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Abstract

This thesis concerns the study of chiral algebras over schemes of arbitrary

dimension n.

In Chapter I, we construct a chiral algebra over each smooth variety X of
dimension n. We do this via the Hilbert scheme of points of X, which we
use to build a factorisation space over X. Linearising this space produces
a factorisation algebra over X, and hence, by Koszul duality, the desired
chiral algebra. We begin the chapter with an overview of the theory of fac-
torisation and chiral algebras, before introducing our main constructions.
We compute the chiral homology of our factorisation algebra, and show
that the D-modules underlying the corresponding chiral algebras form a

universal D-module of dimension n.

In Chapter II, we discuss the theory of universal D-modules and O-
modules more generally. We show that universal modules are equivalent
to sheaves on certain stacks of étale germs of n-dimensional varieties. Fur-
thermore, we identify these stacks with the classifying stacks of groups of
automorphisms of the n-dimensional disc, and hence obtain an equiva-
lence between the categories of universal modules and the representation
categories of these groups. We also define categories of convergent univer-
sal modules and study them from the perspectives of the stacks of étale

germs and the representation theory of the automorphism groups.
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Introduction

Vertex algebras and vertex operator algebras have been studied and applied fruitfully
in a number of areas, ranging from physical disciplines such as conformal field theory
and string theory to finite group theory and the geometric Langlands correspondence.
Beilinson and Drinfeld [4] reformulated the axioms of a vertex algebra in geometric
language in terms of chiral algebras, and showed that the latter are equivalent to
factorisation algebras—both geometric objects which take the form of D-modules over
a complex curve, equipped with additional structure. The sophisticated machinery
of factorisation and chiral algebras elegantly captures the data of vertex algebras in
an often more intuitive way.

In the one-dimensional setting, Frenkel and Ben-Zvi [10] explain the relationship
between vertex algebras and chiral algebras over curves. To make this relationship
precise, we need adjectives on both sides. First, we require our vertex algebras to
be quasi-conformal, or equipped with a one-dimensional infinitesimal translation. On
the other hand, the chiral algebras we obtain are universal: they are defined over all
smooth families of curves, and are compatible with pullback by étale morphisms of
these families. Roughly, the infinitesimal translation allows us to spread the vector
space underlying the vertex algebra canonically along any complex curve C. In this
way, we obtain a D-module on C' which will have the structure of a chiral algebra.
The fact that this procedure works for any smooth curve C' means that we obtain a
universal chiral algebra.

Francis and Gaitsgory [9] showed that Beilinson—Drinfeld’s definitions can be ex-
tended to higher dimensions. They identify chiral and factorisation algebras as specific
Lie algebra and cocommutative coalgebra objects in a certain monoidal category, and
then show that the equivalence of chiral and factorisation algebras amounts to a par-
ticular case of Koszul duality. We expect Frenkel-Ben-Zvi’s result to extend to this
setting: that is, a higher-dimensional analogue of a vertex algebra should correspond

to a higher-dimensional universal chiral algebra. However, although some attempt
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has been made to define such higher vertex algebras (see for example Borcherds [5]),
these definitions have not been compared with the algebras of Francis—Gaitsgory.

In this thesis, we approach the study of higher-dimensional chiral algebras from
two perspectives. In the first chapter, we use the Hilbert scheme of points to construct
concrete examples of chiral algebras of arbitrary dimension. On the other hand, in
the second chapter, we study the theory of universal D-modules, which is a structure
weaker than that of universal chiral algebras. We develop a thorough understanding
of the relationship between the category of universal D-modules and the category
of representations of the group of automorphisms of the formal disc; the functors
that we provide between these two categories agree with the functors exhibiting the
equivalence between universal chiral algebras and quasi-conformal vertex algebras.
This understanding should shed light on the extension of the definition of a vertex
algebra to higher dimensions.

The Hilbert scheme of points is a natural starting point when attempting to
find examples of chiral algebras. One reason for this is the well-known result of
Nakajima [32] and Grojnowski [21], that the cohomology of the Hilbert scheme of
points on a smooth projective surface X has a canonical structure of a vertex algebra,
the Heisenberg vertex algebra modelled on the integral cohomology of the surface X.
By the above, this means that for the fixed surface X and for any curve C|, there is
a chiral algebra on C' coming from the cohomology of the Hilbert scheme of X.

However, we are interested in constructing chiral algebras over higher-dimensional
varieties, not just curves. In fact, in this thesis we take a different approach to Naka-
jima and Grojnowski, and use the Hilbert scheme of points to define a chiral algebra
over X, for X a smooth variety of any dimension, not just for a surface. We do this
via the category of factorisation algebras: an important advantage of working in the
setting of factorisation algebras rather than that of chiral algebras or vertex algebras
is that the definition of a factorisation algebra extends in a straightforward way to
non-linear settings, leading to the notions of factorisation spaces and factorisation cat-
egories. In particular, once one has constructed a factorisation space living over the
variety X one can linearise it in several natural ways to obtain factorisation algebras
over X. Our strategy is to exploit the geometry of the Hilbert scheme to construct a
factorisation space over X; we linearise this space to produce a factorisation algebra
over X, and hence a chiral algebra. We study these objects in Chapter 1.

In Chapter II we study categories of universal D-modules and universal O-modules

of dimension n. Motivated by a claim of Beilinson and Drinfeld [4] we relate these



categories to categories of representations of groups of automorphisms of the n-
dimensional formal disc. A universal D-module is a rule assigning to each smooth
n-dimensional variety a D-module in a way compatible with pullback by étale mor-
phisms between the varieties. A key observation is that all of this data is equivalent
to the data of a single sheaf on a stack parametrising étale germs of n-dimensional
varieties.

A second critical observation is that, using a generalisation of Artin’s approxima-
tion theorem to the relative setting, we can relate this stack to the classifying stack
of the group G of automorphisms of the n-dimensional formal disc. More precisely,
our stack is equivalent to the classifying stack of the group G¢* of automorphisms of
étale type, which is a dense subgroup of G. It follows that a universal D-module is
equivalent to a representation of G furthermore, any representation of G restricts
to give a representation of G¢ and hence a universal D-module.

A natural question to ask is whether we can characterise those universal D-
modules which come from representations of G rather than representations of just
the subgroup G®. We give two characterisations of these universal D-modules, which
we call convergent universal D-modules. However, at the time of writing, we do
not know whether all universal D-modules are actually convergent. This question is
equivalent to the question of whether all representations of G¢ extend uniquely to
representations of G. We are able to show that if an extension exists, it is unique.
Furthermore, any finite-dimensional representation of G extends to a representation
of G, and in fact this is true of any representation of G¢' satisfying a weaker finiteness
condition which we call being K “-locally-finite. All representations of G satisfy this
condition, and so the question is reduced to the existence of representations of G
which are not K®-locally-finite. If such a representation exists, it will give rise to a
universal D-module which is not convergent; on the other hand, it seems that such
an object would be unlikely to arise in ordinary applications of the theory and would
be unpleasant to work with. In other words, we are only interested in working with
D-modules satisfying the properties implied by convergence, and we suggest that the
category of convergent universal D-modules is the correct category in which to work.

