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ABSTRACT

A deterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions
between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced
stochastic parameterization model is derived for the slow dynamics. The reliability of this reduced climate
model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the
time-scale separation is numerically established. The statistics, however, are sensitive to uncertainties in the
parameters of the stochastic model.
It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble

data assimilation setting, in particular in the realistic setting when observations are only available for the slow
variables. Themain result is that reduced stochastic models can indeed improve the analysis skill when used as
forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at
detecting transitions between regimes. The observation intervals for which skill improvement can be obtained
are related to the characteristic time scales involved. The reason why stochastic climate models are capable of
producing superior skill in an ensemble setting is the finite ensemble size; ensembles obtained from the perfect
deterministic forecast model lack sufficient spread even for moderate ensemble sizes. Stochastic climate
models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes.
This is corroborated with numerical simulations. The conclusion is that stochastic parameterizations are at-
tractive for data assimilation despite their sensitivity to uncertainties in the parameters.

1. Introduction

An area of broad research in the atmospheric sciences
in recent times is how to most effectively parameterize
subgrid-scale processes. Since the pioneering papers by
Leith (1975) and Hasselmann (1976), the stochastic pa-
rameterization of processes that cannot be spatially and/
or temporally resolved have recently gained popularity
across disciplines in the atmospheric, oceanographic,
and climate sciences (Palmer 2001). Applications range
from the study of atmospheric low-frequency variability
(Franzke et al. 2005; Franzke and Majda 2006), deep
convection and cloud modeling in GCMs (Lin and
Neelin 2000, 2002; Plant and Craig 2008), and decadal
climate changes such as El Niño (Kleeman 2008) to
paleoclimatic modeling (Ditlevsen 1999; Kwasniok and
Lohmann 2009).We refer the reader to the books edited
by Imkeller and von Storch (2001) and by Palmer and

Williams (2010), which contain excellent overviews of
current trends in stochastic climate modeling.
There exists a plethora of differentmethods to construct

stochastic subgrid-scale parameterizations, including
phenomenological approaches such as randomization
of existing deterministic parameterization schemes (e.g.,
Buizza et al. 1999), energetic backscattering (e.g.,
Frederiksen and Davies 1997; Shutts 2005), data-driven
techniques such as Markov chains (e.g., Crommelin and
Vanden-Eijnden 2008), and systematic approaches using
stochastic homogenization (e.g., Majda et al. 1999, 2003).
The specific functional forms and parameter values of the
respective parameterization schemes can be heuristically
postulated on grounds of the particular physics involved
(e.g., Lin and Neelin 2000) or estimated using time series
analysis (e.g., Wilks 2005). In the case of multiscale dy-
namics, however, the parameters can be systematically
derived using averaging and homogenization techniques
(e.g., Majda et al. 1999, 2001, 2008). Our work will be
concernedwith the latter approach. The general theory of
stochastic averaging and homogenization for multiscale
dynamical systems goes back to the seminal papers of
Khasminsky (1966), Kurtz (1973), and Papanicolaou
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(1976). Starting with Majda et al. (1999), these math-
ematically rigorous ideas have recently been applied in
the atmospheric context by Franzke et al. (2005) and
Franzke and Majda (2006).
We will introduce a simple deterministic multiscale

toy model in which a slow degree of freedom with mul-
tiple stable states, resembling slow weather or climate
regimes (e.g., Legras and Ghil 1985; Crommelin 2003;
Crommelin et al. 2004; Branstator and Berner 2005;
Ditlevsen 1999; Kwasniok and Lohmann 2009), is driven
by a fast chaotic subsystem that also involves metastable
regimes. Although simple, this model involves core phe-
nomena found in realistic applications such as slow and
fast metastable states as caricatures of climate and
weather regimes, respectively, and rare transitions
between them. The model is amenable to the theory of
homogenization [for an excellent review see Givon
et al. (2004) and Pavliotis and Stuart (2008)], and we
will derive a reduced stochastic climate model describing
the slow dynamics of the full higher-dimensional model.
Whereas for nonsystematic stochastic parameterizations
the results are sensitive to details of the assumed pro-
cesses, we will verify here that the homogenized re-
duced model faithfully represents the slow dynamics of
the full system even for moderate time-scale separa-
tion. We have chosen a system amenable to homoge-
nization precisely for the reason that the issue of the
appropriate choice of the stochastic parameterization
does not arise and the validity of the parameterization
is guaranteed by rigorous theorems (at least in the limit
of large time-scale separation).
Our main focus here is how well homogenized sto-

chastic climate models perform when used as forecast
models in the context of ensemble data assimilation. In
data assimilation one attempts to find an optimal esti-
mate of the state of a system combining information of
noisy observations and a numerical forecast model
exhibiting model error (Kalnay 2003). This procedure is
complicated by the nonlinear chaotic dynamics of the
system as well as the impossibility of observing the en-
tire system at any one time. On larger time scales, it is
often only possible to adequately observe the slow,
large-scale degrees of freedom of the system, while the
fast, small-scale degrees of freedom in general remain
unobservable. We consider one of the state-of-the-art
data assimilation methods called the ensemble Kalman
filter (EnKF) (Evensen 1994, 2006). In such a filter one
evolves an ensemble of state estimates forward in time
using a full nonlinear forecast model, and then estimates
the forecast (or background) mean and its associated
error variance from the ensemble. Together with ob-
servations of the system, this covariance is used in a least
squares minimization problem to find an optimal state

estimate called the analysis, along with an estimate of the
associated analysis error covariance. This filter is optimal
for linear systems with Gaussian errors, assumptions that
are generically not consistent with real-world systems.
Besides their ease of implementation, the attractive
feature of ensemble filters is that the forecast error co-
variance is estimated using the full nonlinear forecast
model.
Ensemble-based Kalman filters, however, suffer from

the problem of sampling errors due to the insufficient
ensemble size. These errors usually underestimate the
error covariances that may ultimately lead to filter di-
vergence, when the filter trusts the forecast and ignores
the information given by the observations. To avoid filter
divergence the concept of covariance inflation was in-
troduced whereby the prior forecast error covariance is
increased by an inflation factor (Anderson andAnderson
1999). This is usually done globally and involves careful
and computationally expensive tuning of the inflation
factor [for recent methods on adaptive estimation of
the inflation factor from the innovation statistics, see
Anderson (2007, 2009) and Li et al. (2009)].
We will address here the following questions: Under

what circumstances can reduced stochastic climatemodels
improve the skill of an ensemble-based data assimilation
scheme if used as forecast models? And if improvement
happens, why?
Harlim and Majda (2008, 2010) studied ensemble

filtering on the Lorenz-96 model (Lorenz 2006) in the
fully turbulent regime, where they found skill improve-
ment for a stochastic climate forecast model that was
constructed by radically replacing all nonlinear terms
by linear stochastic processes whose statistics are esti-
mated by fitting the model to the climatological vari-
ance and the decorrelation time. Here we study the
performance of systematically derived climate models;
however, our results will also shed light on skill im-
provements seen in other ensemble-based stochastic
filtering methods.
Stochastic climate models have often been found to

not reproduce the autocorrelation function of the full
deterministic system well, in particular for small time-
scale separation [see, e.g., Franzke et al. (2005) and
Franzke and Majda (2006)]. Here we will see that this
inaccuracy in faithfully reproducing the statistics of the
slow dynamics does not preclude stochastic reduced
models from being beneficial in data assimilation. We
will identify a range of observation intervals in which the
reduced stochastic climate model actually outperforms
the full deterministic model. The range of observation
intervals for which skill improvement is observed will be
related to the characteristic time scales of the system. In
particular we find that the observation interval has to be
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larger than the typical time taken for the slow state to
switch regimes, and smaller than the decay rate of the
autocorrelation function of the slow variable. Hence,
stochastic climate models will be beneficial when study-
ing weather or climate systems on time scales that resolve
regime switches.
We find that although climate models with appropri-

ately determined drift and diffusion terms faithfully re-
produce the slow dynamics of a multiscale deterministic
model, the statistics of the climate model is rather sen-
sitive to uncertainties in the drift and diffusion terms. A
central result will be that their superior performance in
data assimilation is not linked to their accurate ap-
proximation of the statistical slow behavior but rather to
a controlled increase of the ensemble spread associated
with their inherent dynamic stochasticity, with an effect
similar to inflating covariances or increasing ensemble
size. Hence optimal performance of stochastic reduced
climate models will be achieved when the diffusion co-
efficient is larger than the value that produces the closest
match to the full deterministic dynamics.
The remainder of the paper is organized as follows: In

section 2 we introduce themodel and derive the reduced
stochastic climate model for the slow dynamics using
homogenization techniques. Estimation of the drift and
diffusion terms in the climate model is performed in
section 3. In section 4 we examine some of the relevant
characteristic time scales of the dynamics. In section 5
we then study the sensitivity of these time scales to un-
certainties in the time-scale separation parameter as well
as in the diffusion and the drift term of the climatemodel.
After a brief overview of ensemble Kalman filtering in
section 6 we present numerical results showing the skill
improvement in using the reduced climatemodel over the
full deterministic model in an ensemble Kalman filter in
section 7. We conclude with a discussion in section 8.

