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Abstract

We present a convergence proof for higher order implementations of the projec-
tive integration method (PI) for a class of deterministic multi-scale systems in
which fast variables quickly settle on a slow manifold. The error is shown to
contain contributions associated with the length of the microsolver, the numeri-
cal accuracy of the macrosolver and the distance from the slow manifold caused
by the combined effect of micro- and macrosolvers, respectively. We also pro-
vide stability conditions for the PI methods under which the fast variables will
not diverge from the slow manifold. We corroborate our results by numerical
simulations.
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1. Introduction

Many problems in the natural sciences are modelled by multidimensional
ordinary differential equations with entangled processes running on widely
separated time scales. One is often interested in resolving the behaviour of
the slow processes over a long, macro time scale. However, the fast processes
prevent direct solution of the system by traditional numerical methods. Re-
cently two numerical methods designed to overcome the restriction to the small
integration time step in these stiff dynamical systems have been much studied;
the projective integration method within the equation-free framework and the
heterogeneous multiscale methods (HMM). Each method exists in multiple
formulations; in the PI method, we mention [1, 2, 3, 4, 5, 6, 7, 8], and in the
HMM, [9, 10, 11, 12, 13, 14, 15]. There is some debate on the similarities and
differences between the methods; the interested reader is referred to [16, 17] for
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a discussion.
Both methods assume that the fast variables in the full multiscale system
quickly relax to a slow manifold, after which the dynamics of the slow variables
is governed by a slow reduced system. Both methods estimate the effective
influence of the fast variables on the dynamics of the slow variables by
employing a microsolver to perform short fine-scale computations with small
time steps (microsteps). This information is used to propagate the dynamics
on the slow manifold for large time steps (macrosteps) in the macrosolver.
The philosophy behind each method is slightly different. The PI approach
estimates the effective slow vector field via direct numerical evaluation, not
assuming any knowledge on the form of the reduced vector field; this forms
part of the equation-free approach. In contrast, the HMM philosophy utilises a
priori analytical knowledge about the reduced vector field.

In this paper, we focus on numerical methods that are seamless; that is, the
numerical methods do not explicitly separate the slow variables and the fast
variables at any stage in the solver, but instead propagate all variables simulta-
neously. These methods are useful in systems where conceptually there exists
a decomposition or transformation of the system into slow and fast variables,
but where this transformation is unknown. The added complication of seamless
numerical methods is that the fast variables are propagated simultaneously
with the slow variables with the large time step of the macrosolver. This may
lead to a more severe departure of the fast variables from the slow manifold
over the macrosteps in comparison to nonseamless methods.

In first order PI methods the micro- and macrosolver are applied sequentially,
so the error accrued by the micro- and macrosolver can be analysed separately,
as for example in [11, 18]. There are two different approaches to extend PI
to higher order solvers. First, one can still apply the micro- and macrosolver
sequentially, as in [19, 12, 5, 20]. The analysis in [12, 20] shows that such
schemes can be accurate to second order in the size of the macrosolver.
Alternatively, one can apply the microsolver multiple times during each time
step of the macrosolver, as in [11, 4, 21]. The numerical schemes that we will
consider take this approach. The analysis of such methods is complicated
by the requirement that the errors accrued by the micro- and macrosolvers,
which are intertwined due to the nonlinear nature of the dynamics, have
to be estimated simultaneously. In [11], an error bound is proposed for a
seamless HMM scheme of arbitrary order, albeit without proof. In [4, 5, 20],
second order PI schemes are proposed and analysed. In [21], error bounds for
the slow variables and stability conditions are derived for an arbitrary order
Runge-Kutta macrosolver applied to a kinetic equation with linear relaxation.

In this paper we present a higher order seamless multiscale method as consid-
ered in [11, 4], for a system of nonlinear stiff ordinary differential equations.
We propose a slight modification of this method which, involving an additional
application of the microsolver, constructs slow vector fields pointing towards the
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slow manifold. Both schemes reduce to Runge-Kutta methods if the microsolver
is switched off. We establish rigorous convergence results for the slow variables
of these methods. We find that both methods incur error terms propotional to
the order of the macrosolver, the distance of the fast variables from the slow
manifold, and an additional term due to the microsolver, independent of the
order of the microsolver. This result confirms for the two methods we consider
the error bound suggested in [11]. Furthermore, we find that the error due
to the microsolver is smaller in our proposed method when both methods are
employed at the same computational cost.
A known problem in seamless methods is that the macrosolver may lead
to a departure of the fast variables from the slow manifold. To combat
this divergence of the fast variables, several methods have been introduced
[22, 23, 24, 25]; analytical bounds on the departure of the fast variables from
the slow manifold over a macrostep have received relatively little attention
(with the notable exception of [12]). Estimates of the maximal deviation of
the fast variables from the slow manifold are particularly important when
bifurcations occur or when the dynamics transits to different solution branches
(e.g. [19, 1, 7, 26]); if the departure from the slow manifold is too large, the
transitions may be premature.
We establish bounds on the departure of the fast variables from the slow
manifold over the macrosolver. The bounds show that the numerically induced
departure of the fast variables from the slow manifold scales one order better
in the macrostep size in our modified version of PI. Furthermore, these bounds
allow us to derive stability conditions for both methods under which the
departure of the fast variables from the slow manifold remains finite over the
macrosteps.

The paper is organized as follows. In Section 2 we discuss the class of dynam-
ical systems studied, and briefly summarize in Section 3 classic Runge-Kutta
methods for these systems. We then present two multiscale methods which en-
able the solution of these systems with macro length time steps in Section 4.
In Section 5, the main part of this work, we derive rigorous error bounds for
those numerical multiscale methods. In Section 6 we present results from nu-
merical simulations corroborating our analytical findings. We conclude with a
discussion in Section 7.

2. Model

We consider deterministic multiscale systems of the form

żε=F(zε, ε) , (2.1)

with zε∈Rn+m and time scale separation parameter 0<ε�1. We assume there
is a (possibly unknown) decomposition zε= (xε,yε) into fast variables xε∈Rm
and slow variables yε∈Rn which evolve according to

ẏε=g(xε,yε) , (2.2)



John Maclean and Georg A. Gottwald 4

ẋε=
1

ε
f(xε,yε) . (2.3)

We consider here the particular fast vector fields of the form

f(xε,yε) =
Λ

ε
(−xε+h0(yε)) . (2.4)

We assume there is a coordinate system such that the matrix Λ∈Rm×m is
diagonal with diagonal entries λii>0. We further allow for a scaling of time
such that min(λii) = 1 and define max(λii) =λ. We assume that there exists
a slow manifold x=hε(y) =h0(y)+O(ε), towards which initial conditions are
attracted exponentially fast. On the slow manifold, the dynamics slows down
and is approximately determined by

Ẏ =G(Y ) , (2.5)

with Y =yε+O(ε) and reduced slow vectorfield

G(y) =g(hε(y),y) . (2.6)

3. Runge-Kutta Solvers

We denote by zε(t
n) the solution of (2.1) evaluated at the discrete time tn=

n∆t, and by z̄n the numerical approximation of zε(t
n) given by a Runge-Kutta

solver of order P. Runge-Kutta solvers form approximations to the dynamics
in terms of increments. For simplicity, we restrict our analysis to Runge-Kutta
methods in which increments are given recursively by

k̄j(z̄
n) = ∆tF(z̄n+aj k̄j−1,ε) , (3.1)

for j= 1,2,. ..,P . The values of the nodes aj depend on the order P (see for
instance [27]), and satisfy 0≤aj≤1, with a1 = 0 so that the first increment is
defined explicitly. Each increment k̄j evaluates the vector field F of (2.1) at the
intermediate time tn+aj∆t. The increments are averaged to define z̄n+1, with

z̄n+1 = z̄n+

P∑
j=1

bj k̄j(z̄
n) , (3.2)

where the weights bj satisfy the condition
∑P
j=1 bj = 1, and depend on the order

P and the particular choice of nodes aj . For instance, for P = 4, the widely used
fourth-order Runge-Kutta scheme, the nodes and weights may be given by

aj =

{
0,

1

2
,

1

2
, 1

}
, (3.3)

bj =

{
1

6
,

1

3
,

1

3
,

1

6

}
. (3.4)
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For any P, the nodes and weights are determined such that the application of
a single Runge-Kutta step of order P to a system with initial condition z̄ε(t)
and time step ∆t produces an approximation to z̄ε(t+∆t) accurate to within
O(∆tP+1); see for instance [27]. In particular for linear systems

ẋε=−Λ

ε
xε ,

for which

djxε
dtj

=

(
−Λ

ε

)j
,

a single Runge-Kutta step of P -th order can be written as

xn+1 =ρ

(
−Λ∆t

ε

)
xn ,

where the linear amplification factor ρ is given by the Taylor polynomial to
order P of an exponential function

ρ(η) =

P∑
j=0

(η)j

j!
. (3.5)

A straightforward implementation of Runge-Kutta methods to simulate stiff
dynamical systems such as (2.2)–(2.4) would be computationally too costly, as
the time step is restricted to ∆t≤O(ε) to ensure numerical stability.

In the next section we present two numerical multiscale schemes which are de-
signed to overcome the problem of stiffness presented above. These schemes
employ a microsolver to relax the fast variables towards the slow manifold.
Utilising the slowness of the dynamics on the slow manifold allows for the ap-
plication of Runge-Kutta methods with large macro time steps ∆t�ε.

4. Numerical Multiscale Methods

We consider two seamless projective integration methods. The first is a general
order formulation of PI as proposed in [11, 4, 12]. We call this scheme PI1.
The second is a modification of PI1, which employs information from the mi-
crosolver to define increments which point in the direction of the slow manifold,
at the cost of one additional application of the microsolver1. We call this
method PI2. The PI1 and PI2 schemes differ in the definition of the increments.

1We ensure that the overall cost of PI1 and PI2 is the same when they are compared
numerically by adjusting the total number of microsteps in each method (see Section 6).
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Denote by zn the numerical approximation given by the multiscale scheme to
zε(t

n); using zn as the initial condition, both methods employ a microsolver
with small microstep δt, and then evaluate the vectorfield over a large macrostep
∆t�ε. Iterating these steps enables one to construct increments which cover
a macro time scale. The macrosolver then combines these increments in a
weighted sum in Runge-Kutta fashion.
We denote by ϕm,δt the flow map for the microsolver run for m microsteps with
time step δt and assume that it describes an explicit numerical method of order
p. We do not specify which particular numerical method is chosen; as we will
see in Proposition 5.6, increasing the order of the microsolver does not improve
the predicted overall error scaling.
In the following we detail PI1 and PI2 and highlight their differences. The
procedures are illustrated in Figure 1 for PI1 and in Figure 2 for PI2.

