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We perform a stochastic model reduction of the Kuramoto-Sakaguchi model for finitely many coupled phase oscillators
with phase frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant
order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations
are caused by the interaction of the synchronized oscillators with the non-entrained oscillators. We present numerical
results suggesting that the collective effect of the non-entrained oscillators on the synchronized cluster can be approx-
imated by a Gaussian process. This allows for an effective closed evolution equation for the synchronized oscillators
driven by a Gaussian process which we approximate by a two-dimensional Ornstein-Uhlenbeck process. Our reduction
reproduces the stochastic fluctuations of the order parameter and leads to a simple stochastic differential equation for
the order parameter.

I. INTRODUCTION

Ever since Huygen’s observation of two pendulum clocks,
mounted on the same wall a short distance apart, ending up
swinging in anti-phase, the phenomenon of collective be-
haviour and synchronisation of weakly coupled oscillators
has fascinated scientists. Synchronization has been observed
in a diverse range of natural and engineered systems1–3, in-
cluding in pace-maker cells of circadian rhythms4, networks
of neurons5, in chemical oscillators6,7 and in power grid
systems8.

The celebrated Kuramoto model of sinusoidally cou-
pled phase oscillators has served as a rich model to study
synchronisation1,2,9–14. The Kuramoto model was extended
to the Kuramoto-Sakaguchi model15 to include the effect
of time-delayed or phase frustrated coupling which was ob-
served in numerous real-world contexts16, including in ar-
rays of Josephson junctions17–19, in power grids20 and in
seismology21,22. Apart from the usual transition from an inco-
herent state at low coupling strength to synchronisation upon
increasing the coupling strength, the Kuramoto-Sakaguchi
model exhibits a plethora of dynamical behaviours including
bi-stability of incoherence and partial synchronisation, tran-
sition from coherence to incoherence with increasing cou-
pling strength23,24, chaotic dynamics25 as well as chimera
states26–28.

The possible high dimensionality of networks of oscillators
inhibits an understanding of the underlying dynamic mecha-
nisms which give rise to this rich behaviour. Scientists have
therefore looked at model reductions of the Kuramoto model
and of the Kuramoto-Sakaguchi model. Most methods are
restricted to the thermodynamic limit of infinitely many os-
cillators. In this limit Kuramoto and Sakaguchi established a
mean-field theory which determines the order parameter and
the non-zero rotation frequency of the synchronised cluster
via a self-consistency relationship15. Similarly, the celebrated
Ott-Antonson ansatz29 can be employed to obtain a determin-
istic evolution equation for the order parameter23,24. Real
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world networks, however, are of finite size, and in finite-size
systems the onset of synchronisation occurs typically not at
the critical coupling strength predicted by the thermodynamic
limit. While in the thermodynamic limit, the order parameter
asymptotically in time approaches a constant value, in finite-
size networks the order parameter exhibits persistent temporal
fluctuations. Furthermore, finite-size networks exhibit a sin-
gularity in the variance of the order parameter at the onset
of the transition to synchronisation with a well-defined finite
size scaling30–32. To overcome the restriction of the thermo-
dynamic limit and to tackle the case of finite-size networks, a
collective coordinate approach33–35 was applied to study the
Kuramoto-Sakaguchi model for finitely many oscillators and
derive an evolution equation for the order parameter36. It was
established that the order parameter and the dynamics of the
synchronised cluster is markedly influenced by the dynamics
of the non-entrained rogue oscillators. Describing the effect of
the rogue oscillators by their average, a deterministic reduced
evolution equation for the entrained oscillators was derived.
This allowed for the estimation of the onset of synchronisa-
tion and the determination of the average behaviour of the or-
der parameter.

Whereas our previous work captured the averaged effect
of the rogue oscillators on the synchronised oscillators, in
this work we set out to quantitatively describe the fluctua-
tions around this average behaviour and capture the effec-
tive stochastic dynamics of the synchronised phase-oscillators
and the order parameter. We show how the thermodynamic
limit is approached for increasing number of oscillators. We
first present numerical results suggesting that the fluctuations
constitute a Gaussian process. In a second step we approx-
imate the Gaussian process by an easily computable Marko-
vian Ornstein-Uhlenbeck process. This allows for a stochas-
tic model reduction of the deterministic Kuramoto-Sakaguchi
equation. In particular, we will propose a closed set of equa-
tions for the entrained synchronized oscillators where the ef-
fect of the non-entrained rogue oscillators is modelled by
coloured noise, the variance of which decreases as the number
of oscillators increases. We show numerically that the statis-
tics of the order parameter and of the mean phase is well re-
covered by the reduced stochastic equation for the entrained
oscillators. The stochastic approximation depends only, as
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we show numerically, on the number of the non-entrained
rogue oscillators Nr. For Nr → ∞ the variance of the noise
goes to zero and the deterministic thermodynamic limit is ap-
proached. On the other extreme, the validity of the stochastic
approximation requires a sufficiently large number of rogue
oscillators for the validity of the central limit theorem. This
implies, as we will show, that to observe an effective noise
requires different network sizes for different values of the
coupling strength: for large values of the coupling strength
with a high degree of synchronization there are proportionally
fewer rogue oscillators than for smaller values of the coupling
strength, requiring a larger total number of oscillators N to
allow for sufficiently large numbers Nr of rogue oscillators.
We further use the stochastic model reduction to formulate a
stochastic differential equation (SDE) for the order parame-
ter. SDEs driven by Brownian motion for the order parameter
were recently postulated and determined using a data-driven
approach37. We show here that the SDEs are in fact driven by
coloured noise.

There are two dynamic mechanisms capable of generating
effective stochastic behaviour in deterministic systems: multi-
scale dynamics and weak coupling38. Both mechanisms gen-
erate stochasticity via some (functional) central limit theo-
rems. In multiscale dynamics, slow variables experience on a
long diffusive time scale the integrated effect of fast variables.
If the fast dynamics is sufficiently chaotic, the integrated ef-
fect may lead to Brownian motion39–43. In weakly coupled
systems in which resolved variables are weakly coupled to
a large number of unresolved degrees of freedom, the sum
over the many unresolved variables with uncorrelated initial
conditions leads to a Gaussian process38,44,45. We establish
here that the dynamic mechanism responsible for the effective
stochastic dynamics of the collective behaviour of large but
finite Kuramoto-Sakaguchi models is via the route of weak
coupling.

The paper is organised as follows. In Section II we intro-
duce the Kuramoto-Sakaguchi model. Section II A reviews
the mean-field theory for the Kuramoto-Sakaguchi model.
Section III presents numerical simulations of the Kuramoto-
Sakaguchi model illustrating its stochastic order parameter
fluctuations. We develop our stochastic model reduction in
Section IV, in which we formulate an SDE for the entrained
oscillators. We further use the stochastic model equations to
formulate an SDE for the order parameter. In Section V we
present numerical results of the reduced stochastic model and
its ability to capture observed statistical properties of the full
Kuramoto-Sakaguchi model. We conclude in Section VI with
a discussion.

