the evolution of the actual observable along the characteristic, i.e.
v(z , t) = Φ(z(t)) with z(0) = z . We assume here that the vector field f(z ) is smooth
enough to assure uniqueness and existence of solutions of (2) and of classical solutions
of the associated partial differential equation (3). Note that L is the formal L2-adjoint
operator of the Liouville operator L⋆ with L⋆ρ = −∇ · (f(z )ρ), controlling the evolution
of densities of ensembles propagated according to (2).

Suppose one is not interested in resolving the full solution z (t) but rather is inter-
ested in only a few observables Φ(z ) = (Φ1(z ),Φ2(z ), · · · ,Φn(z )). A particular relevant
example occurs in the situation where the state space can be decomposed as z = (x ,y)
into “interesting variables” x = (z1, · · · , zn) ∈ R

n and the remainder of “uninteresting”
variables y = (zn+1, · · · , zd). The resolved observables would be Φ(z ) = (z1, · · · , zn) in
this case. In the infinite dimensional case where (2) denotes a partial differential equa-
tion, one may consider the dynamical system (2) as a Galerkin approximation and the
resolved observables could, for example, be the low-order Fourier modes of a spectral
representation of the solution, i.e. the relevant variables are those with small wavenum-
bers k< = {k : k ≤ k⋆} and the irrelevant variables as those with high wavenumbers
k> = {k : k > k⋆}. The question we are concerned with in model reduction is how to
distill the effective dynamics of these “interesting” observables?

To distill the dynamics of the interesting variables Φ(z ) we require a projection opera-
tor P which maps functions of z to functions of Φ(z ). In the context of partial differential
equations, the projection operator can then be defined, for example, as (Pω(k))(k<) =
ω(k<, 0) for functions ω(k). Let us restrict for simplicity of exposition to the case where
z = (x ,y) and Φ(z ) = x ∈ R

n. A suitable projector for the situation when the initial
conditions of the interesting variables x are known exactly but only statistical informa-
tion is available for the unresolved variables y , is the conditional expectation of a function
ω(x ,y)

(Pω)(x ) =
1

Ω(x )

∫

Rd−n

ω(x ,y)µx (dy ) , (6)

where µx (dy) denotes the conditional measure of the unresolved variables. The normal-
ization

Ω(x ) =

∫

Rd−n

µx (dy )
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measures in the language of statistical mechanics the number of microstates which give
rise to the macrostate x .

In the context of equilibrium statistical mechanics often a unique invariant measure
exists which supports a density with respect to the Lebesgue measure with µx (dy) =
ρeq(y |x )dy . In the context of deterministic dynamical systems typically a multitude
of ergodic measures exist and the value of (Pω)(x ) would depend on the choice of the
initial conditions of y . To complicate things further, these measures may not depend
continuously on x (see below). These measures are singular and their support is not on a
set of full Lebesgue-measure but rather on an attractor or on a surface of constant energy
in the case of dissipative and conservative deterministic dynamical systems, respectively.
Nevertheless, for a large class of dynamical systems one can introduce the notion of a
physical measure which supports densities on the surfaces of constant energy or on the
attractor. In the case of (dissipative) chaotic deterministic dynamical systems these are
given by so called Sinai-Ruelle-Bowen (SRB) measures (Young, 1998, 1999, 2002). SRB
measures µSRB satisfy the property that for a set of non-zero Lebesgue measure initial
conditions z (0) and for every continuous observable ϕ we have

lim
T→∞

1

T

∫ T

0
ϕ(z (t))dt →

∫

ϕµSRB .

This property assures that meaningful averages can be calculated and the statistics of the
dynamical system can be explored by the asymptotic distribution of orbits starting from
Lebesgue almost every initial condition. The class of systems for which SRB are proven
to exist includes for example, uniformly hyperbolic systems, logistic-map type systems,
Hénon-like attractors, Lorenz attractors and many more. It has recently been conjectured
by Gottwald and Melbourne (2014) that typical dynamical systems are either regular or
belong to the above class which enjoys good statistical properties. In the following all
measures are understood to be SRB measures. Furthermore we assume that all measures
are normalized to

∫

µ = 1.
Given a projection operator P, we denote by Q = 1−P the orthogonal projector. We

then write the problem (3) as

∂v

∂t
(z , t) = LeLtΦ(z )

= eLtPLΦ(z ) + eLtQLΦ(z ) ,

which upon using the Duhamel-Dyson formula (see, for example, Evans and Morriss
(2008)) for operators A and B

et(A+B) = etA +

∫ t

0
e(t−s)(A+B) B esA ds , (7)

becomes the celebrated Mori-Zwanzig equation (Mori, 1965b; Zwanzig, 1973)

∂v

∂t
(z , t) = eLtPLΦ(z ) +

∫ t

0
e(t−s)L PL esQLQLΦ(z ) ds + etQLQLΦ(z ) , (8)

with A = QL, B = PL and A+ B = L.
The Mori-Zwanzig equation (8) is not an approximation but is exact and constitutes

an equivalent formulation of the full dynamical system (2). The interested reader is re-
ferred to Zwanzig (2001); Chorin and Hald (2006); Evans and Morriss (2008); Chorin et al.
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(2000); Givon et al. (2004) for more details.

The Mori-Zwanzig equation (8) is in the form of a generalized Langevin equation: the
first term on the right-hand side is Markovian while the second term involves memory. The
last term n(z , t) = etQLQLΦ(z ) is labeled the noise term. This is because its temporal
evolution

∂n

∂t
(z , t) = QLn(z , t) with n(z , 0) = QLφ(z ) , (9)

assures that the dynamics remains orthogonal to the range of P. In the case Φ(z ) = x

where we split the dynamical system (2) into the resolved and unresolved variables x and
y respectively, as

ẋ = f(x ,y) (10)

ẏ = g(x ,y) , (11)

the orthogonal dynamics describes the dynamics of the fluctuating part of the vector field
of the resolved variables since n(z , 0) = f(x ,y)− (Pf)(x ).

It is a formidable challenge to find effective approximations which render the Mori-
Zwanzig equation as a closed equation for the resolved variables and finding approxi-
mations for the noise term and the infinite-dimensional memory kernel. Obviously this
programme can only be exercised within approximations. In the following section we will
describe a simple formal procedure to unravel the memory kernel.