An intended application of this theory is the following. As in Francis—Gaitsgory
[9], we know that chiral algebras over a variety X are certain Lie algebra objects
in the category of D-modules on the Ran space of X, which is equipped with a
monoidal structure called the chiral monoidal structure. In the universal setting, we

can introduce Ran versions of the stack of étale germs and the automorphism groups
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G and G*', and define chiral monoidal structures on the associated categories of quasi-
coherent sheaves. We should then interpret the monoidal structure in terms of the
classifying stack in order to obtain higher-dimensional analogues of vertex algebras as
Lie algebra objects in the representation category with this chiral monoidal structure.

This will be explored in future work.



Chapter 1

Factorisation structures on the
Hilbert scheme of points

In this chapter, our goal is to use the Hilbert scheme of points of a variety X of
arbitrary dimension n to define a factorisation space and factorisation algebra over
X. We will begin in section 1 by establishing the necessary definitions and results
regarding factorisation spaces and factorisation algebras. In section 2 we define and

and study our factorisation space and the resulting factorisation algebra.

0.1 Conventions

We fix an algebraically closed field k of characteristic zero. We work in the categories
Sch of schemes over k and Schy; of schemes of finite type over k. Let us emphasise
that these are classical rather than DG schemes.

The “spaces” we consider will all be in particular prestacks, locally of finite type,

that is, functors
Schi® — oco-Grpd.

We denote this category by PreStk; ¢, and view Sch¢i, as a full subcategory under
the Yoneda embedding. See Appendix A.1 for some basic definitions and properties.

We work with the DG-categories of D-modules on our prestacks. See Appendix
A.2.3 for an overview of the theory, or [18] and III.4 of [20] for a more complete
account; the key idea to keep in mind is that for any prestack ) which is locally of
finite type, D()) is defined as

lim D(9),
(S—=Y)e((Schifh) /5) "

where the limit is taken with respect to the functor sending f : S — S’ to f' :
D(S") — D(S).



1 Preliminaries on factorisation
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1 Preliminaries on factorisation

In this section, we introduce the theory of factorisation spaces and factorisation al-
gebras. We begin in 1.1 by defining the Ran space of a separated scheme X, and its
variant, the Ran space of marked points. We show, following Beilinson—Drinfeld [4],
that if X is connected, both of these spaces are homologically contractible. In 1.2
we define factorisation spaces and algebras, and show how we can produce examples
of factorisation algebras from factorisation spaces by linearisation. In 1.3 we define
the notion of a chiral algebra, and focus in particular on commutative chiral alge-
bras. In 1.4 we discuss the equivalence between the categories of chiral algebras and
factorisation algebras.

Finally, we conclude by introducing the notion of a vertex algebra in 1.5, and
by discussing the equivalence between quasi-conformal vertex algebras and chiral
algebras over curves. The material of 1.5 is not necessary for the second section of
the chapter, but it is the motivation for the study of universal D-modules in Chapter
II.

1.1 The Ran space

Fix a separated scheme X of finite type over k. In this section we introduce the Ran
space of the surface X, as well as its variant, the Ran space of marked points, and

prove that, as long as X is connected, they are homologically contractible.



1.1 The Ran space

Definition 1.1.1. Let fSet denote the category of finite non-empty sets I and sur-

jections av : [ — J.

Key construction 1.1.2. Given any finite non-empty set I, let X’ denote the I-fold
fibre product of X over Speck. For any surjective map o : [ — J there is a natural
map X7 — X! sending the point (z;);c; € X’ to the I-tuple (y;)ier in X! which has
coordinates y; = x4(;) for each ¢ € I. We denote this map by A(a) : X7 = X1 Ttis

easy to see that we obtain a functor

XSet . §Set°P — Sch
=y
(a: 1= J) (Aa): X7 — X7,

and that the maps A(«) are closed embeddings of schemes. It follows that the colimit
(in the category PreStk;.)

colim X7
T€fSetoP

is a pseudo-indscheme.

Definition 1.1.3. We denote the above pseudo-indscheme by Ran X, and call it the
Ran space of X.

We are interested in the category of D-modules on Ran X,

D(Ran X) ~ lim D'(X') ~ colim D,(X7).

I€fSet T€fSetoP
(See Appendix A2.3.2 for a discussion of D-modules on prestacks.) For any I € fSet,
we denote by ((Af);, (AT)") the adjoint pair of functors D(X!) = D(Ran X) given by
the tautological functors from the descriptions of D(Ran X') as a colimit and limit,
respectively.

It follows from the discussion in Appendix A2.3.3 that the de Rham cohomology
of Ran X

Ho(Ran X) := (pran x )1 © (PRan x)' (k) € Vect = D(pt)
is defined, and that there is a canonical map
Trran x : He(Ran X)) — Ha(pt) = k.

The following important fact is a theorem of Beilinson and Drinfeld when X is a
curve (see the proposition in 4.3.3, [4]), and is proved by the same methods for X of

higher dimension in section 6 of [16].
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Proposition 1.1.4. For X a connected separated scheme of finite type over k, the

trace map
TrRan x : He(Ran X)) — k

1s an isomorphism of DG-vector spaces over k. In other words, Ran X is homologically

contractible.

Beilinson and Drinfeld’s proof of Proposition 1.1.4 is easily generalised to the

following setting:

Lemma 1.1.5. Let Y be prestack expressible as a colimit of schemes

Y =~ colim Z(I),
Ies

and satisfying the following properties:

1. Foreach I € S, Z(I) is either empty or connected, and for at least some I € S,
Z(I) is non-empty.

2. There is a map m : Y XY — Y which is associative and commutative, and such

that its composition with the diagonal map is the identity:

idy

yTyXyTy-
y

Then Y 1s homologically contractible.

In the case of the Ran space, the map m corresponds to taking the union of two

finite sets:

union : Ran X x Ran X — Ran X
(S,T)— SUT.

It is easy to see that this satisfies the conditions of (2).
We will now consider another example of a prestack which is homologically con-
tractible by this same lemma. We have the following variant of the Ran space,

introduced by Gaitsgory:

Definition 1.1.6 (2.5.2, [16]). Fix a finite set A, and consider the category fSety4
whose objects are finite sets I equipped with any map a; : A — I, and whose

morphisms from (A — I) to (A — J) are commutative triangles:

8



1.1 The Ran space

Now fix a k-point y* € X and for any (a; : A — I) € fSet, let X = {yA} X xa X1,
Notice that for any o : I — J giving amap (ay: A — ) = (ay : A — J) in fSet 4,
the closed embedding A(a) : X7 < X7 induces a closed embedding X%’ — X§.

Therefore we can consider the colimit

Ran X4 := colim X§.

(I,ar)efSet??

It is a pseudo-indscheme, and we will call it the Ran space of X with marked points.

Intuitively, Ran X4 parametrises all finite non-empty subsets of X containing 3*
for each a € A.

It follows from Proposition 1.1.4 above and Corollary 2.5.10 of [16] that Ran X 4 is
homologically contractible; however, it is easy enough to see it directly from Lemma

1.1.5. We explain this now.

Proposition 1.1.7. If X is connected, then the trace map
TrRanx, : He(Ran X4) — &
18 an equivalence.