4.1. Projective Integration Scheme PI1

We describe here a general order formulation of projective integration along
the lines of [11, 4, 12, 18]. We remark that this formulation is an instance
where PI and HMM are essentially the same (see [11, 16]). The scheme PI1 is
a modified Runge-Kutta scheme in which the microsolver is employed to relax
the fast variables close to the slow manifold before each increment is estimated.

We denote by zn,jm the approximation of the fast and slow variables at the m-
th microstep of the j-th increment at time step n, and denote by Mj the integer
number of microsteps taken before the j-th increment is estimated. We denote
discrete times associated with microsolvers by subscripts and those associated
with macrosolvers by superscripts.
The increments cover a time step of ∆t and are given by evaluating F after an
application of the microsolver, with

k̂j(z
n) = ∆tF(zn,jMj

, ε) , (4.1)

for j= 1,2,. ..,P , where we define zn,jm for j= 1,2,. ..,P , m= 1,2,. ..,Mj , as the
output of the microsolver

zn,jm =ϕm,δt
(
zn,j0

)
, (4.2)

with initial condition

zn,j0 =

{
zn for j= 1

zn,1M1
+aj k̂j−1(zn) for j >1

. (4.3)

The nodes aj are those used in the increments of a Runge-Kutta solver of order
P; i.e for P = 4, aj may be given by (3.3). For more general Runge-Kutta solvers
for PI methods, see [21]. Construction of the microsteps zn,jm is illustrated in

Figures 1a and 1c, and construction of the increments k̂j in Figures 1b and 1d.
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The macrosolver is then given by the weighted sum

zn+1 =zn,1M1
+

P∑
j=1

bj k̂j(z
n) , (4.4)

where the weights bj are appropriate to a Runge-Kutta solver of order P; i.e for
P = 4, bj may be given by (3.4). The macrosolver is illustrated in Figure 1e.
Note that for Mj = 0 for all j, i.e. without the microsolver, the scheme reduces
to a standard Runge-Kutta solver of order P applied to the system (2.1). It is
not true that PI schemes in general reduce to a numerical discretisation of the
underlying multi-scale dynamical system if the microsolver is switched off (see
for example [20]).
For the analysis of the PI1 scheme, it is helpful to explicitly identify the slow and
fast variables. We therefore decompose the PI1 variables zn into fast and slow
components (xn,yn), and zn,jMj

into the fast and slow components (xn,jMj
,yn,jMj

).

Furthermore, we split the PI1 increments k̂j into fast components k̂x,j and slow

components k̂y,j , with

k̂y,j(x
n,yn) = ∆t g

(
xn,jMj

,yn,jMj

)
, (4.5)

k̂x,j(x
n,yn) = ∆t f

(
xn,jMj

,yn,jMj
,ε
)
. (4.6)

The macrosolver is then written as

yn+1 =yn,1M1
+

P∑
j=1

bj k̂y,j(x
n,yn) ,

xn+1 =xn,1M1
+

P∑
j=1

bj k̂x,j(x
n,yn) . (4.7)

4.2. Projective Integration Scheme PI2

We present here a modification of the PI1 scheme in which the increments
are given by differences between endpoints of the microsolver. We again denote
by zn,jm the approximation of the fast and slow variables at the m-th microstep
of the j-th increment. The PI1 increments are given by (4.1), which we recall
here as

k̂j(z
n) = ∆tF(zn,jMj

, ε) , (4.8)

for j= 1,2,. ..,P , where zn,jm is now defined for j= 1,2,. ..,P +1, m= 1,2,. ..,Mj ,
as the output of the microsolver

zn,jm =ϕm,δt
(
zn,j0

)
, (4.9)
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with initial condition

zn,j0 =

{
zn for j= 1

zn,1M1
+aj k̂j−1(zn) for j >1

. (4.10)

Construction of the microsteps zn,jm is illustrated in Figures 2a, 2c and 2e. The
PI2 increments are constructed by approximating the vector field F according
to F(znj ,Mj )≈ (zn,j+1

Mj+1
−zn,1M1

)/(aj+1∆t), leading to

kj(z
n) =

1

aj+1

(
zn,j+1
Mj+1

−zn,1M1

)
, (4.11)

for j= 1,2,. ..,P . The nodes aj with j= 1,2,. ..,P are again those used in the
increments of a Runge-Kutta solver of order P, and we set aP+1 = 1. The con-
struction of the PI2 increments kj is illustrated in Figures 2c and 2e.
Each PI2 increment covers a time step of ∆t+Mj+1δt/aj+1. We fix the total
number of microsteps Mj for j >1 with

Mj =ajM , (4.12)

for j= 1,2,. ..,P +1 and for some M satisfying ajM ∈N, so that each increment
covers a uniform time step of ∆t+Mδt=: t∆. Note that (4.12) allocates more
microsteps after larger increments and less after shorter increments.
The macrosolver is now constructed as a weighted sum over the relaxed incre-
ments kj rather than over k̂j , with

zn+1 =zn,1M1
+

P∑
j=1

bjkj(z
n) , (4.13)

where the weights bj again correspond to a Runge-Kutta solver of order P. Note
that tn=n(t∆ +M1δt) for PI2. The macrosolver is illustrated in Figure 2f.
Again for M1 =M = 0, i.e. without the microsolver, the PI2 scheme reduces to
a standard Runge-Kutta method of order P.
As with the PI1 scheme, it is helpful to explicitly identify the slow and fast
variables in the solver. We therefore decompose the PI2 variables zn into
fast and slow components (xn,yn), and zn,jMj

into the fast and slow components

(xn,jMj
,yn,jMj

), and we split the PI2 increments kj into fast components kx,j and
slow components ky,j , with

ky,j(x
n,yn) =

1

aj+1

(
yn,j+1
Mj+1

−yn,1M1

)
, (4.14)

kx,j(x
n,yn) =

1

aj+1

(
xn,j+1
Mj+1

−xn,1M1

)
, (4.15)

depending via (4.10) on the PI1 increments k̂j . For completeness we recall these
as

k̂y,j(x
n,yn) = ∆t g

(
xn,jMj

,yn,jMj

)
, (4.16)
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k̂x,j(x
n,yn) = ∆t f

(
xn,jMj

,yn,jMj
,ε
)
. (4.17)

The macrosolver is then given by

yn+1 =yn,1M1
+

P∑
j=1

bjky,j(x
n,yn)

xn+1 =xn,1M1
+

P∑
j=1

bjkx,j(x
n,yn) . (4.18)

For ease of exposition we write the slow dynamics as

yn+1 =yn+ g̃(xn,yn) ,

where the vector field of the slow variables in the PI2 macrosolver, g̃, is given
by

g̃(xn,yn) =yn,1M1
−yn+

P∑
j=1

bjky,j(x
n,yn) . (4.19)

Comparing Figures 1 and 2, in the PI2 method the increments point in the
approximate direction of the slow manifold, so that the macrostep initialises the
fast variables close to the slow manifold after a macrostep. By comparison, the
PI1 increments can depart from the slow manifold with larger scale separations
or for initial conditions off the slow manifold.

5. Error analysis for Projective Integration

We provide rigorous error bounds for the slow variables of PI in the
formulations PI1 (4.1)–(4.4) and PI2 (4.9)–(4.13), following the general line of
proof used in [11]. Therein the result for PI1 was stated, albeit without explicit
proof. Furthermore, we establish bounds on the departure of the fast variables
from the slow manifold over the macrosolver, yielding stability conditions for
the fast variables.

Throughout this work we assume the following conditions on the growth and
smoothness of solutions of our system and on the numerical discretization
parameters of PI.

Assumptions

A1: The zeroth order approximation of the slow manifold h0(y) is Lipschitz
continuous; that is there exists a constant Lh such that

|h0(y1)−h0(y2)|≤Lh|y1−y2| .
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A2: The vectorfield g(x,y) is Lipschitz continuous; that is there exists a con-
stant Lg such that

|g(x1,y1)−g(x2,y2)|≤Lg(|x1−x2|+ |y1−y2|) .

A3: The second order derivatives of h0 are all bounded; that is there exists a
constant Lh′ such that

sup
∣∣∣ ∑
|α|=2

∂αh0(y)
∣∣∣≤Lh′ ,

where we used multi-index notation.

A4: The vectorfield g(x,y) is bounded for all x,y; that is there exists a con-
stant Cg such that

Cg = sup|g(x,y)| .

A5: The reduced slow dynamics Y (t) is of class Cmax(P,p); that is there exist
constants C∗P and C∗p such that

C∗P = sup

∣∣∣∣dPY (t)

dtP

∣∣∣∣ ,
C∗p = sup

∣∣∣∣dpY (t)

dtp

∣∣∣∣ ,
and in particular there exists a constant C∗2 satisfying

C∗2 = sup|Ÿ (t)| .

A6: The total time ∆t of the macrostep is sufficiently short so that, employing
the practical constraint Mδt≤∆t,

LGMδt≤LG∆t<
1

2
.

Remark 5.1. Assumptions (A1)–(A2) imply that the reduced slow dynamics
(2.5) is also Lipschitz continuous and there exists a constant LG≤Lg(1+Lh)
such that

|G(Y1)−G(Y2)|≤LG|Y1−Y2| .

Assumption (A4) implies that the reduced slow dynamics is also bounded and
there exists a constant CG≤Cg such that

CG= sup|G(Y )| .
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The global Lipschitz conditions can be relaxed to local Lipschitz conditions by
the usual means.

We will establish bounds for the error En between the PI1 and PI2 estimate yn

and the solution of the full system yε(t
n),

En= |yε(tn)−yn| .

Theorem 5.2 (Convergence). Consider schemes PI1 and PI2 run with a
Runge-Kutta method of order P for the macrosolver and an explicit scheme
of order p for the microsolver. Given assumptions (A1)–(A6), there exists a
constant C such that on a fixed time interval T , for each n such that nt∆≤T ,
the error between the PI1 and PI2 estimates and the exact solution of the full
multiscale system (2.1) are bounded by

En≤C
(
tP∆ +Mδt+ε+

(
ε

t∆
+ρaM

(
−δt
ε

))
|dnmax|

)
.

Here a= minj>1aj, ρ is the linear amplification factor (3.5) for the microsolver
of order p measuring the attraction of the fast variables to the slow manifold
over a microstep, and |dnmax| := max 0≤i<n ,

1≤k≤P+1
|xi,k0 −h0(yi,k0 )| is the maximal de-

viation of the fast variables from the approximate slow manifold accrued over
the integration time.