2.2 Writing the memory term as an infinite chain of Markov terms

Several approximations have been employed to simplify the memory term. Mori (1965b)
considered the case where the dynamics is given by a Hamiltonian system and the pro-
jection operator is the average over all variables. In this case the Mori-Zwanzig equation
is a linear equation for the resolved variables and the Laplace transform of the memory
kernel could be written as a continued fraction rendering the Mori-Zwanzig equation as a
Markov chain. An extension to the non-Hermitian case was given by Grigolini (1982). In
the nonlinear case the short-memory approximation was introduced (Chorin et al., 2000)
which allows for an analytical treatment. Loosely speaking this assumption states that the
resolved and the unresolved subspaces do not couple, and one may use the full dynamics to
propagate the elements of the orthogonal subspace. In the short-memory approximation
the memory term is replaced by a damping term which is linear in the time variable t which
renders these approximation unsatisfactory for long time integrations and for estimating
the statistics of the slow variables.

We will now present a simple reformulation of the Mori-Zwanzig equation which allows
for a computationally accessible criterion for a truncation of the memory term. We rewrite
problem (3) as

∂v

∂t
(z , t) = eLtPLΦ(z ) + eLtQLΦ(z ) .

The second term, as we have seen in the previous section, can be written as the sum of a
memory kernel and a noise-like term, here however, we express the second term as a time
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dependent forcing of the first Markovian term, and specify its time evolution

∂v

∂t
(z , t) = eLtPLΦ(z ) + n1(t)

∂n1

∂t
(z , t) = Ln1(t) ,

with
n1(t) = eLtQLΦ(z ) .

Note that n1 and v solve the same linear partial differential equation. Repeating this
process for the equation for n1 we arrive at the infinite Markov chain

∂v

∂t
(z , t) = Λ0Φ(z ) + n1(z , t)

∂n1

∂t
(z , t) = Λ1n1(z ) + n2(z , t)

...

∂nk

∂t
(z , t) = Λknk(z ) + nk+1(z , t)

...

with the operator of the Markov term

Λk = eLtPkL (12)

and the forcing
nk(z , t) = eLtQkLnk−1(z ) ,

with n0(z ) = Φ(z ). Note that we allow for different projectors Pk and Qk = 1 − Pk at
different levels. The advantage of this formulation is that we can introduce a condition to
truncate this infinite series, thereby approximating the infinite-dimensional memory term.
The Markov chain can be truncated at level k provided the autocorrelation function of
the remainder 〈nk+1(t)nk+1(s)〉 corresponds to some known noise process, for example, if

〈nk+1(t)nk+1(s)〉 = σ2δ(t− s) . (13)

Using the Mori-Zwanzig formalism to unravel possible memory and long-time persistence
of the dynamics by enlarging the state-space until closure can be obtained has been algo-
rithmically realized in the multi-level regression ideas promoted in Kravtsov et al. (2005)
(see also Chekroun et al. (2011)). It has been employed, for example, to model the El-
Niño-Southern Oscillation system (Kondrashov et al., 2005) and low-frequency variability
in a three-level quasi-geostrophic model (Kondrashov et al., 2006). Their particular im-
plementation of restricting the vector fields Λk in (12) to quadratic polynomials in those
works was pointed out to lead to undesirable instabilities in energy-conserving systems
by Majda and Yuan (2012). Attempts to remedy those short-comings whilst keeping the
general idea of Kravtsov et al. (2005), and thereby of the framework advocated here, were
proposed by Majda and Harlim (2013) and Kondrashov et al. (2015).

In the following we discuss two generic situations for which truncations of the Markov
chain can be rigorously justified and for which the memory kernel vanishes all together. At
the end of this section we briefly describe some promising new directions in going beyond
the assumption of infinite-timescale separation underlying the rigorous theory.
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2.3 Averaging in the Mori-Zwanzig framework

We will consider systems for slow variables x ∈ R
n and fast variables y ∈ R

m of the form

ẋ = f0(x, y) (14)

ẏ =
1

ε
g0(x, y) , (15)

where the fast y-dynamics is assumed to be ergodic with unique invariant measure µx(dy)
conditioned on the slow variables x. The associated generator is

L =
1

ε
L0 + L1 ,

with

L0 = g0(x, y)∂y and L1 = f0(x, y)∂x .

We consider the case Φ(x, y) = x and the projection operator

(Pω)(x) =

∫

ω(x, y)µx(dy) . (16)

We obtain at the first level

ẋ = eLtPLx+ n1

= 〈f0〉+ n1

with

n1 = eLtQLx ,

where we introduced 〈ω〉 = (Pω)(x) for ease of notation. In the limit of infinite time scale
separation ε → 0 we obtain n1 = 0 and hence the Mori-Zwanzig equation reduces to the
effective deterministic averaged equation (17). This is seen by

n1 = eLt (f0(x, y)− 〈f0〉)

= eL0
t

ε (f0(x, y) − 〈f0〉) +

∫ t

0
e(t−s)L L1 e

L0
s

ε (f0(x, y)− 〈f0〉) ds ,

where we used the Duhamel-Dyson formula (7). Using the large deviation principle

whereby deviations of time averages from the corresponding spatial averages are rare
(Melbourne and Nicol, 2008), we argue

lim
ε→0

eL0
t

ε f0(x, y) = 〈f0〉 ,

and hence obtain

lim
ε→0

n1 = 0 .

The asymptotic slow dynamics is then summarized as

dX = F (X)dt , (17)
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with

F (x) =

∫

f0(x, y)µx(dy) . (18)

The slow dynamics (17) are the well-known deterministic averaged equations. It is well
known that on bounded time scales O(1) the slow dynamics of the multi-scale system (14)-
(15) is approximated by (17) (see for example Arnold et al. (1993); Sanders and Verhulst
(1985); Givon et al. (2004); Pavliotis and Stuart (2008)).

The above exposition is entirely formal. For deterministic dynamical systems rigorous
theory is established in the case when the chaotic fast dynamics is hyperbolic and the
fast dynamics does not depend on the slow dynamics with g0 = g0(y) by Anosov (1960);
Kifer (1992, 1995, 2001, 2003, 2005). Therein also stochastic fluctuations around the mean
behavior were treated on longer diffusive time scales (see the next Section2.4 on homog-
enization). An open problem is how to treat the general case where the slow variables
couple back to the fast chaotic system, i.e. g0 = g0(x, y), and the fast dynamics is not
hyperbolic. Difficulties occur if the measure µx(dy) does not depend smoothly on the slow
variable x – this is, for example, the case when the fast dynamics experiences bifurcations
upon varying x. In this case the averaged vector field may not even be a continuous
function of the slow variable and unique solutions of the averaged equations (17) are not
guaranteed. This non-smoothness of the invariant measure can occur in simple dynamical
systems (see Baladi and Smania (2008)), and may cause problems when trying to apply
linear response theory in climate science.