Proof. Let us first check condition (1) of Lemma 1.1.5. Given any (A <% I) € fSet 4,

we can decompose [ as [ = ' U ["” where I’ := im(a;). Then we have
Xﬁ = {yA} X xA X1~ ({yA} X xA XI,> X XIN.

Since the map X! — X4 is a closed embedding, the scheme {y*} x ya X! is either
empty or a single point (and in the case that a; is injective, it is a point), and so the
scheme X1 is either empty or isomorphic to X!, which is a connected scheme.

So to complete the proof, it remains to define a suitable map
m : Ran X4 x Ran X4 — Ran X 4.

Intuitively, the map we will use is just the map sending two finite subsets of X

containing {yA} to their union; let us now define this rigorously.



1 Preliminaries on factorisation

Recall from the universal property of colimits that to define a map m : Ran X4 x
Ran X4 — Ran X4 it suffices to give compatible maps my ; : X fl x X j — Ran X4
for any pair of objects (A 2% I) and (A 2% J) of fSet 4.

Given such a pair, we define A BREEENY U4 J to be the pushout I L4 J of I and J
along the maps from A, together with the natural map from A to I U4 J. (Note that
this is an object of fSet4, but it is not the coproduct of (A %5 I) and (A 2% J).)

Then X'"47 is isomorphic to the fibre product X’ x y4 X7, and so we can see that
XA o {y Y X asexa (X7 x X7).

We need to define a map my s from X% x X7 into Ran X4, and since X1 x X ~

{yd, ¥} X xaxxa (XTI x X7), we can simply take my s to be the natural map

XAl o colim XK = Ran X 4.
A A
KefSetP

This gives a compatible family of maps into Ran X 4, and hence defines a map m :
Ran X4 x Ran X4 — Ran X 4. The associativity and commutativity of this map m
follow from the corresponding properties of the coproduct of finite sets. It is also
easy to see that m is left inverse to the diagonal map Ran X4 — Ran X4 x Ran X}y,
and so m satisfies all the required properties. Hence, by Lemma 1.1.5, the proof is

complete. O

1.2 Factorisation spaces and factorisation algebras

Let us again fix X a separated scheme of finite type over k.
Definition 1.2.1. A factorisation space over X consists of the following data:

1. A prestack Vran x expressible as a colimit over fSet°?:
YRanx =~ colim Yxr,

IefSet°P

where each Yyr is an indscheme and for any o : [ — J, the map Y («a) : Yxs —

Yy is ind-proper.
2. For each finite set I a map
1Yy — X7,

natural in fSet, i.e. a natural transformation f : YVyme = X ¢t

10



1.2 Factorisation spaces and factorisation algebras

3. Ran’s condition: For any surjection o : I — J, there is a natural map v, :

Yys — X7 X xr Yy1 given by

X X x1 Yxl E— YXI

| |

X — X1,
A(a)

We require that v, be an equivalence of indschemes, and that v be associative

in the obvious sense.

4. Factorisation: Given o : I — J as above, we obtain a partition of I as |_|]€J
where [; = {i € I | a(i) = j}, and we consider the following open subscheme of

X7
U=U(a)={(zi)ier € X" | zi, # 2, unless a(i1) = a(ir)} .

We let j = j(«) denote the open embedding U — X' =[] , and consider

jEJ
the following two pullback diagrams:
j/
U Xx1 Yxr = Yy U xxr (HJGJ xT J) - HJGJ X1
(fI)'l lfl (HjEJij)Hl lHjEJij
U—— X! UL, X"

J J

We require an equivalence
da . U X x1 (HYXIJ) - U X x1 YXI
jeJ
of indschemes over U. Moreover, these equivalences d, should be associative

and compatible with the other structure maps v,.

Let us describe explicitly a compatibility condition between the maps v and d.

Suppose that we have three finite sets I, J, K with surjections:

%7 K

11



1 Preliminaries on factorisation

Write ay, for the restriction of « to the pre-image I of k£ under the composition o «,

so that we have

ak:Ik:UIj—»Jk.

JE€Jk

Notice that U(8) = U(B o a) xxr X7. Then we require that the following diagram

be commutative.

U(B) xxs H YXJk> 67 U(B) xxs Yy
kEK p
(Vak)kEK 2 Va
U(ﬁ) X xJ (H ()(JI€ X x Iy, YXIk)> U(ﬁ) X xJ (XJ X xI YXI)
keK

! !
XJ X x1 <U(ﬁoa) X x1 (H Yxlk,>) %X‘] X x1 (U(ﬁoa) X x1 YXI).

keK dgoa

Remark 1.2.2. Note that, by the universal property of colimits, the maps f7 in (2)
give rise to a map f : Vranx — Ran X.

An important example of a factorisation space is due to Beilinson and Drinfeld [3]:

Example 1.2.3. Let G be an algebraic group and let X = C be a curve. For I € fSet
define Grg o1 to be the prestack that sends a test-scheme S to the groupoid

cl:S— !
(c!,P,a) | P— S x C a principal G-bundle
a:SxC\{c'} = P a trivialisation

Let

Gr = colim Grg o1 .
G,RanC TEHSetoP G,C

This is a factorisation space, known as the Beilinson-Drinfeld Grassmannian. (Note
that it is not very interesting for X with dim X > 2.)

12



1.2 Factorisation spaces and factorisation algebras

Convention 1.2.4. Whenever we have ! : S — X, or equivalently a collection of
maps z; : S — X indexed by I, we write {a:l } to mean the closed subset of S x X

given by the union of the graphs of the functions z;.

We are interested in factorisation spaces because they are non-linear analogues
of factorisation algebras. As we will see in 1.2.8, we can use factorisation spaces to

construct examples of factorisation algebras.

Definition 1.2.5. A factorisation algebra over X is a D-module Ag,, x over Ran X
together with the data of factorisation isomorphisms. Recall that, as a D-module over
Ran X, Aran x is given by a collection (A! € D(XT)) esser together with compatible

isomorphisms
Vo 1 Ala) (AT) ~ A7

for any o : I — J (c.f. Ran’s condition for factorisation spaces). Then we demand
factorisation isomorphisms
Ca ja) AT = j(a) (B AD)
j€J
for any a : I — J. These isomorphisms must be compatible with composition of av and

with the structure isomorphisms v, (c.f. the factorisation condition for factorisation

spaces).

Remark 1.2.6. In fact, instead of beginning with a D-module on Ran X, we could
start with a quasi-coherent sheaf. Assume in addition that there are no non-zero local
sections supported at the diagonal X C Ran X. Then it follows from the factorisation
structure that this sheaf has a canonical structure of crystal on Ran X, i.e. that it
is a D-module. (See 3.4.7 [4] for the construction of the canonical connection when

working with a curve X and in the abelian setting.)

Convention 1.2.7. From now on, if we write U C X? without specifying the map
a, we mean U = U(a) for a = id : {1,2} — {1,2}. On the other hand, if we write
A we always mean A = A(B) : X — X? for 8 : {1,2} — {pt}. More generally,
for any finite set I, j(I) : U(I) — X! comes from to the map id; : I — I, while
A(I): X — X' comes from the projection I — {pt}.