It is worthwhile to briefly discuss the bound on En. The term proportional
to tP∆ reflects the convergence of the underlying Runge-Kutta numerical scheme
of order P in the macrosolver. The term proportional to Mδt is incurred by the
drift of the slow variables over the microsteps before estimating the increments
(regardless of the order p of the microsolver). The terms proportional to the
time scale parameter ε represent the error made by the reduction as well as
an additional error incurred during the drift of the slow variable over the
microsteps. The term proportional to (ε/t∆ +ρaM (−δt/ε))|dnmax| measures
the mismatch between the slow vector field g(x,y) after an application of the
microsolver and the reduced vector field G(y).

We also provide bounds on the deviation |dn| of the fast variables xn from the
slow manifold h0(yn) for PI1 and PI2,

|dn|= |xn−h0(yn)| .

Theorem 5.3 (Stability of the fast variables). Consider schemes PI1 and
PI2 run with a Runge-Kutta method of order P for the macrosolver and a for-
ward Euler scheme for the microsolver. Given assumptions (A1), (A3) and
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(A4), the fast variables do not diverge over the macrosolver, so that the largest
deviation of the fast variables from the slow manifold |dnmax| is finite, if

λ∆t

ε

(
1− δt

ε

)aM
<1 .

Then the distance of the fast variables from the slow manifold after the n-th
macrostep satisfies for the PI1 scheme the recurrence relation

|dn+1|≤
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+LhCg(1+λ)∆t ,

and for the PI2 scheme

|dn+1|≤
(
1− δt

ε

)aM
a

P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+2Lh′C

2
g t

2
∆ .

Remark 5.4. The stability condition for the fast variables of the PI1 and PI2
methods is identical to the corresponding stability condition for an Euler macro-
solver given by Assumption 8 in [18] (see also [21]).

We note that Theorem 5.3 can be formulated for a microsolver of order p>1
but, as we shall see, optimal convergence results are given by a forward Euler
microsolver.

We briefly discuss the stability condition and the bounds for |dn+1| estab-

lished above. The stability condition can be understood as follows: (1−δt/ε)aM
denotes the exponential contraction of the fast variables towards the slow
manifold during the application of the microsolver; if this contraction rate does
not bring the fast variables within a neighbourhood of ε/λ of the slow manifold,
the fast variables will not have sufficiently relaxed and their dynamics remains
stiff, possibly causing numerical instability over the subsequent integration
steps.
The bounds for the deviation of the fast variables from the slow manifold
are different for PI1 and PI2. In particular, Theorem 5.3 suggests that for
a given macrostep size the fast variables deviate less from the slow mani-
fold in our modified version PI2. This will be confirmed numerically in Section 6.

In the next section we prove Theorems 5.2 and 5.3. We formulate the proofs for
PI2 and point out where and how they will differ for PI1.

5.1. Error Analysis

We split the error En between the PI approximation of the slow variables and
their true value into two parts. Denote by Y (tn) the time-continuous solution
of the reduced ordinary differential equation (2.5) evaluated at time tn, then

En= |yε(tn)−yn|
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≤|yε(tn)−Y (tn)|+ |yn−Y (tn)| ,

where the first term describes the error between the exact solutions of the full
system (2.2)-(2.4) and the reduced slow system (2.5), which we label reduction
error , with

Enr =yε(t
n)−Y (tn) , (5.1)

and the second term the error between PI and the exact solution of the reduced
slow system (2.5), which we label discretization error , with

End =yn−Y (tn) . (5.2)

We will bound the two terms separately in the following.

5.2. Reduction error

Setting the initial conditions close to the slow manifold with yε(0) =Y (0)+
c0,y ε and xε(0) =hε(yε(0))+c0,x, we formulate the following theorem for the
reduction error Enr .

Theorem 5.5. Given assumptions (A1)–(A3), there exists a constant C1 such
that on a fixed time interval T , for each tn≤T , the difference between the exact
solutions of the reduced and the full system is bounded by

|Enr |≤C1ε ,

with
C1 = max(|yε(0)−Y (0)|,Lg|dε(0)|))eLg(1+Lh)tn ,

where dε=xε−hε(yε) measures the distance of the fast variables from the slow
manifold.

The proof is standard and is omitted here. The interested reader is referred to,
for example, [28, 18].

5.3. Discretization error

We bound the discretization error End =yn−Y (tn) in stages. We first give
a proof for the convergence of a PI approximation of the reduced dynamics
to the true reduced dynamics in Proposition 5.6. We then compare the PI
approximations of the reduced and the full multi-scale dynamics, and combine
the two results to bound End .

To achieve the first bound we introduce the auxiliary vector field G̃, which
describes the PI2 method applied to the reduced slow system (2.5). We first
show that G̃(Y (tn)) is close to a standard Runge-Kutta solver applied to Y (tn+
M1δt); then we bound the difference between the auxiliary vectorfield G̃(yn) and
the PI2 vectorfield for the slow variable g̃(xn,yn).
Denote by φm,δt the flow map for the microsolver of order p applied to the
reduced system (2.5) for m microsteps with time step δt. Given initial condition
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Y n at t= tn, we construct G̃ analogously to the construction of g̃ used in PI2. We
define Y n,jm for j= 1,2,. ..,P +1, m= 1,2,. ..,Mj as the output of the microsolver

Y n,jm =φm,δt
(
Y n,j0

)
, (5.3)

analogous to (4.9), with initial condition

Y n,j0 =

{
Y n for j= 1

Y n,1M1
+aj∆tG(Y n,j−1

Mj−1
) for j >1

, (5.4)

analogous to (4.10) and (4.8). The increments are constructed by

Kj(Y
n) =

1

aj+1

(
Y n,j+1
Mj+1

−Y n,1M1

)
, (5.5)

analogous to (4.11). Combining (5.3)–(5.5), we form the auxiliary vectorfield

G̃(Y n) =Y n,1M1
−Y n+

P∑
j=1

bjKj(Y
n) , (5.6)

analogous to the PI vectorfield (4.19) of the macrosolver.

In the following Proposition we demonstrate that G̃ evaluated at Y (tn) incurs an
error of order O(tP+1

∆ ) over one macrostep, like standard Runge-Kutta methods,
with an additional error term incurred by the applications of the microsolver.

Proposition 5.6. Given assumptions (A1), (A2), (A4) and (A5), G̃(Y (tn))
provides a numerical estimate of the reduced slow vectorfield with

Y (tn+1) =Y (tn)+G̃(Y (tn))+O(tP+1
∆ ,t∆Mδt) ,

where the error term O(tP+1
∆ ,t∆Mδt) is bounded by C∗P t

P+1
∆ +C∗2 t∆Mδt.

Proof. The increments K̄j of a Runge-Kutta solver of order P applied to the
reduced system (2.5), initialised at Y with time step t∆, are given by

K̄j(Y ) = t∆G(Y +ajK̄j−1(Y )) . (5.7)

For a Runge-Kutta solver of order P initialised at Y (tn+M1δt) we have

Y (tn+1) =Y (tn+M1δt)+

P∑
j=1

bjK̄j(Y (tn+M1δt))+O
(
tP+1
∆

)
, (5.8)

where the O(tP+1
∆ ) term is bounded by C∗P t

P+1
∆ [27]. Similarly, a microsolver φ

of order p satisfies ∣∣∣Y (tn+M1δt)−Y n,1M1

∣∣∣≤C∗pM1δt
p+1 . (5.9)
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The Runge-Kutta solver (5.8) is rewritten as

Y (tn+1) =Y n,1M1
+

P∑
j=1

bjK̄j(Y
n,1
M1

) (5.10)

+

P∑
j=1

bj

(
K̄j(Y (tn+M1δt))−K̄j(Y

n,1
M1

)
)

+O
(
tP+1
∆ ,M1δt

p+1
)
.

Employing assumptions (A1)–(A2) on the Lipschitz continuity of the reduced
dynamics, (5.9) and the definition (5.7) of the Runge-Kutta increments K̄ we
bound∣∣∣K̄j(Y (tn+M1δt))−K̄j(Y

n,1
M1

)
∣∣∣≤LGt∆ ∣∣∣Y (tn+M1δt)−Y n,1M1

∣∣∣
+LGt∆aj

∣∣∣K̄j−1(Y (tn+M1δt))−K̄j−1(Y n,1M1
)
∣∣∣

≤LGt∆C∗pM1δt
p+1

+LGt∆aj

∣∣∣K̄j−1(Y (tn+M1δt))−K̄j−1(Y n,1M1
)
∣∣∣ .

Iterating this relationship with a1 = 0 yields∣∣∣K̄j(Y (tn+M1δt))−K̄j(Y
n,1
M1

)
∣∣∣≤LGt∆C∗pM1δt

p+1 +O(t2∆M1δt
p+1) .

Upon substitution into (5.10) we obtain

Y (tn+1) =Y n,1M1
+

P∑
j=1

bjK̄j(Y
n,1
M1

)+O
(
tP+1
∆ ,M1δt

p+1
)
, (5.11)

which describes a Runge-Kutta method of order P, initialised at Y n,1M1
. The

auxiliary vectorfield G̃ given by (5.6) with Y n=Y (tn) is now constructed from
(5.11). We write

Y (tn+1) =Y n,1M1
+

P∑
j=1

bj

(
Kj (Y (tn))+K̄j(Y

n,1
M1

)−Kj(Y (tn))
)

+O
(
tP+1
∆ ,M1δt

p+1
)

=Y (tn)+G̃(Y (tn))+

P∑
j=1

bj

(
K̄j(Y

n,1
M1

)−Kj(Y (tn))
)

+O
(
tP+1
∆ ,M1δt

p+1
)
,

(5.12)

where the increments Kj are defined in (5.5).

We now bound |K̄j(Y
n,1
M1

)−Kj(Y (tn))| in (5.12). Rearranging the definition of
Kj , (5.5), we obtain

Y n,1M1
+aj+1Kj(Y (tn)) =Y n,j+1

Mj+1
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=φMj+1,δt
(
Y n,j+1

0

)
. (5.13)

Similarly we use the definition of K̄j(
n,1
M1

), (5.7), to obtain

Y n,1M1
+aj+1K̄j(Y

n,1
M1

) =Y n,1M1
+aj+1t∆G

(
Y n,1M1

+ajK̄j−1

)
=Y n,1M1

+aj+1∆tG(Y n,1M1
+ajKj−1)

+aj+1∆t
(
G
(
Y n,1M1

+ajK̄j−1

)
−G(Y n,1M1

+ajKj−1)
)

+aj+1MδtG
(
Y n,1M1

+ajK̄j−1

)
=Y n,j+1

0 +aj+1MδtG(Y n,j+1
0 ) (5.14)

+aj+1∆t
(
G
(
Y n,1M1

+ajK̄j−1

)
−G(Y n,1M1

+ajKj−1)
)

+aj+1Mδt
(
G
(
Y n,1M1

+ajK̄j−1

)
−G(Y n,j+1

0 )
)
,

where we have suppressed the dependencies of K̄j and Kj on the right-hand
side and used t∆ = ∆t+Mδt. Subtracting (5.13) from (5.14), applying absolute
values and dividing by aj+1 yields the bound∣∣∣K̄j(Y

n,1
M1

)−Kj(Y (tn))
∣∣∣≤ 1

aj+1

∣∣∣Y n,j+1
0 +aj+1MδtG(Y n,j+1

0 )−φMj+1,δt
(
Y n,j+1

0

)∣∣∣
(5.15)

+∆t
∣∣∣G(Y n,1M1

+ajK̄j−1

)
−G(Y n,1M1

+ajKj−1)
∣∣∣

+Mδt
∣∣∣G(Y n,1M1

+ajK̄j−1

)
−G(Y n,j+1

0 )
∣∣∣ .

