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Abstract. Canards are a well-studied phenomenon in fast-slow ordinary dif-
ferential equations implying the delayed loss of stability after the slow passage
through a singularity. Recent studies have shown that the corresponding maps
stemming from explicit Runge-Kutta discretizations, in particular the forward
Euler scheme, exhibit significant distinctions to the continuous-time behav-
ior: for folds, the delay in loss of stability is typically shortened whereas, for
transcritical singularities, it is arbitrarily prolonged. We employ the method
of modified equations, which correspond with the fixed discretization schemes
up to higher order, to understand and quantify these effects directly from a
fast-slow ODE, yielding consistent results with the discrete-time behavior and
opening a new perspective on the wide range of (de-)stabilization phenomena
along canards.

1. Introduction

Dynamical systems on multiple time scales are extensively studied and exhibit
rich behavior, stemming from certain types of ODEs or PDEs that are often models
of real-world systems in biology, physics or the social sciences. Given the relevance
for applications there is high interest in the features of numerical discretizations
of such models. The numerical discretization of multiscale systems is generally
challenging. For stability reasons, the time step typically needs to be adjusted
to capture the fast dynamics. This implies that in order to capture the more
relevant slow dynamics one faces high computational costs. Furthermore, critical
changes, for example due to bifurcations, may occur, causing complicated behavior
that is difficult to capture via numerical schemes. For these reasons but also as
a starting point for understanding intricate fast-slow phenomena in discrete time,
there has been growing interest in recent years in studying the multiscale behavior
of discretization schemes in the context of singularities requiring specific geometric
methods (see e.g. [5, 6, 7, 12, 22]).
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The standard problem is to consider a system of singularly perturbed ordinary
differential equations (ODEs) on the slow time scale

εẋ = f(x, y, ǫ) ,

ẏ = g(x, y, ǫ) , x ∈ R
m, y ∈ R

n, 0 < ǫ ≪ 1 ,
(1.1)

with critical manifold

(1.2) S0 = {(x, y) ∈ R
m+n : f(x, y, 0) = 0} ,

where ǫ ≪ 1 quantifies the degree of the time scale separation. We call the set
S0 normally hyperbolic if, for all p ∈ S0, the Jacobian Dxf(p) ∈ R

m×m has no
eigenvalue on the imaginary axis. The by now classical Fenichel Theory [8, 13, 18]
says that, if S0 is normally hyperbolic and compact, then there is a locally invariant
slow manifold Sε, behaving like a regular perturbation of S0, for all ε sufficiently
small. On the other hand, loss of normal hyperbolicity, which occurs whenever
Dxf(p) has at least one eigenvalue on the imaginary axis, is known to be responsible
for many complicated dynamic effects, such as canards.

Here, we focus on planar fast-slow systems with a canard point at the origin,
past whom trajectories connect an attracting branch of the slow manifold with a re-
pelling one, also described as maximal canard [1, 4]. For continuous-time fast-slow
systems of the form (1.1), such canard solutions characterize the delay in the onset
of instabilities when trajectories slowly cross a singularity and continue for some
time near the unstable part of the invariant manifold [2, 3, 9, 11]. Two important
types of such canards occur in fold [15] and in transcritical singularities [16]. Their
respective Euler discretizations constitute simple fast-slow maps with interesting
phenomena, and exhibit different effects to those of the continuous time ODEs
they were designed to model. While the fold problem contains conserved quantities
up to first order which are not captured by simple explicit forward schemes and
seems to be inaccessible via the Euler method [5, 7], the transcritical Euler map
still exhibits canards but with the intriguing effect of discretization-induced stabi-
lization; in other words, one can observe the extended loss of stability compared to
the corresponding canonical ODE [5, 6].

The crucial idea of this article is to understand these effects better via the
tool of modified equations. Rather than studying the discrete dynamical system
provided by the Euler discretization as done in [5, 7], the concept of backward
error analysis allows for the description of the behaviour of the discrete system by a
continuous dynamical system, the modified equation, which is asymptotically close
to the original dynamical system in the fixed time step h of the Euler discretization.
This has the advantage of having at our disposal the rich gamut of analytical tools
available for continuous-time systems. Backward error analysis has been widely
used in numerical analysis to study the stability of numerical schemes, see for
example the excellent textbooks [10, 19].