2. The model

We consider the following deterministic system with
slow–fast time-scale separation proposed in Givon et al.
(2004):

dx

dt
5 x 2 x3 1

4

90«
y2, (1)

dy1
dt

5
10

«2
(y2 2 y1), (2)

dy2
dt

5
1

«2
(28y1 2 y2 2 y1y3), (3)

dy3
dt

5
1

«2
y1y2 2

8

3
y3

! "
. (4)

Here the slow variable x is driven by a fast chaotic
Lorenz system (Lorenz 1963). The slow dynamics (1)
describes an overdamped degree of freedom in a one-
dimensional potential well V(x) 5 x4/4 2 x2/2 that is
being continually ‘‘kicked’’ by the fast chaotic motion of
the Lorenz subsystem (2)–(4). In the following we will
set «2 5 0.01 unless specified otherwise.
In Fig. 1 we show a trajectory of the slow variable x

obtained from a simulation of the full deterministic
system (1)–(4). The trajectory of the slow variable ap-
pears to randomly switch between two metastable states
around the minima of the potential V(x) at xw 5 61. In
the following section we will derive a reduced stochastic
differential equation that describes the effective slow
dynamics.

Derivation of the stochastic climate model

The ergodicity of the fast chaotic Lorenz equation
(Tucker 1999) and its mixing property (Luzzatto et al.
2005) suggests an application of stochastic model re-
duction techniques, by which the fast chaotic degrees of
freedom are parameterized by a one-dimensional sto-
chastic process. This can be heuristically justified pro-
vided the fast processes decorrelate rapidly enough; then
the slow variables experience the sum of uncorrelated
fast dynamics during one slow time unit. According to
the central limit theorem this converges to approximate
Gaussian noise in the limit when the time-scale sepa-
ration becomes infinite. We will formalize this and
apply stochastic singular perturbation theory (homoge-
nization) (Khasminsky 1966; Kurtz 1973; Papanicolaou
1976; Givon et al. 2004; Pavliotis and Stuart 2008;
Melbourne and Stuart 2011) to deduce the following re-
duced stochastic 1D climatemodel for the slow xdynamics:

dX

dt
5 X(1 2 X2) 1 s

dW

dt
, (5)

with the one-dimensional Wiener processW, where s is
given by the total integral of the autocorrelation func-
tion of the fast y2 variable with

FIG. 1. Sample trajectory of the slow variable x of the full de-
terministic 4D model (1)–(4). The dynamics appears to randomly
switch between two metastable states with randomly distributed
sojourn times ti.
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T

ðT

0
y2(s)y2(t 1 s) ds

%
dt. (6)

Rather than studying the system (1)–(4) directly, in
stochastic homogenization one considers the associated
Fokker–Planck or its adjoint, the backward Kolmogorov
equation. Whereas the original ordinary differential
equation is nonlinear, the latter ones are linear partial
differential equations and can be treated with standard
perturbation techniques, expanding in the small param-
eter « and studying solvability conditions of the linear
equations at the respective orders of «. The solvability
conditions are given by Fredholm alternatives and can be
evaluated using the ergodicity of the fast process.
We will analyze the system (1)–(4) in the framework

of the backward Kolmogorov equation for the condi-
tional expectation value of some sufficiently smooth
observable f(x, y) defined as

y(x0, y0, t) 5 Eff[x(t), y(t)] j x(0) 5 x0, y(0) 5 y0g

with y5 (y1, y2, y3). Here the expectation value is taken
with respect to the ergodic measure induced by the fast
dynamics of the chaotic Lorenz system. We drop the
0 subscripts for ease of exposition from here on. We
study the following Cauchy problem for t 2 [0, ‘):

›

›t
y(x, y, t) 5 Ly(x, y, t),

y(x, y, 0) 5 f(x, y), (7)

with the generator

L 5
1

«2
L0 1

1

«
L1 1 L2,

where

L0 [ g(y) ! $y, (8)

L1 [
4

90
y2

›

›x
, (9)

L2 [ x2(1 2 x2)
›

›x
, (10)

and g(y) denotes the scaled vector field of the fast
Lorenz system g(y) 5 [10(y2 2 y1), (28y1 2 y2 2 y1y3),
(y1y2 2 8y3/3)]. We remark that equally we could have
used the framework of the Fokker–Planck equation.
Pioneered by Kurtz (1973) and Papanicolaou (1976),

a perturbation expansion can be made according to

y(x, y, t) 5 y0 1 «y1 1 «2y2 1 ! ! ! . (11)

A recent exposition of the theory of homogenization
and their applications is provided in Givon et al. (2004)
and Pavliotis and Stuart (2008). Substituting series (11)
into the backward Kolmogorov equation (7), we obtain
at lowest order O(1/«2)

L0y0 5 0. (12)

The chaotic dynamics of the fast Lorenz system, asso-
ciated with the generator L0, is ergodic (Tucker 1999).
Hence the expectation value does not depend on initial
conditions y and we obtain

y0 5 y0(x, t)

as the only solution of (12).
Ergodicity implies the existence of a unique invariant

density induced by the fast chaotic dynamics given by
the unique solution of the associated Fokker–Planck
equation

L0
*r 5 0,

where L0
* is the formal L2 adjoint of the generator L0.

We label this solution as r‘(y).
At the next order O(1/«), we obtain

L0y1 5 2L1y0. (13)

To assure boundedness of y1 [and thereby of the as-
ymptotic expansion (11)] a solvability condition has to
be satisfied prescribed by the Fredholm alternative.
Equation (13) is solvable only provided the right-hand
side is in the space orthogonal to the (one-dimensional)
null space of the adjoint L0*; that is, if

hL1y0ir‘ 5 2
4

90
hy2ir‘

›

›x
y0(x, t) 5 0,

where we introduced the average of an observable h(x, y)
over the fast ergodic density as hhir‘d

Ð
h(x, y)r‘(y) dy.