2.4 Homogenization in the Mori-Zwanzig framework

The slow averaged equations (17) are only valid on bounded time scales of order O(1)
and solutions of the averaged equation (17) will not be close to solutions of the slow
variable of the full multi-scale system (14)-(15) on long time scales. We consider here the
case when the averaged drift is small with 〈f0〉 = O(ε). In this case fluctuations become
important. To illustrate how stochasticity and diffusive behavior arises asymptotically in
multi-scale systems on long time scales, we begin with a simplified version of the general
dynamical system (14)-(15) in which the fast chaotic dynamics drives the slow dynamics
non-multiplicatively and the slow dynamics does not couple back into the fast dynamics,
i.e.

ẋ =
1

ε
f0(y) + f1(x, y)

ẏ =
1

ε2
g0(y) . (19)

The fast y-dynamics is again assumed to be ergodic with unique invariant measure µ(dy).
The associated generator is

L =
1

ε2
L0 +

1

ε
L1 + L2 ,

with

L0 = g0(y)∂y , L1 = f0(y)∂x and L2 = f1(x, y)∂x .

Upon neglecting (Pf0)(x) = 〈f0〉 = O(ε) we obtain at the first level of the Mori-Zwanzig
formalism

ẋ = eLtPLx+ n1

= 〈f1〉+ n1 (20)
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with

n1 = eLtQLx

= eLt(I − P)Lx

= eLt (f1(x, y)− 〈f1〉(x)) +
1

ε
eL0

t

ε2 f0(y) .

The first term of n1 vanishes in the limit ε → 0 as part of the large deviation principle
mentioned in the previous section. The second term gives rise to noise in (20) as can be
motivated as follows. Integrating the second term we obtain

1

ε

∫ t

0
eL0

τ

ε2 f0(y) dτ = ε

∫ t

ε2

0
f0(y(s)) ds .

For sufficiently chaotic fast dynamics one may evoke the central limit theorem for ε → 0
to justify

1

ε
eL0

t

ε2 f0(y) = Ẇt ,

where Wt is an n-dimensional Brownian motion with covariance matrix Σ given by the
Green-Kubo type relation

1

2
ΣΣT =

∫ ∞

0
P
(

f0(y) e
L0

t

ε2 f0(y)
)

dt .

Hence, summarizing, on long time scales O( t
ε2
) the slow dynamics (20) is given by the

homogenized equation

dX = F (X)dt +Σ dWt , (21)

where the drift coefficient is given by

F (x) =

∫

f1(x, y)µ(dy) .

In the more general case

ẋ =
1

ε
f0(x, y) + f1(x) (22)

ẏ =
1

ε2
g0(y) , (23)

we expect

ε

∫
t
ε2

0
eLtf0(x, y) dt

to converge to Brownian motion Wt with variance Σ(x). Now the question arises how to
interpret the stochastic integral of Σ(x)dWt. It is well known that stochastic integrals
∫

Σ(x)dWt are very sensitive with respect to the approximation of the Brownian motion
with the Itô and the Stratonovich interpretations being two cases. A reader-friendly dis-
cussion on the Itô versus Stratonovich issue is contained in the book by Horsthemke (1984).
The Wong-Zakai theorem and its extensions (Wong and Zakai, 1965; Ikeda and Watan-
abe, 1981) provide general conditions under which convergence holds with the Stratonovich
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interpretation for the stochastic integral. The rationale behind the Stratonovich interpre-
tation of the noise in homogenized equations is that here rough noise arises as a limit
involving only smooth functions of the smooth deterministic system. Hence in the limit
classical calculus should prevail implying the Stratonovich interpretation. We remark that
the conditions for the Wong-Zakai theorem are satisfied in the case of one-dimensional slow
variables, but may fail in higher dimensions. The multi-dimensional homogenized equa-
tions associated with (22)-(23) are given by

dX = F (X)dt +Σ(X)dWt , (24)

where Wt denotes m-dimensional Brownian motion and the drift coefficient is given by

F (x) =

∫

f1(x, y)µ(dy) +

∫ ∞

0
ds

∫

f0(x, y) · ∇f0(x, y(s))µ(dy) ,

and the diffusion coefficient is defined by

Σ(X)ΣT (X) =

∫ ∞

0
ds

∫

(f0(y)⊗ f0(y(s)) + f0(y(s))⊗ f0(y)) µ(dy) ,

where the outer product between two vectors is defined as (a⊗ b)ij = aibj (see Papanico-
laou and Kohler (1974); Ikeda and Watanabe (1981); Kelly and Melbourne (2014)). It is
pertinent to stress that mixing of the fast chaotic flow is not necessary for the stochastic
limit systems (21) and (24) to exist.

Homogenisation is well understood in the context of multi-scale systems where the
fast dynamics is stochastic with a unique invariant density (Khasminsky, 1966; Kurtz,
1973; Papanicolaou, 1976), see also Givon et al. (2004); Pavliotis and Stuart (2008). Rig-
orous results for diffusive limits of deterministic dynamical systems have only recently
been obtained (Melbourne and Stuart, 2011; Gottwald and Melbourne, 2013b; Kelly and
Melbourne, 2014). It is pertinent to mention that these rigorous results do not make any
assumptions on the mixing properties of the fast chaotic dynamics as assumed in most
heuristic homogenization approaches such as, for example, in Majda et al. (2006). These
results are, however, at this stage restricted to the case where the slow dynamics does not
couple back to the fast dynamics, i.e. g = g(y). The general case g = g(x, y) is still an
important open question for the same reasons as discussed above for the case of averaging.

When simulating multi-scale systems such as the climate, one uses discretizations of the
continuous-time dynamical systems. Homogenization results for the resulting multi-scale
maps yield very different results compared to their associated continuous-time parents. It
was shown in Gottwald and Melbourne (2013b) that for a one-dimensional slow determin-
istic dynamics the homogenized system is neither of the Itô nor of the Stratonovich type
and may yield widely different statistics than the limiting continuos multi-scale system
which converges to a stochastic differential equation with Stratonovich noise.