Our two main findings are that, by virtue of the modified equations, we can (a)
find parameter regimes to stabilize canard phenomena for the Euler map, formu-
lating the modified equation for the Euler discretization within the corresponding
normal form framework of folded canard points (see Proposition 3.1), and (b) cap-
ture the stabilization effect for the transcritical problem in terms of way-in/way-
out relations for the respective modified equation in a straightforward manner (see
Proposition 4.1). We present our observations according to the following structure:
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Section 2 introduces the key ideas of backward error analysis and derives the gen-
eral form of a second order modified equation for Euler schemes. In Section 3, we
discuss properties of the modified equation for the Euler discretization of the most
simple canonical form of a fold singularity with canards, studying its stability and
way-in/way-out map in Section 3.1. We then show that this modified equation, in
fact, fits the general normal form of such folded canards upon addition of a param-
eter λ, yielding a prediction of maximal canards and Hopf bifurcation in terms of λ,
depending on the time separation parameter ε; this allows for obtaining parameter
regimes under which the Euler map approximates typical canard behavior more
accurately. Section 4 discusses the analogous analysis to Section 3 for the canonical
form of transcritical canards, giving exactly the same prediction of their arbitrarily
long stabilization as the discrete time problem. Hence, we establish a continuous-
time example with full stabilization of canards along the repelling critical branch.
We conclude with a discussion and outlook in Section 5.

2. Backward error analysis and the modified equations

Backward error analysis [10, 19] allows for the study of finite time step effects
of discrete numerical schemes by studying continuous time dynamics of so called
modified equations. The main idea is that a numerical scheme approximates a
modified equation to a higher accuracy in the time step h than the actual ODE one
set out to solve. Consider the ODE

ż = f0(z).(2.1)

Its Euler discretization is

zn+1 = zn + hf0(zn),(2.2)

where h denotes the discrete time step. The Euler discretization is an O(h) dis-
cretization of the ODE. We can construct a modified ODE

˙̃z = fh(z̃)(2.3)

for which the Euler discretization is, for example, an O(h2) approximation. Hence,
solutions of the numerical scheme better represent solutions of this modified equa-
tion than those of the original ODE. To construct the modified equation we expand
the modified vectorfield fh(z̃) in powers of the time step h as

fh(z̃) = f0(z̃) + hf1(z̃) + h2f2(z̃) +O(h3).(2.4)

Taylor expanding the solution z̃ around z̃n yields

z̃n+1 = z̃n + hfh(z̃n) +
h2

2
Dfh(z̃n)fh(z̃n) +O(h3)

= z̃n + hf0(z̃n) + h2

(

1

2
Df0f0(z̃n) + f1(z̃n)

)

+O(h3),(2.5)

where Df denotes the Jacobian of f . Hence, taking f1(z) = − 1
2
Df0f0(z), we obtain

a numerical discretization which is now second order, and the Euler scheme (2.2),
which solves the original ODE (2.1) only to first order in h, solves the modified
equation

ż = f0(z)−
h

2
Df0f0(z)(2.6)

to second order in h. Note that the time step h here is finite but fixed.
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3. Canard in a fold

We consider the simplest form of a fold singularity, admitting a canard connec-
tion in a slow-fast system

εẋ = −y + x2

ẏ = x,(3.1)

where ε ≪ 1 is a small parameter quantifying the degree of scale separation be-
tween the slow variable y and the fast variable x. The maximal canard solution

(x∗(t), y∗(t)) = ( t
2
, t2

4
− ε

2
) of (3.1) lives on the invariant slow manifold Sε = {y =

x2 − ε/2}, connecting the stable, attracting branch Sa
ε = {(x, y) ∈ Sε : x < 0} and

the unstable, repelling branch Sr
ε = {(x, y) ∈ Sε : x > 0}. The maximal canard

serves as a benchmark for the remarkable phenomenon of trajectories staying close
to repelling invariant sets for long times; see e.g. [5, 7, 15, 17, 23].

