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We propose a new unified model for the small, intermediate and large-scale evolution
of freely decaying two-dimensional turbulence in the inviscid limit. The new model’s
centerpiece is a recent theory of vortex self-similarity (Dritschel et al., Phys. Rev. Lett.,
vol. 101, 2008, no. 094501), applicable to the intermediate range of scales spanned
by an expanding population of vortices. This range is predicted to have a steep k−5

energy spectrum. At small scales, this gives way to Batchelor’s (Batchelor, Phys. Fluids,
vol. 12, 1969, p. 233) k−3 energy spectrum, corresponding to the (forward) enstrophy
(mean square vorticity) cascade or, physically, to thinning filamentary debris produced
by vortex collisions. This small-scale range carries with it nearly all of the enstrophy
but negligible energy. At large scales, the slow growth of the maximum vortex size
(∼ t1/6 in radius) implies a correspondingly slow inverse energy cascade. We argue
that this exceedingly slow growth allows the large scales to approach equipartition
(Kraichnan, Phys. Fluids, vol. 10, 1967, p. 1417; Fox & Orszag, Phys. Fluids, vol. 12,
1973, p. 169), ultimately leading to a k1 energy spectrum there. Put together, our
proposed model has an energy spectrum E(k, t) ∝ t1/3k1 at large scales, together with
E(k, t) ∝ t−2/3k−5 over the vortex population, and finally E(k, t) ∝ t−1k−3 over an
exponentially widening small-scale range dominated by incoherent filamentary debris.

Support for our model is provided in two parts. First, we address the evolution
of large and ultra-large scales (much greater than any vortex) using a novel high-
resolution vortex-in-cell simulation. This verifies equipartition, but more importantly
allows us to better understand the approach to equipartition. Second, we address
the intermediate and small scales by an ensemble of especially high-resolution direct
numerical simulations.

1. Introduction
One of the most fascinating aspects of fluid flows is turbulence. Turbulence is

inherently nonlinear, operating over a wide range of spatial and temporal scales (cf.
Tabeling 2002; Davidson 2004; Lesieur 2008 and the references therein). This range
grows with the Reynolds number, or the inverse of viscosity. Yet turbulence is not
a state of complete disorder, but rather a semi-organized state exhibiting coherent
structures (e.g. vortices) and self-similar scaling properties (e.g. power-law spectra).
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Turbulence is found in a great number of physical systems, ranging in scale from
quantum to astrophysical dimensions. There is little hope of a universal theory
applicable to all systems, but some idealized systems now appear to be within reach.
The simplest, and the most widely studied, is governed by the two-dimensional Navier–
Stokes equations, or Euler equations in the inviscid unforced situation considered here.
This system evolves purely by advection of a (scalar) vorticity, which moreover is
conserved on fluid particles. The system exhibits a dual cascade of energy (to large
scales) and enstrophy (to small scales), but conserves total energy and enstrophy
(Kraichnan 1967; Batchelor 1969).

Much of the research on ‘freely-decaying’ two-dimensional turbulence has focused
on small to intermediate scales, the so-called ‘inertial range’ lying between the most
energetic scale and (if present) the dissipative scale. Over this range, Batchelor (1969)
used dimensional arguments to predict a k−3 form of the energy spectrum (where
k is the wavenumber), which has since been nearly universally found in numerical
simulations (see Davidson 2004 and references therein).

It has been recognized for some time that the k−3 decay of the energy spectrum,
found independently by Kraichnan (1967) and Batchelor (1969) in two-dimensional
turbulence, is not sufficient to explain the observed steeper spectra (see for example
McWilliams 1984). These theories are local in wave number space and do not take
into account the nonlocal effect of vortices in transporting energy and enstrophy.
Since then, several scaling theories have been proposed stressing the importance of
vortices for the energy transport in spectral space. Benzi, Patarnello & Santangelo
1988 and Benzi et al. (1992) linked the statistics of vortex populations to the energy
spectrum. They numerically fitted an algebraically decaying vortex population with
number density n(A, t) ∼ A−ξ (where n(A, t)dA gives the average number of vortices
with areas between A and A + dA over a sample area As in the plane) to deduce that
the energy spectrum associated with the vortices decays more steeply than predicted
by the Batchelor scaling (Batchelor 1969).

The temporal scaling of the vortex number density was addressed in Carnevale
et al. (1991) and Weiss & McWilliams (1993). Carnevale et al. (1991) assumed
that, in addition to energy, the maximal vorticity during vortex interactions
is conserved. Dimensional arguments then lead to an algebraic decay in
time of the vortex number density n(A, t). Their analysis however assumes
vortices of one particular size, and does not predict the value of the scaling
exponent.