The idea of homogenization was spearheaded in the climate community by the cele-
brated MTV approach. The acronym MTV stands for the surnames of the authors of the
original paper Majda et al. (1999). The main message learned from homogenisation for
developing reduced stochastic models is the inclusion of correlated additive and multiplica-
tive noise (CAM) (Majda et al., 2009) rather than simple additive noise. Homogenization
relates this type of noise to the dependency of the term f0(x, y)/ε on both, y and x. To
achieve stochastic consistency between the reduced stochastic system and the multi-scale
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parent system, the parameters of the stochastic process are estimated from a priori knowl-
edge of the climatic behavior of the slow variables such as matching the autocorrelation
function (Majda et al., 2002). The MTV strategy has been successfully applied to an
atmospheric barotropic model on the sphere (Franzke et al., 2005) and a 3-layer quasi-
geostrophic model (Franzke and Majda, 2006). Both models have realistic atmospheric
circulation features and the MTV approach is able to derive reduced order models which
reasonably capture these features with as little as 10 resolved modes.

In general, the stochastic reduction techniques as described above do not respect a
possible underlying conservation law of the full multi-scale system. In particular, if the
multi-scale dynamics were Hamiltonian, energy conservation would not be guaranteed.
Dubinkina and Frank (2007, 2010) have illustrated how the overall statistical properties
depend on the conservation properties of a numerical discretization. The stochastic re-
duced normal forms by Majda et al. (2009) which are inspired by homogenization theory
ensure that the nonlinear drift terms respect energy conservation, but the CAM noise
does not impose any constraint on energy conservation. In energy conserving systems the
noise would need to be projected onto the surface of constant energy. Frank and Gottwald
(2013) have carried out such a homogenization method for a simplified Lagrangian parti-
cle description of the shallow-water equations. Energy-conserving fast systems have also
been considered in Jain et al. (2015) where the slowly-varying energy is treated as an
additional slow hidden variable. It is at this stage though still unclear whether conserving
certain dynamical quantities (and not others) may lead to dynamically and statistically
inconsistent states.

Although the rigorous theory requires an infinite time-scale separation, i.e. ǫ → 0, it
has been observed in numerical simulations that homogenized reduced equations remain
reliable reduced models for the slow dynamics even for moderate time-scale separation.
This is a familiar situation in asymptotic methods here the range of validity often extends
the notion of what is small. It is, nevertheless, important to devise methods which go
beyond the assumption of infinite timescale separation. For systems that can be seen as
weakly coupled dynamical systems a recent interesting direction was proposed by Wouters
and co-workers (Wouters and Lucarini, 2012, 2013). Therein the Mori-Zwanzig formalism
was combined with linear response theory to provide a closure of the relevant slow dynamics
which does not rely on any time-scale separation and which retains some information form
the memory kernel.

2.5 What type of noise?

A question which so far has not attracted much attention is what type of noise one can
expect as a limit in multi-scale systems? It is tacitly assumed in the current body of work
on reduced stochastic models that fast degrees of freedom are parameterized by Brownian
motion. The current justification is the central limit theorem. The central limit theorem
indeed holds for a large class of deterministic dynamical systems (see Melbourne and Nicol
(2005, 2009) for mathematical details). In particular, the central limit theorem holds for
strongly chaotic systems1. Weakly chaotic dynamics for which the central limit theorem
does not hold are characterized by a large degree of intermittency whereby periods of
chaotic dynamics are intermittently disturbed by long laminar periods of seemingly regular
behavior. The central limit theorem, however, can be modified for weakly chaotic dynamics

1It is pertinent to mention that strong chaoticity is not related to an exponential decay of correlations.
See Gottwald and Melbourne (2013a, 2014) for details and definitions of strong and weak chaoticity.
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(Gouëzel, 2004). This has been used by Gottwald and Melbourne (2013b) to show that
the limiting noise on the homogenized equations is an α-stable noise (or often called Lévy
process). These non-Gaussian processes are characterized by the occurrence of jumps of
all sizes and have a probability density function with algebraically decaying so called fat
tails. The power-law decay of the distribution tails implies a non-vanishing probability
of large jumps and causes an infinite variance (see for example Chechkin et al. (2008) for
an introduction). This type of noise has been observed in planetary-scale atmospheric
circulation (Viecelli, 1998) as well as in abrupt millennial scale climate changes during the
last ice age in ice-core data (Ditlevsen, 1999).

In one dimension the stochastic integrals arising in the reduced homogenized dynam-
ics are then to be interpreted in the sense of Marcus integrals (see Applebaum (2009);
Chechkin and Pavlyukevich (2014)) which is the interpretation allowing for the validity of
classical calculus akin to the Stratonovich integral in the case of Brownian motion. It is
well known that the simple occurrence of fat tails may not necessarily imply an α-stable
distribution but may as well be associated with multiplicative Brownian noise. Penland
and Ewald (2008) suggested therefore to favor Brownian CAM noise over Lévy noise for
practical purposes. However, these two processes are dynamically entirely different and,
moreover, can be distinguished with relatively easy diagnostic tools such as the p-variation
(Hein et al., 2009; Burnecki and Weron, 2010; Burnecki et al., 2012). We believe it will be
an interesting avenue to study how intermittent dynamics, caused by for example persis-
tent atmospheric pattern such as blocking, can lead to fat tails in the probability density
function of slow processes such as ocean temperatures using homogenization techniques.

3 Data-driven models

The reduction techniques described in the previous section provide a systematic approach
to analytically derive stochastic models for the dynamics of slow degrees of freedom in the
climate system. However, there are situations where these techniques are not feasible, e.g.
because of the complexity of the underlying model equations, or because of the absence
of a clear scale separation. In such cases, a useful alternative approach can be to infer
stochastic models from data. These data, usually in the form of time series, can come from
observations of the real climate system, but it can also be useful to infer reduced stochastic
models from data obtained from simulations with comprehensive numerical models.

The central task in this data-driven approach is one of statistical inference: one must fit
stochastic processes from a suitable class to the observations at hand. The most commonly
used class is formed by diffusion processes, i.e. models consisting of stochastic differential
equations (SDEs) driven by standard Brownian motion. Other classes considered in this
context include Lévy processes, discrete processes (finite-state Markov chains) and Hidden
Markov Models (HMMs).