3.1. Modified equations for Euler. The Euler discretization of (3.1) is

xn+1 = xn − h

ε

(

yn − x2
n

)

yn+1 = yn + hxn,(3.2)

where h denotes the discrete time step. To resolve the fast dynamics we need to
require h < ε. It is well-known that the Euler discretization is a deficient method for
folded canard phenomena, in particular due to the non-preservation of an integral

of motion H(x, y) = e
−2y

ε

(

y − x2 + ε
2

)

for (3.1) (see e.g. [7]), and thereby entailing
earlier escape from the vicinity of Sr

ε. We investigate the implications for the
associated modified equation:

Setting z = (x, y), the modified equation (2.6) for the Euler discretization (3.2)
becomes

εẋ = −y + x2 +
h

ε
x
(

y − x2 +
ε

2

)

ẏ = x+
h

2ε

(

y − x2
)

.(3.3)

The dynamics evolves in the modified equation (3.3) up to O(ε2) on the same
manifold Sε = {y = x2−ε/2} on which the dynamics of the full fold equations (3.1)
evolves. Linearizing the modified equation (3.3) around the approximate manifold
Sε yields the eigenvalues

λ1,2 =
1

ε2

[

−hx2 +
h

4
ε+ εx±

√

(hx2 − h

4
ε− εx)2 − ε2(ε− hx)

]

.(3.4)

The eigenvalues are shown for ε = 0.1 and h = 10−4 as a function of x in Figure 1.
Notably, there is a range of initial conditions x ∈ [x1, x2] such that λ forms a
complex conjugate pair. The boundary of this set is given as solutions of

0 = (
h

ε
x2 − h

4
− x)2 − ε+ hx.(3.5)

A Taylor expansion around h = 0 yields

x1,2 = ±
√
ε+

h

4
+O(h2).(3.6)
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Note that the range is symmetric around the origin for the original fold equation
with h = 0 but is asymmetric for the modified equation with h > 0. We will explain
this shift in the subsequent section below.

To determine when the dynamics leaves the manifold Sε we compute the way-
in/way-out map Ψ(τ) along the solution x = x0 + t/2 defined as

Ψ(t) =

∫ t

t0

R[λ1](s)ds,(3.7)

where λ1 is the eigenvalue with maximal modulus (cf. (3.4)). Here t0 denotes the
time when the solution has approached the manifold Sε = {y = x2 − ε/2} at
the branch Sa

ε . Without loss of generality, we set t0 = 0. When Ψ(t) = 0, the
solution has experienced as much expansion on the unstable branch with x > 0 as
it has experienced contraction along x < 0. Hence, if Ψ(τ) = 0 and Ψ(t) > 0 for
t ∈ (τ, τ + δ) for some δ > 0, the solution will exit from the branch Sr

ε ⊂ Sε.
In Figure 2, we show the results of numerical simulations. The solution of

the original system (3.1) still follows the manifold Sε when its Euler discretization
already leaves the manifold. It is clearly seen that the modified equation describes
the solution of the Euler discretization very well and the exit point is well described
by the way-in/way-out map Ψ(τ) and its roots. To find the solutions of the ODEs
we employ the Matlab routine ode45 with a pre-set absolute and relative tolerance
of 10−12. We further increase the floating point precision of the Euler discretization
to 50 digits.

3.2. Canard extensions and Hopf bifurcation. In the normal form of
folded canards one can observe singular Hopf bifurcations [18, Theorem 8.2.1] and
extensions of maximal canards. To observe those, one has to add a parameter λ
which in the simplest form yields

εẋ = −y + x2

ẏ = x− λ,(3.8)

Observe that for λ = 0, this is the same as (3.1). The equilibrium for the normal
form (3.8) is at (x, y) = (λ, λ2) with Jacobian

J(x = λ, y = λ2) =
1

ǫ

(

2λ −1
ǫ 0

)

.

Hence, there is a Hopf bifurcation at λ = 0 with equilibrium (0, 0) which is, in fact,
degenerate, and only becomes non-degenerate if additional terms are included in
(3.8) to make the first Lyapunov coefficient non-zero.

The modified equation for an Euler discretization of (3.8) reads

εẋ = −y + x2 +
h

ε
x
(

y − x2
)

+
h

2
(x− λ)

ẏ = x− λ+
h

2ε

(

y − x2
)

.(3.9)

Recall that we require h < ε. The Jacobian at any point (x, y) is given by

J(x, y) =
1

ǫ

(

2x+ h
ǫ
y − 3h

ǫ
x2 + h

2
−1 + h

ǫ
x

ǫ− hx h
2

)

.

Hence, at the equilibrium x = y = λ = 0, we now have that tr[J(0, 0)] = h
ǫ
.