In Dritschel et al. (2008) we presented a model which unifies these spatial and
temporal scaling theories. We argued that, as a result of repeated vortex collisions,
a self-similar vortex population naturally arises in two-dimensional turbulence, and
that this population is characterized by a vortex number density n(A, t) ∝ t−2/3A−1.
This decay occurs principally through collisions involving a ballistic dipole and a
monopole (cf. Dritschel & Zabusky 1996). Sire & Chavanis (2000) and Laval et al.
(2001), on the other hand, argued that three body collisions lead to a faster t−1 decay
of n(A, t) at late times when the distribution of vortices becomes very dilute, but
they did not consider a distribution of vortex sizes. Sopik, Sire & Chavanis (2009,
personal communication) have since independently derived a t−2/3 decay for shorter
times based on different arguments.) It is difficult, however, to conceive of another
timescale apart from the inverse of the r.m.s. vorticity ωrms ; hence there should be
no distinction between ‘late’ and ‘shorter’ times if both greatly exceed ω−1

rms . We argue
that the t−2/3 decay of the vortex number density, derived in Dritschel et al. (2008),
persists for all time in an infinite domain and in the absence of viscosity.
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The self-similar form n(A, t) ∝ t−2/3A−1, following Benzi et al. (1988), implies an
energy spectrum E(k, t) ∝ t−2/3k−5 over the range of scales containing the vortex
population. Moreover, this implies that the enstrophy in the vortex population decays
like t−1/3 through vortex collisions, which produce incoherent filamentary debris
carrying nearly all of the enstrophy to small scales at late times. Meanwhile, for
consistency, the mean radius of the largest vortices – proportional to #=

√
E/Q

where E and Q are the total (vortex) energy and enstrophy – slowly grows like t1/6,
sending energy to progressively larger scales at a diminishing rate proportional to
t−5/6.

These predictions were verified by an ensemble of ultra-high resolution numerical
simulations, and are consistent with previous numerical simulations (Benzi et al. 1992;
Weiss & McWilliams 1993; Clercx, Maassen & van Heijst 1999; Bracco et al. 2000).
The t1/6 growth of the integral scale # is much slower than the t1 growth predicted by
Batchelor (1969), and is significantly slower than the t1/2 growth argued by Lowe &
Davidson (2005), building on the phenomenological scaling theory of Bartello &
Warn (1996). Their t1/2 growth, however, was only demonstrated at relatively low
Reynolds number.

The present paper addresses the spatial and temporal scaling behaviour at large
scales, and connects it with that of the vortex population and filaments at intermediate
and small scales, addressed in Dritschel et al. (2008). There has been surprisingly little
research done on the large-scale structure of two-dimensional turbulence. Exceptions
include Chasnov (1997), Ossai & Lesieur (2001), Lowe & Davidson (2005) and
Davidson (2007). Here, we consider scales larger than any vortex, and moreover in
an infinite domain in order to examine the limit t → ∞ without the effects of domain
boundaries or periodicity. Thereby, the flow can never reach statistical equilibrium
and must continue evolving forever. We argue that as the flow evolution slows
down at late times, the large-scale evolution approaches equipartition, in which a
linear combination of energy and enstrophy becomes uniformly distributed among
Fourier modes (Kraichnan 1967; Orszag 1970; Fox & Orszag 1973 and many others;
see Lesieur 2008, ch. 10 and references therein). In time, equipartition spreads to
increasingly large scales where the energy alone is approximately uniform among
Fourier modes, implying a k1 energy spectrum there. This is illustrated in § 2
through a novel point-vortex experiment starting from small-scale initial conditions.
In § 3, vortex self-similarity (Dritschel et al. 2008) and large-scale equipartition are
combined in a model of the long-time turbulent decay. Using only conservation of
energy and enstrophy, and assuming that the smallest scales stretch exponentially
fast (at a constant growth rate), this model predicts that the steep k−5 energy
spectrum associated with the vortex population slowly spreads over the range
m(t) <∼ k <∼ f (t), with f (t) ∼ t1/6 and m(t) ∼ t−1/6. Meanwhile, the shallower k−3

energy spectrum associated with incoherent filamentary debris is pushed out to ever
higher wavenumbers, k >∼ f (t) ∼ t1/6. Support for this model is provided in § 4 via a

large ensemble of high-resolution numerical simulations. The paper concludes in § 5.

2. Large-scale dynamics
At scales much larger than any vortex, vortices appear point-like yet may collectively

exhibit large-scale motions, e.g. in the form of clusters of like-signed vortices. This
self-organization was discussed early on in this context by Onsager (1949) and many
others since (cf. Eyink & Sreenivasan 2006 and references therein). Onsager used
a thermodynamical analogy to predict clustering depending on properties of the
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Figure 1. Staggered array of point vortices (• = positive, ◦ = negative) in a single grid box
used as the initial conditions. The vortices are separated by $x/4 both horizontally and
vertically, where $x is the grid size.

initial vortex distribution, like the proximity of like or opposite-signed vortices (for
further developments, see Joyce & Montgomery 1973; Montgomery & Joyce 1974;
Miller 1990; Robert 1991; Robert & Sommeria 1991; Eyink & Spohn 1993, for
example).

