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1. Introduction

The dynamics of the atmosphere and the oceans are inherently complex. There
are active entangled processes running on spatial scales from millimetres to thou-
sands of kilometres, and temporal scales from seconds to millennia. Capturing the
whole range of spatial and temporal scales is impossible given current computer
power. A numerical forecaster must decide, depending on their specific objectives,
what scales they want to resolve. A corollary of this decision is that each numeri-
cal scheme inevitably fails to resolve so-called unresolved scales or subgrid scales.
Usually, the interesting information is carried by the slow and large scales. For ex-
ample, for weather forecasts we want to resolve large-scale high- and low-pressure
fields rather than small-scale fast oscillations of the stratification surfaces, or for
climate prediction in a coupled ocean-atmosphere model we want to learn about
the slow dynamics of the ocean that are constantly kicked by fast-evolving weather
systems swirling above.

In recent years, interest in stochastic dynamics has increased across disciplines.
The reason for this in the field of climate dynamics is that stochasticity may be
used to parametrise subgrid-scale phenomena. In climate modelling, the idea of
modelling fast chaotic dynamics by stochastic processes and thereby reducing the
effective dimension of the full system goes back to the seminal work by Hassel-
mann [11] and Leith [15]. In their work, Hasselmann [11] and Leith [15] have
suggested studying climatic regime switches by introducing, in an ad hoc way,
a stochastic driver for the slow dynamics. Such an approximation describes the
deviations from an averaged climatological system. Of course, it is natural to ex-
pect such behaviour only if the fast variables (e.g. weather in a coupled climatic
ocean-atmosphere model) are sufficiently chaotic and approximately random.

This approach of modelling fast small-scale chaotic processes by a stochastic pro-
cess is intuitive: provided the fast processes decorrelate rapidly enough, the slow
variables experience, during one slow time unit, the sum of uncorrelated events
of the fast dynamics, which according to the (weak) central limit theorem corre-
sponds to approximate Gaussian noise. A method whereby many fast degrees of
freedom are replaced by a stochastic process is called stochastic model reduction.
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These ideas have been used to simulate, for example, coupled ocean-atmosphere
models [18] and urban air pollution [2], and have also been employed in differ-
ent fields, such as macromolecular systems [9]. Scientists have recently realised
that these methods can be applied to many complex systems [6], [10], [13], [16],
[20], [21], [23]. The effective dimension reduction achieved if a large number of
fast equations are replaced by only a few stochastic processes, and the associated
computational advantage of such a reduction, is a major driving force behind this
research.

The ‘Hasselmann project’ [1] of stochastic model reduction, which has received
renewed attention in the past few years, has not yet been finished and poses a
fascinating challenge for mathematicians. In particular, how can the transition
from a purely deterministic system to a stochastic system be made in a control-
lable way? In the following we introduce a formalism which allows us to rewrite a
deterministic system in such a way that it ‘looks like’ a stochastic system in the
form of generalised Langevin equations, and may be a formal starting point for
controlled stochastic model reduction.

2. The Mori-Zwanzig projection operator formalism

Given a dynamical system

ż = f(z), (1)

with initial condition z(0) = z0 and z ∈ Rd, suppose we are not interested in the
full solution z(t), but rather only in a few n ≤ d observables Φ(z) = (Φ1(z),Φ2(z),
. . . ,Φn(z)). This includes the case Φ(z) = (z1, . . . , zn), when the state space is
decomposed as z = (x, y) into ‘interesting’ variables, x = (z1, . . . , zn) ∈ Rn, and
‘uninteresting’ variables, y = (zn+1, . . . , zd) ∈ Rd−n. Now let us ask the following
question: what are the effective dynamics of the interesting observables for an
ensemble of initial conditions z(0), where Φ(z(0)) is known and the uninteresting
subspace is equipped with a known distribution?

The main idea is simple, and essentially boils down to the method of variation of
constants (see, for example, the beautiful book by Zwanzig [26]). Consider the
very simple coupled linear system

ẋ = L11x + L12y

ẏ = L21x + L22y.

