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Abstract

We present results on the broadband nature of power spectra for large classes
of discrete chaotic dynamical systems, including uniformly hyperbolic (Ax-
iom A) diffeomorphisms and certain nonuniformly hyperbolic diffeomorphisms
(such as the Hénon map). Our results also apply to noninvertible maps, in-
cluding Collet-Eckmann maps. For such maps (even the nonmixing ones) and
Hölder continuous observables, we prove that the power spectrum is analytic
except for finitely many removable singularities, and that for typical observ-
ables the spectrum is nowhere zero. Indeed, we show that the power spectrum
is bounded away from zero except for infinitely degenerate observables.

For slowly mixing systems such as Pomeau-Manneville intermittency maps,
where the power spectrum is at most finitely differentiable, nonvanishing of the
spectrum remains valid provided the decay of correlations is summable.

1 Introduction

The power spectrum associated with a regular time series, stemming from a periodic
or quasiperiodic underlying dynamical system, has discrete peaks at the harmonics
and subharmonics. In contrast, the power spectrum of a chaotic signal is character-
ized by its broadband nature. The power spectrum has been successfully used by
experimentalists to distinguish periodic, quasiperiodic, and chaotic motion [7].

Whereas the regular case with a spectrum consisting of δ-peaks at discrete fre-
quencies is easily understood, there are surprisingly few analytical results for the
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chaotic case. Most work has been done for mixing Axiom A systems [19] where the
power spectrum is analytic apart from isolated singularities corresponding to Ruelle-
Pollicott resonances [6].

In this paper, we elaborate on the broadband nature of the power spectrum in the
chaotic setting. In particular, we show that for large classes of deterministic chaotic
discrete dynamical systems, the power spectrum is analytic except for finitely many
removable singularities, and is strictly positive.

Let f : X → X be a discrete dynamical system with ergodic invariant measure µ.
Given a square-integrable observable v : X → R, we define the power spectrum S to
be the square of the Fourier amplitudes of v ◦ f j per unit time1

S(ω) = lim
n→∞

1

n

∫

X

∣∣∣
n−1∑

j=0

eijωv ◦ f j
∣∣∣
2

dµ, ω ∈ [0, 2π]. (1.1)

For ω ∈ (0, 2π), the Wiener-Khinchin theorem [11] relates the power spectrum to
the Fourier transform of the autocorrelation function according to

S(ω) =
∞∑

k=−∞

eikωρ(k) ,

where

ρ(k) =
∫

X
v ◦ fk v dµ − (

∫
X

v dµ)2

is the autocorrelation function. This relation is valid for sufficiently rapidly decaying
(eg. summable) autocorrelations. It is then immediate [19] that S(ω) is an analytic
function if and only if the autocorrelations decay exponentially. (Typically, S(0) =
S(2π) = +∞ so strictly speaking S(ω) is analytic with removable singularities at 0
and 2π. The singularities disappear if and only if

∫
X

v dµ = 0.)
For definiteness, we introduce our main results in the context of the logistic map,

or quadratic family, f(x) = ax(1 − x), 0 ≤ a ≤ 4. It is well-known that there is
a unique attractor X ⊂ [0, 1] for each value of a. For an open and dense set of
parameters X is a periodic orbit, but for a positive measure set of parameters X is
strongly chaotic with a unique absolutely continuous invariant measure µ [10, 2] and
moreover satisfies the Collet-Eckmann condition [4]: there exists c > 0, λ > 1 such
that

|Dfn(f(1
2
))| ≥ cλn for all n ≥ 1.

Then the Lyapunov exponent is positive, the attractor X consists of finitely many
intervals X1, . . . , Xq permuted cyclically by f , and f q|Xi has exponential decay of

1Often e
ijω is replaced by e

2πijω/n in the literature, but this is just a rescaling of the domain.
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correlations for Hölder observables for each i = 1, . . . , q [12, 22]. (By Lyubich [14],
the two possibilities mentioned above, periodic or Collet-Eckmann, account for almost
every parameter a ∈ [0, 4].)