Key construction 1.2.8. Let Vg.,x = colimYy: be a factorisation space, and
assume that the structure maps f! : Yyr — X! are ind-proper. Assume also that we

have a D-module .% on Yran x, i-e. a compatible family of D-modules (! € D(Yy1)),

13



1 Preliminaries on factorisation

and suppose that .% is compatible with the factorisation structure on Y., x. Let us
explain what we mean by this. Recall that for each a : I — J we have a commutative

diagram as follows:

" U(a)

(Hf’)/
lj(a)

U(a) xx1 HjeJ Yx’j)
j// XI

/ 7’
Hf]j f\
Y1

With this notation, .% is compatible with the factorisation structure on Vgan x if we

da

HjeJ Yy,

have isomorphisms

G () = (07 (8,57

jeJ
which are themselves compatible with respect to composition of a and the isomor-
phisms Y (a)'(F1) ~ #7.
In such a setting, we obtain a factorisation algebra Aga.,x by setting A’ =
D)

Indeed, we have isomorphisms

M) FIF) = FY (@(F) = [1(F),

*

and
J) fITT) = (f).(G) (F)

= (F1Y(da)- ()" (E 7 Ij)

Example 1.2.9. Let Yranx = colimjggsetor Yxr be a factorisation space such that
each f! is ind-proper, and consider the D-module wyy, , on Vranx- It is not hard to

check that this is compatible with the factorisation structure, and so

folWypax) = {f*l(wyxl ) }IefSet

is a factorisation algebra.

14



1.3 Chiral algebras

1.3 Chiral algebras

In this section, we introduce the notion of a chiral algebra, following [9]. We work in
the category D(Ran X) of D-modules on the Ran space, and begin by defining two
natural monoidal structures on D(Ran X).

To describe a monoidal structure, we need to give compatible maps
D(Ran X)®/ — D(Ran X)

for all J € fSet. Using the presentation of D(Ran X) as a colimit, it suffices to define

compatible maps

X) D(X") — D(Ran X)

jeJ

for any collection {I;} of finite sets parametrised by another finite set J. Such a

family of maps can be defined from the following data: for each J € fSet, a functor
my : fSet’® x - - x fSet®® — fSetP,
together with a natural transformation between the resulting two functors
(Fr s (I)jes = ©5esD(X)) = (B : (I)jes = D(X™)).
This data should be compatible with the operation LI on fSet.

Definition 1.3.1. The x symmetric monoidal structure on D(Ran X) is the sym-
metric monoidal structure coming from the map my : (I;) — I = U;es1;, together
with the natural transformation 7 : Fy = F, defined for each (/;);es by the external

tensor product of D-modules:

) ®D(ij) — D(XT)
(M € D(X)) — EJ(MIJ').

We denote this monoidal product by ®*.

Given M, M,y € D(Ran X)), the fibre of M; ®* M, at a point (S C X) € Ran X is

(M ®@* My)jg) ~ EB (My)s, @ (My)s, .
{(Slst)IS:SlLJSQ,SZ;f@}

15



1 Preliminaries on factorisation

Definition 1.3.2. The chiral monoidal structure on D(Ran X) is the symmetric
monoidal structure coming from the maps m : fSet x ...fSet — fSet as in definition

1.3.1 and the natural transformations 7’ : F; = F, given for {/; }jeJ by

() s Q) D(XY) = D(XT)
jeJ
(M; € D(XD)) = j(a). 0 j(e) (8 MY).
(Here we denote by a the obvious surjection I = Uj;e;I; — J.) We denote this

monoidal operation by @,

Given M, M, € D(Ran X), the fibre of M; @ M, at a point (S C X) € Ran X

is
(My & My)g ~ o (M1)s, ® (Ms)s,,
{(S1,SQ)|SZSlL|SQ7Si;£@}

where now the direct sum is over decompositions of S by disjoint sets S;.

Suppose we have a surjection o : I — J in fSet, with I; :== a~'(j), and for each
j € J let M; € D(Ran X). By definition of @™, we have

(A1) (j(a). o j(a) (B(AL) M) ) = & ((AD), o (AD) M)

and hence we obtain a map

j(e)- o (e (BAD) M) - (AT (%31, )

Lemma 1.3.3 (Lemma 2.3.4, [9]). For I,J and M; € D(Ran X) as above, the re-

sulting map

P (ite). o sty @A) - (@7 (21, ).
al—»J d
is a homotopy equivalence (where the direct sum is taken over all surjections o : [ —

J, i.e. all partitions of I into |J| non-empty subsets).

This result allows us to understand the structure of a J-fold chiral tensor product
by breaking it down into exterior tensor products.

Given the two symmetric monoidal structures on D(Ran X), we can consider
algebra and coalgebra objects in D(Ran X). In particular, we will use the Lie operad
and the co-commutative cooperad. (See e.g. Loday and Vallette [27] or Markl,
Shnider and Stasheff [29] for an introduction to operads, and Chapter 2 of Lurie [28]
for the theory of oco-operads.)
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1.3 Chiral algebras

Definition 1.3.4. A chiral algebra C over X is a Lie algebra object in the symmetric
monoidal category (D(Ran X ), ®%) which is supported on X C Ran X.

That is, we have B € D(X) such that for any finite set I, C! ~ A(I),B € D(X?).

Moreover, for any surjection o : I — J we have a chiral operation

s (). (8, MI)B) > Ay
corresponding to the chiral Lie bracket
He - (?Chc — C.

The chiral operations satisfy relations coming from the anti-symmetry, Leibniz rule,
and Jacobi identity of the chiral Lie bracket.

We denote the category of chiral algebras by Lie-alg®(X). We will often refer to
the underlying Dx-module B as the chiral algebra rather than C.

Example 1.3.5. Let B = wx € D(X). Then we have a canonical exact sequence
0 — wx @WX — j*j*(wX &(A)X) W—X> A!(WX) — 0,
and the map p,,, gives a chiral bracket on wx.

Definition 1.3.6. Similarly, a Lie x algebra on X is a Lie algebra object in the
symmetric monoidal category (D(Ran X ), ®*) which is supported on X.

If S is a Lie x algebra on X, we will denote the Lie bracket by [ |s. We denote
the category of Lie x algebras on X by Lie-alg*(X).
For any C € D(Ran X), there are natural maps

®*C — ®Chc,
J J

meaning that every chiral algebra is in particular a Lie x algebra. This gives rise to

a forgetful functor
F : Lie-alg™(X) — Lie-alg*(X)

Definition 1.3.7. If C is a chiral algebra such that the Lie bracket [ |p¢ on the

underlying Lie x algebra vanishes, then we say that C is a commutative chiral algebra.

17



1 Preliminaries on factorisation

Suppose M € D(X) is a commutative algebra object with respect to the ®' tensor

structure on the category D(X) of right D-modules. That is, we have a morphism
m:M® M- M

in D(X) which is associative and commutative. We want to use m to define a chiral
algebra structure on M, i.e. a map j.j"(M X M) — A/M (and analogues for more
general a : I — J). By definition of the tensor structure on D(X) = IndCoh (Xgr),

we have
M & M= A (MK M).
Hence we define the chiral operation py; to be the composition
G (M B M) = AN (MEM) ~ AM @ M) 2% A M.
Here the first map is the canonical map from the Cousin complex for M X M:
MR M — j,5 (MR M) = AA (MK M).