We now bound the three lines of (5.15) separately. In the first line, we inter-
pret Y n,j+1

0 +aj+1MδtG(Y n,j+1
0 ) as a single Euler step with time step aj+1Mδt

initialised at Y n,j+1
0 . The remaining term of the first line, φMj+1,δt

(
Y n,j+1

0

)
,

describes a microsolver of order p run for Mj+1 =aj+1M steps, also initialised

at Y n,j+1
0 . Therefore∣∣∣Y n,j+1

0 +aj+1MδtG(Y n,j+1
0 )−φMj+1,δt

(
Y n,j+1

0

)∣∣∣≤O(aj+1Mδtp+1,(aj+1Mδt)2) .

(5.16)

The second line in (5.15), employing Assumptions (A1)–(A2) on the Lipschitz
continuity of the reduced dynamics, is bounded by

∆t
∣∣∣G(Y n,1M1

+ajK̄j−1

)
−G(Y n,1M1

+ajKj−1)
∣∣∣≤aj∆tLG ∣∣K̄j−1−Kj−1

∣∣ . (5.17)

Upon using Assumption (A4) on the boundedness of the reduced dynamics and
Assumptions (A1)–(A2), we bound the term in absolute values in the third line
of (5.15) by∣∣∣G(Y n,1M1

+ajK̄j−1

)
−G(Y n,j+1

0 )
∣∣∣≤LG ∣∣∣Y n,1M1

+ajK̄j−1−Y n,j+1
0

∣∣∣
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=LG
∣∣ajt∆G(Y n,1M1

+aj−1K̄j−2

)
−aj+1∆tG

(
Y n,jMj

)∣∣
≤2C∗2 t∆ , (5.18)

where we employed the bound on the nodes aj≤1, and Assumption (A5) on

the smoothness of the reduced dynamics with C∗2 = sup|Ÿ |= sup|DG(Y )G(Y )|=
LGCG.
Substituting (5.16)–(5.18) into (5.15) yields the bound∣∣∣K̄j(Y

n,1
M1

)−Kj(Y (tn))
∣∣∣≤aj∆tLG ∣∣K̄j−1−Kj−1

∣∣+2C∗2 t∆Mδt (5.19)

+O(Mδtp+1,aj+1(Mδt)2)) .

Substituting j= 1, noting that a1 = 0 and neglecting higher order terms, we have∣∣∣K̄1(Y n,1M1
)−K1(Y (tn))

∣∣∣≤2C∗2 t∆Mδt . (5.20)

Iteration of (5.19), seeded with (5.20) at j= 1, yields∣∣∣K̄j(Y
n,1
M1

)−Kj(Y (tn))
∣∣∣≤2C∗2 t∆Mδt .

The Proposition now follows directly by substituting into (5.12) and using the

weighting condition
∑P
j=1 bj = 1.

Remark 5.7. Proposition 5.6 can be readily extended for PI1. This Proposi-
tion employs auxiliary increments Kj designed to resemble the PI2 increments
(4.11). In order to prove this result for the PI1 method, one should instead em-
ploy auxiliary increments K̂j = ∆tG(Y n,jMj

), which resemble the PI1 increments

(4.1). Following from (5.12), one can then readily bound |K̂j−K̄j |≤2C∗2 ∆tMδt
to obtain the same bound.

Proposition 5.6 establishes that using G̃ to propagate the reduced dynamics
incurs error proportional to tP+1

∆ + t∆Mδt. In particular, these terms do not
depend on the order p of the microsolver. To simplify the calculations, we
therefore use a forward Euler method as the microsolver for the reduced system.
In particular, we consider

Y n,jm =Y n,jm−1 +δtG(Y n,jm−1) , (5.21)

for 0≤m≤Mj .

We now use Proposition 5.6 to bound the error between the PI2 approximation
of the slow variable yn in a full multiscale simulation and the reduced dynamics
Y (tn).
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Lemma 5.8. Given assumptions (A1)–(A5), the discretization error |End |=
|yn−Y (tn)| is bounded by

|End |≤
eLGt

n

LG

{
C∗P t

P
∆ +C∗2Mδt+ max

0≤i≤n−1

∣∣∣∣∣ g̃(xi,yi)−G̃(xi,yi)

t∆

∣∣∣∣∣
}
.

Proof. This result follows from [9]. Employing Proposition 5.6, we have

End =En−1
d + g̃(xn−1,yn−1)−G̃(Y (tn−1))+O(tP+1

∆ ,t∆Mδt)

=En−1
d +Ln−1

G En−1
d + g̃(xn−1,yn−1)−G̃(yn−1)+O(tP+1

∆ ,t∆Mδt) , (5.22)

where we used the mean value theorem for vector-valued functions to introduce

LnG=

∫ 1

0

DG̃
(
Y (tn)+θ(yn−Y (tn))

)
dθ , (5.23)

where DG̃ is the Jacobian matrix of G̃. Recall that the O(tP+1
∆ ,t∆Mδt) term in

(5.22) is bounded by C∗P t
P+1
∆ +C∗2 t∆Mδt; taking absolute values of (5.22) then

yields

|End |≤
(
1+
∣∣Ln−1
G

∣∣)∣∣En−1
d

∣∣+ ∣∣∣g̃(xn−1,yn−1)−G̃(yn−1)
∣∣∣+C∗P t

P+1
∆ +C∗2 t∆Mδt .

(5.24)

To bound |Ln−1
G |, we first obtain an explicit formula for G̃. Substituting (5.6),

(5.5) and the Euler microsolver (5.21) into G̃, (5.6), we obtain

G̃(Y n) =Y n,1M1
−Y n+

P∑
j=1

bj
aj+1

(
Y n,j+1
Mj+1

−Y n,1M1

)

=Y n+δt

M1−1∑
k=0

G(Y n,1k )−Y n

+

P∑
j=1

bj
aj+1

Y n,j+1
0 +δt

Mj+1−1∑
k=0

G(Y n,j+1
k )−Y n,1M1

 .

Substituting Y n,j+1
0 =Y n,1M1

+aj+1∆tG(Y n,jMj
) from (5.4), we obtain the explicit

formula

G̃(Y n) =δt

M1−1∑
k=0

G(Y n,1k )+

P∑
j=1

bj
aj+1

aj+1∆tG(Y n,jMj
)+δt

Mj+1−1∑
k=0

G(Y n,j+1
k )

 .

Substituting into (5.23) with Y n=Y (tn)+θ(yn−Y (tn)), taking absolute val-
ues and employing Assumptions (A1)–(A2) on the Lipshitz constant LG of the
reduced dynamics yields

|LnG|≤
∫ 1

0

∣∣∣DG̃(Y (tn)+θ(yn−Y (tn))
)∣∣∣ dθ
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≤
∫ 1

0

δt

M1−1∑
k=0

∣∣∣DG(Y n,1k )
∣∣∣+ P∑

j=1

bj
aj+1

aj+1∆t
∣∣∣DG(Y n,jMj

)
∣∣∣

+δt

Mj+1−1∑
k=0

∣∣∣DG(Y n,j+1
k )

∣∣∣ dθ
≤
∫ 1

0

LGM1δt+

P∑
j=1

bj
aj+1

(LGaj+1∆t+LGMj+1δt)

 dθ .

Recalling Mj =ajM for j >1, and using the weighting condition
∑P
j=1 bj = 1,

we obtain the bound

|LnG|≤LG (t∆ +M1δt) .

We substitute this bound into (5.24), with

|End |≤(1+LG(t∆ +M1δt))|En−1
d |+

∣∣∣g̃(xn−1,yn−1)−G̃(yn−1)
∣∣∣

+C∗P t
P+1
∆ +C∗2 t∆Mδt .

Iterating the recursive relationship with E0
d = 0 yields

|End |≤
n−1∑
m=0

(1+LG(t∆ +M1δt))
m

(
C∗P t

P+1
∆ +C∗2 t∆Mδt

+ max
0≤i≤n−1

|g̃(xi,yi)−G̃(yi)|
t∆

)

≤e
LG t

n

LG

(
C∗P t

P
∆ +C∗2Mδt+ max

0≤i≤n−1

|g̃(xi,yi)−G̃(yi)|
t∆

)
,

where tn=n(t∆ +M1δt).

Lemma 5.8 establishes that the error between the PI2 approximation of the
slow variables of the full multiscale system (2.1) and the true reduced dynamics
(2.5) contains a term proportional to the order of the macrosolver tP∆, a term
proportional to the length of the microsolver Mδt and an additional term pro-
portional to max0≤i≤n−1 |g̃(xn−1,yn−1)−G̃(yn−1)|. The latter term measures
the difference between the PI2 vector field g̃ of the slow variables, and the aux-
iliary vector field G̃ initialised at the same point yn−1. In order to bound this
term we define the deviation of the PI approximation of the fast variables from
the approximate slow manifold over the increments,

dn,jm =xn,jm −h0(yn,jm ) , (5.25)

for j= 1,2,. ..,P +1, m= 1,2,. ..,Mj . The following Lemma bounds |dn,jm |.
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Lemma 5.9. Given Assumptions (A1) and (A4), the error between the fast
variables and the approximate slow manifold during the application of a micro-
solver of order p is bounded for all 0≤m≤Mj by

|dn,jm |≤ρm
(
−δt
ε

)
|dn,j0 |+LhCgε ,

where

ρ

(
−δt
ε

)
=

p∑
k=0

(
− δtε

)k
k!

.

The first term in the Lemma is a manifestation of the attraction of the fast vari-
ables towards the slow manifold along their stable eigendirection. The second
term proportional to ε describes, as we will see below, the cumulative drift of
the slow variables y during the microsteps causing a departure from the slow
manifold for nonconstant h0(y).
To ensure convergence of the fast variables to the approximate slow manifold
we require

0≤ρ
(
−δt
ε

)
<1 .