II. THE KURAMOTO-SAKAGUCHI MODEL

The Kuramoto-Sakaguchi model1,9,15

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j −θi −λ ), i = 1, . . .N. (1)

is a classic paradigmatic model describing the dynamics of N
sinusoidally globally coupled oscillators with phases θi under

global phase frustration λ with coupling strength K. Each
oscillator is equipped with an intrinsic frequency ωi which is
drawn from a specified distribution g(ω).

The Kuramoto-Sakaguchi model (1) displays a transition to
synchronisation as the coupling strength K increases. For low
values of K, the system is in an incoherent state in which each
oscillator evolves approximately with their own intrinsic fre-
quency. As the coupling strength K increases, some of the
oscillators become synchronised, oscillating with a common
frequency and with their phases staying close to one another.
When K increases further, more and more oscillators become
synchronised, until eventually global synchronisation occurs.
The non-zero phase frustration λ ̸= 0 induces a collective ro-
tation of the synchronised cluster with a non-zero frequency
Ω in the rest frame, as opposed to the Kuramoto model which
supports stationary synchronised clusters. We remark that for
λ = 0 and uniform intrinsic frequency distributions a first-
order phase transition occurs46.

The collective behaviour can be described by the mean-field
variables r and ψ with

r(t)eiψ(t) =
1
N

N

∑
j=1

eiθ j(t). (2)

The degree of synchronisation is quantified by the order pa-
rameter r̄ with

r̄ = lim
T→∞

1
T

∫ T

0
r(t)dt.

Perfect phase synchronisation with θ1 = θ2 = · · ·= θN implies
r̄ = 1 and r̄ ≳ 0 indicates that phases are spread out with r̄ ∼
1/
√

N indicating incoherence.

A. Classical mean-field theory

Sakaguchi and Kuramoto15 developed a mean-field theory
for the mean frequency Ω of the synchronzied cluster and the
order parameter r which we present here for completeness.
We follow here their exposition to obtain self-consistency re-
lations for the mean-field variables r and Ω as well as ex-
pressions for the stationary density function. The stationary
density will be used later to determine the average effect of
the rogue oscillators onto the synchronized oscillators. The
assumption in the Kuramoto-Sakaguchi model (1) that each
oscillator is connected to all other oscillators is crucial for the
following derivation. Moving into the frame of reference ro-
tating with the cluster mean frequency Ω = Ω(K) and setting
the mean-field phase variable ψ = 0, the Kuramoto-Sakaguchi
model (1) is expressed as

θ̇i(t) = v(θi;ωi), (3)

with frequency

v(θi;ωi) = ωi −Ω−Kr sin(θi +λ ). (4)

Each oscillator θi only couples to the other oscillators via the
mean-field in the form of r and Ω.
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From (3) one can readily identify the oscillators which form
the synchronised cluster and the rogue oscillators which are
not entrained: The former ones have frequencies |ωi −Ω| ≤
Kr for which (3) has stationary solutions with

θi = arcsin
(

ωi −Ω

Kr

)
−λ .

The synchronized oscillators rotate with the collective mean
frequency Ω. In contrast, the non-entrained rogue oscillators
have frequencies |ωi−Ω|> Kr and satisfy the Adler equation
(3).

In the thermodynamic limit N → ∞, the phases can be de-
scribed by a probability density function ρ(θ , t;ω) satisfying
the continuity equation

∂ρ

∂ t
+

∂

∂θ
(ρv) = 0. (5)

For stationary states with ∂ρ

∂ t = 0 there are two kinds of sta-
tionary density solutions, depending on the intrinsic frequency
ω . Entrained oscillators with |ωi −Ω| ≤ Kr which form the
synchronised cluster are captured by the stationary probability
density function

ρ(θ ;ω) = δ (θ − arcsin
(

ω −Ω

Kr

)
+λ ). (6)

The non-entrained rogue oscillators with |ωi −Ω| > Kr are
captured by the stationary probability density function

ρ(θ ;ω) =
C(ω)

v(θ ;ω)
=

C(ω)

ω −Ω−Kr sin(θ +λ )
, (7)

with normalization constant C(ω). In the thermodynamic
limit the order parameter

r =
∫

∞

−∞

∫ 2π

0
eiθ

ρ(θ , t;ω)g(ω)dθdω,

for the mean-field Kuramoto-Sakaguchi equation (3) is then
given by separating the integration over the frequencies into
the entrained and non-entrained ranges, with their respective
stationary densities (6) and (7). We obtain

reiλ =
∫

|ω−Ω|≤Kr

(√
1− (ω −Ω)2

K2r2 + i
ω −Ω

Kr

)
g(ω)dω

+ i
∫

|ω−Ω|>Kr

(
ω −Ω

Kr
− ω −Ω

Kr

√
1− K2r2

(ω −Ω)2

)
g(ω)dω.

(8)

Separating the real and imaginary parts of (8), we arrive at

r cosλ =
∫

|ω−Ω|≤Kr

√
1− (ω −Ω)2

K2r2 g(ω)dω (9)

r sinλ =
∫

|ω−Ω|≤Kr

ω −Ω

Kr
g(ω)dω

+
∫

|ω−Ω|>Kr

(
ω −Ω

Kr
− ω −Ω

Kr

√
1− K2r2

(ω −Ω)2

)
g(ω)dω.

(10)

These are self-consistency relations for the mean-field vari-
ables r and Ω and can be numerically solved for any given
intrinsic frequency distribution g(ω), coupling strength K and
phase frustration parameter λ . In the following we denote the
solution of the order parameter of the self-consistency relation
by r∞.

III. FINITE-SIZE EFFECTS IN THE
KURAMOTO-SAKAGUCHI EQUATION

We now present results of numerical simulations of the
Kuramoto-Sakaguchi model (1), illustrating finite-size ef-
fects. We employ a 4th order Runge-Kutta(RK4) method with
time step dt = 0.05. Initial conditions are chosen randomly
from the interval [0,2π]; to eliminate transient behaviour we
discard a transient period of t0 = 5×104 time units. Statistics
such as means and variances are computed from time series
of length tmax = 5× 104. In the following we fix the phase
frustration parameter to λ = π/4 and consider a Gaussian
distribution of the intrinsic frequencies with mean 0 and
variance 1. To avoid sampling effects which may lead to
small cluster nucleation47,48 we consider here equiprobable
intervals between the N intrinsic frequencies49. This allows
us to compare the effect of different system sizes N where
for each system size N the intrinsic frequencies are uniquely
fixed, and eliminates variations due to particular draws of
ωi for a given system size N. For a detailed discussion
on the effects of random sampling see, for example,31,47.
Unless specified otherwise we set K = 3 which corresponds
to a partially synchronized state of the system where both
synchronized and non-synchronized oscillators occur.