Theorem 1.1 Fix a parameter a ∈ [0, 4] such that the Collet-Eckmann condition is
satisfied, with the attractor X consisting of q intervals. Let v : [0, 1] → R be a Hölder
continuous observable. Then

(i) There is an analytic function S̃ : [0, 2π] → R such that S(ω) = S̃(ω) for all
ω 6= 2πj/q, j = 0, 1, . . . , q.

(ii) At ω = 2πj/q, either S(ω) = ∞ (the typical case) or S(ω) = S̃(ω) (codimension
one).

(iii) Except for infinitely degenerate2 observables v, there is a constant c > 0 such
that S(ω) ≥ S̃(ω) ≥ c for all ω ∈ [0, 2π].

Remark 1.2 (a) Again we note that Theorem 1.1(i,ii) is well-known when q = 1 (due
to exponential decay of correlations and the Wiener-Khinchin theorem). For q ≥ 2,
parts (i) and (ii) are presumably well-known to experts in the field but we could not
find a proof (or a precise statement of the result) in the literature. For completeness,
we state and prove an appropriate generalisation of the Wiener-Khinchin theorem in
the Appendix. Nevertheless, in the main part of the paper we give a different proof
of parts (i) and (ii) for all q ≥ 1 which has the advantage that it immediately yields
a criterion for S̃(ω) = 0 (which is used in the proof of part (iii)).

Part (iii) of Theorem 1.1 seems to be new for all q ≥ 1.

(b) The results in [12, 22] are stated more generally for observables of bounded vari-
ation. Theorem 1.1(i,ii) remains valid for such observables, but part (iii) uses Hölder
continuity.

We also obtain results in the invertible setting. Suppose that f : M → M is
an Axiom A (uniformly hyperbolic) diffeomorphism. Recall that an invariant set
X ⊂ M is called a (nontrivial) hyperbolic basic set if X is transitive and locally
maximal, and X is not a periodic orbit. Such a basic set consists of q components
X1, . . . , Xq permuted by f , and f q|Xi is topologically mixing for each i. Given any
Hölder potential on X, there is a unique equilibrium measure µ, and µ|Xi is mixing
under f q. Again it is well-known [3] that f q|Xi has exponential decay of correlations
for Hölder observables.

2Lying in a closed subspace of infinite codimension within the Banach space of Hölder continuous
observables
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Theorem 1.3 Suppose that X is a basic set with q components for an Axiom A
diffeomorphism f : M → M . Let µ be an equilibrium measure for a Hölder potential.
Let v : M → R be a Hölder observable and define S(ω) as in (1.1). Then parts (i)–(iii)
of Theorem 1.1 hold.

Our results extend to a large class of nonuniformly hyperbolic systems modelled
by the tower construction of Young [23, 24]. In Young [23], exponential decay of
correlations (for f q) is proved for a large class of nonuniformly hyperbolic systems,
including planar periodic billiards and Hénon-like diffeomorphisms. The conclusions
of Theorem 1.1 hold for such systems.

Young [24] considers nonuniformly hyperbolic systems with slow decay of corre-
lations. This includes Pomeau-Manneville intermittency maps with indifferent fixed
points. Analyticity in Theorem 1.1 obviously breaks down for such systems. Never-
theless, we obtain again that the power spectrum is bounded away from zero except
for infinitely degenerate observables, provided the decay of correlations is summable.

The remainder of the paper is organised as follows. In Section 2, we prove parts (i)
and (ii) of Theorem 1.1 and give a criterion for zeroes in the power spectrum. In
Section 3, we prove Theorem 1.3 and part (iii) of Theorem 1.1. (The order of proof
is due to the fact that (i) and (ii) are simpler for noninvertible maps, whereas it
is convenient to prove (iii) first for invertible maps.) In Section 4, we indicate the
modifications required for nonuniformly hyperbolic systems with exponential and slow
decay properties. In Section 5, we present some numerics illustrating our results for
the logistic map.

2 Proof of Theorem 1.1(i,ii) and a criterion for

S̃(ω) = 0

In this section, we prove analyticity of the power spectrum (parts (i) and (ii) of
Theorem 1.1) and we give a criterion for the power spectrum to vanish. Throughout,
we consider the logistic map f(x) = ax(1−x) where a ∈ [0, 4] is such that the Collet-
Eckmann condition is satisfied. Recall that the attractor X ⊂ [0, 1] consists of q
intervals permuted by f such that f q has exponential decay of correlations for Hölder
observables on each interval. We consider first the case q = 1, and then extend to the
case q ≥ 2.