Note that the vanishing of the average of the fast per-
turbation in the slow equation with respect to the in-
variant measure induced by the Lorenz system implies
that classical averaging would only produce trivial re-
duced dynamics _x5O(«). Since hy2ir‘ 5 0, there exists
a solution of (13), which we can formally write as

y1(x, y, t) 5 2L21
0 L1y0 1 R(x), (14)

where R(x) lies in the kernel of L0.
At the next order O(1), we obtain

L0y2 5
›

›t
y0 2 L1y1 2 L2y0, (15)

which yields the desired evolution equation for y0 as the
associated solvability condition
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›

›t
y0 5 hL2y0ir‘ 1 hL1y1(x, t)ir‘ . (16)

The reduced slow backward Kolmogorov equation is
then

›

›t
y0 5 x(1 2 x2)

›

›x
y0 2

4

90

! "2
hy2L

21
0 y2ir‘

›2

›x2
y0. (17)

This can be simplified further. For every function h with
hhir‘ 5 0 we define

H(x, y) 5 2
ð‘

0
eL0th dt,

which, upon using the fact that L0 corresponds to an
ergodic process, implies that L0H5 h (Pavliotis and
Stuart 2008). Hence we can evaluate

hy2L
21
0 y2ir‘ 5 2

ð‘

0
hy2e

L0ty2i dt

5 2
ð‘

0

$
lim
T/‘

1

T

ðT

0
y2(s)y2(t 1 s) ds

%
dt,

where the last identity follows from employing Birkhoff’s
ergodic theorem. The reduced backward Kolmogorov
equation (17) can then be written as

›

›t
y0 5 x(1 2 x2)

›

›x
y0 1

s2

2

›2

›x2
y0, (18)

with s2 given by (6). Note that R(x) does not contribute
to the dynamics. We can therefore choose R(x) 5 0 in
order to assure that hyir‘ 5 hy0ir‘ 1O(«2).
The slow reduced Langevin equation associated with

the reduced backward Kolmogorov equation (18) is then
given by our stochastic 1D climate model (5).
The unique invariant density of the gradient system

(5) is readily determined as the unique stationary solu-
tion r̂(x) of the associated Fokker–Planck equation

›

›t
r(x) 5

›

›x

dV

dx
r

! "
1

s2

2

›2

›x2
r. (19)

We find

r̂(x) 5
1

Z
e2(2/s2)V(x) (20)

with

Z 5
ð‘

2‘
e2(2/s2)V(x) dx.

Note that the unique invariant density of the full de-
terministic 4D system (1)–(4) is now approximated by
r(x, y)5 r(x)r‘(y)1O(«).

3. Parameter estimation

The value of the diffusion coefficient s given by (6)
cannot be determined analytically for the reduced sto-
chastic 1D climate model as the unique invariant density
r‘(y) of the fast Lorenz subsystem (2)–(4) is not ex-
plicitly known. We therefore need to evaluate the dif-
fusion coefficient numerically from simulations of the
full deterministic 4D model (1)–(4) under the as-
sumption that its slow dynamics is well approximated
by the stochastic 1D climate model (5). We do so by
coarse-graining the full deterministic 4D system and
estimating conditional averages (Gardiner 2004; Siegert
et al. 1998; Stemler et al. 2007). This method has been
used in the meteorological community to study time
series in diverse contexts such as synoptic variability of
midlatitude sea surface winds, Icelandic meteorological
data, planetary waves, and paleoclimatic ice core data
(Sura and Barsugli 2002; Sura 2003; Egger and Jónsson
2002; Berner 2005; Ditlevsen 1999). This approach also
allows us to determine the drift term of the stochastic 1D
climate model, which we write for convenience here as

dx 5 d(x)dt 1 sdW, (21)

with drift term d(x)5 x(12 x2). Numerically integrating
the full deterministic 4D system (1)–(4) with a small time
step dt, we create a long time series x(ti), i 5 0, 1, . . . , n
with ti5 idt. To estimate the parameters of the Langevin
system (21) we subsample the time series x(ti) at a coarse
sampling time h " dt. We choose h such that during h
the finely sampled trajectory x(ti) performs roughly 3–4
fast (smooth) undulations induced by the fast chaotic
dynamics.
We estimate the diffusion coefficient (and the drift

term) by partitioning the state space into bins Xi of bin
sizeDX. We coarse grain bymapping x intoX for x2 (X,
X1DX). To estimate the diffusion coefficient we define
the average conditioned on the bins [X, X 1 DX]

S(X) 5
1

h
h(xn11 2 xn)2i

''''
xn2(X,X1DX)

, (22)

where xn5 x(nh). The angle brackets denote a conditional
ensemble average over microscopic realizations x(ti) that
fall into a coarsemacroscopic bin [X,X1DX]. In the limit
when the deterministic 4D dynamics can be approximated
by the stochastic 1D climate model (21) and for small
values of the sampling time h, we can evaluate
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S(X) 5 s2 1 X2(12X2)2h,

where we used dW 5 0. In the limit h / 0 we estimate
S(X) 5 s2. Similarly the drift d(x) can be estimated by

D(X) 5
1

h
h(xn112xn)i

''''
xn2(X ,X1DX)

, (23)

with D(X) ’ d(x) in the limit h / 0.
There are several pitfalls one may encounter using this

method to estimate the effective drift and diffusion co-
efficients of chaotic deterministic differential equations
related to the choice of the sampling time. [Sampling is-
sues for purely stochastic multiscale systemswere already
reported in Pavliotis and Stuart (2007).] If h is chosen
smaller than the typical time scales on which the fast
subsystem decorrelates, the diffusion coefficient does not
exist and S(X) will be close to zero in the limit h/ 0. On
the contrary, if h is chosen too large the estimator for
the diffusion coefficient will be swamped by the determin-
istic part of the dynamics and we will obtain S(X) ’
X2(12X2)2h. Similarly there are problemswith estimating
the drift D(X) for sampling times h taken too large. For
such subsampling times h, the coarse-grained dynamics
would for large values of h randomly switch from bin to
bin according to the invariant density r̂(x) given by (20).
Since in our case r̂(x) is symmetric, we can write the con-
tinuous approximation of the estimator for the drift as

D(X) 5
1

h

ð
(Y 2 X)r̂(Y) dY 5 2

X

h
.

This may lead to erroneous classifications of stochastic
processes asOrnstein–Uhlenbeck processes.We remark
that if the time series is not sufficiently long, the esti-
mated drift coefficient in our case of a bimodal proba-
bility density function will be erroneously estimated as
D(X)52(X2X0)/h because of the presence of the two
metastable states around X0 5 61.
This procedure can be readily extended to study mul-

tidimensional stochastic processes where the bins would
be hypercubes; the interpretation of the results in higher
dimensions and the deducing functional dependencies
may, however, be difficult. We remark that one may also
use Kalman filters to estimate the parameters (Cornick
et al. 2009) or estimate the generator directly (Crommelin
and Vanden-Eijnden 2006).
In Fig. 2 we show results from the parameter estima-

tion procedure. We choose a coarse-grain bin size of
DX 5 0.05 and sample the slow variable x at constant
sampling intervals h 5 0.005 corresponding to four fast
oscillations. We used a trajectory of the full deterministic
4D system (1)–(4) with «2 5 0.0005 and evolved until

T5 33 104 time units.We confirm the 1D climatemodel
(5) by estimating the drift coefficient clearly as

D(X) 5 X(1 2 X2),

FIG. 2. Parameter estimation for the (a) drift termD(X) and (b)
diffusion coefficient S(X) from a long trajectory of the full de-
terministic 4D system (1)–(4) with !2 5 0.0005 and sample interval
h 5 0.005. The dashed line depicts the theoretically expected drift
from the stochastic 1D climate model (5) in (a), and the constant
diffusion coefficient s2 5 0.113 in (b). (c) Diffusion coefficient as
a function of the sampling time.

1364 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



and estimating a constant diffusion coefficient S(X) 5
s25 0.113. We note that this is slightly smaller than the
value s2 5 0.126 found by Givon et al. (2004) using a
different method.
In Fig. 2c we show how the diffusion coefficient de-

pends on the sampling time as discussed above. It is
clearly seen that the diffusion coefficient cannot be un-
ambiguously determined (at least not using this method).
Wewill investigate in section 5 how sensitive the statistics
of the 1D climatemodel (5) is to this degree of uncertainty
in the estimation of the diffusion coefficient.