Proof. Denote the increments of the microsolver as k̄x,i and k̄y,i for the fast
and slow variables respectively, with nodes a′i and weights b′i. Employing the
fast vector field (2.4) we write the fast increments k̄x,i analogously to (3.1) as

k̄x,i(x
n,j
m ,yn,jm ) =− Λδt

ε

(
xn,jm +a′ik̄x,i−1

)
+

Λδt

ε
h0(yn,jm +a′ik̄y,i−1)

=− Λδt

ε

(
xn,jm −h0(yn,jm )+a′ik̄x,i−1

)
+O

(
δt2

ε

)
=− Λδt

ε

(
dn,jm +a′ik̄x,i−1

)
+O

(
δt2

ε

)
, (5.26)

where we have used that k̄y,i=O(δt). Introducing the increment associated
with a linear system k̄lin,i(d

n,j
m ) =−Λδt

(
dn,jm +a′ik̄lin,i−1

)
/ε, we write

k̄x,i(x
n,j
m ,yn,jm )− k̄lin,i(d

n,j
m ) =− Λδt

ε
a′i
(
k̄x,i−1− k̄lin,i−1

)
+O

(
δt2

ε

)
=O

(
δt2

ε

)
.

The linear component k̄lin,i of the increment can be interpreted as the increment

of the microsolver applied to the linear system ḋε=−Λdε/ε with initial condition
dn,jm . Therefore, as discussed in Section 3, a microstep taken with the linear
increments k̄lin,i can be written as

dn,jm +

p∑
i=1

b′ik̄lin,i(d
n,j
m ) =ρ

(
−Λδt

ε

)
dn,jm .
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Employing (3.2) the microstep is expressed as

xn,jm+1 =xn,jm +

p∑
i=1

b′ik̄x,i(x
n,j
m ,yn,jm )

=xn,jm +

p∑
i=1

b′ik̄lin,i(d
n,j
m )+O

(
δt2

ε

)

=dn,jm +

p∑
i=1

b′ik̄lin,i(d
n,j
m )+h0(yn,jm )+O

(
δt2

ε

)
=ρ

(
−Λδt

ε

)
dn,jm +h0(yn,jm )+O

(
δt2

ε

)
.

Then∣∣∣dn,jm+1

∣∣∣=∣∣∣xn,jm+1−h0(yn,jm+1)
∣∣∣

≤
∣∣∣∣ρ(−Λδt

ε

)∣∣∣∣∣∣dn,jm ∣∣+ ∣∣∣h0(yn,jm )−h0(yn,jm+1)
∣∣∣+O(δt2

ε

)
≤
∣∣∣∣ρ(−Λδt

ε

)∣∣∣∣∣∣dn,jm ∣∣+LhCgδt+O
(
δt2

ε

)
. (5.27)

The first term in this bound represents the rate of convergence of the fast vari-
ables to the approximate slow manifold; for stability we require

∣∣ρ(−Λδt
ε

)∣∣<1.
The term LhCgδt stems from the drift in the slow variables over a microstep.
The slowest rate of convergence to the slow manifold is given by min(λii) = 1,
so we obtain ∣∣∣∣ρ(−Λδt

ε

)∣∣∣∣≤ρ(−δtε
)

=1− δt
ε

+
1

2

(
−δt
ε

)2

+ ·· ·+ 1

p!

(
−δt
ε

)p
<1 .

Iterating (5.27) then yields

∣∣dn,jm ∣∣≤ρm(−δt
ε

)∣∣dn,jm ∣∣+ LhCgδt+O
(
δt2

ε

)
1−
∣∣ρ(− δtε )∣∣

≤ρm
(
−δt
ε

)∣∣dn,jm ∣∣+LhCgε+O(δt) ,

completing the proof of the Lemma.

Remark 5.10. In the above Lemma we Taylor expand the terms in h0(yn,jm +
a′ik̄y,i−1) up to O(δt2/ε). However, higher-order terms may improve the error
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bound. For instance, one can show that for a fourth-order Runge-Kutta micro-
solver, ∣∣∣dn,jm+1

∣∣∣≤ρ(−δt
ε

)∣∣dn,jm ∣∣+ 9

24
LhCgδt .

Remark 5.11. Optimal convergence of the fast variables to the approximate
slow manifold during the application of the microsolver is given by a forward
Euler microsolver with 0<δt≤ 2ε

λ+1 , where

ρ

(
−δt
ε

)
= 1− δt

ε
,

and the convergence rate ρm (−δt/ε) is bounded above by the exponential con-
vergence exp(−mδt/ε). The full stability region for the Euler microsolver is
0<δt<2ε/λ; for further details, see [18].

From Lemma 5.9 it follows that the rate of convergence of the fast variables
to the approximate slow manifold is optimal for an Euler microsolver, and in
Lemma 5.8 we demonstrated that the dominant error terms between the PI2
approximation yn and the true reduced dynamics Y (tn) do not depend on the
order p of the microsolver. We therefore choose as the microsolver for the PI2
scheme the forward Euler method to simplify the calculations, and write

yn,jm =yn,jm−1 +δtg(xn,jm−1,y
n,j
m−1) , (5.28)

xn,jm =xn,jm−1 +δtf(xn,jm−1,y
n,j
m−1) , (5.29)

We now bound the distance of the PI approximation yn,jm of the slow variables
over the microsteps of the full system (2.1), from Y n,jm , the PI approximation of
the reduced dynamics over the microsteps.

Lemma 5.12. Assuming (A1),(A2) and (A6), the PI2 numerical estimate yn,jMj

of the slow variable after the application of the microsolver at the j-th increment
is close to the numerical estimate Y n,jMj

of the reduced slow variable which was

initialized at Y n,10 =yn, with

|yn,jMj
−Y n,jMj

|≤2Lg

(
3ε+aj∆t

(
1− δt

ε

)aM)
max

1≤k≤j

∣∣∣dn,k0

∣∣∣+2LgLhCgajt∆ε

+O
((

∆tε+∆t2(1− δt
ε

)aM
)

max
1≤k≤j

∣∣∣dn,k0

∣∣∣ ,t2∆ε,Mδtε,M1δtε

)
,

for 2≤ j≤P , where aM = minj>1Mj, and

|yn,1M1
−Y n,1M1

|≤2Lgε
∣∣∣dn,10

∣∣∣+O(M1δtε) ,

for j= 1.
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Proof. Employing the definition of the Euler microsolvers (5.28) for the PI2
scheme and (5.21) for the reduced scheme, and Assumptions (A1)–(A2) on the
Lipschitz continuity of the reduced dynamics gives∣∣∣yn,jMj

−Y n,jMj

∣∣∣≤∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣+δt
∣∣∣g(xn,jMj−1,y

n,j
Mj−1)−G(Y n,jMj−1)

∣∣∣
≤
∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣+δt
∣∣∣g(xn,jMj−1,y

n,j
Mj−1)−G(yn,jMj−1)

∣∣∣
+δt

∣∣∣G(yn,jMj−1)−G(Y n,jMj−1)
∣∣∣

≤(1+LGδt)
∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣
+δt

∣∣∣g(xn,jMj−1,y
n,j
Mj−1)−g(hε(y

n,j
Mj−1),yn,jMj−1)

∣∣∣
≤(1+LGδt)

∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣+Lgδt
∣∣∣xn,jMj−1−hε(yn,jMj−1)

∣∣∣
=(1+LGδt)

∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣+Lgδt
∣∣∣dn,jMj−1

∣∣∣
+Lgδt

∣∣∣h0(yn,jMj−1)−hε(yn,jMj−1)
∣∣∣

=(1+LGδt)
∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣+Lgδt
∣∣∣dn,jMj−1

∣∣∣+LgLεεδt+O(δtε2) ,

where we have defined h0(y)−hε(y) =Lεε+O(ε2). Employing Lemma 5.9 on
|dn,jMj−1| for a forward Euler microsolver yields the recursive bound∣∣∣yn,jMj

−Y n,jMj

∣∣∣≤(1+LGδt)
∣∣∣yn,jMj−1−Y n,jMj−1

∣∣∣
+Lgδt

(
1− δt

ε

)Mj−1 ∣∣∣dn,j0

∣∣∣+Lg(LhCg+Lε)εδt ,

which, upon iterating, gives∣∣∣yn,jMj
−Y n,jMj

∣∣∣≤(1+LGδt)
Mj

∣∣∣yn,j0 −Y n,j0

∣∣∣
+Lgδt

∣∣∣dn,j0

∣∣∣Mj−1∑
k=0

(
1− δt

ε

)k
(1+LGδt)

Mj−1−k

+Lg(LhCg+Lε)εδt

Mj−1∑
k=0

(1+LGδt)
k

=(1+LGδt)
Mj

∣∣∣yn,j0 −Y n,j0

∣∣∣
+Lgδt

∣∣∣dn,j0

∣∣∣ (1+LGδt)
Mj −

(
1− δt

ε

)Mj

LGδt+
δt
ε

+Lg(LhCg+Lε)εδt
(1+LGδt)

Mj −1

LGδt

≤eLGMjδt
∣∣∣yn,j0 −Y n,j0

∣∣∣+Lgε
∣∣∣dn,j0

∣∣∣ eLGMjδt

LGε+1
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+Lg(LhCg+Lε)εδt
eLGMjδt−1

LGδt
.