The mixing case q = 1

First, we adapt ideas in [8] to decompose v −
∫

X
v dµ into a (twisted) coboundary

eiωχω ◦f −χω which does not alter the value of S(ω) and a “martingale” ṽω for which
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the computation of S(ω) is trivial. (Our treatment closely follows [15].)
Let α ∈ (0, 1). The space of Hölder continuous functions Cα(X) = {u : X → C :

|u|α = supx 6=y |u(x)− u(y)|/|x− y|α < ∞} is a Banach space when endowed with the
norm ‖u‖α = |u|∞ + |u|α where |u|∞ = supx∈X |u(x)|.

Let U : L2(X) → L2(X) be the Koopman operator (Uv = v ◦ f) and let L =
U∗ : L2(X) → L2(X) be the Perron-Frobenius operator. We have LU = I. The key
property that we make use of is that if u ∈ Cα(X), then ‖Lnu−

∫
X

u dµ‖α converges
to zero exponentially quickly [23].

Lemma 2.1 Suppose that v : X → R and that v ∈ Cα(X) for some α > 0. Then for
all ω ∈ [0, 2π],

v =

∫

X

v dµ + eiωχω ◦ f − χω + ṽω, (2.1)

where (a) χω, ṽω ∈ Cα(X), (b) ω 7→ χω, ṽω are analytic on [0, 2π], and (c) Lṽω = 0.

Proof Let v̂ = v −
∫

X
v dµ. Since

∫
X

v̂ dµ = 0, the series
∑∞

j=1 e−ijωLj v̂ converges
to a Hölder function χω ∈ Cα(X). Note that χω depends analytically on ω since the
Fourier coefficients Lj v̂ decay exponentially quickly (in the Hölder norm).

Define the analytic family of Hölder functions ṽω = χω − eiωχω ◦ f + v̂. Then

e−iωLṽω = e−iωLχω − LUχω + e−iωLv̂ = χω − χω = 0.

Hence, we obtain the required decomposition.

Lemma 2.2 Let S̃(ω) =
∫

X
|ṽω|

2 dµ. Then S̃(ω) is analytic, and S(ω) = S̃(ω) for

ω ∈ (0, 2π). Moreover, S(0) = S̃(0) if
∫

X
v dµ = 0; S(0) = ∞ if

∫
X

v dµ 6= 0.

Proof It is immediate that S̃(ω) =
∫

X
|ṽω|

2 dµ is analytic. For ω ∈ (0, 2π), we have

n−1∑

j=0

eijωv ◦ f j = (1 − eiω)−1(1 − einω)
∫

X
v dµ + einωχω ◦ fn − χω +

n−1∑

j=0

eijωṽω ◦ f j,

(2.2)

and so

∣∣∣‖
n−1∑

j=0

eijωv ◦ f j‖2 − ‖
n−1∑

j=0

eijωṽω ◦ f j‖2

∣∣∣ ≤ 2(1 − eiω)−1
∫

X
v dµ + 2‖χω‖2.

Hence, S(ω) = limn→∞
1
n

∫
X
|
∑n−1

j=0 eijωṽω ◦ f j |2 dµ, since the terms on the right hand
side are bounded in n. In the remainder of the proof we omit the tilde’s. The integral
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contains n2 terms of the form ei(j−k)ω
∫

X
vω ◦ f j v̄ω ◦ fk dµ where v̄ω denotes complex

conjugation. Now we use the fact that Lvω = 0. If j > k,

∫

X

vω ◦ f j v̄ω ◦ fk dµ =

∫

X

vω ◦ f j−k v̄ω dµ =

∫

X

vω Lj−kv̄ω dµ = 0,

and similarly the cross-terms with j < k vanish. The first equality follows from
stationarity, the second from the definition of the Perron-Frobenius operator. By
stationarity, the diagonal terms are all equal to S̃(ω) =

∫
X
|vω|

2 dµ. It follows that

S(ω) = S̃(ω) for ω ∈ (0, 2π). Moreover, the above calculation works for ω = 0, 2π
provided

∫
X

v dµ = 0. If this is not the case, then the first term in the right-hand-side
of (2.2) is replaced by n

∫
X

v dµ which diverges to infinity.