Suppose we are only interested in the dynamics of x, and have only some cli-
matic knowledge of the initial conditions of the variables y, that is the mean and
variance. We can then solve for y to obtain

y(t) = eL22ty(0) +

∫ t

0
eL22(t−s)L21x(s) ds,

which we may use to express the dynamics of the interesting variable as

ẋ = L11x + L12

∫ t

0
eL22(t−s)L21x(s) ds + L12e

L22ty(0).
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This is of the form of a generalised Langevin equation, where the first term is
Markovian, the second is a memory term, and the last can be interpreted as a
noise term, provided that the initial conditions y(0) are randomly distributed.
(Paul Langevin [14] studied Brownian motion from a different perspective to Al-
bert’s Einstein’s seminal 1905 paper [7] in an equally seminal paper, describing
the motion of a single Brownian particle as a dynamic process via a stochastic dif-
ferential equation; to be precise in modern terminology, as an Ornstein–Uhlenbeck
process [24].)

Let us now set the scene for the general nonlinear case. Assume that the vector
field f is Lipschitz to assure the existence and uniqueness of a solution of (1).
Denote the flow map associated with (1) by ϕt : z0 → z(t; z0). Rather than in-
vestigating the dynamical system (1) directly, one may choose to look at how
observables V (z(t)) ∈ C1(Rd, R) evolve in time. Applying the chain rule, one can
naturally define the generator

L = f (z) ·∇ ,

and write
d

dt
V (z(t)) = LV (z(t)).

Note that L is the formal L2-adjoint operator of the Liouville operator L! with
L!ρ = −∇ · (f(z)ρ) controlling the evolution of densities of ensembles propagated
according to (1).

There is an intimate link between solutions ϕt(z0) of (1), parametrised by the
initial conditions (which may be randomly distributed), and the solution v(z, t) of
the following Cauchy problem

∂v

∂t
= Lv with v(z, 0) = φ(z), (2)

where z is an independent variable and denotes initial conditions. Provided that
the initial datum φ(z) is sufficiently smooth so that the Cauchy problem (2) has
a classical solution (that is, there exists a solution v(z, t) such that the Cauchy
problem is satisfied pointwise for all (z, t) ∈ Rd × (0,∞)), one has

v(z, t) = φ(ϕt(z)) (3)

for all t ∈ R+ and z ∈ Rd. Hence, instead of analysing the possibly nonlinear ODE
(1), one can employ theory developed for linear hyperbolic PDEs. The solution
of (2) can be formally written as

v(z, t) = eLtφ(z). (4)

For proofs and more details the reader is referred to the monograph [19].

Let us now conduct the full program of deriving a generalised Langevin equation.
To filter out the dynamics of the interesting variables we require a projection oper-
ator P that maps functions of z to functions of Φ(z). For simplicity of exposition
let us restrict our attention to the case where z = (x, y) and Φ(z) = x. A suitable
projector for the situation when the initial conditions of the interesting variables x
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are known exactly but only statistical information is available for the uninteresting
variables y, is the conditional expectation of a function ω(x, y), given by

(Pω)(x) = E[ω(x, y) | x] =
1

Ω(x)

∫

Rd−n

ρ(ξ, η)δ(ξ − x)ω(ξ, η) dξ dη,

where ρ(x, y) denotes the joint probability function of the initial conditions for
the full system (1) and δ denotes the Dirac function. The normalisation

Ω(x) =

∫

Rd−n

ρ(ξ, η)δ(ξ − x) dξ dη

is the probability density of x. It measures in the language of statistical mechanics
the number of microstates that give rise to the macrostate x. A simple calculation
shows that (Pω)(x) is the best approximation of the function ω(x, y) by a function
of x in the L2-sense. (In the context of PDEs one may use Galerkin approxima-
tions and (1) would be defined on a suitable Hilbert space. In this case, a perfectly
valid projector would be to simply truncate the Galerkin series at some specified
high wave number cut-off [22], [23].) We also define the orthogonal projector Q
that projects onto y, with Q = 1 − P . Now, the derivation of the Mori-Zwanzig
equation is a two-liner: given the Cauchy problem (2) and its formal solution (4)
we write, using P + Q = 1,