Figure 1a shows a snapshot of the phases for N = 160. The
phases are labelled according to their intrinsic frequencies
such that the oscillator with the most negative intrinsic fre-
quency is assigned the label i = 1 and the one with the largest
frequency the label i = N. One can see clearly the synchro-
nised cluster with frequencies close to the mean frequency Ω,
and the non-entrained rogue oscillators with more extreme in-
trinsic frequencies. Note that due to the non-zero phase frus-
tration λ the synchronised cluster is not centred around the
oscillators closest to the mean of their respective intrinsic fre-
quencies as is the case for the standard Kuramoto model with
λ = 0. To determine the synchronised cluster and its comple-



4

ment, the non-entrained rogue oscillators, we define the effec-
tive frequency of each oscillator,

ω̂i =
〈
θ̇i(t)

〉
t ,

where the angular brackets denote a temporal average. Those
oscillators with approximately the same effective frequencies
ω̂i are considered to form the synchronised cluster C of size
Nc, and the remaining oscillators are considered to be within
the set of non-synchronised rogue oscillators R with size Nr.
Figure 1b shows the effective frequencies. We estimate the
number of rogue oscillators for K = 3 and N = 160 oscillators
to be Nr = 43. We identify oscillators with indices i ≤ 116
as the synchronized oscillators with Nc = 116 and oscillators
with indices i > 116 as the rogue oscillators.

The effect of the non-collective behaviour of the rogue
oscillators induces a seemingly stochastic behaviour of the
order parameter r shown in Figure 2. We show the temporal
evolution of the order parameter from a random initial con-
dition at t = 0; after an initial transient the order parameter
exhibits persistent fluctuations around a mean value with a
constant variance of 4.16×10−4 for N = 160 and 4.42×10−6

for N = 10,000. The size of the fluctuations is N dependent
and we expect that for N → ∞ the variance of the fluctuations
approaches zero as demonstrated in Figure 4 further down.
Figure 3 shows that the overall mean phase ψ(t) as defined in
(2) as well as the mean phase of the synchronized oscillators
only, as defined further down in (15), exhibit diffusive be-
haviour. We checked that their dynamics is (approximately)
Brownian with a linear time dependency of the mean-square
displacement (not shown). Finite-size induced diffusivity
of the phase has been previously reported for a stochastic
Kuramoto model with λ = 0 and additive noise50–56. Here
the effect is entirely a deterministic finite-size effect as there
is no driving noise in the Kuramoto-Sakaguchi model (1).

A. Dependency of fluctuations on the system size N

To investigate the effect of finite system size,
we simulate the system at increasing system size
N = {40,80,160,320,640,1280,2560} with other set-
tings kept the same. Figure 4a shows the distribution of r(t)
for varying system size. As N increases, the distribution of
r(t) becomes, as expected, narrower with decreasing variance
and its mean value approaches a fixed value r̄∞ = 0.766,
as shown in Figures 4b-c. We find that r̄ − r∞ ∼ N−0.859.
The variance of r(t) decreases towards 0 as N increases
with Var[r] ∼ N−0.976. The scaling of the variance with
approximately with 1/N suggests an underlying Central
Limit Theorem describing the finite-size fluctuations of
the order parameter around the thermodynamic mean as a
Gaussian process.

Figure 5 shows that the number of rogue oscillators Nr very
closely exhibits a linear dependency on the total number of

(a)

(b)

FIG. 1: Snapshot of the phases θi (a) and effective
frequencies ω̂i (b) for the Kuramoto-Sakaguchi model (1)
with N = 160 oscillators and phase frustration λ = π

4 at
coupling strength K = 3 with a Gaussian intrinsic frequency

distribution with zero mean and unit variance. Circles (online
blue) denote oscillators entrained in collective synchronised

dynamics. Crosses (online red) denote the non-entrained
rogue oscillators. We identify oscillators with indices i ≤ 116
as the synchronized oscillators with Nc = 116 and oscillators

with indices i > 116 as the rogue oscillators with Nr = 43.

oscillators N. The numerically estimated slope of 0.2767 is
very well approximated by the thermodynamic limit

lim
N→∞

Nr

N
=
∫
|ω−Ω|>Kr

g(ω)dω, (11)

where r and Ω are the solutions of the mean-field consistency
relations (9–(10). For the parameters used in Figure 5 we ob-
tain limN→∞

Nr
N = 0.2770.

B. Dependency of fluctuations on the coupling strength K

Figure 6 shows the well-known transition from incoherence
to synchronisation for increasing coupling strength K for a
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FIG. 2: Time series of the order parameter r(t) from a single
simulation of the Kuramoto-Sakaguchi model (1) with

N = 10,000 and N = 160 oscillators, starting from a random
initial condition. The dashed horizontal line indicates the

stationary value r∞ = 0.766 of the corresponding
thermodynamic limit, estimated by solving the

self-consistency relations (9)-(10). All parameters are the
same as in Fig. 1.

fixed number of oscillators N = 160. Figure 6a shows the
order parameter r̄ with the well known second order phase
transition for Gaussian intrinsic frequencies from incoherence
with r̄ ∼ 1/

√
N to partial synchronisation at Kc = 1.93, after

which the synchronised cluster continues to grow in size until
all oscillators become synchronised at Kg = 8.34. Figure 6b
shows the variance of the order parameter as a function of
the coupling strength. The almost constant variance for small
coupling strength around Var(r) = 1.35×10−3 corresponds to
the almost random distribution of the N uncoupled oscillators.
The variance exhibits a singularity at K = Kc and approaches
zero for K ≥ Kg. The singular behaviour of the variance is
a well-studied phenomenon and known under the name of
anomalous enhancement of fluctuations30,31,57–60. Figure 6c
shows the cardinalities of the synchronised cluster C and the
set of rogue oscillators R, labelled Nc and Nr, respectively,
with Nc+Nr =N. For K <Kc all oscillators are rogue whereas
for K > Kg all oscillators are synchronised. The synchronised

FIG. 3: Time series of the overall mean phase ψ(t) defined in
(2) and of the mean phase ψc of the synchronized cluster

defined in (15) obtained from a simulation of the
Kuramoto-Sakaguchi model (1) with N = 160 oscillators,

exhibiting diffusive behaviour. All parameters are the same
as in Fig. 1.

cluster steadily grows for increasing Kc < K < Kg.