Corollary 2.3 Let ω ∈ [0, 2π]. Then S̃(ω) = 0 if and only if there is a continuous
function χ : X → C such that

v =
∫

X
v dµ + eiωχ ◦ f − χ. (2.3)

Proof By definition, S̃(ω) = 0 if and only if ṽω ≡ 0, so the result follows from (2.1)
(taking χ to be the Hölder continuous function χω).

The nonmixing case q ≥ 2

Now suppose that X consists of q intervals permuted by f . Restricting to Hölder
functions, the Perron-Frobenius operator L has simple eigenvalues e2πik/q, k =
0, 1, . . . , q − 1, and the remainder of the spectrum lies strictly inside the unit cir-
cle. Let v0, . . . , vq−1 be the corresponding eigenfunctions. (Note that v0 =

∫
X

v dµ.)

Then vk ◦ f = e−2πik/qvk. Write v = v0 + · · · + vq−1 + v̂. We have

n−1∑

j=0

eijωv ◦ f j =

q−1∑

k=0

(1 − ei(ω−2πk/q))−1(1 − ein(ω−2πk/q))vk +
n−1∑

j=0

eijωv̂ ◦ f j .

Provided ω 6= 2πk/q for k = 0, . . . , q, we can disregard the terms v0, . . . , vq−1 when
computing S(ω). Once again, the series

∑∞

j=1 eijωLj v̂ converges exponentially quickly
to a Hölder observable χω depending analytically on ω. Proceeding as before, we find
that S agrees with an analytic function S̃ except possibly for singularities at 2πk/q
for k = 0, . . . , q. (S(2πk/q) = +∞ if and only if vk 6= 0.) Moreover, S̃(ω) = 0 if and
only if the criterion (2.3) is satisfied for some continuous function χ : X → C.
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3 Axiom A systems

For hyperbolic basic sets and Hölder observables, exponential decay of correlations
(for f q in the nonmixing case) is often obtained by (a) passing to a subshift of finite
type, (b) quotienting by stable directions to obtain a noninvertible map, (c) proving
exponential decay of the Perron-Frobenius operator L for the noninvertible map. See
for example [3, 17].

For our purposes, only step (b) requires further discussion. The standard ar-
gument of [20, 3] shows that v = v′ + χ′ ◦ f − χ′ where v′ depends only on fu-
ture coordinates and so is well-defined on the quotient noninvertible system. More-
over, v′ and χ′ are Hölder (with different exponents from v). We require in-
stead that v = v′

ω + eiωχ′
ω ◦ f − χ′

ω so that the χ′
ω terms can be ignored in

computing S(ω). This is achieved by making obvious modifications to the argu-
ments in [20, 3]. First, for each x in X, choose x̂ ∈ X such that the operation
x 7→ x̂ depends only on future coordinates and (x̂)n = xn for all n ≥ 0. Define
χ′

ω(x) =
∑∞

j=0 eijω(v̂(f j(x)) − v̂(f j(x̂)). By exponential contraction along stable
manifolds, this is an analytic Fourier series. This uniquely specifies v′

ω and a direct

calculation shows that v′
ω(x) =

∑∞
j=0 eijωv̂(f j(x̂))−

∑∞
j=0 ei(j+1)ω v̂(f j(f̂x)) so that v′

ω

depends only on future coordinates. The usual argument shows that χ′
ω is Hölder

(with a different exponent) and it follows that v′
ω is Hölder.

By this construction, if S(ω) = 0 for some ω ∈ [0, 2π], then criterion (2.3) is valid
as before, with χ replaced by χ + χ′. Hence we may reduce to the noninvertible case
by carrying out steps (a) and (b). By step (c), the methods in Section 2 for the
logistic map go through unchanged. It follows that we obtain parts (i) and (ii) of
Theorem 1.3, and the criterion (2.3) for vanishing spectrum.