This suggests that there may be a bifurcation for some λ-dependent equilibrium
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for λ < 0. Indeed, we can check this by using results from [17]. In more detail, we
write equation (3.8) in the fast time scale τ = t/ǫ:

x′ = −y + x2

y′ = ε(x− λ).(3.10)

The associated Euler discretization is

xn+1 = xn − h̃
(

yn − x2
n

)

yn+1 = yn + h̃ε(xn − λ),(3.11)

with h̃ = h/ε, and its corresponding modified equation reads

x′ = −y + x2 + h̃x
(

y − x2
)

+
h̃ε

2
(x− λ)

y′ = ε(x− λ) +
εh̃

2

(

y − x2
)

.(3.12)

Note that p̃ = (λ, λ2), which is the origin for λ = 0, remains an equilibrium for
the modified equation. The modified equations (3.9) and (3.12) coincide under a
combination of the continuous time change τ = t/ε and the discrete time change

h̃ = h/ε.
We obtain the following observation:

Proposition 3.1. For sufficiently small ε and 0 < h < ε, system (3.12) ex-
hibits a Hopf bifurcation at

(3.13) λH(
√
ǫ) = −h

2
+O

(

h
√
ǫ
)

,

and the existence of a maximal canard at the same value of λ up to first order,
i.e. at

(3.14) λC(
√
ǫ) = −h

2
+O

(

h
√
ǫ
)

.

Proof. We make direct use of the fact that equation (3.12) fits the canonical
form of a non-degenerate canard point [17, Section 3.2] with factors

h1(x, y, λ, ε) = 1− h̃x, h2(x, y, λ, ε) = 1− h̃x,

h3(x, y, λ, ε) =
h̃

2
(x− λ), h4(x, y, λ, ε) = 1− h̃

2
x,

h5(x, y, λ, ε) = 1, h6(x, y, λ, ε) =
h̃

2
.

This implies that the constants determining Hopf bifurcations and canard exten-

sions are a1 = h̃
2
, a2 = −h̃, a3 = −h̃, a4 = − h̃

2
, a5 = h̃

2
and A = 0. Hence, upon

resubstituting h̃ = h/ε, we can apply [17, Theorem 3.1] to deduce that, for suffi-
ciently small ǫ > 0, there is a (potentially degenerate) Hopf bifurcation at

λH(
√
ǫ) = −h

2
+O

(

h
√
ǫ
)

,

i.e. p̃ is stable for λ < λH(
√
ǫ) and loses stability through a Hopf bifurcation as λ

passes through λH(
√
ǫ). Additionally, we have, by [17, Theorem 3.1], the existence
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Figure 1. Real part of the two eigenvalues λ1,2 (3.4) for the fold
equation (3.1) with ε = 0.1 and time step h = 0.01. In the range
x ∈ [−0.314, 0.319] the eigenvalues are a complex conjugate pair.

of a maximal canard at the same value of λ up to first order, i.e. at

λC(
√
ǫ) = −h

2
+O

(

h
√
ǫ
)

.

This shows the claims. �

Hence, one may say that the modified equation preserves the canard phenom-
enon upon variation of the additional parameter λ. The implications for the Euler
scheme are illustrated in Figure 3 where for λ = −h/2 the dynamics is indicative of
a periodic solution, whereas for λ = 0 the solution shows the same escape beahviour
as in Figure 2.

Indeed, this value coincides (up to leading orders in h and ε) with the value
at which we observe change of stability along the curve Sε = {y = x2 − ε/2} for
solutions of equation (3.3) or (3.9) with λ = 0. In more detail, we observe that

R [λ1,2(x
∗)] = 0 for x∗ = ǫ−

√
ǫ2+h2ǫ
2h

, cf. equation (3.4). A Taylor expansion in h

shows readily that
√

1 + 2h2

ε
= 1 + h2

ǫ
+O(h3), and, hence,

x∗(h, ε) =
ε

2h

(

1−
√

1 + 2
h2

ε

)

=
ε

2h

(

−h2

ε
+O(h3)

)

= −h

2
+O(h2).
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Figure 2. Numerical simulations for the fold equation (3.1) with
ε = 0.1. We employ a time step of h = 0.01 for the Euler discretiza-
tion. Top: Dynamics of the Euler discretization (online red), a
high-order simulation of the original fold equation (online cyan)
and a high-order simulation of the modified equation (3.3). The
dashed line shows the approximate manifold y = x2−ε/2. Bottom:
Plot of x as a function of time. The horizontal line shows the value
x = x0 + τ/2 where τ is the time for which the way-in/way-out
map Ψ(τ) = 0.
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Figure 3. Numerical simulations for the fold equation (3.8) with
ε = 0.1. We employ a time step of h = 0.01 for the Euler dis-
cretization. Shown are results for λ = 0 (cf. Figure 2a (online red)
and for the critical parameter λ = λH = −h/2 (online blue) which
indicates relaxation onto a limit cycle. The dashed line shows the
approximate manifold Sε with y = x2 − ε/2.