IV. STOCHASTIC MODEL REDUCTION

The numerical results presented in Section III suggest that
the non-entrained rogue oscillators exert a stochastic forcing
on the synchronised cluster. To develop a stochastic approx-
imation of the Kuramoto-Sakaguchi model we hence aim to
establish a closed evolution equation for the phases of the syn-
chronised oscillators in which the driving force exerted by the
rogue oscillators is parametrised by a stochastic process. The
challenge is how to describe this stochastic process. We be-
gin by separating the coupling terms which only involve the
synchronised oscillators and those which contain the rogue
oscillators, and write the Kuramoto-Sakaguchi model (1) for
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(a)

(b)

(c)

FIG. 4: (a): Empirical distribution of the order parameter r(t)
obtained from a single simulation of the

Kuramoto-Sakaguchi model (1) at different system sizes N.
(b): Mean value of r(t) for different system sizes N. The

dashed line indicates the value at the corresponding
thermodynamic limit, r̄∞. (c): Variance of r(t) for different

system sizes N. The red line represents the best-fit suggesting
a scaling law of N−0.976. All other parameters are the same as

in Fig. 1.

FIG. 5: The number of rogue oscillators Nr as a function of
the total number of oscillators N. The continuous line shows

a best fit with slope 0.2767 in good agreement with the
thermodynamic limit relationship (11). All other parameters

are the same as in Fig. 1.

i ∈ C as

θ̇i = ωi −Ω+
K
N

(
∑
j∈C

sin(θ j −θi −λ )+ ∑
j∈R

sin(θ j −θi −λ )

)
.

(12)

The sum over the rogue oscillators can be written as

1
N ∑

j∈R

sin(θ j −θi −λ )

=
1
N ∑

j∈R

sin(θ j −ψc +λ +ψc −θi −2λ )

= cos(ψc −θi −2λ )S(t)+ sin(ψc −θi −2λ )C(t),

where we introduced the mean phase of the synchronised clus-
ter ψc and where we define

S(t) =
1
N ∑

j∈R

sin(θ j −ψc +λ ) =
Nr

N
rr sin(ψr −ψc +λ )

(13)

C(t) =
1
N ∑

j∈R

cos(θ j −ψc +λ ) =
Nr

N
rr cos(ψr −ψc +λ ),

(14)

where we defined the mean-field variables pertaining to the
synchronized oscillators in C

rceiψc =
1

Nc
∑
j∈C

eiθ j (15)

and those pertaining to the rogue oscillators in R

rreiψr =
1
Nr

∑
j∈R

eiθ j . (16)
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(a)

(b)

(c)

FIG. 6: Transition from incoherence to synchronisation of
the Kuramoto-Sakaguchi model (1) with increasing coupling
strength K with N = 160 for a Gaussian intrinsic frequency
distribution g(ω) with mean zero and variance 1. (a): Order

parameter r̄. (b): Variance of the order parameter,
quantifying the size of fluctuations. (c): Number of entrained
oscillators Nc, which are part of the collective synchronised
cluster (circles, online blue) and number of non-entrained

rogue oscillators Nr (crosses, online red). Shown are relative
numbers. The vertical lines mark the onset of partial
synchronisation at Kc = 1.93 and the onset of global

synchronisation at Kg = 8.34.

We remark that the particular choice of writing the trigono-
metric functions in (13)-(14) was motivated by the form of the
invariant density of the rogue oscillators (7) and allows for a
convenient averaging (cf. (18)-(20)). The overall influence of
the rogue oscillators on each synchronised oscillator θi is now
captured by S(t) and C(t), while the remaining terms are ex-
pressed entirely in terms of the synchronised oscillators, and
we arrive at

θ̇i = ωi −Ω+
K
N ∑

j∈C

sin(θ j −θi −λ )

+K cos θ̃i S(t)+K sin θ̃i C(t), (17)

where we defined for compactness

θ̃i = ψc −θi −2λ .

We first establish the average effect of the rogue oscillators
and calculate the means ⟨S⟩ and ⟨C⟩ of the rogue oscillator
drivers S(t) and C(t). We follow here the averaging procedure
proposed in our previous work36.

In the co-rotating frame of the synchronized cluster, the
synchronized oscillators are stationary whereas the rogue os-
cillators rotate (cf. Figure 1). Envoking ergodicity we can
equate the temporal averages ⟨S⟩ and ⟨C⟩ by averages over the
stationary density function of the rogue oscillators (7). Aver-
aging equation (13) for S(t) over the invariant densities of the
rogue oscillators (7) becomes

⟨S⟩t ≈
1
N ∑

j∈R

∫ 2π

0
sin(θ j −ψc −λ )ρ(θ j;ω)dθ j

=
1
N

cos(ψ −ψc) ∑
j∈R

k j, (18)

where

k j =
ω j −Ω

Kr

(
1−

√
1− K2r2

(ω j −Ω)2

)
, (19)

and ψ denotes the overall phase of all oscillators in the frame
of reference rotating with the mean frequency Ω. Similarly,
averaging (14) yields

⟨C⟩t =− 1
N

sin(ψ −ψc) ∑
j∈R

k j ≈ 0, (20)

since the overall phase ψ (see (2)) and the phase of the
synchronized cluster ψc are close for sufficiently large
coupling strength. We remark that for λ = 0 we have
⟨S⟩t = ⟨C⟩t = 0. In practice we estimate ⟨S⟩t and ⟨C⟩t numer-
ically from a long time trajectory, which yields ⟨S⟩t = 0.148
and ⟨C⟩t = −0.0236, see Section III for the parameters used
in the numerical simulations. These numerically estimated
values are well approximated by the analytical expressions
(18) and (20) which yield ⟨S⟩t = 0.144 and ⟨C⟩t = −0.0233.
To evaluate the analytical expressions (18) and (20) the
constant values of r and Ω for the fixed finite system size N
are required. These would only be available from numerical
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simulations. To remain purely analytical we use instead
the values corresponding to the thermodynamic limit with
r = 0.766 and Ω =−1.706, which are calculated via the self-
consistency relations (9) and (10) of the mean-field theory.
We remark that instead of using the finite size expressions
(18) and (20) we could consider their thermodynamic limit by
averaging over the frequency distribution g(ω). This yields
⟨S⟩t = 0.149 and ⟨C⟩t = −0.0240 which is also close to the
numerically observed values.

Figure 7 shows the empirical histogram of S and C obtained
from a single long simulation of the Kuramoto-Sakaguchi
model (1) for the same parameter setting as in Section III with
N = 160, K = 3, λ = π/4 and g(ω) ∼ N (0,1). Whereas
the mean values are well approximated by the averaging
procedure36 described above, S(t) and C(t) experience sig-
nificant fluctuations. It is clearly seen that the distribution of
these fluctuations is Gaussian. In Figure 8 we show that the
variance of S and of C scales approximately as 1/N. This
suggests that the scaled mean-subtracted variables

ξt =
√

N (S(t)−⟨S⟩t)+o(
1√
N
)

ζt =
√

N (C(t)−⟨C⟩t)+o(
1√
N
) (21)

are Gaussian processes that are defined entirely in terms of
their mean and covariance functions

Rab(τ) = cov(a(t),b(t + τ)), (22)

for a and b being either ξ or ζ . Indeed, Figure 9 shows that
correlations decay in time with increasing system size N, and
that the covariance functions of the scaled variables ξt and
ζt converge in the limit of N → ∞. Note that the covariance
functions of ξt and ζt do not scale with N.