It has the following alternate description: recall that if My, My € D(X), then
M, &' My ~ Mf ®oy Ma, where Mf =M ® w;(l is the left D-module associated to
M. (See for example Appendix A.2.3.15.) Note also that we have

g (M B M) =~ j,j* (MR M*) @ (wx Rwx))
~ ju (5" (MR M) @ j* (wx Bwx))
~ (MR MY @ j.j" (wx B wy),

using the projection formula (see Lemma A.2.2.11 (1)).

Now we apply the canonical map
Hux * JeJ" (wWx Mwx) = A(wx) (1.1)

to obtain a map into (M*X M*) ® Aj(wx). Again using the projection formula, we

have

(MR M) @ Aj(wy) = A (A (M R M) @ wy)
~ A (M6®Mz®wx)
~ A (M M),

as required.
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1.4 Koszul duality

The skew-symmetry and Jacobi identity satisfied by the map (I.1) together with

the symmetry and associativity of m ensure that the composition
par s s (MR M) — AM

is indeed a chiral bracket. Moreover, this gives a commutative chiral algebra, because

of the exactness of the canonical sequence
0— wx X wx — j*j* (wX X’LUX) — A!(WX) — 0.

In fact, a chiral algebra B is commutative precisely if it comes from a commutative

®' algebra in this way. That is, we have the following equivalence:

Proposition 1.3.8. The above construction gives an equivalence of categories

Com-alg(D(X), ®") = Lie-alg™(X) com.

1.4 Koszul duality

In this section, we will see that the category of chiral algebras is equivalent to the
category of factorisation algebras.

Let us begin by considering again the symmetric monoidal category
(D(Ran X), @™).

A cocommutative coalgebra object in this category is a D-module M = (M) together

with comultiplication maps
Sy M — @M
I

which are coassociative and cocommutative.
Given such an object (M, ) and a surjection a : [ — J, we use Lemma 1.3.3

and the (j(a)*, j(a).) adjunction to obtain morphisms
J(@) (WMD) = ja) (M');

if these morphisms are all isomorphisms, then M is a factorisation algebra on X.
Conversely, given a factorisation algebra, we can apply the adjuction isomorphisms to
the factorisation isomorphisms, and we obtain the structure maps of a cocommutative
coalgebra in (D(Ran X ), ®"). That is, we have the following result:
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1 Preliminaries on factorisation

Lemma 1.4.1. Let M be a D-module on Ran X. The structure of a factorisation
algebra on M is equivalent to the structure of a chiral cocommutative coalgebra struc-

ture on M such that the induced maps
J(0) (9 MP) = j(a) (M)
are all isomorphisms.

As described by Francis and Gaitsgory in [9], there is a Koszul duality between
the Lie operad and the cocommutative coalgebra cooperad, which is particularly well-
behaved in our setting of (D(Ran X), @):

Theorem 1.4.2 (Theorem 5.1.1, [9]). The adjoint functors
C": Lie-alg®(Ran X)) = Com-coalg®(Ran X) : Prim*"[—1]
provided by Koszul duality are in fact mutually inverse equivalences.
Furthermore, we have the full subcategories
Lie-alg™(X) C Lie-alg®™(Ran X) and Fact(X) € Com-coalg™(Ran X),
and the Koszul duality functors also respect these:

Theorem 1.4.3 (Theorem 5.2.1, [9]). The above equivalences C* and Prim®[—1]

restrict to give mutually inverse equivalences
C": Lie-alg®(X) = Fact(X) : Prim*"[—1].

In other words, a cocommutative coalgebra (M, ) is a factorisation algebra
if and only if the corresponding Lie algebra object is supported on the diagonal
X C Ran X.

In sections 3.4.11-12 of [4] there is an explicit description of C®*(B) as a left D-
module on Ran X, in the case that X = C'is a curve and B € D(C) is concentrated
in degree zero. Namely, we define the Chevalley-Cousin complex Chev(B) as follows:
for I € fSet we set Chev(B)cr to be the complex given in degree n by

Chev(B)g = @ Ala)(T).j(T)" (BA)™
a:I—T
where we take the sum over all surjections « from I to a set T" of cardinality |T'| = —n.

We define the differential d by specifying its components
dr: A0)(T)j (T)* (BAD™ = A(a)j(T).5(T')* (B

for two sets T, 7" with T =T" U {t;,t2}, T = T" U {to} and surjections «, &' making

the following diagram commute:
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1.5 Vertex algebras

T T

t1,t2 — to

Then dr 1 comes from the chiral bracket g : j.j*(By, X Bi,) — AiBy,. The Jacobi
identity ensures that the resulting map d satisfies d* = 0.

This complex Chev(B) satisfies Ran’s condition and factorisation, and we have
C(B)' = (H ™ Chev(B)¢r)' .
In particular, for I = pt we have that Chev(B)cee = B[1], and so
CMB)P =B

A natural question to ask is the following: what property of a factorisation alge-
bra will ensure that the corresponding chiral algebra is commutative? We have the

following characterisation of these so-called commutative factorisation algebras:

Lemma 1.4.4 (Proposition 3.4.20, [4]). A factorisation algebra Agpanx = (A!) is

commutative if and only if for every o : I — J the isomorphism

J(a)* <® Alj) = j(a)* (A"

jEJ
extends to a morphism

X Al — Al

J€J
1.5 Vertex algebras

In this section, we give the definition of a vertex algebra, and discuss the relationship
between vertex algebras and chiral algebras. See for example [10] or [12] for more
details.

Definition 1.5.1 (Definition 1.3.1, [10]). A vertex algebra
V= (‘/7 |0>’ T, Y('? Z))

consists of the following data:
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1 Preliminaries on factorisation

The space of states: a graded complex vector space

V=.

1>0

The vacuum vector: |0) € V.

The translation operator: T : V — V a linear map of degree 1.

have A € V; and write

Y(A z) = Z A(n)z_n_l,

neL

then the (—n — 1)th coeflicient A,y € End V' is of degree —n 4 i — 1.
These data are subject to the following conditions:

o The vacuum aziom:
Y (|0),2) =idy .
Furthermore, for any A € V', A;,)|0) = 0 for n > 0, and A(_1,|0) = A.
o The translation axiom:

T,Y(A,2)] =0.Y(A,2) VAeV,
)0 = 0.

o The locality axiom: For any A, B € V there exists N € N such that

(z—w)N[Y(A,2),Y(B,w)] =0 € End V[z*!, w*'].

The verter operators: Y (-,2) : V — End V[z, 27!] a linear map such that if we

It is also possible to modify the definition slightly to work in the super-setting, as

in remark 1.3.2 of [10].

Definition 1.5.2 (Definition 2.5.8, [10]). A vertex algebra

V= (‘/7 |0>7 T, Y(’v Z))

is said to be conformal of central charge ¢ € C if we have a conformal vector w € V,

with the following property. We introduce the notation

Y(w,z) = Zw(n)z_”_l = Z LY 2t

nez neL
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1.5 Vertex algebras

we require that the operators LY € End V [z, 271] satisfy the Virasoro relations:

3

[LX, L;/I] =(n—m)Lyim+ i 1; nén,_mc,
LY, =T,
Ly v, = didy; .