4. Time scales

An important parameter in data assimilation is the
observation interval Dtobs. We will see in section 7 that
skill improvement of the analysis is dependent on Dtobs.
We therefore now analyze several characteristic time
scales of the deterministic 4D toy model (1)–(4). In
particular we will focus on the slow variable x.

a. Autocorrelation time

We first estimate the decorrelation time tcorr, which is
linked to the decay rate of the autocorrelation function
of the slow variable

C(t) 5 lim
T/‘

1

T

ðT

0
x(s)x(t 1 s) ds. (24)

The autocorrelation time is estimated as the e-folding
time of C(t). The autocorrelation function C(t) can be
estimated from a long trajectory of x obtained from
a simulation of the full deterministic 4D model (1)–(4).
For small values of t it decays approximately exponen-
tially with a measured decay rate of 0.004 81, corre-
sponding to an e-folding time of tcorr 5 208 time units.

b. Sojourn and exit times

As a second time scale we consider the mean sojourn
time

t 5
1

M
!
M

i51
ti, (25)

where the sojourn times ti measure the times spent in
one of the slow metastable states around xw 5 61 as
depicted in Fig. 1. We expect this time scale to strongly
correlate with the autocorrelation time scale as it is
random transitions between the slow regimes that cause
decorrelation of the slow variable. We numerically esti-
mate the mean sojourn time using two separate methods.
First, we estimate the mean sojourn time directly from
a long trajectory of the slow variables x using (25) as
t’ 218:2 time units. Second, the succession of rapid

transitions and relatively long residence times in the
potential wells suggests that successive jumps between
metastable states can be treated as independent random
events, and that the sojourn times are a Poisson process
with cumulative probability distribution function

Pc(ti) 5 1 2 exp
ti
t

( )
. (26)

In Fig. 3 we show the empirical ranked histogram Pc(ti)
for the sojourn times measured from a long trajectory
x(t) of the full deterministic 4D system (1)–(4), allowing
us to determine the mean sojourn time t ’ 213:8 time
units. Calculating the mean sojourn time by either the
average of individual sojourn times (25) or via the
Poisson process approximation (26) yields results dif-
fering by only 2%, indicating that for «2 5 0.01 the fast
chaotic Lorenz subsystem has almost fully decorrelated
and that the rare transitions between the metastable
states are approximately a Poisson process. In the fol-
lowing we will use the average of the two obtained values
of the mean sojourn time and set t’ 216:0 time units.
These numerically obtained results for the full de-

terministic 4D system (1)–(4) compare well with the
value calculated analytically for the stochastic 1D cli-
mate model (5) using Kramers’ theory (Kramers 1940) to
calculate the first exit time

te 5
1

2
t.

We define the first exit time te to be the average time it
takes from the potential well at x561 to reach the saddle
of V(x) at x 5 0. To calculate the exit time we solve the
following Cauchy problem (see, e.g., Zwanzig 2001):

FIG. 3. Log plot of the normalized histogram of sojourn times ti
of the slow variable x in each metastable state around xw 561 for
the full deterministic 4D system (1)–(4). The dashed line shows
a least squares fit.Using (26) themean sojourn time can be estimated
via the inverse of the slope of the least squares fit as t’ 213:8.
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Lclimte 5 21, (27)

where

Lclim 5 2V9›x 1
s2

2
›xx

is the generator of the stochastic 1D climate model (5),
with the boundary conditions ›xte(x 5 61) 5 0 and
te(0)5 0. Note that the first exit times for the symmetric
potential out of the potential wells at x521 or x5 1 are
identical. Upon using the boundary conditions, we solve
(27) to obtain

te 5 b

ð0

21
dyebV(y)

ðy

21
e2bV(z) dz,

with b 5 2/s2, which can be numerically evaluated to
yield te 5 117.8 for s2 5 0.113. The exact analytical
value calculated from the reduced stochastic 1D climate
model compares well with the numerically estimated
values of the first exit times of the full deterministic 4D
model te 5 108.0, confirming the accuracy of the ho-
mogenizedmodel to faithfully reproduce the statistics of
the full parent model.

c. Transit time

As a third characteristic time scale, we study the mean
transit time tt, which is the average over the shortest
transit time tt,i between the two slow metastable states
around xw 5 61. We define this time to be the mean of

tt,i 5 min[(ti 2 tj) j x(ti)561 ^ x(tj)571]. (28)

For a long trajectory containing 5000 transitions be-
tween the slowmetastable states we numerically estimate
tt 5 5.90 for the full deterministic 4D model (1)–(4). We
found that the transit time does not vary greatly with the
value of «.
As for the mean sojourn time, the transit time can be

analytically calculated for the stochastic 1D climate
model (see, e.g., Gardiner 2004) as

tt 5 4
P11(0) 2 P21(0)

s2r̂21(0)
, (29)

where

P11(x) 5 r̂11(x)

ð1

x
dx9r̂21(x9)

ðx9

21
r̂21(z)r̂(z) dz,

P21(x) 5 r̂21(x)

ðx

21
dx9r̂21(x9)

ðx9

21
r̂21(z)r̂(z) dz,

with the splitting probabilities

r21(x) 5

ð1

x
dzr̂21(z)

ð1

21
dzr̂21(z)

,

r11(x) 5

ðx

21
dzr̂21(z)

ð1

21
dzr̂21(z)

.

For the stochastic 1D climate model with s 2 5 0.113 we
evaluate this numerically to be tt 5 5.66, which again
compares well with the numerically obtained value of
the transit time for the full deterministic 4D system.

5. Validity of the stochastic climate model

In this section we numerically investigate to what
degree the stochastic 1D climate model (5) faithfully
reproduces the slow dynamics of the full deterministic
4D system (1)–(4). It is clear that such a correspondence
can only be of a statistical nature. The close correspon-
dence of the time scales of the full deterministic 4D
system and of the stochastic 1D climate model for s2 5
0.113 and «2 5 0.01 already indicates the validity of the
stochastic 1D climate model in reproducing statistical
aspects of the slow dynamics. The rigorous theory by
Kurtz (1973) and Papanicolaou (1976) assures weak
convergence of the stochastic climate model in the limit
of « / 0. Here we discuss the effect of finite time-scale
separation «. Furthermore we study the sensitivity of
the climate model to uncertainties in the diffusion co-
efficient s2 as we have encountered in section 3. In the
appendix we will also investigate the sensitivity to pos-
sible uncertainties in the drift term.

a. Probability density function

We first examine how the probability density function
varies for different values of the time-scale separation
parameter «. In Fig. 4 we show empirical densities
for the slow variable x obtained from a long simulation
of the full deterministic 4D system (1)–(4) for different
values of the time-scale separation. The obtained es-
timates of the empirical invariant densities exhibit a
bimodal structure reflecting the two slow metastable
regimes near xw561. The probability density functions
are reasonably insensitive to changes in «2, with the max-
ima of the densities at xw 5 61 differing for «2 5 0.0005
and «2 5 0.01 by less than 1%, and by approximately 5%
for «2 5 0.01 and «2 5 0.1. This numerically demonstrates
the weak convergence of solutions of the homogenized

1366 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



stochastic 1D climate model to solutions of the full de-
terministic slow dynamics.
Next we show in Fig. 5 how sensitive the empirical

density of the stochastic 1D climate model (5) is to
changes in the diffusion coefficient. Unlike for changes
in the time-scale parameter, the 1D climate model is
quite sensitive to changes in the diffusion coefficient.
The invariant density of the full deterministic 4D model
is best estimated by the stochastic 1D climate model
with s 2 5 0.113.

b. Time scales

Differences in the probability density function imply
different statistics of the dynamics. In particular, we
will now examine how the characteristic time scales
of the full deterministic 4D model (1)–(4) change with
the time-scale separation and how they change for the
stochastic 1D climate model (5) with varying diffusion
coefficients.
Consistent with our earlier observation that the prob-

ability density function does not vary greatly with the
time-scale separation parameter (provided it is suffi-
ciently small), we confirm here that the time scales are
insensitive to a decrease in « for «2 , 0.01. In particular
the transit time tt exhibits very little variation with «.
We find that with the exception of the transit time tt,

the characteristic time scales of section 4 are very sensitive
to uncertainties in the diffusion coefficient. For example,
in Fig. 6 the autocorrelation function C(t) is shown as
estimated from a long trajectory of x obtained from
a simulation of the full deterministic 4D model (1)–(4),
and from simulations of the stochastic 1D climate model
(5) with different values of the diffusion coefficient.