The oscillations of the covariance functions for fixed finite
N are persistent features which do not decay for increasing
length of the time series. To allow for a stochastic description
of the fluctuations ξ and ζ we require integrable covariance
functions which decay in time. The dominance of the non-
decaying large time correlations for small values of N illus-
trates that the effective stochastic dynamics implied by (21)
and the implied central limit theorem requires a sufficiently
large number of oscillators N. We remark that technically
one should consider the scaling with respect to the number of
rogue oscillator Nr rather than with the total number of oscil-
lators N. However, since Nr scales linearly with N (cf Figure 5
and equation (11)) this notational simplification is justified.

A. Approximation of S(t) and C(t) by a 2-dimensional
Ornstein-Uhlenbeck process

To determine an explicit stochastic process that can be used
to generate realisations of this Gaussian process, we approxi-
mate the Gaussian process ZKS = (ξt ,ζt)

T by an easily com-
putable two-dimensional Ornstein-Uhlenbeck process

dZ = (−ΓZ +ϒZ)dt +ΣdBt (23)

with two-dimensional Brownian motion Bt = (B1,B2)
T . It is

well-known that stationary Gauss-Markov processes can be
expressed as solutions of Ornstein-Uhlenbeck processes61,62.
We consider for simplicity a diagonal matrix Γ= γ I and skew-
symmetric rotation matrix ϒ with entries υ12 =−υ21 = υ and
υ11 = υ22 = 0 and a symmetric diffusion matrix Σ with entries
σi j for i, j = 1,2. The associated covariance function is given
by

R(OU)(τ) = ⟨e−(Γ−ϒ)τ Z0ZT
0 ⟩OU, (24)

where the Z0 are random variables drawn from the station-
ary density of the OU process and the angular brackets ⟨·⟩OU
denote the average over that density. We provide explicit
expressions of the covariance function R(OU)(τ) in the Ap-
pendix. The parameters of the Ornstein-Uhlenbeck process
(23) are determined such that its mean is zero and its co-
variance function (24) best matches the observed covariance
function (22) of ZKS = (ξt ,ζt) associated with the full deter-
ministic Kuramoto-Sakaguchi model. We perform a nonlinear
least-square optimisation minimising the objective function

E(γ,υ ,Σ) = ∑
a,b

∫ tmax

tmin

||Rab(t)−R(OU)
ab (t)||2dt

+β

(
||Rab(0)−R(OU)

ab (0)||2
)
, (25)

where the sum goes over all entries of the covariance ma-
trix. We choose β = 1,000 to enforce that the variances of
S and C are reproduced. For the parameter values used in Sec-
tion III with K = 3, λ = π/4, g(ω)∼ N (0,1) and N = 160,
the fitting yields γ = 0.727±0.0331,υ = 1.739±0.0331 and
σ11 = 0.374 ± 0.0069,σ12 = σ21 = 0.0090 ± 0.0011,σ22 =
0.271± 0.0084 with 95% confidence intervals. For different
parameter values of the Kuramoto-Sakaguchi model (1), the
parameter values of the OU process will be different. Fig-
ure 10 shows the four entries of the covariance matrix of
ZKS = (ξt ,ζt) together with the best fit of the approximating
OU process. The fit is reasonable for τ ≲ 2.

We remark that one cannot expect that the approximate
stochastic reduction can model the dynamics accurately on
all time scales. For example, the Kuramoto-Sakaguchi model
is deterministic and hence the derivatives of the covariance
functions Rξ ξ (τ) and Rζ ζ (τ) are zero at τ = 063 (cf. Fig-
ure 9b). This feature cannot be reproduced by the stochastic
Ornstein-Uhlenbeck process which supports covariance func-
tions that are non-differentiable at τ = 0; this suggest a lower
integration bound tmin ̸= 0. We choose here tmin = 0.5 and
tmax = 2.5. Furthermore, the mismatch between the covari-
ance functions obtained form the full deterministic Kuramoto-
Sakaguchi model (1) and those corresponding to the best-fit
Ornstein-Uhlenbeck process shown in Figure 10 shows that
the effective stochastic dynamics of the fluctuations is only
approximately a Gaussian process. We have checked that the
accuracy of the fit does not significantly improve when in-
creasing the number of oscillators to N = 2,560. The dis-
crepancy between the observed covariance function and the
best-fit Ornstein-Uhlenbeck process reveals that the under-
lying Gaussian process is more complex and possibly non-
Markovian. However, despite the fact that the OU process
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is only able to coarsely approximate the covariance function
of the actual Gaussian process, we will see in Section V that
the fitted OU-process serves as an easily computable surrogate
process for the interaction term of the rogue oscillators, which
is able to reliably reproduce the main statistical features of the
system.

B. Reduced stochastic model for the entrained oscillators
and associated evolution of the order parameter

Expressing the interaction terms S(t) and C(t) in the
Kuramoto-Sakaguchi model (12) as an OU process with
means ⟨S⟩t and ⟨C⟩t , we obtain the following closed system of
evolution equations for the entrained oscillators θi with i ∈ C

dθi =
[
ωi −Ω+

K
N ∑

j∈C

sin(θ j −θi −λ )

+K cos θ̃i (⟨S⟩t +
1√
N

ξt) + K sin θ̃i (⟨C⟩t +
1√
N

ζt)
]
dt,

(26)

where ξt and ζt are the components of a 2-dimensional OU
process governed by

dξt =−γξt dt +υζt dt +σ11dB1 +σ12dB2

dζt =−γζt dt −υξt dt +σ21dB1 +σ22dB2. (27)

We can now establish expressions for the order parameters
associated with the stochastic reduced system (26)-(27). The
order parameter rc and the mean phase ψc can be directly de-
termined from simulations of (26)-(27). The full order param-
eter r can be expressed as

reiψ =
Nc

N
rceiψc +

Nr

N
rreiψr . (28)

Using the definitions for S and C (13)-(14) which imply

(C+ iS)e−iλ =
Nr

N
rr ei(ψr−ψc),

we can express (28) in terms of the complex variable Zt =
C(t)+ iS(t), where we treat Zt now as a complex valued ran-
dom variable, and obtain

r(t) =
∣∣∣∣Nc

N
rc(t)+Zt e−iλ

∣∣∣∣ . (29)

We now perform further approximations to formulate a
stochastic evolution equation for the order parameter. We sep-
arate the mean part and the fluctuations of Zt according to

Zt =C(t)+ iS(t) = ⟨Z ⟩+ 1√
N

Z ′
t

with ⟨Z ⟩ = ⟨C⟩+ i⟨S⟩. The random variable Z ′
t = ζt + iξt

is generated from the OU process (27) via the definition (21).
Note that this equation for r is only an approximation as we
require r(t)≤ 1 for all times t.