To prove that the spectrum is typically nonvanishing, we make use of the fact
that there is an abundance of homoclinic points. More precisely, there is a countable
infinity of periodic points in X. For each periodic point x0 ∈ X of period p, there
exists a homoclinic point x1 ∈ X, distinct from f j(x0) for all j, such that fnp(x1) → x0

as n → ±∞. For each of these infinitely many homoclinic points, we associate a
degeneracy condition that is automatically satisfied if the spectrum vanishes.

Here, we closely follow [16]. First suppose for simplicity that x0 ∈ X is a fixed
point (in particular, p = q = 1). Let x1 ∈ X be homoclinic to x0 (so x1 6= x0 and
fn(x1) → x0 as n → ±∞). Define

g(ω) =
∞∑

j=−∞

eijω(v(f j(x1)) − v(x0)). (3.1)

Lemma 3.1 The function g : [0, 2π] → C is analytic and if S̃(ω) = 0 then g(ω) = 0.
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Proof Due to exponential contraction/expansion along stable/unstable manifolds,
g is a Fourier series with exponentially decaying coefficients and hence is analytic on
[0, 2π].

Suppose that S̃(ω) = 0 for some ω. We assume that ω ∈ (0, 2π) since the argument
for ω = 0, 2π is slightly different (but easier). Let v̂ = v −

∫
X

v dµ. By (2.3),

n−1∑

j=−n

eijωv̂(f j(x1)) = einωχ(fn(x1)) − e−inωχ(f−n(x1)).

Also, by (2.3), v̂(x0) = (eiω − 1)χ(x0) and so

n−1∑

j=−n

eijω(v(f j(x1)) − v(x0)) =

n−1∑

j=−n

eijω(v̂(f j(x1)) − v̂(x0))

= einω(χ(fn(x1)) − χ(x0)) − e−inω(χ(f−n(x1)) − χ(x0))

→ 0 as n → ∞.

Hence g(ω) = 0.

Proof of Theorem 1.3(iii) We continue to suppose that X contains a fixed point
x0. Choose a second homoclinic point x′

1 (lying on a distinct homoclinic orbit) to ob-
tain a second analytic function g′(ω) =

∑∞
j=−∞ eijω(v(f j(x′

1))−v(x′
0)). By Lemma 3.1,

if S̃ vanishes somewhere, then g and g′ have a common zero.
Since g is analytic, either g ≡ 0 or g vanishes at only finitely many points. The

homoclinic point x1 is isolated from the remainder of the homoclinic orbit fn(x1),
n = ±1,±2, . . .. Hence, we can make small changes to g as desired by modifying the
value of v at x1 in such a way that v remains Hölder. Independently, we can make
small changes to g′ by modifying the value of v at x′

1.
If g ≡ 0, then after a small perturbation g is nowhere zero and S̃ is nowhere zero

by Lemma 3.1. It remains to consider the case when g, and similarly g′, vanishes
at finitely many points. In particular, g and g′ have at most finitely many common
zeroes. Suppose that ω is a common zero. Then we can perturb v at x1 so that g(ω) 6=
0. This might introduce new zeroes for g but we can ensure that whenever g(ω) 6= 0
and g′(ω) = 0 before perturbation (there are only finitely many such ω), then this
situation persists after perturbation. Hence no new common zeroes are introduced
and so the number of common zeroes is reduced by one via this perturbation. After
finitely many such perturbations, we reach the situation where there are no common
zeroes.

The same arguments work with minor modifications if the fixed points are replaced
by periodic points. (We now incorporate the case q ≥ 2.) Suppose for example that x0
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is a periodic point of period p. Setting V =
∑p−1

j=0 eijωv ◦f j and W =
∑p−1

j=0 eijωχ◦f j,

and substituting into (2.3), we obtain V =
∫

X
V dµ + eipωW ◦ f p − W . Let x1 be

homoclinic to x0 (fnp(x1) → x0 as n → ±∞). Replacing f by f p and ω by pω in the
above argument, we obtain the analytic function g(ω) =

∑∞
j=−∞ eijpω(V (f jp(x1)) −

V (x0)). Hence, by considering any pair of distinct periodic orbits, we obtain that
typically criterion (2.3) is not satisfied for any ω ∈ [0, 2π]. Since there are infinitely
many periodic orbits in X, it follows that (2.3) is satisfied for some ω only in infinitely
degenerate situations.