Using s2 5 0.113 in (5) produces the best fit to the shape
of C(t) for the full deterministic 4D model (1)–(4).
Table 1 lists the values of the characteristic time scales

for the stochastic 1D climate model (5) for various
values of the diffusion coefficient. We show the percent-
age difference of each value with that for the full de-
terministic 4D model (1)–(4) with «2 5 0.01 in brackets.
All time scales vary by approximately a factor of 5 over
the range of values indicated except for the transit time,
which varies by just 13% and approximates the transit
time of the full deterministicmodel better ass2 decreases.
The transit time is determined by the rate of divergence
associated with the unstable fix point at x 5 0 of the de-
terministic drift term, making it relatively insensitive to
changes in the diffusion coefficient. The transit times of

FIG. 4. Normalized empirical densities for the slow variable x
of the full deterministic 4D model (1)–(4) with «2 5 0.1 (dashed
line), 0.01 (solid line), and 0.0005 (circles). The empirical densities
were obtained from long trajectories integrated to time T 5 109

time units.

FIG. 5. Invariant density (20) for the stochastic 1D climate model
(5), with s25 0.1 (circles), 0.113 (crosses), 0.126 (squares), and 0.15
(triangles), and empirical density for the slow variable x of the full
deterministic 4D model (1)–(4) with «2 5 0.01 (solid line).

FIG. 6. Autocorrelation function C(t) as a function of the time
lag t for the full deterministic 4Dmodel (1)–(4) (solid line) and for
the stochastic 1D climate model (5) with s2 5 0.1 (circles), 0.113
(crosses), 0.126 (squares), and 0.15 (triangles).
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the full deterministic model, however, are slightly over-
estimated, since definition (28) does not take into account
the skewness of the probability density function (see
Fig. 4), which implies that the trajectory spends more
time within the range x 2 [21, 1] than outside this
range. The table indicates that all time scales (except
the transit time tt) are best approximated by the sto-
chastic 1D climate model with s2 5 0.113, consistent
with the better approximation of the probability den-
sity function for that value of s2. However, we will see
in section 7 that in the context of ensemble data as-
similation it is not necessarily ideal to use this value
for s2; in fact, it is preferable to use models with larger
diffusion to create a more reliable ensemble with su-
perior analysis skill.

6. Ensemble Kalman filtering

Webriefly introduce how data assimilation is performed
in an ensemble filter framework. Given an N-dimensional
dynamical system

_zt 5 F(zt), (30)

which is observed at discrete times ti 5 iDtobs, data as-
similation aims at producing the best estimate of the
current state given a typically chaotic, possibly inaccurate
model _z5 f (z) and noisy observations of the true state zt
(Kalnay 2003).
Observations yo2 Rn are expressed as a perturbed

truth according to

yo(ti) 5 Hzt(ti) 1 ro,

where the observation operator H: RN/Rn maps from
the whole space into observation space, and ro2 Rn is
assumed to be independent and identically distributed
observational Gaussian noise with associated error co-
variance matrix Ro.
In an ensemble Kalman filter (Evensen 1994, 2006) an

ensemble with k members zk

Z 5 [z1, z2, . . . , zk] 2 RN3k

is propagated by the dynamics (30) according to

_Z 5 f (Z), f (Z) 5 [f (z1), f (z2), . . . , f (zk)] 2 RN3k.

(31)

This forecast ensemble is split into its mean zf and en-
semble deviation matrix Z9f . The ensemble deviation
matrix can be used to approximate the ensemble fore-
cast error covariance matrix via

Pf (t) 5
1

k 2 1
Z9(t)[Z9(t)]T 2 RN3N . (32)

Note that Pf (t) is rank-deficient for k , N, which is the
typical situation in numerical weather prediction where
N is on the order of 109 and k on the order of 100.
Given the forecast mean, the forecast error covariance,

and an observation, an analysis mean is produced by
minimizing the cost function

J(z) 5
1

2
(z 2 zf)

TP21
f (z 2 zf)

1
1

2
(yo 2 Hz)TR21

o (yo2Hz),

which penalizes distance from both the forecast mean
and the observations with weights given by the inverse of
the forecast error covariance and the observational noise
covariance, respectively. The analysis mean is readily
calculated as the critical point of this cost function with

za 5 zf 1 Ko(yo 2 Hzf ), (33)

where

Ko 5 PfH
T(HPfH

T 1Ro)
21,

Pa 5 (I 2 KoH)Pf . (34)

Using the Shermann–Morrison–Woodbury formula
(Golub and Loan 1996) wemay rewrite the Kalman gain
matrix and the analysis covariance matrix in the more
familiar—though computationally more complex—form
as Ko 5PaH

TR21
o and

Pa 5 (P21
f 1HTR21

o H)21. (35)

To determine an ensemble Za that is consistent with the
analysis error covariance Pa and that satisfies

Pa 5
1

k 2 1
Z9a[Z9a]

T,

where the prime denotes the deviations from the anal-
ysis mean, we use the method of ensemble square root
filters (Simon 2006). In particular, we use the method
proposed in Tippett et al. (2003) andWang et al. (2004),

TABLE 1. Characteristic time scales of the stochastic 1D climate
model (5) for different values of the diffusion coefficient s2. In pa-
rentheses we indicate the error when compared to values obtained
from the full deterministic 4D model (1)–(4) with «2 5 0.01.

s2 5 0.1 s2 5 0.113 s2 5 0.126 s2 5 0.15

tcorr 353.9 (70.1%) 221.7 (6.6%) 129.0 (61.2%) 70.5 (195%)
te 205.7 (90.5%) 117.8 (9.1%) 75.6 (42.6%) 40.8 (164.7%)
tt 5.86 (0.07%) 5.66 (4.2%) 5.48 (7.7%) 5.17 (14.1%)
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the so-called ensemble transformKalman filter (ETKF),
which seeks a transformation S 2 Rk3k such that the
analysis deviation ensemble Z9a is given as a deterministic
perturbation of the forecast ensemble Zf via

Z9a 5 Z9fS. (36)

Alternatively one could choose the ensemble adjust-
ment filter (Anderson 2001) in which the ensemble de-
viation matrix Z9f is premultiplied with an appropriately
determined matrix A 2 RN3N . Note that the matrix S is
not uniquely determined for k,N . The transformation
matrix S can be obtained by (Wang et al. 2004)

S 5 C(Ik 1!)21/2CT.

Here CGCT is the singular value decomposition of

U 5
1

k 2 1
Z9Tf HTR21

o HZ9f .

The matrix C 2 Rk3(k21) is obtained by erasing the last
zero column from C 2 Rk3k, and ! 2 R(k21)3(k21) is the
upper left (k2 1)3 (k2 1) block of the diagonal matrix
G 2 Rk3k. The deletion of the zero eigenvalue and the
associated columns in C assure that Z9a 5Z9aS and
therefore that the analysis mean is given by za. This
method assures that the mean is preserved under the
transformation (Wang et al. 2004), which is not neces-
sarily true for general square root filters. We note that
the continuous Kalman–Bucy filter can be used to cal-
culate z9a without using any computations of matrix in-
verses, which may be advantageous in high-dimensional
systems (Bergemann et al. 2009).
A new forecast is then obtained by propagating Za

with the nonlinear forecast model to the next time of
observation, where a new analysis cycle will be started.
In the next section we perform data assimilation for

the toymodel introduced in section 2.We examine when
and why the stochastic 1D climate model (5) can be used
as a forecast model to improve the analysis skill. In
particular, we will relate the range of validity of the 1D
climate model to the relation between the observation
interval and the characteristic time scales introduced in
section 4.