Definition 1.5.3 (Definition 6.3.4, [10]). A vertex algebra is called quasi-conformal
if it carries an action of the Lie algebra Der O = C[z]0. satisfying the following
properties: if we let L,, denote the linear operator on V' defined by the action of

—z™T19, m > —1, then:
1. L,=T.
2. Ly acts semi-simply with integral eigenvalues.

3. Given a vector field

v(z) = Z 0,2" 10, € Der O

n>—1

defining the linear operator

vV =-— Z Un Loy,

n>—1
we require that
1
VY (Aw)] == > e (00 w(w)) Y (LA, w).

m>—1
4. Dery O = 2?C][z]0, acts locally nilpotently.

Example 1.5.4. A conformal vertex algebra is in particular quasi-conformal. If
(V,|0),T,Y (-, 2)) is a vertex algebra with conformal vector w € V5, then we can define
an action of Der O on V by letting ™10, act on V by —LY (i.e. the coefficient of

27™72 in Y (w, 2)). This makes V into a quasi-conformal vertex algebra.

We are interested in quasi-conformal vertex algebras because of their close relation
to chiral algebras over curves. This was made precise by Frenkel-Ben-Zvi, but we

follow here the exposition of section 6.2 of [25]:
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2 The main constructions

Key construction 1.5.5. Let (V,|0),7,Y (-, z)) be a quasi-conformal vertex algebra,
and let D = Spf k[t] be the formal one-dimensional disc. Then we can construct a
chiral algebra V over any curve C' as follows.

We give V[t] the unique vertex algebra structure such that:

1. The translation operator T is the sum of the translation operator 1" of V' and
the differential 0;.

2. The vacuum vector is equal to the vacuum vector |0) of V.
3. Y(at", 2) = (t+2)"Y(a, 2).

Let By be the sheaf on D associated to the k[t]-module V[t]-dt. Then By is a chiral

algebra, with chiral operation induced by

V@ V[ty, ][t —t2) '] = V@ V[t t][(t1 — t2)7']/V @ V[t1, 1]
f(tl, t2)A ® B +— f(tl, tQ)Y(A, t] — tg)(B) mod V ® V[[tl, tz]]

for f(t1,t2) € k(t1 —t2), A, B e V.

So far we have not used the quasi-conformal structure on V', but we will use it
now: the action of Der O can be exponentiated to give an action of K = Aut(O),
so that V is a (Der O, Aut(O))-module, or equivalently an object of Rep(G), where
G = Aut(O) (see Chapter II, section 2 for the precise definitions of K and G). It
follows from the results of Chapter II that V corresponds to a universal D-module
V of dimension one, such that for any ¢ in C' the restriction of V(C') to the disc D,
around c is isomorphic to By . (The isomorphism depends only on a choice of formal
coordinate at c.)

In other words, we obtain a universal chiral algebra of dimension one.

Conversely, any universal chiral algebra of dimension one is in particular a uni-
versal D-module, and the corresponding Aut(QO)-module has a uniquely determined

structure of quasi-conformal vertex algebra.

2 The main constructions

With the basic theory established, we now restrict our attention to X a smooth
variety over k. We will use the Hilbert scheme Hilby to construct a factorisation

space Filbran x over the variety X; by linearising we produce a factorisation algebra

ARan X-
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2.1 The factorisation space

In 2.1 we define the prestack ilbra, x, and prove that it is in fact an ind-proper

factorisation space over X. In 2.2 we also introduce a slight variant, J#%ilbra, x, and

compare it to our original factorisation space. In 2.3 we consider the natural map
%ileanX — Hllbx,

and show that its fibres are contractible. This allows us to compute the chiral homol-
ogy of the factorisation algebra Ag., x defined by linearising .#ilbr., x. We do this
in 2.4.

Finally, in 2.5 we allow the base variety X to vary, and consider the corresponding
factorisation spaces #lbr., x, and especially the indscheme JZilbx living over a
single copy of the variety X. We show that the factorisation space can be defined

over families X — S of smooth varieties. We also show that the assignment
X/S = Hilbxs

is compatible with pullback by étale maps between smooth families. It follows that

the assignment
X/S — »AX/S S D(X/S)

defined by linearising this space is also compatible with pullback by étale maps. We

will see in the next chapter that this means that {.A X/S} gives a universal D-module.

2.1 The factorisation space

We begin by recalling some preliminaries about the Hilbert scheme of points, before
defining the factorisation space.

Recall the following definition:

Definition 2.1.1. For n € Zx(, the Hilbert scheme of n points in X is the scheme

Hilb’ representing the functor

Sch®® — Set

S|—>{£CS><X ’5

is flat over S with zero-dimensional support
on fibres over S of length n )

See for example [33]. It is a theorem of Grothendieck [22] that this functor is
indeed representable for any smooth projective scheme X. It is also representable

for any affine scheme Spec A (see for example [23]), and for any smooth variety. It
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2 The main constructions

follows from the valuative criterion of properness that whenever it exists, the Hilbert
scheme is in fact proper.

Note that Hilb% ~ pt and Hilb} ~ X.

We let Hilbyx be the disjoint union of Hilb% for n > 0. The scheme Hilby is a
scheme of infinite type, which we prefer to think of as an indscheme. Indeed, Hilbx

is the colimit over N € Z>( of the schemes
N
| | HilbY,
n=0

which are each of finite type.

Notice that the data of a closed subscheme £ of S x X is equivalent to the data of
a quasi-coherent sheaf .# € QCoh (Ogxx) together with a surjection ¢ : Ogxx — F
(flat over S). Setting & = ker ¢, we obtain a torsion-free sheaf with trivial first Chern
class and second Chern class equal to n. In fact this gives an equivalent description
of Hilb% as the moduli space of rank one torsion-free sheaves on X with trivial
first Chern class and chy, = n. It will sometimes be useful to keep this alternative
description in mind.

The Hilbert scheme is closely related to the symmetric product Sym’y := X"/S,,.
Indeed, we have the Hilbert-Chow morphism

m : Hilb% — S"(X)
¢ ) length(&,)[x].

zeX

If we restrict to the open loci of Hilb% and Sym’ where all n points are distinct,
then 7 becomes an isomorphism. When X is a smooth surface over k, Fogarty [§]

showed that Hilb’ is particularly well-behaved:

Theorem 2.1.2. If X is a smooth surface, then Hilb% is non-singular of dimension
2n, and the Hilbert-Chow morphism m : Hilby, — Sym' is a resolution of singulari-

ties.
With these definitions in mind, we can introduce our main construction:

Definition 2.1.3. Given [ € fSet, let ##%ilbyr be the prestack which sends a test
scheme S to the set
z' S — XTI
(&, 2') | € € Hilbx(9);
Supp(€) Cu {z'}
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Recall from example 1.2.3 that { x! } is the subset given by the union of the graphs
of the functions z' : S — X 2% X The condition on the support of £ is not to be
interpreted simply set-theoretically, but instead in the following way: £ : S — Hilb%
induces a map S — Sym'y via composition with the Hilbert-Chow morphism. In this
way we obtain a family of n (unordered) maps &; : S — X. We require that for each

j =1,...,n, there exists some i € I such that & = z".