Proof of Theorem 1.1(iii) In the noninvertible case, the definition of homoclinic
point must be modified. For example, given a fixed point x0, we replace the homoclinic
orbit fn(x1) by a sequence xn, n ≥ 0, with x1 6= x0 such that f(xn) = xn−1 for n ≥ 1
and xn → x0 exponentially quickly as n → +∞. The analytic function g(ω) is now
given by g(ω) =

∑∞

j=1 e−ijω(v(xj) − v(x0)). Similarly for x0 periodic. The argument
is the same as before with perturbations made at x1.

4 Exponentially and slowly mixing nonuniformly

hyperbolic systems

In this section, we indicate how our results extend to more general classes of dynamical
systems, such as those described in [1, 21, 23, 24].

For noninvertible maps, parts (i) and (ii) of Theorem 1.1 require only that the
Perron-Frobenius operator L is quasicompact (the spectrum consists of finitely many
eigenvalues on the unit circle, and the remainder of the spectrum strictly inside the
unit circle) on a suitable Banach space of observables. If this Banach space lies inside
the space of continuous functions, then part (iii) of Theorem 1.1 is also valid.

For invertible maps, a preliminary argument is often required as in Section 3 to
reduce to the noninvertible case. The tower construction of Young [23] satisfies all
of the requirements for our results to apply. For example, planar periodic dispersing
billiards and Hénon-like attractors are covered by Young’s construction and hence
parts (i)–(iii) of Theorems 1.1 and 1.3 hold for such systems.

Our results on nonvanishing spectra apply also in cases where the decay of cor-
relations is subexponential. For example, consider Pomeau-Manneville intermittency
maps [18, 13] where f(x) ≈ x+x1+α. These maps have the decay of correlations rate

ρ(k) ≈ k−( 1

α
−1) [9]. The Wiener-Khinchin theorem applies for 0 < α < 1

2
, and the

power spectrum is continuous but at most finitely many times differentiable. Nev-
ertheless, the iterates of Lkv̂ remain summable [9, 24] and hence our criterion (2.3)
for S(ω) = 0 holds. Moreover, the function g in (3.1) is analytic as before; analyt-
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icity of g depends on exponential convergence along stable and unstable manifolds
of the periodic point x0 (excluding the indifferent fixed point at 0), and so is unaf-
fected by the slow convergence of L. It follows that the spectrum is again bounded
away from zero for typical Hölder observables. The same result holds for the general
class of nonuniformly hyperbolic systems with polynomial, but summable, decay of
correlations considered in [24].

5 Numerical results

In this paper we have obtained results on the analytic and nonvanishing nature of
broadband power spectra characteristic of deterministic chaos. In Figs. 1-4 we pro-
vide numerical simulations for the logistic map illustrating our results. We consider
the parameter value a = 3.757 where the dynamics is chaotic but nonmixing. Indeed
the attractor consists of 4 intervals permuted cyclically by f , and f 4 is mixing on
each of these intervals. In particular, there are removable singularities at ω = kπ/2,
k = 0, . . . , 4 and Figure 3 shows the convergence to the removable singularity at
ω = π/2. There is an additional approximate cycling of period 8 yielding peaks at
ω = kπ/4, k = 1, 3, 5, 7. Figure 4 confirms that these additional peaks are nonsin-
gular. Froyland [5] has verified numerically that the Perron-Frobenius operator L
has precisely 4 eigenvalues on the unit circle at 4’th roots of unity and a further 4
eigenvalues close to the unit circle near the remaining 8’th roots of unity. (Thus one
may use the convergence of the spectrum at such a nonsingular peak as an indicator
for almost invariant sets. Such eigenvalues may slow down the convergence of L and
hence are obstructions to rapid convergence of the power spectrum.)

A Power spectra for nonmixing systems

As mentioned in Remark 1.2(a), it is well-known that the Wiener-Khinchin theorem
relates smoothness of the power spectrum to decay of correlations of f q when q = 1.
For completeness, we now state and prove the analogous result for q ≥ 2.