Let us consider a general d-dimensional diffusion process X(t) ∈ Ω ⊆ R
d with corre-

sponding SDE
dX(t) = b(X(t)) dt + σ(X(t)) dW (t) , (25)

in which W (t) is a d-dimensional vector of independent Wiener processes. We define the
diffusion coefficient as

a(x) := σ(x)σ(x)T . (26)

Note that for d > 1, b is vector-valued and a is matrix-valued. Furthermore, we focus on
situations where the drift b(X(t)) and diffusion a(X(t)) do not depend explicitly on time,
but only implicitly through their dependence on X(t).
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Inferring the functions b(X(t)) and a(X(t)) from time series (observations) of X(t)
can be very challenging. A key difficulty is that the finite-time transition density of the
process (25) is in general unknown, i.e. there is no closed-form expression, in terms of b
and a, for the density at time t + ∆t given the density at time t. Since observations are
usually discrete in time, this is a major problem for inference procedures that rely on the
likelihood function.

In the simplest situation, b is a linear function of X(t), σ is a constant, and the process
is univariate (d = 1), so that (25) is a scalar Ornstein-Uhlenbeck process (in fact, the OU
process is one of the few diffusion processes for which the transition density is known).
Difficulties arise if b is nonlinear, σ is X(t)-dependent (multiplicative noise) or d > 1 (or
a combination of these). A more detailed discussion of these difficulties can be found in
Gobet et al. (2004); Sørensen (2004) and references therein.

3.1 Linear Inverse Modeling

The technique of so-called Linear Inverse Modeling (LIM) is used frequently in climate
science to fit stochastic models with linear drift and additive noise to data. It has, amongst
others, been used for modeling and predicting sea surface temperatures in the equatorial
Pacific ocean (e.g. Penland and Magorian (1993); Penland and Sardeshmukh (1995)) and
atmospheric low-frequency variability (e.g. Winkler et al. (2001)). Assuming zero mean,
the SDE of such a linear model with additive noise is

dX(t) = BX(t) dt + LdW (t) , (27)

where B and L are both (d× d) constant matrices. This diffusion process has a Gaussian
invariant probability distribution (provided B is negative definite), and is not a suitable
model for phenomena that are manifestly non-Gaussian. This restriction to the simple
class of Gaussian processes with constant diffusion, however, has the major advantage
that the inference of the matrices B and L from observational data can be done in a
computationally efficient way even for high-dimensional systems with large d.

We define C(τ) as the lag-τ covariance matrix of X(t), i.e. its matrix elements are the
expectations

Cij(τ) = E[Xi(t+ τ)Xj(t)] . (28)

From (27) it follows that C(τ), with any τ > 0, and C(0) are related according to

C(τ) = exp(B τ)C(0) . (29)

If we have time series data available with sampling interval ∆t, i.e. a set of observations
{Xobs(0),Xobs(∆t),Xobs(2∆t), ...,Xobs(N∆t)}, we can estimate the elements of C(0) and
C(∆t), assuming ergodicity of the underlying dynamical process, as

Ĉij(0) =
1

N

N
∑

n=0

Xobs
i (n∆t)Xobs

j (n∆t) (30)

Ĉij(∆t) =
1

N

N
∑

n=0

Xobs
i (n∆t)Xobs

j ((n− 1)∆t) . (31)

The estimate of B can then be obtained using (29) as

B̂ = (∆t)−1 log[Ĉ(∆t) (Ĉ(0))−1] . (32)
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We note that computing the logarithm of a matrix, as is done in (32), is not entirely trivial
due to the non-uniqueness of the logarithm (see Higham (2008) for more details).

An estimator for the matrix L can be obtained from the equations for the second
moments (covariances) of the process (27). Let ρ(x, t) be the probability density function
at time t associated with (27). The second moments are

〈xp xq〉ρ :=

∫

Ω
dx ρ(x, t)xp xq . (33)

Clearly, the time evolution of the moments is determined by the time evolution of ρ, which
is in turn governed by the Fokker-Planck equation. For the process (27) it reads

∂

∂t
ρ(x, t) = −

∑

i

∂

∂xi
(Bx)iρ(x, t) +

1

2

∑

i,j

Aij
∂2

∂xi ∂xj
ρ(x, t) , (34)

where A = LLT . If we assume that ρ(x, t) and its first spatial derivatives are zero at the
boundary of Ω for all t, it is straightforward to derive that

∂t 〈xp xq〉ρ =
∑

j

Bpj〈xj xq〉ρ +
∑

j

Bqj〈xp xj〉ρ +Apq (35)

As t → ∞, ρ tends to the invariant density, so that ∂t 〈xp xq〉ρ → 0 and 〈xp xq〉ρ → Cpq(0),
cf. (28). Thus, we have

BC(0) + C(0)BT +A = 0 . (36)

Together with the estimates B̂ and Ĉ(0) obtained before, this relation can be used to
determine an estimate Â of the matrix A. For the final step, arriving at an estimate of the
matrix L that appears in (27), one can use a Cholesky decomposition of the estimate Â.
Because Â is symmetric positive-definite, the Cholesky decomposition is unique (Golub
and Van Loan, 2013). However, other decompositions are possible and L̂ is not uniquely
defined by Â since, if Â = L̂ L̂T then also Â = L̃ L̃T with L̃ = L̂Q for any orthogonal
matrix Q, i.e. QQT = 1. This non-uniqueness reflects the fact that the same diffusive
behavior as described by the Fokker-Planck equation (34), can be generated by different
stochastic differential equations (27) if they have different L (but the same LLT and B).

To summarize, for the LIM procedure one needs to compute estimates for the two
covariance matrices C(0) and C(∆t) from the observations X(0), X(∆t), ..., X(N∆t).
The estimates for B and A are then obtained using (32) and (36). The computations
are quite straightforward and can easily be performed for processes in high-dimensional
spaces, e.g. d = O(102). A drawback is that it applies, as discussed above, to a rather
restrictive class of Gaussian processes with constant diffusion described by (27). For
further details the interested reader is referred to Penland and Magorian (1993); Penland
and Sardeshmukh (1995); Winkler et al. (2001).

3.2 Inference for general diffusion processes

Statistical inference for diffusion processes with nonlinear drift and/or multiplicative noise
is much more difficult than for (27), in particular in the case of multivariate processes.
Several approaches have been developed and used in the context of atmosphere-ocean
science. It must be mentioned that statistical inference for diffusions is a relevant tool
for a wide range of applications in physics, chemistry, biology, econometrics and finance,
going well beyond the context of climate science which is the focus of this chapter. Not
surprisingly, there exists a large body of literature on this topic, both on the theory in
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mathematical statistics as well as on applications to specific problems. We do not attempt
to give a broad overview here (see e.g. Rao (1999); Sørensen (2004); Kutoyants (2004);
Bishwal (2008) for such overviews), rather we focus on a few methodologies that are used
in atmosphere-ocean science.