∂v

∂t
(z, t) = LeLtΦ(z) = eLtPLΦ(z) + eLtQLΦ(z),

which, upon using the Duhamel–Dyson formula [8] for operators A and B, yields

et(A+B) = etA +

∫ t

0
e(t−s)(A+B) B esA ds.

The reader may verify by differentiation that this becomes the celebrated Mori-
Zwanzig equation [17], [25]

∂v

∂t
(z, t) = eLtPLΦ(z) +

∫ t

0
e(t−s)L PL esQLQLΦ(z) ds + etQLQLΦ(z). (5)

Note that the Mori-Zwanzig equation (5) is not an approximation but is exact
and constitutes an equivalent formulation of the full problem (1). The reader is
referred to [3], [4], [8], [10] and [26] for more details. As in the simple example, the
Mori-Zwanzig equation (5) is in the form of a generalised Langevin equation. The
first term on the right-hand side eLtPLΦ(z) = (PLΦ(z))(v(t, z)) is Markovian,
the second term is a memory term, and the last term n(z, t) = etQLQLΦ(z),
which lives in the uninteresting orthogonal subspace, is labelled a noise term.

To illustrate the connection between this formulation of a deterministic system and
generalised stochastic Langevin equations, we restrict our attention in the following
to Hamiltonian systems with HamiltonianH(x, y). We choose the joint probability
ρ(x, y) to be the microcanonical equilibrium density ρeq(x, y) = δ(H(x, y) − E),
where E is the conserved energy of the system determined by the initial condi-
tions [12]. Then, for Φ(z) = x (we assume here for simplicity that x and y are
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conjugate variables), we can recast the memory term, evaluating the ith compo-
nent of

PLni(z, s) =
1

Ω(x)

∫

ρeq(ξ, η)δ(ξ − x)LesQLQLξi dξ dη

= −
1

Ω(x)

∫

ρeq(ξ, η)esQLQLξi[Lδ(ξ − x)] dξ dη,

as ρeq satisfies the stationary Liouville equation L!ρeq = 0. We evaluate further

PLni(z, s) =
1

Ω(x)

∫

ρeq(ξ, η)esQLQLξi

[

Lξj
∂

∂xj
δ(ξ − x)

]

dξ dη

= M ij(x, s)
∂S

∂xj
+ kB

∂M ij(x, s)

∂xj
,

with the entropy S(x) = kB logΩ(x) and the memory matrix

M ij(x, t) =
1

kB
P ([Lξj][e

tQLQLξi]) =
1

kB
P (ni(t, z)nj(0, z)). (6)

Here we see that, as in generalised Langevin equations, the memory term contains
information on the autocorrelation of the noise. The Mori-Zwanzig equation (5)
may then be written for v(z, t) = x(t)— keeping in mind that x(t) depends on
the initial conditions (x(0), y(0))— as

dx

dt
= (PLx)(x(t)) +

∫ t

0
M(x(t − s), s)

∂S

∂x
(x(t − s)) ds

+ kB

∫ t

0

∂M

∂x
(x(t − s), s) ds + n(t). (7)

Since the Mori-Zwanzig equation involves projected dynamics rather than the full
dynamics, it is usually difficult to find explicit expressions that may be used in
calculations and simulations.

3. Approximations of the Mori-Zwanzig equation

The Mori-Zwanzig formalism provides a conceptual framework for the study of di-
mension reduction and the parametrisation of uninteresting variables by a stochas-
tic process. Ideally one would like to approximate the noise term n(z, t) by white
noise. Heuristically this should be possible in the case of time-scale separation or
of weak coupling.