Onsager considered point vortices having finite circulations but infinitesimal size,
and it seems appropriate to revisit this model to understand the development of large-
scale order in turbulence. Specifically, we wish to understand the form of the energy
spectrum developing from an inverse cascade of energy from an initial small-scale
reservoir containing disorganized or incoherent vortical motions.

To this end, we carried out a large simulation of 40962 ≈ 17 million vortices in a
two-dimensional doubly-periodic domain. We used the vortex-in-cell (VIC) method
(cf. Christiansen & Zabusky 1973) on a 10242 grid to speed up the calculation. In
the VIC method, the vorticity at a grid point is obtained by a weighted sum of the
vortex circulations in the surrounding 4 grid boxes, using the standard Fresnel weights
associated with bi-linear interpolation. The gridded vorticity field ω so obtained is then
‘inverted’ via fast Fourier transforms (FFTs) to obtain the streamfunction ψ =$−1ω
and the velocity field u = ∇⊥ψ = (−ψy,ψx) on the grid. Finally, u is interpolated (bi-
linearly) to the positions of the 17 million vortices and used to advect them forward
within a fourth-order Runge–Kutta time-stepping scheme.

So far this is standard. The novelty, we believe, lies in our set up of the initial
conditions. To track the inverse energy cascade, we had to ensure that initially
very little energy was contained in scales larger than the grid size. This is virtually
impossible to achieve from a random distribution of vortices, even 17 million of
them. Random placement invariably leads to a k−1 energy spectrum (as discussed by
Davidson 2007), spoiling any hope of observing an inverse cascade. Instead, in each
of the 10242 grid boxes, we placed 16 vortices in a nearly regular array with 8 positive
vortices (each with circulation Γ ) and 8 negative vortices (each with circulation −Γ ),
staggered as shown in figure 1. For a perfectly regular array in each grid box, the
average vorticity contributed by all 64 vortices in the 4 grid boxes surrounding each
grid point is identically zero, so there is in fact no energy (or enstrophy) at and above
the grid scale.

To get things going, each vortex is displaced in x and in y by a uniformly-distributed
random number lying between −0.001$x and +0.001$x where $x is the grid spacing.
This generates a weak k1 energy spectrum which is subsequently overwhelmed by the
inverse cascade (see figure 2 and discussion below).

The vortex circulation Γ is chosen so that the vorticity ω would be 4π for a regular
array of positive vortices in the grid boxes surrounding a given grid point. This
requires 16Γ = 4π($x)2. The vorticity-based time scale is then unity.

We now turn to the results of this simulation. By time t =100, there is already a
huge growth of energy at large scales, and the energy continues to grow (as energy
cascades from subgrid to supergrid scales) until about t = 500. Figure 2 shows the
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Figure 2. (a) Energy spectra at t =0 and (b) at times t = 100 (thin solid line), 200 (long
dashed line), 300 (bold solid line) and 400 (short dashed line).

energy spectra E(k, t) at t = 0 (figure 2a), and t = 100, 200, 300 and 400 (figure 2b).
Note there is a difference of 5 orders of magnitude in the energy ranges plotted in the
two plots. From t = 500 onwards, the energy evolves much more slowly, and fastest
at the largest scales (or lowest wavenumbers) — see figure 3(a) for t = 500, 1000,
1500 and 2000, and figure 3(b) for t =2000 individually. Figure 4 shows the temporal
evolution of the total energy and enstrophy. One sees clearly the initial rapid increase
in energy and enstrophy and the slower evolution to a plateau at later times.

The most striking feature exhibited by the energy spectra in figure 3 is their
convergence to some fixed form over an increasingly wide range of wavenumbers. In
time, the growth in energy becomes confined to progressively lower wavenumbers or
larger scales, as can be seen in the streamfunction field ψ , shown in figure 5 at t = 200,
500 and 2000. The largest scale in ψ coincides with the transition from E ∼ k1 to k3.

A k3 range is expected, for sufficiently small k, based on the mathematical analysis
of Tran & Dritschel (2006), who proved that E(k, t) ! Ck3t2, for some constant
C proportional to the square of the total energy, starting from E(k, 0) = 0 over
this wavenumber range. Davidson (2007) showed that the k3 energy spectrum can
be related to the non-vanishing total angular momentum of the vortices through
the Loitsyansky integral. Chasnov (1997), Ossai & Lesieur (2001) and Lowe &
Davidson (2005) also found the low-wavenumber k3 scaling (so long as periodicity
is insignificant), though Ossai & Lesieur (2001) suggest E(k, t) ∝ k3t2.5 (in turn much
slower than the t4 growth predicted by Batchelor 1969).