In one approach, the drift and diffusion functions are inferred using their statistical
definitions as conditional first and second moments of the process increments. Starting
again from the general diffusion process (25), the drift b(x) and diffusion a(x) as defined
in (26) are related to the increments X(t+∆t)−X(t) as follows:

b(x) = lim
∆t↓0

(∆t)−1
E[X(t+∆t)−X(t) |X(t) = x] , (37)

a(x) = lim
∆t↓0

(∆t)−1
E[(X(t+∆t)−X(t)) ⊗ (X(t+∆t)−X(t)) |X(t) = x] . (38)

By binning the state space, i.e. subdividing Ω into non-overlapping sets Ωk (bins), one can
use these definitions to compute estimates for b and a in each bin from the observations
Xobs(t). This approach was proposed in the physics community in Siegert et al. (1998);
Friedrich et al. (2000), and was used to analyze atmospheric datasets in e.g. Sura (2003);
Berner (2005). This approach is very general and does not assume a specific functional
form for the drift or diffusion, so it can be applied to processes involving nonlinear drift
and non-constant diffusion. However, its practical use is limited to low-dimensional pro-
cesses because the number of bins grows exponentially in d. Therefore the amount of data
needed to obtain statistically meaningful estimates in each bins also grows exponentially
with d. Another difficulty is that the estimators based on (38) rely on ∆t being small.
This becomes a problem if the observations are not generated by a d-dimensional diffusion
process but rather if the underlying dynamics of the observed system is of a deterministic
chaotic nature or if the observations are given as a projection of a higher-dimensional pro-
cess. For example, the limit of the diffusion a(x) becomes zero for ∆t → 0 in deterministic
systems. As for a projected process, this will generally be non-Markov, so the result of
fitting a Markov process to it will depend on the choice of ∆t. The issue of the choice of
the sampling time and possible biases of the estimation of drift b(x) and diffusion a(x) for
too small or too large observation intervals will be discussed in more detail in Section3.3.

The methodology proposed in Crommelin and Vanden-Eijnden (2006, 2011) (see also
Gobet et al. (2004)) is partly motivated by the need to overcome the small ∆t limit without
introducing time discretization errors as in the estimators based on (38). At the core of
this method lies the relationship between the conditional expectation operator denoted
P∆t and the diffusion operator (or backward Fokker-Planck operator) denoted L. For
suitable functions h(x), we define the former as

(P∆t h)(x) = E[h(X(∆t)) |X(0) = x] . (39)

The diffusion generator is

L =

d
∑

i=1

bi(x)∂i +
1
2

d
∑

i,j=1

aij(x)∂i∂j , (40)

where ∂i is shorthand notation for ∂/∂xi (cf (4)). For diffusion processes, L is the generator
of the semigroup of operators P∆t with ∆t ≥ 0

(Lh)(x) = lim
∆t↓0

(∆t)−1[(P∆t h)(x) − h(x)] , (41)

and thus
P∆t = exp(∆tL) . (42)
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This implies that the eigenfunction-eigenvalue pairs of P∆t and L are closely related, and
we identify

P∆t φ = Λφ ⇔ Lφ = λφ with Λ = exp(λ∆t) . (43)

Note that this relation is exact and holds for all ∆t ≥ 0. A similar relation holds for
the adjoints in L2(Ω, dx) of P∆t and L and their eigenpairs, see Crommelin and Vanden-
Eijnden (2011).

These relations can be used to estimate the drift and diffusion functions b and a
that determine L in the following way: from discrete-in-time observations with sampling
interval ∆t we can infer (a Galerkin approximation to) the operator P∆t. Denoting the
eigenpairs of this estimated operator by (φ̂k, Λ̂k) with index k (ordered by decreasing |Λ̂k|),
we compute λ̂k = (∆t)−1 log Λ̂k, cf. (43). From the (leading) estimated eigenpairs (φ̂k, λ̂k)
we can compute estimates of b and a by minimizing the residuals rk := Lφ̂k − φ̂kλk, in a
suitable way, under variation of b and a.

The minimization problem can be formulated with various cost functions. One ex-
ample is a sum of squared norms

∑

k αk‖rk‖
2 with weights αk. Another possibility is

∑

k,l |〈rk, ωl〉|
2, where 〈rk, ωl〉 denotes rk integrated against suitable test functions ωl(x).

We refer to Crommelin and Vanden-Eijnden (2011) for more details. Here we only mention
that this method can be used for parametric as well as for non-parametric estimation of b
and a, and that the minimization problem is often of convex quadratic form.

This approach has the advantage that it can be used for general diffusions, and is
not dependent on any small ∆t approximation. It was used in Thompson et al. (2014) for
estimating parameters in a 2-dimensional stochastic model for sea surface winds. Notwith-
standing, this method is also limited to low-dimensional processes and since the estimation
of the operator P∆t from observations becomes impractical for higher dimensional systems.

In Sitz et al. (2002), it is proposed to use a nonlinear extension of the well-known
Kalman filter, the so-called unscented Kalman filter, for parameter estimation of a diffusion
process with observation noise. This method is used in Kwasniok and Lohmann (2009) to
estimate the parameters of a nonlinear drift function in a 1-dimensional model for glacial-
interglacial transitions. The data are provided by an ice-core record from Greenland.
This method can handle nonlinear drift, however it does not provide a way to estimate
the diffusion coefficient. The diffusion must be estimated by a different method, and is
used as input for the unscented Kalman filter approach.

Finally, we mention here the recent work presented in Peavoy et al. (2015), where
a Bayesian framework is developed for parameter estimation using Markov Chain Monte
Carlo (MCMC) methods, which is, in principle, applicable to high-dimensional systems. In
this work, the structural form of the diffusion process is motivated by the stochastic mode
reduction (MTV) methods for climate models discussed in the previous section. It builds
on recent advances (e.g. Chib et al. (2004); Golightly and Wilkinson (2008)) in Bayesian
inference and MCMC methods for diffusion processes, by imposing physical constraints
such as global stability. This methodology can handle nonlinear drifts and non-constant
diffusions, and is demonstrated on examples with dimensions of the state vector with d = 1
and d = 2 in Peavoy et al. (2015), but can be extended to higher dimensional problems.