Remark 2.1.4. We can define a factorisation space with the set-theoretic contain-
ment condition instead, but it will not be quite as well-behaved, as we will see in
Definition 2.2.1 and Lemma 2.2.3 below.

We can write #%ilbxr as the disjoint union of subfunctors JZilb’;, defined in the

obvious way.

Lemma 2.1.5. For any I € fSet and any n > 0, Jilb%, is representable by a closed

subscheme of X! x HilbY; in particular it is proper over X'.

Proof. We will identify J#ilb; as the pullback of a closed subscheme of X! x Sym’y
along the map idyr X7 induced by the Hilbert-Chow morphism.

Consider the incidence scheme, the closed reduced subscheme of X x X™ given by
Lxn = {(z,(21,...,2,))| = x; for some i} C X x X".

For any i € I, we let I'%, be its pullback along the ith projection map X’ x X" —
X x X™. This is closed in X x X" and hence so is the finite union I'k.,, of the 'y,
over all i € I. Now, we let 'k, be the image of I'k.. in the quotient X x Sym%; this is
also closed by definition of the quotient topology, and we give it the reduced scheme
structure.

We claim that J#ilb'y, is the pullback

T X xtysymy, (X7 x Hilb%).

Indeed, under the Hilbert-Chow morphism, a point (27, &) of SZilb%(S) gives rise to
an unordered collection of n maps &; from S — X. The resulting map S — X! xSym’%
factors through fg{n exactly when for each j = 1,...,n there is an element ¢ € [ such
that £; = ', or equivalently such that the graphs of ; and z* are scheme-theoretically
equal in S x X. In turn, this corresponds to the statement that the support of £ is
contained in {z'}, as required.

It is clear that the natural map from JZilb%; to X! given by (x!,€) w 2! is

compatible with the projection from X! x Hilb%, which is proper. Hence it is a
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composition of a closed embedding with a proper map, and is again proper, as claimed.
]

The following is immediate:

Corollary 2.1.6. For any I € fSet, 5ilbx: is an ind-closed sub-indscheme of X' x
Hilby, ind-proper over X'.

Proposition 2.1.7. The assignment
I~ jfilbxf
extends to a functor

fSet” — IndSch,

and defines a factorisation space Filbran x = colimye ggeror Filb x1 over X.

Proof. This is a matter of routine checking: we will proceed through the defining

axioms of a factorisation space, and show that each one is satisfied.

Step 1 Given a map a : [ — J € fSet, we need to define Y(«a) : Hilbyxs —
Hilbx1 € IndSch and prove that it is ind-proper. On a connected test scheme
S, an element of Zilb y. is a pair (27, &) € X7(S) xHilb%(S) (for some n € Z=°)
such that Supp(¢) C {z7} in Sx X. We define Y (a)s(z”, &) to be (A(a)oz”, §);
it is immediate that this lies in JZilbx:(S), and that this assignment is natural

in S, giving a map of prestacks Y («) : Hilbxs — Hilbxr.

To show that the resulting map is ind-proper, we must show that for any scheme
S lying over Jilbx:, the pullback S X, Hulbxs (which is automatically
an indscheme over JZilby.) is ind-proper over S. In fact, we will show that

S X Hilb 1 Hilbxs — S is a closed embedding of schemes.

It is enough to check for connected schemes S, but in that case a morphism
S — Hilbx: corresponds to a pair (zf,€), where 2 : S — X! and ¢ €
Hilb% (S) for some n > 0. Then a morphism from a connected test scheme T
to S Xz, Hilbxs corresponds to a morphism §: T — S such that rlop =
A(a) oy’ for some y’ : T — X7. That is, S X, Hilbxs can be identified
with the pullback S x yr X7, and the projection S X ity . Hilb o is just the
closed embedding into S.
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2.1 The factorisation space

Step 2 We need to define a natural transformation f : JZilbyrsee => X5, Given
I € fSet, f!: Hilby: — X! is just the obvious forgetful functor, sending a pair

(21, €) to x!. Tt is easy to see that this is natural in I.

Step 3 Given o : I —» J, we wish to show that X7 X yr #ilby: ~ S#ilbyxs. Again,
this is easy to see at the level of connected test schemes: the set (X7 x xr
Hilbx1)(S) is equal to

/8 — X7

(z1,€) € A1 (S),n € Z=°;

2l = Aa) o’

CCN3I)

This is naturally in bijection with the following set:

xS — X7
(2,€) | €:8 — Hilb%L(S),n € 22% %,
(A(a) o x”,€) € Al (S)

which can in turn be rewritten as
{(27,€) € Hilb'y,(S) | n € Z7°} = Hilbxs(9),
using the fact that {x‘]} = {A(a) o x"} because « is surjective.

Step 4 Finally, given o : I — J, we wish to show there is a natural equivalence of

indschemes

J* (Hilbxr) ~ j* (H %ﬂbx,j) .

jeJ
Given a connected test scheme S and a map z! : S — X, the image of 2! lies

in U C X! precisely when 2! can be written as a product of maps i : § — X7

such that the sets {a:]f } C S x X are pairwise disjoint as j varies.

Then for ¢ € Hilb%(S), n € Z=°, the condition Supp(§) C, {'} is satisfied if
and only if £ can be written as a disjoint union of closed subschemes §; C S x X
such that for each j, Supp(;) C. {z%}. In that case, each (23, #ilb,1,) €

jfz’lbzg,j (5), where n; are some non-negative integers such that »._;n; = n.

This gives a natural assignment

F(Hilbx1)(S) — 5* (H %ilbxfj> (S)

jeJ
(@',8) = (27, &))je
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2 The main constructions

which defines a morphism of indschemes

F(Hilb 1) — §* (H %ilbxzj> :
jeJ
It follows from the above discussion that this morphism is an equivalence. It
is clear from the definitions that the structure morphisms are compatible with

composition and with each other.

2.2 A variation on the factorisation space

As indicated in Remark 2.1.4 above, we can consider a slightly different factorisation
space by letting the condition on the support of schemes be strictly set-theoretic. We

introduce this space now.

Definition 2.2.1. Given I € fSet, let %1 be the prestack sending a test scheme
S to the set
2l S — X/
(¢2") | € € Hilbx(S);
Supp(¢) C {2’} set-theoretically

Remark 2.2.2. The condition on the support of £ € Hilb% (S) can be interpreted as
follows: recall that £ gives rise to n morphisms §; : S — X; then for each j the graph
of &; must be equal set-theoretically to the graph of some 2’ : S — X. Equivalently,
we must have §; o tg = ' o1g ¢ Srea — X. (Here, tg : Syeqg = S is the canonical
inclusion.)

It follows that the two prestacks Zilbyx: and %'jb/XI agree when evaluated on

reduced schemes; in particular they have the same k-points.