4. Canard in a transcritical singularity

As a second study, we now consider the simplest canonical form of a slow-fast
system with a transcritical canard singularity

ẋ = x2 − y2 + ε

ẏ = ε,(4.1)

where ε ≪ 1 again quantifies the degree of scale separation between the slow variable
y and the fast variable x. The associated Euler discretization with time step h reads

xn+1 = xn + h
(

x2
n − y2n + ε

)

yn+1 = yn + hε.(4.2)

The associated modified equation can be readily evaluated as

ẋ = (1− hx)(x2 − y2 + ε) + εhx

ẏ = ε.(4.3)

Note that in the two continuous time systems (4.1) and (4.3) as well as in the
discrete Euler system (4.2) the line S = {(x, y) ∈ R

2 : x = y} is invariant. For
equations (4.1) and (4.2) we have the stable and unstable branches Sa = {(x, y) ∈
S : x < 0} and Sr = {(x, y) ∈ S : x > 0}. For equation (4.3), the non-zero
eigenvalue of the Jacobian when linearized around the solution y = x is λ = 2x(1−
hx). To determine when the dynamics leaves the unstable branch Sr, we compute
again the way-in/way-out map Ψ(t) (cf. (3.7)) along the solution y = x = x0 + εt
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for equation (4.3). As for the fold equation, when Ψ(τ) = 0, the solution has
experienced as much expansion on the unstable branch with Sr as it has experienced
contraction along Sa.

Proposition 4.1. The way-in/way-out map Ψ(t) along the canard solution
y = x = x0 + εt for the modified equation (4.3) takes the form

Ψ(t) = 2x0(1− hx0)t+ εt2 − 2εhx0t
2 − 2

3
ε2ht3,(4.4)

yielding the following cases depending on the initial condition x0:

• − 1
2h

< x0 < 0: there are t1, t2 > 0 such that Ψ(t1) = Ψ(t2) = 0 and
Ψ(t) > 0 for all t ∈ (t1, t2).

• x0 = − 1
2h
: Ψ(t∗) = 0 for t∗ = 3

2hε
and Ψ(t) < 0 for all other t > 0.

• x0 < − 1
2h
: Ψ(t) < 0 for all t > 0.

Proof. Substituting the eigenvalue λ = 2x(1 − hx) into the definition of the
way-in/way-put map (3.7) and subsequent integration yields formula (4.4). The
second claim follows by a simple analysis of the parabola

f(t) = 2x0(1− hx0) + (ε− 2εhx0)t−
2

3
ε2ht2,

where Ψ(t) = tf(t). �

The key insight of Proposition 4.1 is that our results based on the continuous-
time modified equation are consistent with the discrete-time analysis in [5]. There
it is shown that for x0 ↓ − 1

2h
the time τ > 0 such that Ψ(τ) = 0 becomes arbitrarily

large (cf. Figure 5). And here, in equation (4.4), one obtains an analogous behavior:
for x0 > − 1

2h
, the solution will exit from S just after t = τ with Ψ(τ) = 0. Figure 4

shows results from a numerical simulation confirming that the modified equation
is able to determine the point at which the Euler dynamics leaves the unstable
branch for this case. For x0 = − 1

2h
, we have Ψ(t) < 0 for all t > 0 apart

from t∗ = 3
2hε

, where Ψ(t∗) = 0. Hence, at this time contraction and expansion
have compensated but immediately afterwards contraction takes over again. In
other words, up to linear approximation, there is no escape for any τ > 0. In
particular, our findings imply that equation (4.3) exhibits canards with arbitrarily
long stabilization, establishing a continuous-time example of that behavior.

For the numerical simulations depicted in Figures 4 and 5, we use the Matlab
routine ode45 with a pre-set absolute and relative tolerance of 10−12 (as before
for the fold case). We further increase the floating point precision of the Euler
discretization to 100 digits. This mitigates the possibility that the observed sta-
bilization of the canard for x0 = −1/2h, as seen in Figure 5, is due to numerical
round of errors (cf. also [5]).