7. Stochastic climate model as forecast model in
data assimilation

We investigate how the ETKF as described in the
previous section performs when either the full 4D de-
terministic system (1)–(4) or the reduced stochastic 1D
climate model (5) is used as a forecast model, when
the truth evolves according to the full deterministic 4D

model. We are concerned here with the following ques-
tions: Can the dimension reduced stochastic climate
model produce a better analysis than the full deterministic
model? And if so, under what circumstances and why?
We generate a truth zt5 (xt, y1t, y2t, y3t) by integrating

(1)–(4) using a fourth-order Runge–Kutta scheme with
time step dt 5 «2/20. Observations of the slow variables
only are then generated at equidistant times separated
by the observation interval Dtobs according to xobs5 xt1
h where h;N (0,

ffiffiffiffiffiffiffiffiffi
Robs

p
), with Robs 5 0.5s2 and s2 5

0.126. Note that this value is slightly larger than the
optimal value s2 5 0.113, which was found in the pre-
vious section to best approximate the full deterministic
4D model.
To integrate the forecast model we use a fourth-order

Runge–Kutta scheme with dt 5 «2/20 for the full de-
terministic 4D model with «2 5 0.01, and an Euler–
Maruyama scheme for the reduced stochastic 1D climate
model using the same time step. Unless stated otherwise
we use s2 5 0.126 for the stochastic 1D climate model.
We include a spinup time of 100 analysis cycles. We
perform twin experiments, where both forecast models
are started from the same initial conditions, and are
then subsequently assimilated using the same truth and
observations over 5000 time units. To avoid rare oc-
casions of filter divergence due to an underestimation
of the forecast covariances we employ a 2% variance
inflation (Anderson and Anderson 1999).
Figure 7 shows two sample analysis time series created

by assimilating the same truth and observations at reg-
ularly spaced intervals ofDtobs5 50 where the stochastic
1D climate model and the full deterministic 4D model
are used as the respective forecast models. Both forecast

FIG. 7. Sample truth (solid line) and ETKF analyses (dashed
line) for the observed x-component using (top) the full de-
terministic 4D model (1)–(4) and (bottom) the reduced stochastic
1D climate model (5) as the forecast model. The crosses are ob-
servations with error variance Robs 5 0.5s2 (s2 5 0.126). Here we
have used an observation interval Dtobs 5 50 and k 5 15 ensemble
members.
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models track the truth well. However, the stochastic 1D
climate model tracks the transitions between the slow
metastable states around xw 5 61 more accurately.
We quantify the improvement made using the re-

duced stochastic 1D climate model by measuring the
RMS error E between the observed truth xt and the
analysis mean xa:

E 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
!
N

i51
[xa(ti)2 xt(ti)]

2

vuut
,

where N is the total number of analysis cycles. In Fig. 8
we show E as averaged over 1000 realizations, where we
have used both the full deterministic 4D model and the
reduced stochastic 1D climate model as forecast models,
as a function of the observation interval Dtobs. Both filters
exhibit the same accuracy for small observation intervals
(,10), when the system is frequently observed, and for
very large observational times (.500), when the fore-
cast is much larger than all the characteristic time scales
we discussed in section 4. At very large observation
intervals (not shown), when the ensemble of both
forecast models will have explored the state space of
the slow variable with climatological variance s2

clim’ 1,
the resulting analysis error covariance can be estimated
using the Kirchoff-type addition rule of covariances (35)
as P21

a 5s22
clim1R21

obs as Pa 5 0.2442 for Robs 5 0.5s2 and
s2 5 0.126, which corresponds well with the measured
asymptote of the RMS error in Fig. 8. Interestingly, for
moderate observation intervals, the stochastic 1D climate
model performs considerably better than the full de-
terministic 4D model. Moreover, the analysis using the

full deterministic 4D forecast model exhibits RMS
errors worse than the observational error of

ffiffiffiffiffiffiffiffiffi
Robs

p
5

0:251. In contrast, when the stochastic 1D climate
model is used as a forecast model for the filter, the
analysis error is always below the observational error
(i.e., performing data assimilation is desirable over just
trusting the observations, albeit with an improvement
in RMS error of only around 5%).
We introduce the proportional improvement in the

RMS error or skill

S 5
Efull
Eclim

,

where Efull and Eclim are the RMS errors when the full
deterministic or the reduced stochastic model is used as
forecast model, respectively. Values of S$ 1 imply that
it is beneficial to use the reduced stochastic 1D climate
model (note that when S5 1 it is still beneficial to use
the stochastic 1D climate model because of the reduced
computational expense). Figure 9 shows S as a function
of Dtobs, averaged again over 1000 realizations, with the
time scales tt, te, and tcorr superimposed. Skill im-
provements occur only for observation intervals larger
than the mean transit time tt, with the maximum skill
improvement over all forecasts occurring forDtobs slightly
smaller than the mean exit time. If forecasts are longer
than tcorr, the full and climate models are essentially in-
distinguishable with S5 1.
Figure 9 also shows how the skill is distributed over

the whole set of the analyses including metastable states

FIG. 8. RMS errors E of the analysis using the full deterministic
4Dmodel (1)–(4) (crosses) and the stochastic 1D climatemodel (5)
with s2 5 0.126 (circles) as forecast models, as a function of the
observation interval Dtobs. The horizontal dashed line indicates the
observational error

ffiffiffiffiffiffiffiffiffi
Robs

p
5s/

ffiffiffi
2

p
5 0:251 (s2 5 0.126). The re-

sults are averaged over 1000 realizations.

FIG. 9. Proportional skill improvement S of the stochastic 1D
climate model (5) over the full deterministic 4D model (1)–(4) as
a function of the observation interval Dtobs. We show S as calcu-
lated over all analyses (circles), the metastable regimes only
(crosses), and the transitions only (squares). Dashed vertical lines
indicate the characteristic time scales of the slow dynamics: the
decorrelation time tcorr, first exit time te, and transit time tt. Pa-
rameters are as in Fig. 8.
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and transitions between them, as well as only over those
analyses which remain within a metastable state near
either xw 5 21 or xw 5 1, and those which fall in the
transitions between the metastable states. Note that for
large observation intervals Dtobs . tcorr half of all fore-
casts switch between regimes, so the notion of analyses
that remain within one metastable regime becomes ob-
solete. As such, we do not plot skill as calculated over
the metastable regimes for t . tcorr in this case.
Figure 9 illustrates that the major contribution to the

skill improvement is from the stochastic 1D climate
model better detecting the transitions between slow
metastable states. While there is actually a minor deg-
radation in skill of around 3% for forecasts with tt ,
Dtobs , tcorr made for analyses that remain within
metastable states, skill improvements of over 25% are
made for those analyses which fall into the transitions
between the metastable states. This is because analyses
that detect transitions between metastable states in-
correctly contribute large RMS errors O(1), compared
to the small errors O(Robs) made by incorrect analyses
within the metastable states. These large errors have
a major impact upon the total skill. There is also skill
improvement as calculated over the transition periods
for small values of the observation interval. However,
there is no corresponding overall skill improvement
since for small observation intervals the number of
instances where the truth remains within a metastable
regime is overwhelmingly larger, thereby swamping the
skill improvement obtained over the rare transitions.
We note that the skill is insensitive to the observa-

tional noise level, provided Robs is sufficiently small that
observations do not misrepresent the actual metastable
state or regime in which the truth resides. The skill is
roughly the same forRobs5 0.1s2 andRobs5 0.25s2, and
we observe no skill improvement S’ 1 when we take
very poor observations with Robs 5 0.5, approximately
half the climatological variance of the full slow system.

a. Sensitivity of analysis skill to uncertainties in the
diffusion coefficient

As for the time scales in section 5, we examine how the
analysis skill depends on the diffusion coefficient (see
the appendix for dependence on the drift term). Figure 10
shows the skill as a function of the observation interval
for several values of s2. For very small diffusion and for
very large diffusion (not shown) the skill is actually
smaller than 1 for all observation intervals, implying
that the stochastic 1D climatemodel performs worse than
the full deterministic 4D model. There exists a range of
values of s2 for which the stochastic climate model out-
performs the full deterministic model with roughly simi-
lar skill values S(Dtobs). 1 for tt , Dtobs , tcorr.