The order parameters rc and rr are both stochastic processes
fluctuating around their respective means. However, the vari-
ance of the perturbing Ornstein-Uhlenbeck process Z ′

t /
√

N,
which represents the rogue oscillators, is much larger than that
associated with the synchronised cluster. Indeed, we observe
numerically a two orders of magnitude larger variance of the
rogue oscillators than that of the synchronized oscillators with
Var(rc) ≈ 1.41× 10−5 and Var(rr) ≈ 6.5× 10−3. This sug-
gests that in equation (29) for the order parameter r(t) the
stochasticity of rc can be neglected to first order against the
dominating noise process Z ′

t /
√

N, and we can approximate
rc ≈ r̄c = const. We obtain

r(t) =
∣∣∣∣r̄⋆c + 1√

N
Z ′

t e−iλ
∣∣∣∣ , (30)

with complex

r̄⋆c =
Nc

N
r̄c + ⟨Z ⟩e−iλ . (31)

Assuming that the stochastic perturbations are small we can
approximate further and expand up to O(1

√
N) to obtain

r(t) = |r̄⋆c |+
1√
N

Real[
r̄⋆c
|r̄⋆c |

e−iλ Z ′
t ], (32)

which formally is equivalent to the following evolution equa-
tion for the order parameter

dr =
1√
N

Real[
r̄⋆c
|r̄⋆c |

e−iλ dZ ′
t ] (33)

with

r(0) = |r̄⋆c |, Z ′(0) = z′0. (34)

The stochastic process Z ′ is not necessarily stationary and
we allow for non-equilibrium initial conditions z′0 which are
not drawn from the stationary distribution of the Ornstein-
Uhlenbeck process, corresponding to random initial condi-
tions for the phases of the rogue oscillators. Note that the
order parameter is driven by coloured noise in (33). This is in
contrast to Snyder et al37 who postulated Brownian motion as
the driving noise.

C. Dynamic mechanism for the generation of effective
stochasticity in the deterministic Kuramoto-Sakaguchi model

The effective stochastic dynamics of S(t) and C(t) are gen-
erated by the weak chaoticity of the non-entrained rogue
oscillators64,65. We show in Figure 11 typical trajectories of
rogue oscillators. The dynamics of the weakly chaotic rogue
oscillators is characterized by a nearly periodic motion (in-
deed under the assumption of constant mean-field variables r
and ψ the dynamics of each rogue oscillator is approximately
governed by the Adler equation (3)). Note that the rogue os-
cillators closest to the synchronized cluster evolve slowly, al-
most aligned with the synchronized cluster, for long periods



10

FIG. 7: Empirical histogram of S(t) and C(t) obtained from a
single trajectory of the Kuramoto-Sakaguchi model (1) with

N = 160. The continuous curve (online red) shows the
corresponding Gaussian best fit. We denote with a filled

circle (online orange) the thermodynamic value of ⟨S⟩t and
⟨C⟩t as calculated from (18) and (20), respectively.

interrupted by fast slips. We observed that the times between
consecutive phase slips are not constant but exhibit signifi-
cant variance (not shown). In particular, the variance rela-
tive to the mean is largest for the slow rogue oscillators clos-
est to the synchronized cluster and decays monotonically for
faster rogue oscillators with higher intrinsic frequencies ωi.
The interaction terms (13) and (14) hence constitute sums of
nearly periodic functions of time. It is well known that a sum
of many trigonometric functions of linear uncoupled oscilla-
tors with uncorrelated random initial conditions approximates
a Gaussian processes38,44,45. This suggests that the mecha-
nism for the deterministic generation of diffusive behaviour
is less a matter of the time-scale separation between faster
chaotic rogue oscillators and slower synchronized oscillators
(as would be covered by the theory of homogenization), but
instead it is given by weak coupling of the synchronized os-
cillators to (sufficiently) many uncorrelated rogue oscillators.
We remark that the randomness stems here entirely from the
choice of the initial conditions of the oscillators. For different
initial conditions, different realisations of the noise are gen-
erated. The weakly chaotic nature, however, allows one to
use highly correlated initial conditions, e.g. θi = const for
all i; initially correlated phases will decorrelate after a suffi-
ciently long transient period. This is different to the classical
trigonometric approximation which relies on the presence of
uncorrelated random initial conditions.

V. COMPARISON OF THE STOCHASTIC REDUCED
MODEL WITH THE FULL KURAMOTO-SAKAGUCHI
MODEL

We now show that the fluctuations of the order parameter as
observed in Figure 2 can be captured by the closed stochastic
evolution equation (26)-(27) for the entrained oscillators θi
with i ∈ C . Here we present results again for the parameter
setting used in Section III with λ = π/4, g(ω)∼N (0,1) and
N = 160. We begin with a coupling strength K = 3 as used in
Section III.

The averages ⟨S⟩t and ⟨C⟩t in (26) can be computed either
from long time simulations or from our analytical mean-field
theory results (18) and (20). The agreement is up to an er-

FIG. 8: Scaling of the variance of S and C with varying
system size N as calculated from a single trajectory of the
Kuramoto-Sakaguchi model (1). The continuous line is a

linear best fit indicating a scaling with N−0.977 and N−0.975

for S and C, respectively.

ror of less than 1% (cf. Figure 7). We use in the follow-
ing the numerically obtained values. The parameters of the
Ornstein-Uhlenbeck process (27) were determined by the fit-
ting of the covariance functions according to (25) which we
recall here as γ = 0.727,υ = 1.73 and σ11 = 0.374,σ12 =
σ21 = 0.0090,σ22 = 0.271. We remark that in the thermo-
dynamic limit N → ∞ the effect of the stochastic fluctuations
ξt and ζt in (26) decays and we recover the deterministic evo-
lution equation derived in36. We simulate the system (26)-
(27) using an Euler-Maruyama integrator with a time step of
dt = 0.01.

Figure 12 shows the empirical histograms of the order pa-
rameter rc pertaining to the synchronized oscillators as well as
the total order parameter r for all oscillators when simulated
using the full Kuramoto-Sakaguchi model (1) and when esti-
mated by the reduced stochastic system (26)-(27) using (15)
and (29) for the associated order parameters; we remark that
results using the approximation (30) for the associated order
parameter lead to results indistinguishable by eye. We fur-
ther show the histogram of the order parameter rc which only
takes into account the entrained synchronized oscillators. It is
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FIG. 9: Entry Rξ ξ (τ) of the covariance function of
ZKS = (ξ (t),ζ (t)) obtained from a single trajectory of the

Kuramoto-Sakaguchi model (1) for different system sizes N.
We show the covariance function for a large range τ ≤ 40 as

well as a close up for τ ≤ 1.5.