Realising that eLGMjδt−1≤2LGMjδt under Assumption (A6), we obtain∣∣∣yn,jMj
−Y n,jMj

∣∣∣≤2
∣∣∣yn,j0 −Y n,j0

∣∣∣+2Lgε
∣∣∣dn,j0

∣∣∣+O(εMjδt) . (5.30)

At j= 1 we initialize at yn,10 =Y n,10 =yn, obtaining the desired bound∣∣∣yn,1M1
−Y n,1M1

∣∣∣≤2Lgε
∣∣∣dn,10

∣∣∣+O(εM1δt) . (5.31)

For j >1, we have

yn,j0 =yn,1M1
+aj k̂y,j−1

=yn,1M1
+aj∆tg(xn,j−1

Mj−1
,yn,j−1
Mj−1

) ,

using the definitions (4.10) and (4.16), and

Y n,j0 =Y n,1M1
+aj∆tG(Y n,j−1

Mj−1
) ,

using (5.4). Substituting these into (5.30) and employing assumptions (A1)–
(A2), we obtain∣∣∣yn,jMj

−Y n,jMj

∣∣∣≤2
∣∣∣yn,1M1

−Y n,1M1

∣∣∣+2aj∆t
∣∣∣g(xn,j−1

Mj−1
,yn,j−1
Mj−1

)−G(Y n,j−1
Mj−1

)
∣∣∣

+2Lgε
∣∣∣dn,j0

∣∣∣+O(Mδtε)

≤4Lgε
∣∣∣dn,10

∣∣∣+2aj∆t
∣∣∣g(xn,j−1

Mj−1
,yn,j−1
Mj−1

)−G(yn,j−1
Mj−1

)
∣∣∣

+2aj∆t
∣∣∣G(yn,j−1

Mj−1
)−G(Y n,j−1

Mj−1
)
∣∣∣+2Lgε

∣∣∣dn,j0

∣∣∣+O(Mδtε,M1δtε)

≤4Lgε
∣∣∣dn,10

∣∣∣+2Lgaj∆t
∣∣∣dn,j−1
Mj−1

∣∣∣+2LGaj∆t
∣∣∣yn,j−1
Mj−1

−Y n,j−1
Mj−1

∣∣∣
+2Lgε

∣∣∣dn,j0

∣∣∣+O(Mδtε,M1δtε)

≤4Lgε
∣∣∣dn,10

∣∣∣+2Lgaj∆t

(
1− δt

ε

)Mj ∣∣∣dn,j−1
0

∣∣∣+2LgLhCgaj∆tε

+2LGaj∆t
∣∣∣yn,j−1
Mj−1

−Y n,j−1
Mj−1

∣∣∣+2Lgε
∣∣∣dn,j0

∣∣∣+O(Mδtε,M1δtε) ,

where we have employed (5.31) to bound
∣∣∣yn,1M1

−Y n,1M1

∣∣∣ and Lemma 5.9 to bound

|dn,j−1
Mj−1

|. Rearranging and taking the maximum over all increments in the terms

in |dn,j0 | and |dn,10 | produces

∣∣∣yn,jMj
−Y n,jMj

∣∣∣≤2Lg

(
3ε+aj∆t

(
1− δt

ε

)aM)
max

1≤k≤j

∣∣∣dn,k0

∣∣∣+2LgLhCgajt∆ε
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+2LGaj∆t
∣∣∣yn,j−1
Mj−1

−Y n,j−1
Mj−1

∣∣∣+O(Mδtε,M1δtε) .

Iterating this relation yields to lowest order

∣∣∣yn,jMj
−Y n,jMj

∣∣∣≤2Lg

(
3ε+aj∆t

(
1− δt

ε

)aM)
max

1≤k≤j

∣∣∣dn,k0

∣∣∣+2LgLhCgajt∆ε

+O
((

∆tε+∆t2(1− δt
ε

)aM
)

max
1≤k≤j

∣∣∣dn,k0

∣∣∣ ,t2∆ε,Mδtε,M1δtε

)
.

Lemma 5.12 provides bounds on the difference between solutions of the PI ap-
proximation of the slow variables in the full multiscale system and those of the
PI approximation of the reduced system during the application of the micro-
solver. We use this result to bound the difference between the vectorfield of the
PI2 method g̃ given by (4.19) and the auxiliary vectorfield G̃ given by (5.6).

Lemma 5.13. Assuming (A1)-(A6), the auxiliary vectorfield G̃ is close to the
vectorfield g̃ with

|g̃(xn,yn)−G̃(yn)|≤2Lg

(
5

a
ε+∆t

(
1− δt

ε

)aM)
max

1≤k≤P+1
|dn,k0 |+2LgLhCgt∆ε

+O(M1δtε) ,

Proof. We write

|g̃(xn,yn)−G̃(yn)|=
∣∣∣yn,1M1

−Y n,1M1
+

P∑
j=1

bj
aj+1

(
yn,j+1
Mj+1

−yn,1M1
−(Y n,j+1

Mj+1
−Y n,1M1

)
)∣∣∣

≤
(

1

a
−1

)∣∣∣yn,1M1
−Y n,1M1

∣∣∣+ P∑
j=1

bj
aj+1

∣∣∣yn,j+1
Mj+1

−Y n,j+1
Mj+1

∣∣∣ ,
where we have used that 1<1/aj<1/a for j >1. Employing Lemma 5.12 yields

|g̃(xn,yn)−G̃(yn)|≤(
1

a
−1)

(
2Lgε

∣∣∣dn,10

∣∣∣+2LgLhCgM1δtε
)

+

P∑
j=1

bj

(
2Lg

(
3

aj+1
ε+∆t

(
1− δt

ε

)aM)
max

1≤k≤j

∣∣∣dn,k0

∣∣∣
+2LgLhCgt∆ε

)

≤2Lg

(
(
4

a
−1)ε+∆t

(
1− δt

ε

)aM)
max

1≤k≤P+1
|dn,k0 |

+2LgLhCgt∆ε+2(1− 1

a
)LgLhCgM1δtε .
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Remark 5.14. In order to prove the above result for the PI1 method, one con-
structs G̃ with the increments given by vector field evaluations as discussed in
Remark 5.7. The Lemma then follows along the same lines as the proofs in
[11, 18].

We are now in the position to establish the bound on the discretization error

|End |= |yn−Y (tn)| ,

which we formulate in the following theorem.

Theorem 5.15. Given assumptions (A1)–(A6), there exists a constant C such
that on a fixed time interval T , for each n∆t≤T , the error between the solution
of the projective integration scheme PI2 and the exact solutions of the reduced
system is bounded by

|End |≤C
(
tP∆ +Mδt+

(
ε

t∆
+ e−

aMδt
ε

)
|dnmax|+ε

)
,

where |dnmax| := max 0≤i<n ,
1≤k≤P+1

|di,k0 | is the maximal deviation of the fast variables

from the approximate slow manifold over the increments and macrosteps.

Proof. Combining the bound on the discretization error obtained in Proposi-
tion 5.6,

|End |≤
eLGt

n

LG

{
C∗P t

P
∆ +C∗2Mδt+ max

0≤i≤n−1

∣∣∣∣∣ g̃(xi,yi)−G̃(xi,yi)

t∆

∣∣∣∣∣
}
,

with Lemma 5.13 we obtain

|End |≤
eLGt

n

LG

{
C∗P t

P
∆ +C∗2Mδt+2Lg

(
5

a

ε

t∆
+e−

aMδt
ε

)
|dnmax|+2LgLhCgε

}
.

Theorem 5.2 now follows from Theorems 5.5 and 5.15.

Remark 5.16. Following the comments in Remarks 5.7 and 5.14, one can
obtain the same bound for the PI1 method as obtained in Theorem 5.15 for the
PI2 method.

Besides the parameters used in the numerical scheme, i.e. the macrostep size
t∆, the number of microsteps M with microstep size δt, and the time scale
parameter ε, the error bound also involves the maximal deviation of the fast
variables from the approximate slow manifold |dnmax|.
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We now establish Theorem 5.3 by bounding the distance of the fast variables
from the slow manifold over the increments and macrosteps in the PI1 and PI2
schemes. This provides stability conditions for the fast variables in the PI1
and PI2 schemes, i.e. conditions under which |dnmax| is finite. These stability
conditions are crucial for the successful application of the seamless PI methods,
since - as we shall see - the fast variables depart from the slow manifold at rate
proportional to λ∆t/ε�1 over the increments and macrosteps.

5.4. Stability of the fast variables

We first bound the distance of the fast variables from the slow manifold over
the PI1 increments k̂, which are employed in both PI1 and PI2.

Lemma 5.17. Given assumptions (A1) and (A4), the distance of the fast vari-
ables from the approximate slow manifold after the j-th increment of the n-th
macrostep in the PI1 and PI2 methods, given by |dn,j0 |= |xn,j0 −h0(yn,j0 )|, satis-
fies

|dn,j0 |≤
(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+LhCg (1+λ)∆t

j−1∑
k=0

(
λ∆t

ε

(
1− δt

ε

)aM)k

+O
(
ε,

(
1− δt

ε

)M1

|dn|
)
,

where dn,10 =dn=xn−h0(yn), and where we define aM = minjMj for the PI1
method to preserve the notation for both methods.

The first term in this result measures the combined effect of the convergence of
the fast variables towards the slow manifold over the microsteps, proportional
to (1−δt/ε)aM , and the departure of the fast variables from the slow manifold
over the subsequent increment, proportional to λ∆t/ε.

Proof. The PI1 and PI2 methods (cf (4.3) and (4.10)), respectively satisfy

xn,j+1
0 =xn,1M1

+aj+1k̂x,j(x
n,yn)

=xn,1M1
+aj+1∆t

Λ

ε
(−xn,jMj

+h0(yn,jMj
)) .

Then ∣∣∣dn,j+1
0

∣∣∣=∣∣∣xn,j+1
0 −h0(yn,j+1

0 )
∣∣∣

=

∣∣∣∣xn,1M1
+aj+1∆t

Λ

ε
(−xn,jMj

+h0(yn,jMj
))−h0(yn,j+1

0 )

∣∣∣∣
=

∣∣∣∣dn,1M1
−aj+1∆t

Λ

ε
dn,jMj

+h0(yn,1M1
)−h0(yn,j+1

0 )

∣∣∣∣
≤λ∆t

ε

∣∣∣dn,jMj

∣∣∣+Lh

∣∣∣yn,1M1
−yn,j+1

0

∣∣∣+ ∣∣∣dn,1M1

∣∣∣ . (5.32)
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Employing Lemma 5.9 with the Euler microsolver and substituting the slow
component of (4.3) and the definition of k̂, (4.5) and (4.16) respectively, for
yn,j+1

0 we obtain

∣∣∣dn,j+1
0

∣∣∣≤λ∆t

ε

((
1− δt

ε

)Mj ∣∣∣dn,j0

∣∣∣+LhCgε

)
+LhCg∆t+

(
1− δt

ε

)M1

|dn|+LhCgε

≤λ∆t

ε

(
1− δt

ε

)aM ∣∣∣dn,j0

∣∣∣+LhCg (1+λ)∆t+

(
1− δt

ε

)M1

|dn|+LhCgε .

Iterating this recursive relation concludes the Lemma.

We now prove Theorem 5.3 in two parts. We first establish bounds on the
distance of the fast variables from the slow manifold after one macrostep of the
PI1 scheme in Lemma 5.18, and then follow with the corresponding bound for
the PI2 scheme in Lemma 5.20.

Lemma 5.18. Given assumptions (A1) and (A4), the distance of the fast vari-
ables from the approximate slow manifold after the n-th macrostep in the PI1
scheme, given by |dn+1|= |xn+1−h0(yn+1)|, satisfies the recurrence relation

|dn+1|≤
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|

+LhCg(1+λ)∆t

P−1∑
j=0

(
λ∆t

ε

(
1− δt

ε

)aM)j
+O

(
ε,

(
1− δt

ε

)M1

|dn|
)
.

In particular, the fast variables do not diverge if

λ∆t

ε

(
1− δt

ε

)aM
<1 .