The growth in E(k, t) at small k is not incompatible with the widening k1 range
seen in figure 3 (and quantified below), and, for example, could be modelled by the
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Figure 3. Energy spectra (a) at times t = 500 (thin solid line), 1000 (long dashed line), 1500
(bold solid line) and 2000 (short dashed line), and (b) at t = 2000 individually.
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Figure 4. Total energy E (multiplied by 105) and enstrophy Q in wavenumbers k ! 512
versus time t . Note that the initial growth in E and Q is approximately exponential.

spectral form

E(k, t) ∼ a0k
3

k2 + b2
(2.1)

for a0 ≈ constant and b(t) a decreasing function of t (no faster than t−1 to be consistent
with E(k, t) ! Ck3t2 for k , b). This spectral form however is too simple to describe
the nearly fixed form of the spectrum for k - b.
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(a) (b) (c)

Figure 5. Streamfunction ψ(x, t) at t = 200, 500 and 2000 (a–c). A linear greyscale is used
from the minimum (black) to maximum (white) values.

That fixed form, we argue, is a consequence of equipartition, in which a linear
combination of energy |û|2 and enstrophy k2|û|2 spreads itself uniformly among the
Fourier modes (û(k) is the amplitude of the velocity projected on wavevector k
(Kraichnan 1967). This gives rise to the equipartition spectrum

Eeq(k) =
c1k

k2 + p2
, (2.2)

where the constants c1 and p are determined from the total energy E =
∫

Eeqdk and
enstrophy Q =

∫
k2Eeqdk, integrated over 0 ! k ! kmax , where kmax is the maximum

wavenumber used in the truncated inviscid dynamical model. Fox & Orszag (1973)
illustrate how the spectral shape (controlled by p2) depends on the ratio Q/E, and
discuss the approach to equipartition from non-equilibrium initial conditions. They
conducted truncated spectral simulations of inviscid two-dimensional turbulence and
confirmed that E(k, t) → Eeq(k) at late times.

The present point vortex simulation appears to exhibit similar characteristics. It
too has truncated dynamics, in the sense that no enstrophy cascade can occur below
a certain scale (the individual point vortices are neither created nor destroyed). This
appears to be sufficient for the flow to approach equipartition. But the definitive test
is how well the spectra in figure 3 match the equipartition spectrum (2.2) for the
known values of E and Q. Clearly the equilibrium energy spectrum (2.2) does not
explain the energy spectrum at large scales where we observe a k3 range. However
since this range is decreasing over time and being invaded by the k1 spectrum, we
may introduce another time-dependent parameter b(t) and modify (2.2) at low k to
have the form of (2.1), leading to the hybrid spectrum

E(k, t) ∼ ck3

(k2 + b2)(k2 + p2)
. (2.3)

We emphasize that this does not have the same sound mathematical basis as (2.2); we
have introduced (2.3) simply to model the time-dependent approach to equilibrium.
The amplitude c(t) and the two wavenumbers b(t) and p(t) can be determined by
fitting to E, Q and the integral S =

∫
k−2Edk which is the mean square streamfunction.

The parameter b(t) measures the departure from the equilibrium spectrum (2.2) and for
b(t) → 0 we have E(k, t) → Eeq(k). Note that S is not conserved in the exact dynamics,
but k−2E peaks around the wavenumber b controlling the transition between large
and intermediate scales. Figure 6 shows how well (2.3) matches the actual energy
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Figure 6. Actual energy spectra at t = 300, 800 and 2100 (thin lines) compared to
hybrid-equipartition spectra (bold lines).

spectra over 0 ! k ! kmax = 512 at early, intermediate and late times in the point
vortex simulation. The agreement is excellent across all wavenumbers, and uniformly
in time for t " 300. Note that these results are not obtained by a least squares curve
fit, but merely by equating

∫
k−2Edk,

∫
Edk and

∫
k2Edk for E in (2.3) to the known

values of S, E and Q in the point vortex simulation.
The parameters b, c and p are displayed in figure 7 as a function of time for t " 300.

Note that c(t) and p(t) rapidly tend to constant values, while the wavenumber b(t)
diminishes like t−1, consistent with the bound obtained by Tran & Dritschel (2006).
For times t > 1700, the nearly linear increase in 1/b is arrested. At these times, the
simulation becomes increasingly affected by the finite box size, preventing further
scale growth. But we clearly can see the trend towards the equilibrium spectrum (2.2).

We now consider how equipartition relates to the physical properties of the vortex
distribution. Davidson (2007) has shown that a random distribution of vortex dipoles
gives rise to a k1 energy spectrum at scales larger than the dipoles. This suggests that
our simulation is dominated by dipoles at scales comparable to the energy-enstrophy
scale L (where the spectrum changes over from k−1 to k1 around k = p). Figure 8
shows that this is indeed the case, each dipole being composed of many point vortices.
Note that the scale of the dipoles does not grow appreciably over time, but remains
of order L. Moreover, the dipoles are space filling, and an examination of their time
evolution shows that they are short lived (with life times comparable to the enstrophy
timescale 1/Q1/2).