FIG. 10: Covariance functions of ξ (t) and ζ (t) of the
Kuramoto-Sakaguchi model (1) with N = 160 (continuous

lines, online blue), together with the covariance function of a
fitted two-dimensional Ornstein-Uhlenbeck process (dashed

lines, online red).

FIG. 11: Top: Typical trajectories of rogue oscillators
obtained from a single trajectory of the Kuramoto-Sakaguchi
model (1) for N = 160 including the rogue oscillators with

the intrinsic frequency closest to that of an entrained
oscillator with index i = 117 and the rogue oscillator with the

largest intrinsic frequency with index i = 159. Bottom:
Zoom into a shorter time window for the rogue oscillators
which are closest to the synchronized cluster showing their

weakly chaotic nature.

seen that our stochastic reduction captures the observed fluc-
tuations for both rc(t) and r(t) very well. We remark that the
histograms are not distinguishable by eye if the order param-
eter is calculated by an actual time trajectory of rc(t) or by its
constant mean r̄c (cf. (29) and (30)).

Long-time solutions of the reduced stochastic equation
for the order parameter (33) generate empirical histograms
undistinguishable by eye from those presented in Figure 12.
In Figure 13 we show the time evolution of the order
parameter rc(t) computed from simulations of the full
Kuramoto-Sakaguchi model (cf. Figure 2) and of our reduced
stochastic system (26)-(27). It is seen that the qualitative
smooth character of the fluctuations observed in the deter-
ministic Kuramoto-Sakaguchi model (1) is reproduced by our
stochastic system which is driven by coloured OU noise.

To further probe the ability of the reduced stochastic model
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(26)-(27) to capture the collective dynamics of the entrained
synchronized oscillators we show results for the fluctuations
of the entrained oscillators around the mean phase of the
synchronized cluster, θi−ψc for i ∈ C . These fluctuations are
Gaussian for all entrained oscillators as shown in Figure 14. It
is seen that our SDE very well describes entrained oscillators,
such as those with indices i = 1 and i = 50, but the degree of
approximation is less good for those entrained oscillators at
the edge of the cluster with index i = 115. In Figure 15 we
show the mean and the variance of θi −ψc for all i ∈ C esti-
mated from a long simulation of the full Kuramoto-Sakaguchi
model (1) and of the reduced stochastic model (26)-(27). It
is seen that the mean is very well recovered by the reduced
stochastic model. The variance is very well captured for
oscillators with an index i that is sufficiently small to ensure
that their intrinsic frequency is not too close to that of the
closest rogue oscillator. For the simulations we show in
Figure 15 the index of the first rogue oscillator is i = 117 for
the full Kuramoto-Sakaguchi model. The entrained oscillator
with index i = 116, i.e the oscillator on the edge of the
synchronized cluster, is fully entrained in the Kuramoto-
Sakaguchi model. However, for the approximate stochastic
model (26)-(27) the oscillator with index i = 116 experiences
rare fast random slips between long periods of entrainment (of
the order of 1,000 time units on average). The rare and fast
slips do not affect the mean which is still close to the mean
corresponding to the Kuramoto-Sakaguchi model, but the
variance is much higher with a value of 0.012 (not shown in
Figure 15 where we only show oscillators with index i≤ 115).

We have so far reported only on a single value K = 3 of the
coupling strength. It is pertinent to mention that our approach
is not restricted to any value of the coupling strength but only
to the number of rogue oscillators present. For each value of
the coupling strength, however, the corresponding parameters
of the approximating Ornstein-Uhlenbeck process will differ
and will need to be determined. For K = 3 we found that the
number of rogue oscillators Nr = 43 out of a total of N = 160
oscillators was sufficient for the fluctuations to be described
as a Gaussian process. The number of rogue oscillators
decreases with increasing coupling strength, see Figure 6.
For an increased coupling strength with K = 7 there are only
Nr = 2 rogue oscillators for N = 160 which is insufficient for
the Gaussian process approximation. However, increasing
the total number of oscillators to N = 2,560 increases the
number of rogue oscillators to Nr = 46, and we observe again
that the statistics of the order parameter is well recovered by
the Gaussian process approximation as shown in Figure 16.
Conversely, for coupling strengths below the critical coupling
strength Kc one can use the Gaussian approximation for any
of the N oscillators with the remaining Nr = N −1 oscillators
contributing to an additive noise for the single oscillator
with index i = i⋆ and ψc = θi⋆ . Figure 16 shows that indeed
the order parameter r is well approximated by the Gaussian
process approximation for the sub-critical case K = 1.25.

The numerical results reported above all used the equiprob-
able draws of the intrinsic frequencies described in Section III.

FIG. 12: Comparison of the empirical histograms for rc (left)
and r (right) obtained from a single trajectory of the

Kuramoto-Sakaguchi model (1) for N = 160 and from the
dynamics of the reduced stochastic model (26) driven by an
OU process. All other parameters are the same as in Fig. 1.

For random draws the number of rogue oscillators Nr fluctu-
ates across realisations, and the statistical features of S and
C will vary. We checked that with random draws of the in-
trinsic frequencies the distributions of S and C are still near-
Gaussian and S and C can be effectively approximated by a
Gaussian process for most realisations. For random intrin-
sic frequency realisations which give rise to the formation
of smaller interacting clusters, the effective dynamics would
need to involve multiple clusters and becomes much more
involved. The fluctuations decrease with increasing number
of oscillators N approaching the results of the equiprobable
draws presented here.

VI. DISCUSSION

We considered the effect of non-entrained rogue oscillators
on the collective behaviour of the entrained synchronized
oscillators in the Kuramoto-Sakaguchi model. We established
an average effect, in the spirit of a law of large numbers,
and then considered fluctuations around the mean effect
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FIG. 13: Temporal evolution of the order parameter rc(t).
Shown are results obtained from the full

Kuramoto-Sakaguchi model (1) (online blue), the reduced
stochastic model (26)-(27) driven by an OU process (online

red). All other parameters are the same as in Fig. 1.