When this condition is satisfied, the distance of the fast variables from the slow
manifold after a macrostep can be written to lowest order as

|dn+1|≤
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn| + LhCg(1+λ)∆t .

Proof. We substitute the macrosolver (4.7) and increments (4.6) into |dn+1|,
obtaining

|dn+1|=
∣∣xn+1−h0(yn+1)

∣∣
=
∣∣xn,1M1

− λ∆t

ε

P∑
j=1

bjd
n,j
Mj
−h0(yn+1)

∣∣
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=
∣∣dn,1M1

− λ∆t

ε

P∑
j=1

bjd
n,j
Mj

+h0(yn,1M1
)−h0(yn+1)

∣∣
≤λ∆t

ε

P∑
j=1

bj
∣∣dn,jMj

∣∣+ ∣∣h0(yn,1M1
)−h0(yn+1)

∣∣+ |dn,1M1
| .

Employing Lemma 5.9, Assumption (A1) on the Lipschitz continuity of the
approximate slow manifold and (4.3)–(4.5) to bound |h0(yn,1M1

)−h0(yn+1)| pro-
duces

|dn+1|≤λ∆t

ε

P∑
j=1

bj

((
1− δt

ε

)Mj

|dn,j0 |+LhCgε

)

+Lh

∣∣∣yn,1M1
−yn+1

∣∣∣+(1− δt
ε

)M1

|dn|+LhCgε

≤λ∆t

ε

P∑
j=1

bj

(
1− δt

ε

)aM
|dn,j0 |+LhCg(1+λ)∆t

+

(
1− δt

ε

)M1

|dn|+LhCgε .

Substituting the bound from Lemma 5.17 into |dn,j0 | yields

|dn+1|≤
P∑
j=1

bj

((
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+

(
LhCg(1+λ)∆t

+

(
1− δt

ε

)M1

|dn|+LhCgε

)
j−1∑
k=0

(
λ∆t

ε

(
1− δt

ε

)aM)k)

≤
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+

(
LhCg(1+λ)∆t

+

(
1− δt

ε

)M1

|dn|+LhCgε

)
P−1∑
j=0

(
λ∆t

ε

(
1− δt

ε

)aM)j
.

(5.33)

The upper bound on |dn| diverges as n increases unless

λ∆t

ε

(
1− δt

ε

)aM
<1 ,

completing the Lemma.

Remark 5.19. The bound presented above for PI1 is not sharp. If the duration
of the microsolver is sufficiently large with Mδt�ε, or if the fast variables are
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initialised on the slow manifold with |d0 = 0|, then the PI1 increments may be
approximately tangent to the slow manifold and higher order accuracy in ∆t
can be achieved.

We now formulate analogous results for PI2.

Lemma 5.20. Given assumptions (A1), (A3) and (A4), the distance of the fast
variables from the approximate slow manifold after the n-th macrostep in the
PI2 scheme, given by |dn+1|= |xn+1−h0(yn+1)|, satisfies the recurrence relation

|dn+1|≤
(
1− δt

ε

)aM
a

[
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|

+LhCg(1+λ)∆t

P−1∑
j=0

(
∆tλ

ε

(
1− δt

ε

)aM)j]
+2Lh′C

2
g t

2
∆

+O
(
ε,

(
1− δt

ε

)M1

|dn|
)
.

In particular, the fast variables do not diverge if(
1− δt

ε

)aM
a

(
λ∆t

ε

(
1− δt

ε

)aM)j
<1 ∀ j.

When this condition is satisfied, the distance of the fast variables from the slow
manifold after a macrostep can be written to lowest order as

|dn+1|≤
(
1− δt

ε

)aM
a

P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+2Lh′C

2
g t

2
∆ .

We remark that the first bound presented in the above Lemma for PI2 is pre-

cisely
(
1− δt

ε

)aM
/a times the bound presented for PI1 in Lemma 5.18, with

an additional term proportional to t2∆ and the curvature of the slow manifold,
measured by Lh′ .

Proof. We reformulate xn+1, employing (4.18) and (4.15) and Lemma 5.9 to
estimate

|dn+1|=
∣∣xn+1−h0(yn+1)

∣∣
=
∣∣xn,1M1

+

P∑
j=1

bj
aj+1

(
xn,j+1
Mj+1

−xn,1M1

)
−h0(yn+1)

∣∣
≤
∣∣h0(yn,1M1

)−h0(yn+1)+

P∑
j=1

bj
aj+1

(
h0(yn,j+1

Mj+1
)−h0(yn,1M1

)
)∣∣



John Maclean and Georg A. Gottwald 31

+

P∑
j=1

bj
aj+1

∣∣∣dn,j+1
Mj+1

+(aj+1−1)dn,1M1

∣∣∣ . (5.34)

The first term on the right-hand side of (5.34) can be Taylor expanded to second
order to obtain

h0(yn,1M1
)−h0(yn+1) =h0(yn,1M1

)−h0

yn,1M1
+

P∑
j=1

bjky,j


=−Dh0

(
yn,1M1

) P∑
j=1

bjky,j


−
∑
|α|=2

1

α!
∂αh0

(
yn,1M1

)( P∑
j=1

bjky,j

)α
+O(t3∆) , (5.35)

where we used multi-index notation to denote the second order derivatives of
h0. Similarly, the second term on the right-hand side of (5.34) can be estimated
by Taylor expanding the chord h0(yn,j+1

Mj+1
)−h0(yn,1M1

) to second order, employing

(4.14), with

h0(yn,j+1
Mj+1

)−h0(yn,1M1
) =h0

(
yn,1M1

+(yn,j+1
Mj+1

−yn,1M1
)
)
−h0(yn,1M1

)

=Dh0(yn,1M1
)(yn,j+1

Mj+1
−yn,1M1

)

+
∑
|α|=2

1

α!
∂αh0

(
yn,1M1

)(
yn,j+1
Mj+1

−yn,1M1

)α
+O(t3∆)

=aj+1Dh0(yn,1M1
)ky,j

+a2
j+1

∑
|α|=2

1

α!
∂αh0

(
yn,1M1

)
kαy,j+O(t3∆) . (5.36)

Substituting (5.36) and (5.35) into (5.34) yields

|dn+1|≤

∣∣∣∣∣∣
∑
|α|=2

1

α!
∂αh0

(
yn,1M1

)∣∣∣∣∣∣max
|α|=2

∣∣∣∣∣∣
P∑
j=1

bjaj+1k
α
y,j−

(
P∑
j=1

bjky,j

)α∣∣∣∣∣∣
+

P∑
j=1

bj
aj+1

∣∣∣dn,j+1
Mj+1

+(aj+1−1)dn,1M1

∣∣∣+O(t3∆)

≤2Lh′ max
|α|=2,

1≤k≤P

|ky,j(xn,yn)|α

+

P∑
j=1

bj
aj+1

(
|dn,j+1
Mj+1

|+ |dn,1M1
|
)

+O(t3∆) ,
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where we used that
∑P
j=1 bj = 1, aj≤1, and employed Assumption (A3) on the

Lipshitz continuity of the Jacobian Dh0. Employing Lemma 5.9 and recalling
that the time step covered by each PI2 increment is t∆, we obtain

|dn+1|≤2Lh′C
2
g t

2
∆ +

P∑
j=1

bj
aj+1

((
1− δt

ε

)aM(
|dn,j+1

0 |+ |dn,10 |
)

+2LhCgε

)
,

which on substituting Lemma 5.17 becomes

|dn+1|≤
(
1− δt

ε

)aM
a

[
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)aM)j
|dn|+

(
LhCg(1+λ)∆t

+

(
1− δt

ε

)M1

|dn|+LhCgε

)
P−1∑
j=0

(
∆tλ

ε

(
1− δt

ε

)aM)j]
+2Lh′C

2
g t

2
∆ +O(ε) .

The upper bound on |dn| diverges as n increases unless(
1− δt

ε

)aM
a

(
λ∆t

ε

(
1− δt

ε

)aM)j
<1 ∀ j ,

completing the Lemma.

Combining Lemmas 5.18 and 5.20 yields Theorem 5.3.

6. Numerics

We now illustrate the key results of Theorem 5.2 with a fourth-order Runge-
Kutta macrosolver, which we recall here for P = 4 including the constants ob-
tained in the proof. We employ a forward Euler microsolver with p= 1 unless
otherwise stated.
In order to compare PI1 and PI2 at the same computational cost, we choose
the number of microsteps in the PI2 method proportionally lower so that the
two methods take the same number of microsteps over one macrostep, with
Mj =M in PI1 and Mj ={M,M/2,M/2,M,M} in PI2. Recalling Theorem 5.2
for P = 4, the discretisation error |End |= |yn−Y (tn)| is bounded in the PI1 and
PI2 method by

|End |≤
eLGt

n

LG

{
C∗4 t

4
∆ +C∗2MI,IIδt+2Lg

(
9
ε

t∆
+e−

MI,IIδt

ε

)
|dnmax|+2LgLhCgε

}
,

with MI =M for PI1 and MII =M/2 for PI2, and where for P = 4, a= 1/2.
However, the distance of the fast variables from the slow manifold after a
macrostep scales differently in the two methods. Recalling Theorem 5.3,
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the distance of the fast variables from the approximate slow manifold |dn|=
|xn−h0(yn)| is bounded for stable applications of the PI1 method by

|dn+1|≤
P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)M)j
|dn|+LhCg(1+λ)∆t ,

and for stable applications of the PI2 method by

|dn+1|≤ 2

(
1− δt

ε

)M
2

P∑
j=1

bj

(
λ∆t

ε

(
1− δt

ε

)M
2

)j
|dn|+2Lh′C

2
g t

2
∆ .

We show results for the multiscale system

ẏε=−xεyε−αy2
ε (6.1)

ẋε=
−xε+sin2(yε)

ε
, (6.2)

which has stable fixed point at (0,0). At lowest order in ε, the associated slow
reduced system is given by

Ẏ =−Y sin2(Y )−αY 2 . (6.3)

For higher order approximations of the slow manifold and the associated
coordinate transformations relating y and Y the reader is referred to the useful
webtool [29] (see also [30]).
The system (6.1)-(6.2) with initial conditions yε(0)>0 is locally Lips-
chitz with Lipschitz constant Lh= 1 and Lg = max(|xε|+2α|yε|) where
the maximum is taken over the local region around the initial condi-
tions (xε(0),yε(0)) under consideration. The vectorfield of the slow dy-
namics (6.1) is locally bounded by Cg = max(|xεyε|+α|yε|2), with the
maximum taken over the same region. Note that the free parameter α
controls the constants C∗2 =αyε(0)3(2α+sin(2yε(0)))+O(sin3(yε(0))) and
C∗4 = 16α3yε(0)3 +8α4yε(0)5 +O(sin5(yε(0))).