We verify next that this picture is correct, i.e. that at late times the flow is
characterized by a sea of dipoles. We first prove, statistically, that a (large) random
distribution of dipoles implies that the ensemble mean vorticity 〈|ω|〉 over an area of
size A should scale as A−3/4 (and this result is unique to dipoles). In any sufficiently
large area A, the expected number of dipoles is proportional to A. Within A, the
dipoles contribute nothing to the mean vorticity, but on the periphery of A, some
halves of dipoles will be in A and others will not. Hence, there will be a surplus
of positive or negative vortices, implying a non-zero mean vorticity 〈|ω|〉. The mean
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Figure 7. Time evolution of (a) the inverse large-scale wavenumber b, and (b) spectral
amplitude c together with the peak wavenumber p. The linear fit in (a) was obtained by a
least squares analysis over 300 ! t ! 1700.
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Figure 8. Point-vortex trajectories over a single unit of time at (a) t =800 and (b) t = 2000.
Only a thousandth (1/322) of the domain is shown. The energy-enstrophy scale L in each
case is shown beneath each plot. Note that the characteristic large scale 2π/b ∼ 100L and is
growing nearly linearly in time.

number of randomly distributed surplus vortices scales as the square-root of the
number of dipoles on the periphery of A, since the orientation of the dipoles is
uniformly distributed (we thus have Gaussian statistics). But the number of dipoles
on the periphery is proportional to the perimeter of A, which is itself proportional to
A1/2. Hence, the mean number of surplus vortices scales like the square-root of the
perimeter, or A1/4. This divided by the area A is proportional to the mean vorticity
over A, and therefore 〈|ω|〉 ∝ A−3/4. Figure 9 shows just how good this prediction is,
over a very wide range of areas A extending from the grid scale to the domain scale.
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Figure 9. Ensemble mean vorticity 〈|ω|〉 versus the sampling area A in the point vortex
simulation at times t = 200 (short-dashed line) and 600 (bold). We note that at time t = 2000
the curve is indistinguishable from that at t = 600. Lines proportional to A−3/4 and A−1/2 are
shown for reference. Note that L2/Adom ≈ 10−5 at the latter two times.

Note that a random distribution of vortex monopoles, by similar arguments, would
give 〈|ω|〉 ∝ A−1/2. A reduction in slope toward −1/2 is just visible in figure 9 at scales
smaller than the energy-enstrophy scale L. As can be seen from figure 8, these scales
are below the scale of the dipoles and are characterized by individual monopoles (the
point vortices themselves).

3. Late time evolution at all scales
The main limitation of the point vortex model just described is that the individual

vortices cannot merge and exhibit an enstrophy cascade (p is constant in (2.2)). This
cascade transfers coherent enstrophy contained within the vortices to filaments, and
additionally results in a slow t1/6 growth of large-scale vortices (Dritschel et al. 2008).
The observed tendency toward equipartition exhibited by the point vortices, however,
is a direct result of their stationary population characteristics. Nevertheless, we argue
that evolving two-dimensional turbulence will form an equipartition spectrum at large
scales, precisely because the evolution is so slow and becomes ever slower in time.
Eventually, there is time for equipartition to become established at all but the very
largest scales, which must remain bounded by a steeper k3 spectrum (Tran & Dritschel
2006).

To analyze the numerical results at the large scales we propose here a simple
spectral form incorporating three basic elements:

(a) large-scale equipartition over a range k <∼ m(t),

(b) a self-similar vortex population over a range m(t) <∼ k <∼ f (t) and

(c) a filamentary cascade over a range f (t) <∼ k <∼ d(t).

A spectral form with these properties is

E(k, t) =
ck(1 + k2/f 2)

(k2 + m2)3
. (3.1)
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We stress that this spectrum is chosen simply to deduce the temporal scaling of the
spectral transition wavenumbers. It is not a mathematical model like the equipartition
spectrum (2.2) proposed by Fox & Orszag (1973). Here m(t) is a wavenumber
associated with the maximum vortex size (m can be defined by the coherent energy-
enstrophy centroid, m ≈

√
Qcoh/Ecoh , obtained by integrating the spectrum over the

vortex wavenumbers m(t) <∼ k <∼ f (t)). The wavenumber f (t) marks the transition
scale from vortices to filaments, and d(t) is the leading edge of the ‘enstrophy
front’, assumed to be increasing exponentially (see below). The final coefficient c(t) is
proportional to the vortex density (Dritschel et al. 2008). Notice that for simplicity
we ignore the steep k3 range at k , m; this range contributes negligibly to both the
energy and the enstrophy. Moreover, we do not incorporate the k−1 range of the
equipartition spectrum (2.2). This is because the transition from k1 to k−1 in (2.2)
occurs at the energy-enstrophy centroid p ≈