Let f : X → X be a discrete dynamical system with ergodic invariant measure µ.
Suppose that f is mixing up to a q cycle, so X = X1 ∪ · · · ∪ Xq where f(Xi) = Xi+1

(indices computed mod q) and f q : Xi → Xi is mixing for i = 1, . . . , q.
Let v : X → R be a square-integrable observable. For q ≥ 2, there is no decay of

correlations (since f : X → X is not mixing). Nevertheless, there is a fairly natural
notion of summability (and moreover exponential decay) up to a q cycle. For each
fixed ω ∈ [0, 2π], define vq,ω : X → C by vq,ω =

∑q−1
ℓ=0 eiℓωv ◦ f ℓ. Let µℓ = qµ|Xℓ

be
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the normalised restriction of µ to Xℓ, ℓ = 1, . . . , q. Define

ρq,ω(k) = 1
q

∑q
ℓ=1{

∫
Xℓ

vq,ω ◦ f qk v̄q,ω dµℓ − |
∫

Xℓ

vq,ω dµℓ|
2}, k ∈ Z.

(If f is noninvertible, then we interpret ρ(k), k negative, to be

ρq,ω(k) = ρ̄q,ω(−k) = 1
q

∑q
ℓ=1{

∫
Xℓ

vq,ω v̄q,ω ◦ f−qk dµℓ − |
∫

Xℓ

vq,ω dµℓ|
2}.)

Definition A.1 We say that the autocorrelations of v are summable up to a q cycle
if the series

∑∞

k=0 |ρq,ω(k)| is convergent for each ω ∈ [0, 2π].
The autocorrelations decay exponentially up to a q cycle if there exist constants

C ≥ 1, τ ∈ (0, 1), ǫ > 0, independent of ω such that

|ρq,ω+iσ(k)| ≤ Cτk, for all k ≥ 0, ω ∈ [0, 2π], σ ∈ [−ǫ, ǫ].

Theorem A.2 Suppose that f : X → X is mixing up to a q cycle and that the
square-integrable observable v : X → R has summable autocorrelations up to a q
cycle. Then

S(ω) =

∞∑

k=−∞

eikqωρq,ω(k),

for all ω 6= 2πj/q, j = 0, 1, . . . , q.
In particular, if v has exponentially decaying autocorrelations up to a q cycle, then

S(ω) is analytic except possibly for finitely many removable singularities at ω = 2πj/q,
j = 0, 1, . . . , q.

Proof Suppose that ω 6= 2πj/q, j = 0, 1, . . . , q. By the definition of vq,ω,

∫

X

∣∣∣
qn−1∑

j=0

eijωv ◦ f j
∣∣∣
2

dµ =

∫

X

∣∣∣
n−1∑

j=0

eijqωvq,ω ◦ f jq
∣∣∣
2

dµ

=
n−1∑

j,k=0

ei(j−k)qω

∫

X

vq,ω ◦ f (j−k)q v̄q,ω dµ

=

n−1∑

j,k=0

ei(j−k)qω
{
ρq,ω(j − k) +

1

q

q∑

ℓ=1

|
∫

Xℓ

vq,ωdµℓ|
2
}

=

n−1∑

j=−(n−1)

(n − |j|)eijqωρq,ω(j) + Rω,n

where

Rω,n =
1 − cos nqω

1 − cos qω

1

q

q∑

ℓ=1

|
∫

Xℓ

vq,ω dµℓ|
2.
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Hence we can write

∫

X

∣∣∣
qn−1∑

j=0

eijωv ◦ f j
∣∣∣
2

dµ = s1 + · · ·+ sn + Rω,n,

where sk =
∑k−1

j=−(k−1) eijqωρq,ω(j). Since Rω,n is bounded (for each fixed ω), S(ω) =

limn→∞(s1 + · · · + sn)/n is the Cesàro limit of the sequence
∑n−1

j=−(n−1) eijqωρq,ω(j).

The summability condition on ρq,ω guarantees that the series
∑∞

j=−∞ eijqωρq,ω(j) is
convergent and hence coincides with the Cesàro limit, proving the first statement of
the theorem. The second statement is immediate.