5. Discussion

The effects of a first-order scheme such as an Euler discretization can have
large effects on the observed behaviour and can modify its bifurcation structure.
We have shown that this can be quantitatively described by means of the modified
equations which allow for a simple analytical treatment. In particular, we quantified
the stabilization of canards for transcritical singularities in the continuous modified
equation which closely matched those of the discrete Euler discretization of the
associated dynamics. We suggest further investigations into similar phenomena for
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Figure 4. Numerical simulations for the transcritical equation
(4.1) with ε = 0.25. We employ a time step of h = 0.1 for the
Euler discretization. Top: Dynamics of the Euler discretization
(online red), a high-order simulation of the original transcritical
equation (online cyan) and a high-order simulation of the modified
equation (4.3). The dashed lines show the critical manifold y = ±x.
Bottom: Plot of x as a function of time. The vertical line shows
the time t = τ for which the way-in/way-out map Ψ(τ) = 0.

delayed Hopf bifurcations [11, 20, 21], potentially also using modified equations
for appropriate discretization schemes.

Our analysis suggests that one may modify the Euler scheme in order to obtain
a better approximation of the original ODE by adding a term which would cancel
the first-order correction f1(z) in the associated modified equations. For instance,
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Figure 5. Numerical simulations for the transcritical equation
(4.1) with ε = 0.25. We employ a time step of h = 0.1 for the Euler
discretization. We show simulations of the Euler discretization for
two different initial conditions: for x0 = −2 (online red) which
exits the manifold y = x (cf. Figure 4a) and for x0 = −1/(2h) for
which the modified equations predict arbitrary long stabilization
(online blue).

the Kahan method [14]

zn+1 = zn + h

(

Id−1

2
Df(zn)

)−1

f(zn)

= zn + hf(zn) +
h2

2
Df(zn)f(zn) +O(h3)(5.1)

implies f1(z) = 0 (cf. Equation 2.5) and is a second order in h scheme for the system
ż = f(z). Thereby such a scheme is, of course, more accurate in terms of preserving
qualitative behavior of the original ODE: it was shown in [5, 7] that the Kahan
scheme (and, more generally, related A-stable methods) preserves the way-in/way-
out behavior of canards and their parameter-dependent extensions. However, for
the folded canard problem, also the Kahan method does not seem to retain every
property of the quadratic ODE: the first integral of motion for system (3.1) is not
preserved in the discretization (e.g. [7]). An extended study via a modified equation
of higher order may shed some additional light on this gap.

References
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9. Augustin Fruchard and Reinhard Schäfke, A survey of some results on overstability and
bifurcation delay, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 4, 931–965. MR 2552127

10. Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, vol. 31, Springer, 2006.

11. Michael G. Hayes, Tasso J. Kaper, Peter Szmolyan, and Martin Wechselberger, Geometric
desingularization of degenerate singularities in the presence of fast rotation: a new proof
of known results for slow passage through Hopf bifurcations, Indag. Math. (N.S.) 27 (2016),
no. 5, 1184–1203. MR 3573755

12. Samuel Jelbart and Christian Kuehn, Discrete geometric singular perturbation theory,

arXiv:2201.06996 [math.DS] (2022).
13. C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical systems (Monteca-

tini Terme, 1994), Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 44–118.
MR 1374108

14. William Kahan, Unconventional numerical methods for trajectory calculations, Unpublished
lecture notes (1993).

15. Martin Krupa and Peter Szmolyan, Extending geometric singular perturbation theory to non-
hyperbolic points—fold and canard points in two dimensions, SIAM Journal on Mathematical
Analysis 33 (2001), no. 2, 286–314.

16. Martin Krupa and Peter Szmolyan, Extending slow manifolds near transcritical and pitchfork
singularities, Nonlinearity 14 (2001), no. 6, 1473.

17. Martin Krupa and Peter Szmolyan, Relaxation oscillation and canard explosion, J. Differential
Equations 174 (2001), no. 2, 312–368. MR 1846739

18. Christian Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, vol. 191,
Springer, Cham, 2015. MR 3309627

19. Benedict Leimkuhler and Sebastian Reich, Simulating Hamiltonian Dynamics, Cambridge
University Press, Cambridge, 2005.

20. Anatoly I. Neishtadt, Persistence of stability loss for dynamical bifurcations I, Differential
Equations 23 (1987), 1385–1391.

21. , Persistence of stability loss for dynamical bifurcations II, Differential Equations 24

(1988), 171–176.
22. K. Nipp and D. Stoffer, Invariant manifolds in discrete and continuous dynamical systems,

EMS Tracts in Mathematics, vol. 21, European Mathematical Society (EMS), Zürich, 2013.
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