The dependence of analysis skill upon the diffusion
coefficient can be understood as follows: For small dif-
fusion (s2 5 0.1) the stochastic 1D climate model is less
diffusive than the truth and the deterministic 4D fore-
cast model, and its associated forecast is likely to remain
in a metastable state. This produces small ensemble
spread and therefore causes more instances of the fore-
cast not detecting a transition between regimes. On the
other extreme, for large diffusion (s2 " 0.15), the sto-
chastic 1D climate model exhibits regime switches too
frequently, thereby producing a large forecast error that
contaminates the analysis. For moderate values of the
diffusion coefficient, the increase in spread of the forecast
ensemble helps the detection of regime switches.

b. Effect of ensemble size and covariance inflation

The results from the previous subsection suggest that
the observed skill improvement is linked to the increased
forecast ensemble spread of the stochastic climatemodel,
rather than to the accuracy of the stochastic parameteri-
zation. This is exemplified by the fact that for s2 5 0.113
for which the stochastic 1D climate model approximates
the statistics of the full deterministic 4Dmodel best, there
is no skill improvement S’ 1, and skill improvement
S. 1 is given for s2 . 0.113 where transitions between
the metastable states are better captured.
The lack of sufficient ensemble spread when using the

full deterministic system as a forecast model is caused by
the finite size of the ensemble (Ehrendorfer 2007). In the
data assimilation community a common approach to
account for insufficient spread is covariance inflation
(Anderson and Anderson 1999), whereby the forecast
variance Pf is artificially inflated by multiplication with
a factor d . 1. We now investigate how the ensemble

FIG. 10. Proportional skill improvement S of the stochastic 1D
climate model (5) over the full deterministic 4D model (1)–(4) as
a function of the observation interval Dtobs with s2 5 0.1 (circles),
0.113 (crosses), 0.126 (squares), and 0.15 (triangles). All other pa-
rameters are as in Fig. 8.
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size k and inflation factor d affect the skill. In particular
we show that the RMS error using the full deterministic
model can be reduced by either increasing the ensemble
size or by using larger inflation factors.
Figure 11 shows E as a function of the ensemble size

for Dtobs 5 40 (which is close to the observation interval
yielding maximal skill improvement; see Fig. 9), s2 5
0.126, and averaged over 200 realizations. For large
ensembles with k $ 35 the overdiffusive stochastic 1D
climate model and the full deterministic 4D model
perform as well as forecast models. We have checked
that when using a large ensemble (k5 50) the stochastic
climate and full deterministic models perform equally
well for the range of observation intervals used in Fig. 8.
For smaller ensemble sizes the stochastic 1D climate
model outperforms the full deterministic 4D model.
This illustrates that the skill improvement is linked to
the insufficient ensemble spread of the deterministic 4D
model, which is compensated in the stochastic 1D climate
model by a slightly increased diffusion coefficient.
Similarly, for fixed ensemble size, the ensemble spread

can be artificially increased by inflating the forecast co-
variance with a constant factor. Figure 12 shows E as
a function of the inflation factor, for 1 # d # 3. It is seen
that for unrealistically large values of d the RMS error
decreases when the full deterministic 4Dmodel is used as
a forecast model, whereas it is relatively insensitive to
changes in d for the stochastic 1D climate model. For
even larger values of d the RMS errors for the two fore-
cast models eventually become equal (not shown).

c. Reliability and ranked probability diagrams

Another way of understanding why the ensemble var-
iance of the stochastic 1D climate model produces skill

better than that of the full deterministic 4D model is
through ranked probability histograms (also known
as Talagrand diagrams; Anderson 1996; Hamill and
Colucci 1997; Talagrand et al. 1997). To create proba-
bility density histograms we sort the forecast ensemble
xf 5 [xf ,1, xf ,2, . . . , xf ,k] and create bins (2‘, xf,1], (xf,1,
xf,2], . . . , (xf,k, ‘) at each forecast step. We then in-
crement whichever bin the truth falls into at each
forecast step to produce a histogram of probabilities Pi

of the truth being in bin i. A reliable ensemble is con-
sidered to be one where the truth and the ensemble
members can be viewed as drawn from the same dis-
tribution. A flat probability density histogram there-
fore is seen as indicating a reliable ensemble for which
each ensemble member has equal probability of being
nearest to the truth. A convex probability density his-
togram indicates a lack of spread of the ensemble,
while a concave diagram indicates an ensemble that
exhibits too large spread. We direct the reader toWilks
(2006) for a detailed discussion.
Hamill (2001) suggested that a single ranked proba-

bility histogram is not sufficient for dynamical systems
with several dynamical regimes as in our case; rather,
one must look at the variability of the ensemble in the
different dynamical regions individually. We therefore
construct ranked probability histograms (for both fore-
cast models) over the metastable regime with charac-
teristic time t only and over the complementary regime
of transitions with characteristic time tt only, as done for
the distribution of the skill over those regimes (see Fig. 9).
In Fig. 13, we plot probability density histograms of

the forecast for the full deterministic 4D model (1)–(4)
and the stochastic 1D climate model (5) with various
values of the diffusion coefficient, (a) over all analyses,

FIG. 11. RMS error E as a function of ensemble size k, using the
full deterministic 4Dmodel (1)–(4) (crosses) and the stochastic 1D
climate model (5) with s2 5 0.126 (circles) as forecast models. We
used Dtobs5 40; all other parameters are as in Fig. 8.

FIG. 12. RMS error E as a function of inflation factor d, using the
full deterministic 4Dmodel (1)–(4) (crosses) and the stochastic 1D
climate model (5) with s2 5 0.126 (circles) as forecast models. We
used Dtobs 5 40; all other parameters are as in Fig. 8.
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(b) over the analyses which fall near the metastable
states xw 561, and (c) over the analyses that fall in the
transitions between metastable states. We use a long
analysis cycle containing 250 000 forecasts. Although
the full deterministic model produces the most reliable
ensemble when averaged over all forecasts, it over-
estimates the variance in the metastable regions and

underestimates the variance across the transitions. For
the stochastic 1D climate model, the more under-
diffusive model with s25 0.1 produces the most reliable
ensemble in the metastable regions while the more dif-
fusive models with s2 5 0.126 and s2 5 0.15 both pro-
duce more uniform ranked probability histograms than
the full model does in the transition regions. The re-
duced stochastic 1D climate model with optimal diffu-
sion coefficient s2 5 0.113 behaves similarly to the full
deterministic 4D model as expected. It is thus more
desirable to favor the more diffusive stochastic climate
models because a comparatively large improvement in
RMS error can be made in the transition regions com-
pared to in the metastable regions. This agrees with our
earlier observation that the skill improvement is entirely
due to the stochastic climate model being more accurate
in the transition regions where large errors can be ac-
crued by misclassifying the regime (see Fig. 9).

8. Discussion

We have investigated a homogenized stochastic cli-
mate model of a bistable multiscale system with a cha-
otic fast subsystem, and its usage as a forecast model in
ensemble Kalman filtering. The reduced stochastic cli-
mate model was numerically shown to faithfully re-
produce the statistics of the slow dynamics of the full
deterministic model even in the case of finite time-scale
separation where the theorems underpinning homoge-
nization fail. Homogenized stochastic climate models
replace in a controlled fashion the accumulative effect of
the fast chaotic dynamics on the slow dynamics by white
noise. We estimated the analytical expressions of the
drift and diffusion terms of the reduced stochastic model
using coarse-graining and quadratic variations, and found
that the diffusion coefficient is very sensitive to the ap-
plied undersampling time. The statistics of the stochastic
climate model (i.e., the probability density function and
averaged characteristic time scales) were found to be very
sensitive to the diffusion and drift terms used. Despite
this sensitivity and the implied uncertainties associated
with the ‘‘correct’’ stochastic climate model, we found
that stochastic climate models can be beneficial as fore-
cast models for data assimilation in an ensemble filter
setting. We have shown numerically that using such
a stochastic climate model has the advantage of 1) be-
ing computationally more efficient to run due to the
reduced dimensionality and avoidance of stiff dynam-
ics and 2) producing a superior analysis mean for a
range of observation intervals. These skill improve-
ments occur for observation intervals larger than the
time taken to switch between slow metastable states tt
but less than the decorrelation time tcorr.