In a time-scale separated system, during one slow-time unit the fast uninteresting
variables y perform many ‘uncorrelated’ events (provided that the fast dynam-
ics are sufficiently chaotic). The contribution of the uncorrelated events to the
dynamics of the slow interesting variables x is as a sum of independent random
variables. By the weak central limit theorem this can be expressed by a normally
distributed variable.

Similarly, if a large number of uninteresting variables y are weakly coupled to the
resolved interesting variables x, it takes many uncorrelated events of the unresolved
variables to have a significant effect on the dynamics of the resolved variables. The
resolved variables x experience a cumulative contribution of those events, which
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again by the central limit theorem allows us to parametrise the unresolved ‘heat
bath’ y by a random process. Here the randomness is not mediated by chaotic
dynamics and time-scale separation, but by a large number of weakly coupled vari-
ables with random initial conditions drawn typically from some thermodynamic
equilibrium density.

Obviously this program can only be exercised within approximations. In particu-
lar one would like to approximate the complicated memory term and render the
system as Markovian. An approximation that allows for a complete analytical
treatment is to approximate esQL = esL [5]. Loosely speaking this assumption
states that the resolved and the unresolved subspaces do not couple, and one may
use the full dynamics in order to propagate the elements of the orthogonal sub-
space. This may be a good approximation for short time scales only. In this case,
the noise term becomes

n(z, t) = etQLQLΦ(z) = Lx(t) − (PLx)(x(t)),

which is an expression for the deviations between the full dynamics and the pro-
jected dynamics. Under the approximation esQL = esL the memory term simplifies
to

∫ t

0
e(t−s)L PL esQLQLΦ(z) ds =

∫ t

0
Le(t−s)LesQLQLΦ(z) ds

−
∫ t

0
e(t−s)L esQL QLQLΦ(z) ds

= tetLPLQLΦ(z),

which clearly can only be valid on short time scales. However there are, to date,
no rigorous estimates on the temporal range of validity of this approximation.

A commonly used approximation is the ‘short memory approximation’, which as-
sumes that n(z, t) is white noise, yielding

M(x, t) ≈ M(x)δ(t) with M(x) =

∫ ∞

0
dtM(x, t) =

1

kB

∫ ∞

0
dtP (n(t)n(0)),

which renders the Mori-Zwanzig equation (7) Markovian. However to make the
equation self-contained, the orthogonal subspace needs to be propagated with the
full dynamics, without proper justification, and with the unwanted plateau prob-
lem that then M → 0 (see for example [12]). In recent work [12] homogenisation
methods were used to establish a more controlled approximation in the limit of
infinite time scale separation between a slow variable x and a fast variable y,
leading to a Markovianisation that avoids the plateau problem.

4. Looking forward

The Mori-Zwanzig operator technique was developed in the 1960s and 1970s in the
context of nonequilibrium statistical mechanics. It has since then mostly been seen
as a mere reformulation of the dynamical system (1), and has served so far only
as a philosophical motivation for the general possibility of dimension reduction
of deterministic dynamical systems to stochastic Langevin equations. It seems
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an interesting avenue to pursue whether this framework can actually be used in
a constructive fashion to achieve controlled dimension reduction. Applications
would most certainly go beyond those to climate dynamics. In particular the
biological sciences and molecular dynamics community would obviously benefit
from advances in this direction. To follow up the questions addressed in this brief
overview requires serious advances in the applied aspect of modelling as well as in
the pure aspect of proving convergence results and providing rigorous estimates.

The interested reader should start with [3], [10], [12] and [26]. In [5] an explicit
example is elaborated and one can see the operator formalism ‘in action’ (al-
though therein the short-memory approximation is used with the above-mentioned
caveats).

An explicit word of caution for the interested reader seems appropriate. The suc-
cess of the suggested research direction is by no means guaranteed, and it is not
known whether the complexity of possibly non-ergodic dynamical systems allows
for the development and analysis of controlled approximations within the Mori-
Zwanzig framework. Worth a try though.
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