We first investigate how the discretization error |End | scales with the macrostep
size ∆t in the PI1 and PI2 methods, when all other parameters are kept fixed
(except n, to fix the final time T). Our analytical result predicts that, so long
as |dnmax| is small and the practical assumption ε<Mδt is satisfied, results
will be divided into two regimes: for C∗P t

P
∆<C

∗
2Mδt, the bound for |End | is

dominated by the term proportional to C∗2Mδt and |End | is independant of t∆;
for C∗P t

P
∆>C

∗
2Mδt, the scaling is |End |∼ tP∆. The slight advantage of the PI2

method in this case is that distributing the same total number of microsteps
over more applications of the microsolver results in lower error due to Mδt. To
keep the term proportional to |dnmax| small in both cases, we choose parameters

so that λ∆t
ε

(
1− δt

ε

)aM
<1. The predicted regimes are clearly visible in Figure

3, where results are presented for a range of macrostep sizes ∆t for PI1 and
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PI2. We choose α= 0.2, and the scale separation parameter ε= 10−9. We use
M = 40 microsteps with microstep size δt= 0.4ε, while the number of iterations
n vary from 20 to 105 to keep T = 1 fixed for all values of ∆t. Initial conditions
are chosen to lie on the approximate slow manifold with y0 = 1, x0 = sin2(1).
The Lipschitz constants are Lg = 1.1 and Lh= 1, the bound on the vector field
of the slow dynamics is Cg = 2, and the maximal derivatives of the reduced
slow dynamics are C∗2 = 4 and C∗4 = 8.

We present results for the error scaling of |End | with the microstep size δt
in Figure 4. To focus on the scaling with Mδt, we select parameters with
C∗P t

P
∆<C

∗
2Mδt, and control the distance of the fast variables from the slow

manifold |dnmax| by ensuring λ∆t
ε

(
1− δt

ε

)aM
<1. Figure 4 confirms our analytical

result, that under the condition C∗P t
P
∆<C

∗
2Mδt, the discretization error scales

like End ∼Mδt. The advantage of the PI2 method here is that distributing the
microsteps over an additional application of the microsolver leads to an overall
smaller error compared to PI1 due to the smaller drift of the slow variables
over the microsolver.
We use a second-order Runge-Kutta microsolver (i.e. p= 2), to demonstrate
that the scaling with δt is not affected by the order of the microsolver. We
choose α= 1, and the scale separation parameter ε= 10−5. We use M = 100
microsteps and n= 50 iterations of each method. The macrostep size ∆t varies
from 0.0035 to 0.0032 to keep t∆ fixed as δt increases. Initial conditions are
chosen to lie on the approximate slow manifold with y0 = 5, x0 = sin2(5). The
Lipschitz constants are Lg = 11 and Lh= 1, the bound on the vector field of
the slow dynamics is Cg = 30, and the maximal derivatives of the reduced slow
dynamics are C∗2 = 50 and C∗4 = 2000.

We illustrate the linear scaling of |End | with the maximal distance |dnmax| of
the fast variable from the approximate slow manifold after a macrostep in
Figure 5. We do so by scaling the initial condition for the fast variables, x0.
To ensure that the error is not dominated by the initial initialization error
|d0|, we choose parameters which render the scheme unstable, allowing for
divergence of the fast variables from the slow manifold over the macrosteps,
i.e. |dn|> |d0|. Figure 5 confirms clearly the linear dependence of |End | on
|dnmax|. We choose α= 1, and the scale separation parameter ε= 10−4. We
use M = 100 microsteps with microstep size δt= 0.01ε, and n= 5 iterations
of each method with macrostep size ∆t= 10−3. Initial conditions are y0 = 1,
x0∈ [sin2(1)+0.01,sin2(1)+1]. The Lipschitz constants are Lg = 3 and Lh= 1,
the bound on the vector field of the slow dynamics is Cg = 2, and the maximal
derivatives of the reduced slow dynamics are C∗2 = 3 and C∗4 = 24.

We investigate how |dnmax|, the maximal deviation of the fast variables from
the slow manifold, scales with ∆t in the PI1 and PI2 methods. We choose

parameters satisfying λ∆t
ε

(
1− δt

ε

)aM�1, so that the bounds presented for |dn|
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in Theorem 5.3 imply

|dnmax|≤LhCg(1+λ)∆t+O(∆t2)

for the PI1 method, and

|dnmax|≤2Lh′C
2
g t

2
∆ +O

(
∆t3,

(1− δt
ε )aM

a
∆t
)

for the PI2 method. As noted in Remark 5.19, the bound for the PI1 method
is not tight for systems with |d0|= 0. We therefore choose initial conditions off
the slow manifold. Furthermore, to ensure that the initial error |d0| does not
dominate the error |dnmax|, we record |dnmax| after the first macrostep. Figure 6
clearly shows the linear dependence of |dnmax| with the macrostep size ∆t for
PI1, and the quadratic dependence of |dnmax| with the macrostep t∆ for PI2.
We choose again α= 0.2, and the scale separation parameter ε= 10−9. We use
M = 40 microsteps with microstep size δt= 0.4ε, while the number of iterations
n vary from 20 to 105 to keep T = 1 fixed for all values of ∆t. Initial conditions
are y0 = 1, x0 = sin2(1)+1. The Lipschitz constants are Lg = 5 and Lh= 1, the
bound on the vector field of the slow dynamics is Cg = 2, and the maximal
derivatives of the reduced slow dynamics are C∗2 = 4 and C∗4 = 8.

Finally, we investigate how ∆yT,∆t= |yT,∆t−yT,∆t/2| scales with the
macrostep size ∆t where yT,∆t are the outputs of the PI1 or PI2 methods
with macrostep size ∆t and final time T . In [4] ∆yT,∆t was used as a measure
of the numerical error. In Figure 7 we show how ∆yT,∆t scales with ∆t
for a fourth-order Runge-Kutta macrosolver, employing the same numerical
parameters as in Figure 3. It is seen that |yT,∆t−yT,∆t/2|∼ t4∆ for all values of
∆t whereas the actual discretization error is dominated by Mδt at the lower
values of ∆t (cf. Figure 3). Hence, such proxies for the numerical error have to
be treated with caution when evaluating PI methods.

We comment that the numerical results presented here are robust; in par-
ticular, we confirm that identical scalings can be produced from simulations of
the Michaelis-Menten system employed in [22], although its fast dynamics does
not satisfy our form (2.4), and the Brusselator with rapidly replenished source
employed in [2], where the approximate slow manifold is constant.

7. Discussion

We have introduced PI2, a seamless numerical multiscale method with
a higher-order macrosolver, which is a slight modification of a standard
implementation of a projective integration method, PI1, involving an additional
application of the microsolver. In both PI1 and PI2, each increment is rooted
on the slow manifold. In PI1 the increments typically do not end on the slow
manifold. In contrast, the additional application of the microsolver assures that
in PI2 each increment also ends on the slow manifold, even for slow manifolds
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with non-vanishing curvature (see Figures 1 and 2). If the slow manifold is
sufficiently linear over the course of one macrostep, the increments of PI2 then
all lie approximately tangential to it.
We presented error bounds for the slow variables for both methods, expressed
in Theorem 5.2. The error bounds are not affected by the order of the micro-
solver used (though strictly speaking, we only considered explicit microsolver
schemes). Hence the contribution of the microsolver to the error constitutes a
bottleneck for PI methods, after which the error in the slow variables cannot
be improved by adjusting the macrostep size or the order of the macro- or
microsolver. Hence there is no gain to be expected in the slow dynamics when
microsolvers other than forward Euler schemes are used.
In Theorem 5.3 we derived bounds for the unphysical deviation of the fast
variables from the slow manifold, which may cause numerical instability [12],
and provided a stability criterion for the macrostep size.

The Theorems now allow us to compare the PI1 and PI2 schemes. A fair com-
parison requires that both schemes are operated at the same computational
cost. Hence, PI2 utilises less microsteps per application of the microsolver dur-
ing the construction of the increments as the total number of microsteps is
distributed over one more application of the microsolver. Consequently, the ab-
solute discretisation error of PI2 is smaller when compared to PI1. Theorem 5.3
establishes that the PI2 method incurs less deviation from the slow manifold
as the deviations scale quadratically with the macrostep size rather than lin-
early as for PI1. The improved stability can be attributed to the increments of
PI2 pointing towards the slow manifold, enforced by the additional relaxation
towards the slow manifold when constructing the increments.
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Figure 1: Sketch of the PI1 scheme for a second order Runge-Kutta macrosolver. The micro-
solver is employed in 1a, 1c, the increments k̂j are given by vectorfield evaluations in 1b, 1d,
and the macrosolver is illustrated in 1e. For this scheme a1 = 0, a2 = 1 and b1 = b2 = 1/2.
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Figure 2: Sketch of the PI2 scheme for a second order Runge-Kutta macrosolver. The mi-
crosolver is employed in 2a, 2c, 2e and the (now auxiliary) quantities k̂j are given by vector
field evaluations in 2b, 2d. The increments kj are estimated in 2c, 2e, and the macrosolver is
illustrated in 2f. For this scheme a1 = 0, a2 =a3 = 1 and b1 = b2 = 1/2.
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Figure 3: Plot of log |En
d | versus log(∆t) for fixed time of integration T = 1 of the system

(6.1)-(6.2). The crosses represent results from the PI1 scheme and the circles represent results
from the PI2 scheme. The dashed line is a linear regression line with a slope of 3.93.
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Figure 4: Plot of log |En
d | versus log(δt) for fixed time of integration T = 0.18 of the system

(6.1)-(6.2). The crosses represent results from the PI1 scheme and the circles represent results
from the PI2 scheme. The dashed lines are linear regression lines with a slopes of 0.99 and
1.0, respectively.
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Figure 5: Plot of log |En
d | versus log |d0| for fixed time of integration T = 0.0056 of the system

(6.1)-(6.2). The crosses represent results from the PI1 scheme and the circles represent results
from the PI2 scheme. The dashed lines are linear regression lines with slopes of 1.01.
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Figure 6: Plot of log |dnmax| versus log(∆t) for fixed time of integration T = 1 of the system
(6.1)-(6.2). The crosses represent results from the PI1 scheme and the circles represent results
from the PI2 scheme. The dashed lines are linear regression lines with a slopes of 0.98 and
1.94, respectively.
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Figure 7: Plot of log |∆yT,∆t| versus log |∆t| for fixed time of integration T = 1 of the system
(6.1)-(6.2). The crosses represent results from the PI1 scheme and the circles represent results
from the PI2 scheme. The dashed line is a linear regression line (of the PI1 output) with slope
of 4.05.