√
Q/E, which is much larger than its

coherent counterpart m ≈
√

Qcoh/Ecoh , since Qcoh , Q at late times (while Ecoh ≈ E).
At sufficiently late times (i.e. many eddy turnaround times based on r.m.s. vorticity),

vortex self-similarity predicts c(t) ∼ t−2/3 and m(t) ∼ t−1/6 (Dritschel et al. 2008).
However, the ‘filament transition’ wavenumber f (t) is not predicted. Instead here
we determine f (t) from conservation of energy E and enstrophy Q, together with
an assumption on the growth of the ‘enstrophy front’ at k = d(t). We argue that the
thinnest filaments, at the scale Ld ∝ d−1, are essentially passive and thus likely thin
exponentially fast, i.e. d(t) ∼ eγ t where γ is the mean strain rate associated with larger
scales. It is conceivable that γ scales with the r.m.s. vorticity contained within the
larger scales, but it seems more plausible that γ scales with the characteristic vorticity
magnitude ωv within the vortices, which efficiently capture and twist filamentary
debris as they criss-cross space. ωv varies little across the vortex population (Dritschel
et al. 2008) and is time invariant. The r.m.s. vorticity on the other hand decreases
like t−1/6 due to the decreasing area fraction covered by the vortices (Dritschel et al.
2008). Since there is little practical difference, we choose the simpler assumption that
γ is constant.

This assumption is well supported by simulation results for Navier–Stokes
turbulence (Dritschel, Tran & Scott 2007), where it was shown that the palinstrophy P
(or mean square vorticity gradient) reaches a maximum at a time t = tp ≈ c0 + c1 lnRe
where Re is the Reynolds number. Thereafter, P decreases by viscous dissipation.
But the time tp measures the time it takes the enstrophy front to reach the scale of
viscous dissipation #diss . But Re ∝ #−2

diss , and hence #diss ∼ e−γ tp for some constant γ .
Identifying #diss with 1/d in the inviscid context, and tp with t , we arrive again at
d(t) ∼ eγ t .

We now determine the scaling of the filament transition wavenumber f (t). Without
loss of generality, we are free to non-dimensionalize length and time by taking
E = Q =1/2. Using then (3.1), elementary integration yields

4

c

∫ d

0

E(k, t)dk =
2

c
=

1

m4
+

1

f 2m2
+ O

(
1

f 2d2

)
, (3.2)

4

c

∫ d

0

k2E(k, t)dk =
2

c
=

1

m2
+

4 log(d/m) − 3

f 2
+ O

(
1

d2

)
. (3.3)

At late times t - 1, the wavenumbers become increasingly well separated, m , f , d ,
and moreover log(d/m) ∼ t - 1. Retaining therefore only the dominant terms, we
have c ≈ 2m4 from energy conservation (which is consistent with c ∼ t−2/3 and
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m ∼ t−1/6 found in Dritschel et al. 2008) and

1

m4
≈ 1

m2
+

4 log(d/m)

f 2
(3.4)

from enstrophy conservation, which implies

f ≈ 2m2

√
log(d/m)√
1 − m2

. (3.5)

At late times, m , 1. Now we use our assumption that the enstrophy front increases
exponentially d(t) ∼ eγ t to obtain the following scaling for the filament transition
wavenumber:

f ∼ t1/6 . (3.6)

A posteriori, this justifies m , f , d .
This simple model predicts energy growth E(k, t) ∝ t1/3k1 in the equipartition range

at large scales k , t−1/6, energy decay E(k, t) ∝ t−2/3k−5 over the vortex population at
intermediate scales t−1/6 , k , t1/6, and also energy decay E(k, t) ∝ t−1k−3 over the
filamentary range at small scales k - t1/6. The k−3 spectrum is formally the same
as that obtained by Batchelor (1969), but in our model this spectrum applies only
at high wavenumbers where filaments dominate. Moreover, this spectral tail decays
more slowly than predicted by Batchelor. The t−1 decay is due to the exponential
stretching of filaments assumed in our model. The spectral tail contains negligible
energy and nearly all of the enstrophy.

The spectral evolution for this idealized model is illustrated in figure 10, using
m = t−1/6, d = et , along with (3.2) for c and (3.5) for f . The most striking feature
of this evolution is just how slow it is — there is only a small change from t = 10
to t = 1000. Notice also that the enstrophy at a fixed wavenumber to the left of the
peak increases for a while before eventually decaying (after the peak sweeps past);
nevertheless most of the enstrophy quickly ends up in the rapidly expanding tail
between k = f and k = d .

4. Comparison with numerical simulations
Support for this simple model is presented next. We carried out 20 high-resolution

numerical simulations in a 2π doubly periodic domain using the contour-advective
semi-Lagrangian (CASL) algorithm (Dritschel & Ambaum 1997; Fontane & Dritschel
in press). The CASL algorithm is an efficient hybrid contour dynamics/spectral
method capable of modelling a wide range of spatial scales with much less numerical
dissipation, and much more accurately, than commonly-used algorithms such as
pseudo-spectral (Dritschel & Scott 2009). The substantially weaker dissipation in
CASL simulations is the result of being able to retain enstrophy to much finer
scales (Dritschel & Scott 2009, figures 1–3). Notably, CASL simulations exhibit the
same form of enstrophy dissipation as in the Navier–Stokes equations, but at a
much higher Reynolds number than can be presently achieved with other numerical
methods (Dritschel & Scott 2009, figure 4). The simulations reported here would have
required approximately 108 more computational effort if one used the pseudo-spectral
method (Dritschel & Scott 2009).