FIG. 13. Ranked probability histograms for the full deterministic
4D model (1)–(4) (dashed line) and the stochastic 1D climate
model (5) with s2 5 0.1 (circles), 0.113 (crosses), 0.126 (squares),
and 0.15 (triangles) over (a) all forecasts, as well as (b) only those
forecasts that fall near the metastable states xw 561 and (c) those
that fall in the transitions between metastable states.
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This skill improvement is due to the associated larger
ensemble variance of the stochastic climate model, which
allows the ensemble to explore the full state space of the
slow variable better than the full deterministic model
does. Forecasts made by the stochastic climate model will
generally contain more ensemble members that cross
the potential barrier between the slow metastable states
(weather or climate regimes) than full model forecasts
will. Consequently, there is a greater chance during the
forecast of one ormore climatemodel ensemblemembers
crossing the potential barrier to the opposite metastable
state than in the full deterministic model ensemble. If
an observation appears near the other metastable state
from where the forecast began, the Kalman filter analysis
equation (33) trusts the observation more than the fore-
cast, correctly producing an analysis that changes between
the regimes. Thus, the stochastic climate model with large
enough diffusion better detects transitions between slow
metastable states and so has lower RMS error near these
transitions in which large errors can be accrued.
We remark that strict time-scale separation is not

necessary for the existence of metastable regimes; we
have checked that for ! 5 1 dynamics similar to those
depicted in Fig. 1 can be observed for increased coupling
strength. In this case we can still obtain skill for obser-
vation intervals between the transit time and the de-
correlation time when using a stochastic Langevin
equation of the form (5), albeit with decreased diffusion
whose dynamically optimal value is no longer approxi-
mated by homogenization.
Similarly, we remark that multimodal probability

density functions are not necessary for the existence of
metastable regimes, as was pointed out by Wirth (2001)
and Majda et al. (2006). In cyclostationary systems (i.e.,
systems that involve time-periodic coefficients) or in
aperiodic systems in which ‘‘regimes’’ occur intermit-
tently, the probability density function may be unimodal
whereas if restricted to time windows focusing on the
regimes the ‘‘hidden’’ regimes can be identified. This
has important implications for interpreting atmospheric
data (Majda et al. 2006; Franzke et al. 2008, 2009) where
one needs to reconcile the apparent paradox of multi-
modal probability density functions of planetary waves
obtained from (relatively short time) observational
data (Kimoto and Ghil 1993; Cheng and Wallace 1993;
Corti et al. 1999) and unimodal but non-Gaussian
probability density functions obtained from long-time
simulations of atmospheric general circulation models
(Kondrashov et al. 2004; Branstator and Berner 2005;
Franzke and Majda 2006; Berner and Branstator 2007)
[for a critical account on the analysis of short climatic
data see, e.g., Hsu and Zwiers (2001); Stephenson et al.
(2004); Ambaum (2008)].

However, it is pertinent to mention that the results
found here are not dependent on the existence of meta-
stable states but only require dynamics with rapid large
amplitude excursions as, for example, in intermittent
systems. In Harlim andMajda (2008, 2010) a system with-
out multiple equilibria was investigated and superior
filter performance was found for stochastic parameteri-
zations (in this case by radically replacing all nonlinear
terms by linearOrnstein–Uhlenbeck processes in Fourier
space). We believe that their observed increased analysis
skill can be explained by the increased ensemble spread
counteracting finite sampling errors of the underlying
ensemble Kalman filter approach as we did. The advan-
tage when homogenization can be used is that the slow
dynamics and its mean are still well resolved and repro-
duced and therefore the ensemble spread increasing
stochasticity is of a more controlled nature. The use of
homogenized stochastic climate models with adjusted
larger diffusivity therefore amounts to incorporating de-
liberate but controlled model error into the data assimi-
lation scheme.
We found that the same skill can be obtained using the

full deterministic model either by using a larger en-
semble or by increasing the covariance inflation factor.
The first is undesirable for large models because of the
computational difficulty of simulating large ensembles
and their covariances, while the second is undesirable
because it introduces unphysical inflation (here a multi-
plicative factor of d . 2 was needed) and requires ex-
pensive empirical tuning of the inflation factor.
Using stochastic reduced models for multiscale sys-

tems has computational advantages. First of all, the di-
mensional reduction allows for a gain in computational
speed. Furthermore, by replacing a stiff ordinary dif-
ferential equation by a nonstiff stochastic differential
equation means that coarser integration time steps can
be used that otherwise would lead to numerical insta-
bilities when simulating the stiff multiscale system.
Homogenized stochastic climate models therefore

provide a cheap way of simulating large ensembles, and
a more natural way of incorporating forecast covariance
inflation into the data assimilation algorithm. In partic-
ular, we find that the stochastic climate model produces
amore reliable ensemble (as characterized by the ranked
probability histogram) that better detects the transitions
between slow metastable states. This leads to a far su-
perior analysis in these regimes than that produced by
the full deterministic model.
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APPENDIX

Sensitivity of the Stochastic Climate Model to
Uncertainties in the Drift Term

In this appendix we examine how the statistics of the
stochastic 1D climate model (5) depends on uncer-
tainties in the estimation of the drift term

d(X) 5 ax(b 2 x2).

The parameter b controls the location of the metastable
states near xw56

ffiffiffi
b

p
and their separation. The height

of the potential barrier DV(x) 5 ab2/4 is controlled by
a and b.
In Fig. A1 we show the invariant density (20) for the

stochastic 1D climate model with s25 0.126 and several
combinations of the drift term parameters a and b. The
invariant density is more sensitive to changes in b than in
a (not shown) since b simultaneously affects the distance
of the minima of the potential and the height of the
potential barrier. The location of the maxima of the
probability density function changes by approximately
22% and the actual values of the maxima change by
approximately 27% over the range of b values shown.
Varying a produces similar changes in r̂(x), but as ex-
pected the locations of the maxima of the probability
density function are not shifted.
As for the diffusion coefficient, differences in the ap-

proximation of the empirical density imply a sensitivity
of the statistics to changes in the drift term parameters.
In Table A1 we show how the characteristic time scales

change for varying drift term parameters. Note that now
the transit time tt varies because by varying a we modify
the rate of divergence of the unstable fixpoint.
We now investigate how uncertainties in the drift term

parameters a and b may affect the skill S in an ETKF
data assimilation procedure. Figure A2 shows skill
curves for fixed value of the diffusion coefficient s2 5
0.126, for different combinations of a and b. As with the
characteristic time scales, the skill is more sensitive to
changes in b than in a. The sensitivity to changes in the
drift term is of a similar nature to the one for diffusion.
Whereas decreasing a or b by 20% produces little
change in skill, increasing a or b by 20% makes the
stochastic 1D climate model again less skillful than the
full deterministic 4D model. This is readily explained by
noticing that increasing b increases the difference be-
tween the two metastable states and also the height of
the potential barrier; therefore, for fixed diffusion, this
inhibits transitions between the metastable states,
thereby decreasing the spread of the ensemble. Simi-
larly, decreasing a (while keeping b fixed) increases the

FIG. A1. Invariant density (20) for the stochastic 1D climate
model (5), with s2 5 0.126 and (a, b) 5 (1, 1) (solid line), (1, 0.8)
(circles), and (1, 1.2) (crosses).

TABLE A1. Characteristic time scales of the stochastic 1D cli-
mate model (5) with s2 5 0.126 for different values of the drift
coefficients a and b.

a 5 0.8,
b 5 1

a 5 1.2,
b 5 1

a 5 1,
b 5 0.8

a 5 1,
b 5 1.2

tcorr 77.3 256.3 41.1 645.7
te 43.7 136.1 31.1 212.9
tt 6.4 4.8 7.2 4.5

FIG. A2. Proportional skill improvement S of the stochastic
1D climate model (5) over the full deterministic 4D model (1)–(4)
as a function of the observation interval Dtobs for s

2 5 0.126, with
(a, b) 5 (1, 1) (black solid line), (0.8, 1) (solid, circles), (1.2, 1)
(solid, crosses), (1, 0.8) (dashed, circles), and (1, 1.2) (dashed,
crosses). All other parameters are as in Fig. 8.
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potential barrier, inhibiting transitions and thereby de-
creasing the ensemble spread.
As for the diffusion coefficient, the values of the pa-

rameters of the drift term that are closest to the actual
values a5 b 5 1 for which the stochastic climate model
best approximates the slow dynamics of the full deter-
ministic 4Dmodel are not the optimal values in terms of
skill improvement. Values that increase the ensemble
spread are more favorable.
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