FIG. 14: Empirical density of θi −ψc for the entrained
oscillators with indices i = 1, i = 50 and i = 115. Shown are

results for the full Kuramoto-Sakaguchi model (1) for
N = 160 and for the reduced stochastic model (26)-(27). All

other parameters are the same as in Fig. 1.

akin to the central limit theorem. We presented results from
numerical simulations that suggest that the fluctuations can
be approximated by a Gaussian process with a stationary
density and fluctuations which decay as 1/

√
N. Hence

for fluctuations to have a significant effect one needs the
number of rogue oscillators to be sufficiently large to allow
for a central limit theorem and sufficiently small to have a
nonnegligible variance. Gaussian processes are determined
entirely by their mean and their covariance function. We
used a two-dimensional Ornstein-Uhlenbeck process as a
surrogate stochastic Gaussian process by fitting the covari-
ance function. This enabled us to replace the interaction term
involving the rogue oscillators by this Ornstein Uhlenbeck

FIG. 15: Mean (left) and variance (right)) of the fluctuations
of the entrained synchronized oscillators around their mean
phase, θi −ψc for all i ∈ C . Shown are results for the full
Kuramoto-Sakaguchi model (1) for N = 160 and for the

reduced stochastic model (26)-(27). All other parameters are
the same as in Fig. 1.

process, and to formulate a closed equation for the entrained
synchronized oscillators only, which are driven by this
complex Ornstein-Uhlenbeck process. The reduced system
of stochastic differential equations showed remarkable capa-
bility to reproduce the statistical behaviour of the entrained
oscillators such as the probability density function of the
order parameter. It is pertinent to mention that the order
parameter is driven by coloured Ornstein-Uhlenbeck noise
and not, as previously claimed on heuristic grounds, by
Brownian motion. The OU noise was fitted by directly using
information of the unresolved dynamics (i.e. the statistical
behaviour of S and C) rather than by blind fitting of the
resolved synchronized behaviour, as is usually done when
imposing coarse grained model.

Our numerical experiments were restricted to normally
distributed intrinsic frequencies. There are in principle
no restrictions to the nature of the frequency distribution
g(ω). For unimodal frequency distributions and also for
uniform frequency distributions with λ ̸= 0 there is a range



14

FIG. 16: Comparison of the empirical histograms for the
order parameter r obtained from a single trajectory of the

Kuramoto-Sakaguchi model (1) and from the dynamics of the
reduced stochastic model (26) driven by an OU process. Top:

For coupling strength K = 7 with N = 2,560. The best-fit
parameters for the Ornstein-Uhlenbeck process (27) are

γ = 1.2947,υ = 2.7992,σ11 = 0.0980,σ12 = σ21 = 0.0007
and σ22 = 0.0955. The order parameter of the reduced

stochastic model (26) is calculated using (29). Bottom: For
the subcritical coupling strength K = 1.25 for which there are

no synchronized clusters, with N = 160. Here the reduced
stochastic model (26) is for a single oscillator with index
i = 1, with Nr = N −1 = 159 and ψc = θ1. The best-fit
parameters for the Ornstein-Uhlenbeck process (27) are

γ = 0.5454, υ = 1.8682, σ11 = 0.7513, σ12 = σ21 =−0.0019
and σ22 = 0.7496. The order parameter of the reduced

stochastic model (26) is calculated using (29).

in coupling strengths for which the dynamics is characterized
by the interaction of a single partially synchronized cluster
with a collection of non-entrained rogue oscillators as dis-
cussed here. It would be interesting to see how finite-size
induced noise can effect the interaction of several partially
synchronized clusters. This would be possible for multimodal
intrinsic frequency distributions.

In future work it would be interesting to investigate in how

far the stochastic model reduction is able to characterize the
fluctuations of the order parameter at the phase transition as
seen in Figure 6b. Since the parameters of the best-fit OU
process typically differ for different values of the coupling
strength K this may prove to be numerically costly.

On a theoretical level, it would be interesting to show
the convergence to an effective stochastic equation for
the synchronized oscillators more rigorously and/or find
explicit expressions for the parameters of the reduced SDE.
This would require to extend the method of trigonometric
approximations to an approximation of Gaussian processes
by a sum of solutions of the Adler equation (3). This could
then allow for a computationally feasible investigation of the
fluctuations of the order parameter at the phase transition,
mentioned above.

The stochastic reduced equation can now be fur-
ther reduced, for example via the method of collective
coordinates33–36,65. In particular, one can employ the methods
developed for the reduction of a stochastic Kuramoto model56

to the proposed stochastic system here for the Kuramoto-
Sakaguchi model. This has the potential to capture finite size
effects which cannot be captured via standard mean-field the-
ories, in particular, the diffusivity of the mean phase ψ and
ψc.
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Appendix A: Covariance function of the 2-dimensional
Ornstein-Uhlenbeck process

We write the 2-dimensional OU process (23) as

dzt = Lzt dt +ΣdBt , (A1)

where L = −Γ+ϒ. Formally, the solution of this SDE with
initial condition z0 can be written as

zt = eLtz0 +
∫ t

0
eL(t−u)

ΣdBu.

Defining for the mean-zero process zt

R(t, t + τ) = E[ztzTt+τ ]

= eLtE
[
z0zT0

]
eLT(t+τ)+

∫ t

0
eL(t−u)

ΣΣ
TeLT(t+τ−u)du,
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where the first expectation is taken with respect to Brownian
motion paths and initial conditions and the second expectation
with respect to initial conditions, the covariance function is
obtained as

R(τ) = lim
t→∞

R(t, t + τ) = lim
t→∞

∫ t

0
eL(t−u)

ΣΣ
TeLT(t+τ−u)du.

Restricting to a diagonal matrix Γ = γ I and a skew-symmetric
rotation matrix ϒ with entries υ12 = −υ21 = υ and υ11 =
υ22 = 0, and to a symmetric diffusion matrix Σ with entries
σi j for i, j = 1,2, the 2-dimensional mean-zero OU process
(A1) is written as (27), which we recall here as

(
dξt
dζt

)
=

(
−γ υ

−υ −γ

)(
ξt
ζt

)
dt +

(
σ11 σ12
σ12 σ22

)(
dB1,t
dB2,t

)
.

The covariance function for this process can be explicitly ex-
pressed as

R(OU)(τ) =
1

4γ(γ2 +υ2)
e−γτ R̂(τ)

with

R̂(τ) =
(

R̂ξ ξ (τ) R̂ξ ζ (τ)

R̂ζ ξ (τ) R̂ζ ζ (τ)

)
.

Defining (
a1 a2
a2 a3

)
=

(
σ11 σ12
σ12 σ22

)(
σ11 σ12
σ12 σ22

)T

,

i.e.

a1 = σ
2
11 +σ

2
12 a2 = σ11σ12 +σ12σ22 a3 = σ

2
12 +σ

2
22,

we obtain

R̂ξ ξ (τ) =
(
(a1 +a3)υ

2 +2a2γυ +2a1γ
2)cos(υτ)+

(
(a3 −a1)γυ +2a2γ

2)sin(υτ)

R̂ξ ζ (τ) =
(
(a3 −a1)γυ +2a2γ

2)cos(υτ)−
(
(a1 +a3)υ

2 +2a2γυ +2a1γ
2)sin(υτ)

R̂ζ ξ (τ) =
(
(a3 −a1)γυ +2a2γ

2)cos(υτ)+
(
(a1 +a3)υ

2 −2a2γυ +2a3γ
2)sin(υτ)

R̂ζ ζ (τ) =
(
(a1 +a3)υ

2 −2a2γυ +2a3γ
2)cos(υτ)+

(
(a1 −a3)γυ −2a2γ

2)sin(υτ).
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