We started each simulation with the energy spectrum E(k, 0) =αk3 exp(−2k2/k2
0),

with k0 = 32 and α chosen so that E = 1/2. Then Q(0) = k2
0/2. The maximum

wavenumber used to represent the velocity field is kmax = 256 (the vorticity is
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Figure 10. Model energy E and enstrophy Ω spectra (a, b) for the non-dimensional times
t =10, 100 and 1000 as labelled. Here, the total energy and enstrophy are both equal to 1/2.
Only the range 10−3 ! k ! 103 is shown. Logarithmic scales are used.

represented at 8 times higher resolution). Each simulation differed only in a random
number seed determining the phases of the Fourier coefficients.

The flow evolution was computed for 160 ‘eddy rotation periods’ Teddy ≡ 4π/ωrms (0),
where ωrms (0) =

√
2Q(0) = k0 is the initial r.m.s. vorticity (the peak vorticity is 4 to 5

times larger). Below, time t is in units of Teddy .
This ensemble of simulations was used previously in Dritschel et al. (2008) to

corroborate our self-similar evolution model of the vortex population. In particular,
the numerical results strongly support the development of a universal vortex number
density n(A, t) ∝ t−2/3A−1 (corresponding to the energy spectrum E(k, t) ∝ t−2/3k−5

over the range of scales containing the vortex population), and a decay of vortex
enstrophy and vortex area fraction proportional to t−1/3 over the last 90 % of the
evolution.

Two snapshots of the vorticity field from one simulation are shown in figure 11.
Note the prevalence of filamentary structures at early times and of vortices at later
times. The flow is dominated by vortices at all but the earliest times. Figure 12
shows the enstrophy spectrum at early, intermediate and late times. Each spectrum
is multiplied by t2/3 so that, in theory, the intermediate ‘vortex wavenumber range’
remains steady. This appears to work well. At low wavenumbers, we observe a k3

spectrum (which eventually saturates when energy reaches the domain scale), while
at small scales we see a slowly retreating k−1 range. The apparently slow decay of
the k−1 range of the enstrophy spectrum at large wavenumbers when compared to
figure 10 is due to the t2/3 scaling we have applied.

We now quantify this spectral evolution, and compare it to the ideal evolution
proposed in § 3. To this end, we computed the total ‘resolved’ energy, enstrophy and
palinstrophy (Er , Qr and Pr ) over the wavenumbers 0 <k ! kr (with kr = 512 or 2048



228 D. G. Dritschel, R. K. Scott, C. Macaskill, G. A. Gottwald and C. V. Tran

(a) (b)

Figure 11. Vorticity ω(x, t) at t = 6 (a) and t = 24 (b) in one representative simulation. A
linear greyscale is used from the minimum (black) to maximum (white) values.

k–1

k–3

k3

k

t2/
3 Ω

102

10–2

100

100 102

Figure 12. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 10 (bold solid line),
40 (thin solid line) and 160 (dashed line). The temporal scaling is intended to collapse the
spectra over the range of scales occupied by vortices, m <∼ k <∼ f . Various slopes are indicated.

to check sensitivity). Here, the palinstrophy is given by
∫ kr

0 k4Edk, and is equal to
the mean square vorticity gradient (divided by 2). Pr is not conserved in the inviscid
limit, but it is used here to help determine the spectral parameters c, m and f in the
idealized spectrum (3.1), for which

Er =
c

4m4
+

c

4f 2m2
, (4.1)
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Figure 13. Ensemble-averaged spectral parameters m(t) (bold), f (t) (thin) and c(t) (dashed)
for two truncation wavenumbers kr = 512 (a) and kr =2048 (b). Note the logarithmic scales.
The units on the abscissa are arbitrary (the unscaled parameters are shown in figure 14).
Reference slopes of ±1 are shown by the thick bold lines.

Qr =
c

4m2
+

c

f 2

[
log(kr/m) − 3

4

]
, (4.2)

Pr =
ck2

r

2f 2
(4.3)

approximately (for kr - f ).
The spectral parameters were determined from each simulation from early times

t = 10 to the final time t = 160. They were then ensemble averaged at each time. The
resulting ensemble-averaged values of m(t), f (t) and c(t) are shown in figure 13 (log
scaled) using the truncation wavenumbers kr = 512 on the left and kr = 2048 on the
right. Figure 14 shows the corresponding unscaled results for kr = 2048, emphasizing
the slow evolution of the wavenumbers m and f . The ‘vortex wavenumber’ m
and the ‘vortex density’ c are both insensitive to the choice of kr . Using a least
squares fit of the log-scaled data, we obtain m ∼ t−0.1702, c ∼ t−0.6822 for kr = 512
and m ∼ t−0.1676, c ∼ t−0.6715 for kr = 2048. These compare well with the theoretical
predictions m ∼ t−1/6 and c ∼ t−2/3 (Dritschel et al. 2008).