Remark A.3 When q = 1, the first statement of the theorem is the usual Wiener-
Khinchin theorem and ρ1,ω(k) = ρ(k) is independent of ω. Note that to obtain
continuity of the power spectrum for q ≥ 2, it is necessary to assume that the series∑∞

j=0 |ρq,ω(j)| is uniformly convergent.

Acknowledgments The research of GAG was partly supported by ARC grant
DP0452147. The research of IM was partly supported by EPSRC grant
EP/D055520/1 and by a Leverhulme Research Fellowship. IM is very grateful to
the University of Sydney for its hospitality.

References

[1] V. Baladi. Positive Transfer Operators and Decay of Correlations. Advanced
Series in Nonlinear Dynamics 16, World Scientific, 2000.

[2] M. Benedicks and L. Carleson. On iterations of 1−ax2 on (−1, 1). Ann. of Math.
122 (1985) 1–25.

[3] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms.
Lecture Notes in Mathematics 470, Springer, Berlin, 1975.

[4] P. Collet and J.-P. Eckmann. Positive Liapunov exponents and absolute conti-
nuity for maps of the interval. Ergodic Theory Dynam. Systems 3 (1983) 13–46.

[5] G. Froyland. Private communication.

[6] P. Gaspard. Chaos, Scattering and Statistical Mechanics. Cambridge University
Press, Cambridge, 1998.

12



[7] J. P. Gollub and H. L. Swinney. Onset of turbulence in a rotating fluid. Phys.
Rev. Lett. 35 (1975) 927–930.

[8] M. I. Gordin. The central limit theorem for stationary processes. Soviet Math.
Dokl. 10 (1969) 1174–1176.

[9] H. Hu. Decay of correlations for piecewise smooth maps with indifferent fixed
points. Ergodic Theory Dynam. Systems 24 (2004) 495–524.

[10] M. Jakobson. Absolutely continuous invariant measures for one-parameter fam-
ilies of one-dimensional maps. Comm. Math. Phys. 81 (1981) 39–88.

[11] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. North-
Holland, Amsterdam, 2003.

[12] G. Keller and T. Nowicki. Spectral theory, zeta functions and the distribution
of periodic points for Collet-Eckmann maps. Comm. Math. Phys. 149 (1992)
31–69.

[13] C. Liverani, B. Saussol and S. Vaienti. A probabilistic approach to intermittency.
Ergodic Theory Dynam. Systems 19 (1999) 671–685.

[14] M. Lyubich. Almost every real quadratic map is either regular or stochastic.
Ann. of Math. 156 (2002) 1–78.

[15] I. Melbourne and M. Nicol. Statistical properties of endomorphisms and compact
group extensions. J. London. Math. Soc. 70 (2004) 427–446.

[16] M. Nicol, I. Melbourne and P. Ashwin. Euclidean extensions of dynamical sys-
tems. Nonlinearity 14 (2001) 275–300.

[17] W. Parry and M. Pollicott. Zeta Functions and the Periodic Orbit Structure
of Hyperbolic Dynamics. Astérique 187-188, Société Mathématique de France,
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ω

S(ω)

0 π 2π

0
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0.004

Figure 1: The power spectrum S(ω) for the logistic map with a = 3.757 computed
using the mean square displacement along an orbit of 200K iterates. The dynamics
is chaotic but non-mixing; the invariant measure is supported on 4 distinct intervals
which the orbit visits in succession. The cycling is confirmed by peaks at π/2, π
and 3π/2 where S(ω) = ∞. The numerically computed values are S(π/2) ≈ 50,
S(π) ≈ 900. In contrast, the spectrum is finite at the approximate but nonsingular
peaks at kπ/4, k = 1, 3, 5, 7 with values S(π/4) ≈ 0.006 and S(3π/4) ≈ 0.015.
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Figure 2: As in Fig. 1, but now a small interval of ω is shown to illustrate that S(ω)
is indeed analytic and nonzero.

15



ω

S(ω)

π
2

0

100.0

200.0

300.0

Figure 3: As in Fig. 1, but now a zoom in on the removable singularity at ω = π/2
(continuous lines 500K iterates, dashed lines 2000K iterates).
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Figure 4: As in Fig. 3, but now a zoom in on the nonsingular peak at ω = 3π/4.
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