3.3 Inference from multi-scale data

Stochastic models are often used as coarse-grained models for phenomena that are gener-
ated by a complex dynamical system with many scales. An example is the model consid-
ered in Kwasniok and Lohmann (2009), where a diffusion process is inferred from Green-
land ice-core data (δ18 O values) going back 120 000 years. These δ18 O data are a proxy
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for northern hemisphere (NH) temperatures in the past, whose dynamics are generated by
the full climate system with its many temporal scales. Thus, a scalar stochastic model for
the dynamics of NH temperature (or δ18 O values) over timescales of centuries and longer
is inevitably a coarse-grained model. Such a model is aimed at capturing the correct long
timescale behavior but not necessarily the dynamics on short timescales.

An important question in this context is whether statistical inference from data of a
multi scale system will yield an accurate representation of the long timescale dynamics,
or whether it will result in a model that mainly reflects the short timescale behavior. In
Pavliotis and Stuart (2007), multi scale diffusion processes are considered which possess a
well-defined coarse-grained diffusion process in the limit of large scale separation, obtained
by averaging or homogenization techniques as described in Sections 2.3 and 2.4. Inferring
the coarse-grained process from data of the full multi scale process, however, was shown to
yield results that are very different from the analytically derived coarse-grained process, if
the sampling interval ∆t is too short. For estimation methods that rely on small ∆t (e.g.
the estimators in (38)), this can be particularly bothersome. These methods can be caught
between ∆t being too small (giving the ”multi scale bias” discussed above) and ∆t being
too large (giving bias due to the time discretization error of the estimator). Mitchell and
Gottwald (2012) show that with the estimators (38), one typically obtains a linear drift
term if ∆t is too large, even if it should be nonlinear. We refer to Pavliotis and Stuart
(2007); Papavasiliou et al. (2009); Crommelin and Vanden-Eijnden (2011); Mitchell and
Gottwald (2012); Azencott et al. (2013) for a more detailed discussion of these issues.

As a final remark, we mention that the dependency of estimation results on the sam-
pling interval has been noted in atmosphere-ocean applications as well. In Penland and
Sardeshmukh (1995), the so-called ”tau-test” is introduced to test if the results from the
LIM method are independent of the sampling interval (denoted τ in that paper, rather
than ∆t). Penland and Sardeshmukh (1995) argue that a dependency on the sampling
interval points towards a possible inadequacy of the functional form of equation (27), and
to, for example, possible nonlinearity of the underlying dynamics. In Berner (2005), the
sampling interval dependence of results obtained with the estimators (38) is demonstrated
numerically. Berner reports that sampling intervals between 1 and 6 days are suitable for
inferring a low-order stochastic model for planetary wave behavior from GCM time series
data. However, for choosing the sampling interval ”there seems to be a trade-off between
reproducing the non-Gaussianities in the PDF versus capturing the temporal aspects of
planetary wave behavior” (quoting Berner (2005)). A shorter ∆t gives a better reproduc-
tion of the PDF, whereas with a longer ∆t the temporal decay of correlations is better
captured.

Also relevant in this context is the study by DelSole (2000), who investigates to what
extent stochastic models are able to capture the statistics of deterministic dynamical sys-
tems. He notes, and analyzes in considerable detail, the sampling interval dependency
when fitting stochastic models to deterministic dynamical systems. A key observation by
DelSole is that the shape of the normalized autocorrelation functions (ACFs) of deter-
ministic and stochastic (Markov) models differ at short time lags (∆t). For deterministic
models, the ACF must be of the form 1−γ (∆t)2 with γ a positive constant if ∆t is small,
and thus the derivative of the ACF with respect to ∆t vanishes as ∆t ↓ 0. By contrast,
the ACF of frequently used Markov stochastic processes is of the form exp(−β|∆t|), with
decay rate β > 0, for small ∆t. Its derivative does not vanish but tends to −β as ∆t ↓ 0.
One can fit a Markov stochastic process so that its ACF intersects the ACF of the de-
terministic system at a chosen lag ∆t∗, but the two ACFs will not coincide at other lags.
Thus, the fitted stochastic process will depend on the chosen lag.
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3.4 Beyond diffusion processes

Diffusion processes driven by standardWiener processes, such as (25), are not the only type
of stochastic process used for modeling (aspects of) the climate system. A generalization
is the class of diffusions driven by Lévy processes, as already discussed in section 2.5.
Inference for Lévy processes is an active area of research in mathematical statistics (e.g.
Jongbloed et al. (2005)), however it has not been used much for climate applications yet.
Some exceptions, already mentioned in 2.5, are by Viecelli (1998); Ditlevsen (1999).

A class of stochastic processes that has been used more widely in atmosphere-ocean
science is that of finite-state Markov chains. These have been employed, for example, to
study the regime behavior in the atmosphere (Spekat et al., 1983; Mo and Ghil, 1987;
Crommelin, 2004). Therein the transitions between a finite number of preferred states
of the large-scale atmospheric flow (so-called regimes) are modeled as a Markov chain.
If a time series of such finite-state dynamics is given, it is straightforward to estimate
the elements of the transition probability matrix (or stochastic matrix) that defines the
Markov chain.

Another application where finite-state Markov chains have been used is stochastic pa-
rameterization of atmospheric convection, see e.g. Khouider et al. (2003, 2010); Dorrestijn
et al. (2013, 2015b,a); Gottwald et al. (2015)). In this approach, the range of convective
activity of any atmospheric model column is discretized into a few distinct states. The
transitions between these states as time evolves can then be modeled as a Markov chain,
with transition probabilities that depend on the large-scale state of the atmosphere. The
discretization has been carried out in several ways, e.g. Dorrestijn et al. (2013) discretize
the vertical turbulent fluxes of heat and moisture using a clustering method, whereas
Khouider et al. (2010) and Dorrestijn et al. (2015b) employ a small number of cloud
states for discretization. In Gottwald et al. (2015), it is the convective area fraction that
is discretized. Furthermore, the transition probabilities are obtained in different ways,
using either physical intuition (e.g Khouider et al. (2003, 2010)) or statistical inference
(e.g. Dorrestijn et al. (2013, 2015b,a); Gottwald et al. (2015)).