The results for f are much less robust, with f ∼ t0.1188 for kr = 512 and f ∼ t0.2105

for kr =2048. We argued for f ∼ t1/6 in § 3 above. The discrepancy at early times
occurs because the spectrum has not yet filled out to kr . Note from (4.3), f is
determined only by Pr ; at late times, numerical inaccuracies make Pr uncertain,
particularly as Pr is dominated by the rapidly fluctuating high-k end of the spectrum.
Despite the uncertainty, the numerical data are not inconsistent with our model
prediction.

Finally, a comparison of the numerical and ideal model enstrophy spectra at an
intermediate time of t =40 is presented in Figure 15. Again c, m and f are not
fit but determined from Er , Qr , and Pr . The ideal spectrum is more peaked but
captures the spectral transitions around k = m and k = f , and closely matches the k−1

tail. Importantly, the spectral parameters are not sensitive to the form of the ideal
spectrum we have chosen, as has been verified using the ‘stick’ spectrum Ω = c m−6k3
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Figure 14. Ensemble-averaged spectral parameters m(t) (bold), f (t) (thin) and c(t) (dashed)
for kr = 2048. Here the scales are linear.
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Figure 15. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 40 (bold solid line)
compared with the ideal scaled spectrum using (3.1). Various slopes are indicated.

joined to ck−3 joined to cf −2k−1. We do not claim (3.1) is correct everywhere.
What appears robust is an energy spectrum containing k1, k−5 and k−3 ranges, with
transition wavenumbers evolving according to the time-dependencies discussed. To
determine the exact form of the spectrum will require further theoretical insight, such
as an improvement of the vortex self-similarity hypothesis near the maximum vortex
size.

5. Concluding remarks
We have developed a new model for the late-time evolution of inviscid, unforced

two-dimensional turbulence. The model builds upon vortex self-similarity over a
slowly-expanding intermediate range of scales (Dritschel et al. 2008). Here, we propose
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that the scales larger than any vortex approach a state of equipartition (Kraichnan
1967; Fox & Orszag 1973), with energy spread uniformly among Fourier modes
(except at ultra-large scales, where the energy spectrum is bounded by a constant
times t2k3 (see Tran & Dritschel 2006). Whereas ideal equipartition is a statistically
steady state, in our model we argue that the energy spectrum at large scales slowly
grows like E(k, t) ∝ t1/3k1, and slowly cascades to ever larger scales, k <∼ m(t) ∝ t−1/6.
In particular, the flux of energy to large scales diminishes like t−5/6. The inverse
cascade becomes ever slower.

At small scales, we propose that Batchelor’s k−3 spectrum is gradually replaced at its
upper end around k = f (t) ∝ t1/6 by the steeper spectrum E(k, t) ∝ t−2/3k−5 associated
with a self-similar population of vortices (Dritschel et al. 2008). The k−3 spectrum,
we argue, spreads to high k exponentially fast, implying that the spectrum decays like
t−1 there. This decay is slower than predicted by Batchelor (1969) by simple scale
analysis. Furthermore, he did not recognise the possibility that a steeper spectrum
would develop and replace the k−3 spectrum at intermediate scales.

We have examined our model’s predictions using a large ensemble of high-resolution
simulations of two-dimensional turbulence. These simulations strongly support the t1/6

growth of the ‘vortex wavenumber’ m (inversely proportional to the size of the largest
vortex), and the t−2/3 decay of the ‘vortex density’ c. Less secure is our prediction that
the ‘filament transition wavenumber’ f (where the energy spectrum shallows from
k−5 to k−3) grows like t1/6. This wavenumber is sensitive to numerical inaccuracies
and to spectral fluctuations at high k. Nevertheless, our results are not inconsistent
with f (t) ∝ t1/6.

Finally, we note that a similar model can be derived for the analogous three-
dimensional quasi-geostrophic system applicable to rapidly rotating, strongly stratified
flow (Gill 1982). This system is in many ways analogous to the two-dimensional one
studied here: it possesses a materially conserved dynamical tracer (potential vorticity),
its flow is layer-wise two-dimensional and non-divergent, it has a scalar streamfunction
whose Laplacian is the conserved dynamical tracer, and it exhibits a direct enstrophy
cascade and an inverse enstrophy cascade (Charney 1971). In the quasi-geostrophic
system, equipartition at late times gives rise to a spectrum E(k, t) ∝ t9/20k2 at large
scales, while the emergence of a self-similar population of vortices gives rise to a
spectrum E(k, t) ∝ t−3/4k−6 at intermediate scales. Further details and computational
support are left for a future study.

Georg A. Gottwald is partly supported by the Australian Research Council grant
DP0452147. We wish to thank colleagues and staff at the Isaac Newton Institute
(Cambridge) for their feedback and support during the 2008 programme on High
Reynolds Number Turbulence.
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