In Pasmanter and Timmermann (2003), Markov chains are used for studying ENSO
predictability. The influence of the seasonal cycle is accounted for by employing so-called
cyclic Markov chains: twelve different stochastic matrices mi (i = 1, ..., 12) are constructed
(or in fact estimated), each specifying the transition probabilities of the various states from
month i to month i + 1. The transition probabilities from month i to the same month i
one year later is then given by the product Mi = mi−1mi−2 · · ·m1m12m11 · · ·mi. The
Mi are again stochastic matrices. Furthermore, Pasmanter and Timmermann (2003) con-
struct their Markov chains by equipartition of the data, resulting in transition probability
matrices that are in fact doubly stochastic matrices, satisfying both

∑

k mi(k, l) = 1 ∀l
and

∑

l mi(k, l) = 1 ∀k. This facilitates the analysis of their model in terms of Floquet
theory and information loss properties. Some of these concepts are also used in Crommelin
(2004).

The Markov chains as described above have finite state spaces. They are frequently
used to model the dynamics of continuous quantities, requiring the discretization of these
quantities. In the framework of Hidden Markov Models (HMMs), this discretization is
no longer needed. HMMs still employ a finite state Markov chain, however the observed
quantities or time series are assumed to be generated by another process whose properties
depend on the Markov chain state. That other process may be continuous or discrete in
time. An example is the case where the observations are independent draws from a normal
distribution. In this case, if we denote the observations by Yt, we have Yt ∼ N (µk, σ

2
k).

The values of the mean µk and variance σ2
k change over time, they can take on a finite
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number of values {µ1, ..., µK} and {σ2
1 , ..., σ

2
K}. The index k changes randomly in time

in accordance with a Markov chain with (K × K) stochastic matrix. The value of k is
unobserved (or hidden).

In the context of atmosphere-ocean science, HMMs have been used to model precipi-
tation (e.g. Zucchini and Guttorp (1991)) as well as dynamics of large-scale atmospheric
flow (e.g. Franzke et al. (2008)). The statistical inference for HMMs with normal distribu-
tions as output is tractable through the expectation-maximization algorithm, see Franzke
et al. (2008) for more details and references.

We conclude by pointing out two more lines of research relevant in the context of this
section. Egger (e.g. Egger (2001)) has employed master equations inferred from time series
to study atmospheric phenomena, an approach closely related to Markov chain modeling.
Furthermore, Horenko (e.g. Horenko (2010)) has developed techniques to deal with non-
stationarity in time series data, an issue left out of consideration in most studies on
data-driven approaches. It must be emphasized that the overview of data-driven methods
presented here is by no means exhaustive. We have mainly focused on diffusion processes
and Markov chains here, leaving out e.g. time series methods (ARMA models etc) for the
sake of brevity.

4 Outlook

In this chapter we have described current approaches to either systematically derive re-
duced order stochastic climate models or to extract the stochastic dynamics from observed
data. The two approaches of data-driven models and analytic physics-based models are
complementary. In practice, in the future both approaches should be combined where the
Mori-Zwanzig formalism provides the functional form for model fitting to observed data.
This will enable us to fit more complex models with the currently available amount of
data. Majda and Harlim (2013), Peavoy et al. (2015) and Kondrashov et al. (2015) put
forward such physics constrained approaches which are based on energy conservation and
global stability. Such reduced order models are used in many practical applications like
long-range climate forecasts (e.g. El Niño-Southern Oscillation (ENSO)) or weather and
climate catastrophe modeling (Born and William, 2006).

Another area where stochastic approaches are actively investigated is that of parame-
terizations, i.e. simplified representations of spatially localized, small-scale physical pro-
cesses such as atmospheric convection. The need for stochastic parameterizations in com-
plex numerical weather and climate prediction models becomes ever more clearer. A recent
study by Dawson and Palmer (2014) showed that the European Centre for Medium Range
Weather Forecasts (ECMWF) model with a stochastic physics scheme performs as well as a
purely deterministic model version at a much higher horizontal resolution. Hence, stochas-
tic weather and climate models offer the potential of achieving more accurate simulations
at a lower computational expense. However, most of the current stochastic parameter-
ization approaches are mainly ad hoc schemes (Shutts, 2004, 2005; Berner et al., 2009;
Franzke et al., 2015b). There is a pressing need to base these stochastic parameteriza-
tions on a more sound mathematical and physical footing. Current systematic approaches
for doing this include Frederiksen et al. (chapter in this book and references therein),
Khouider et al. (2003); Crommelin and Vanden-Eijnden (2008); Plant and Craig (2008);
Khouider et al. (2010); Wouters and Lucarini (2012, 2013); Dolaptchiev et al. (2013);
Grooms and Majda (2013), but more fundamental work in this area is clearly needed. See
also the review by Franzke et al. (2015b). Moreover, the Mori-Zwanzig formalism shows
that such parameterization schemes might have to take memory effects into account. Most
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schemes currently do not account for this, and the issue of memory effects has hardly been
explored yet in the context of parameterizations. Some exceptions are Crommelin and
Vanden-Eijnden (2008); Verheul and Crommelin (pear); Gottwald et al. (2015); Chorin
and Lu (2015).

Weather and climate prediction models use high-performance computers. These com-
puting systems are expected to reach soon limits regarding energy use and heat production.
These issues led to attempts to use imprecise computational techniques or stochastic pro-
cessors (Palmer, 2014). It is thought, that these techniques can be carried out on less
energy consuming computer systems. However, the use of stochastic processors also needs
a firm mathematical underpinning since the implementation of the stochastic noise pro-
duced by the processors needs to be appropriate. This is another area for future research.

Stochastic approaches are also important for the analysis of observed data and the
understanding of their characteristics. In particular, the detection and attribution of
forced trends is an important current research topic. For instance, there is currently a
debate going on in the climate science community whether climate variability is long-range
dependent (LRD) or whether it is better better described as short-range dependent (SRD).
LRD systems are able to produce more persistent stochastic trends than SRD systems.
So, if the climate system is LRD but is investigated with SRD methods then one is likely
to mistake a stochastic LRD trend for a significant externally forced trend. Hence, the
detection and attribution of external trends is hampered in LRD systems. See chapters
by Bunde et al. and Watkins for more details. This topic is critically discussed in the
contemporary climate literature and many climate scientists are sceptical about whether
the climate system is LRD because there is a lack of physical mechanisms explaining
the LRD characteristic (Franzke et al., 2015a). The Mori-Zwanzig formalism provides an
explanation how memory potentially arises in the climate system. However, whether this
can explain LRD needs further research.
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