We can see that (¢, (&)7-,) : S = X' x Sym factors through the formal neigh-
bourhood Tk, of the incidence scheme fﬁm in X! x Sym'y precisely when the original
pair (z,¢) : S — X! x Hilb factors through f/f-ﬁb/}f. That is, ml is the
fibre-product T, X x1xgymz (X' x Hilb%). We have proved:

—~——

Lemma 2.2.3. For any I € fSet and any n > 0, Jilb'y; is representable by an

ind-closed sub-indscheme of X1 x Hilb% ; in particular it is ind-proper over X'.
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2.2 A variation on the factorisation space

Proof. Indeed, fibre products commute with filtered colimits. Since the formal com-

pletion f&n is the colimit over £ € N of the kth infinitesimal neighbourhoods of fgfn,

which are closed subschemes of X! x Sym’, 5ilb%; is the colimit of the fibre product
of these closed subschemes with X7 x Hilb%, and in particular is a colimit of closed

subschemes as required. O]

It is also clear that we have analogues of Corollary 2.1.6 and Proposition 2.1.7 for

Hilb 1.

Example 2.2.4. Let X = Speck[t|,ts], S = Speckle]/e*, and n = 2. We will

construct an S-point of JZilb%; which is not a point of JZilb,. Let z1 : S — X be
given by

k[ty,to] — kle] /€

t1,t0 — O,
and let x5 : S — X be given by
t1 — O, ty — €.

Now let &,& C S x X = Speckle, t,ts]/€* be the closed subschemes cut out by
the ideals I} = (t1,t5) and Iy = (t1,t, — €), respectively. Then the point ¢ € Hilb%
corresponding to the union of & and & is the closed subscheme cut out by the ideal
I = (t,t5(ty — €)). We consider the pair (z1,&) : S — X x Hilb%.

The graph of z; is given by Speckle, t1,ts]/ (€% t1,t2) C S X X: on the level of
reduced schemes, it is given by Spec k[t1,t2]/(t1,t2) C pt x X. This is the same as the

—~—

support of & and & on the level of reduced schemes, and hence (x1,£) € Hilb% (S).
On the other hand, it is not a point of J#ilb% (S) because the image of ¢ under the
Hilbert-Chow morphism is given by z1 + zo, and x5 # x1 : S — X.

Conversely, if we take any S-point & of the Hilbert scheme which is in the preimage
of 2-x; € Sym%(S) uEd\eLthe Hilbert-Chow morphism, then (x,¢’) will live in
Hilb% () (as well as Hilb% (S)), even though & will not be scheme-theoretically
contained in the graph of x;. For example, we could take £’ to be cut out by the ideal
I' = (t,13).

Remark 2.2.5. Many definitions of a factorisation space {Yxr}, require that each
space Yyr be equipped with a connection over X’. That is, they require that the
space Yy descends to some space Y;g{ over XI.: then the collection of spaces {Y)‘g?

satisfies suitable analogues of Ran’s condition and the factorisation condition. We do
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not need this property for most of our constructions, and so we have not included it
in our definition of a factorisation space.

However, if we do wish to work with this stronger definition, we must work with
Filbx1 rather than JZ%lbx:. It is clear that the former descends to the de Rham
stack X1, while the latter does not. On the other hand, the two spaces themselves

have the same de Rham stack, and since our factorisation algebra constructions in
2.4 begin with a D-module on the factorisation space, it does not matter which space

we work with.

2.3 The fibre of JZilbr., x over Hilby

There is a natural forgetful map p : ilbr., x — Hilbx; we shall now study its fibre
over a given point £ € Hilby. The goal is to show that the fibre is homologically
contractible, and more generally that p' : D(Hilby) — D(Hilbran x ) is fully faithful.
We introduce some general lemmas that will allow us to prove our result.
First, the argument in the first step of the proof of Theorem 4.1.6 [16] generalises

to give the following:

Lemma 2.3.1. Let p: Yy — Vs be a morphism of prestacks. Given an affine scheme
S and a map [ : S — Vs, we form the Cartesian diagram:

f/
S Xy2 yl —_— yl

S Vs.

Suppose that for all S and f as above, the functor py is fully faithful. Then p' is
fully faithful as well.

Proof. (We follow the argument of Gaitsgory from the proof of Theorem 4.1.6, [16].)
We wish to show that for any . ,¥9 € D()%), the map

HOII]D(yQ)(ﬁ, g) — HOmD(yl)(p!ﬁ7 p'g)
is an isomorphism. We know that

Homp(y,) (#,9) ~ lim Homp(g)(glﬁ,g!%).
(S ,)

Aff
ESch/y2
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2.3 The fibre of ilbr., x over Hilby

On the other hand

Hompy,) (07, p9) =~ lim  Homp(sxy,y)((9)'0'F, (4) p'Y)
(5—2)2)

Aff
GSCh/y2

~ lim Homp(5xy2y1)</)!sg!3z7P!sg!g)'

(S5 3)

Aff
ESch/y2

So it suffices to show that for any (S % %), the map
Homps)(9' 7, 9'9) — Homo(sxy, 1) (P59 7 Ps9'Y)
is an isomorphism. This is immediate from the assumption. O
In fact, in special situations, we can prove something even stronger:

Lemma 2.3.2. Let p: Yy — Yo be a morphism of prestacks and suppose that p has a
section u : Yo — Y1. Then to show that p' is fully faithful, it suffices to show that p!pt
is fully faithful for any map f : pt = Vs, or equivalently that ptxy, Yy is homologically

contractible.

Proof. Since u! o p' = idp(y,), it is clear that p' is faithful, so it remains to check that
it is full. That is, given .#,9 € D(),) and some ¢ : p'.F — p'9 € D())), we need
to find v : .F — ¢ such that ¢ ~ p'p. Thanks to the section u, we have an obvious
candidate for 1, namely u'®.

Therefore, to prove the claim it suffices to show that ¢ ~ p'u'¢. In fact, it suffices
to show that these two morphisms agree when pulled back to the fibre pt xy, V; over
any k-point of ). We have the following diagram:

f/
pt Xy, V) ———— N

WO@t qu

pt ¢ Va.

We wish to show that (f')'p'u'¢ ~ (f')'¢. From the commutativity of the diagram,

we have that

(F)/pu' = phufu' 7
= Pi)t(upty(f,)!ﬁb-

By assumption py, is fully faithful, and so pl (up)'(f')'¢ >~ (f')'¢ as required. O
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With these general results established, let us now turn our attention to the map
P jfileanX — Hlle .

We wish to show that p' is fully faithful. Note that we can construct a section
u : Hilby — SZilbran x as follows. We map an S-point & of Hilbx to the pair (27, ),
where 2! : S — Ran X is given by taking the support of £ (i.e. a representative in
X"(S) of m(§) € Sym%(5)). There are different choices of representative on the level
of maps S — X!, but all representatives are identified in the colimit Ran X, so the
section u is well-defined.

Therefore, by Lemma 2.3.2, it is enough to show that

P~ (€) = pt Xuimy HilbRran x

is fully faithful for any k-point £ : pt — Hilby.
We have

p~(€) = colim pr'(€),

IefSet°P

where
pr : Hilbxr — Hilbx
is given at the level of a test scheme S by
(a',m) = n.
It is easy to see that for such an S, we have that
pr (©)(8) = {(z",m) € Hilbx:(S) | n =8 x &}
~ {z" | Supp(S x &) C, {2'}}.

In other words, p;'(£)(S) consists of S points of X! such that for each point s € S,
the set {2(s)} C X contains the support of £. Motivated by this, we formulate the

following proposition:

Proposition 2.3.3. For our fized £ € Hilbx, let {y1,...,yn} be a complete and
repetition-free list of the points in X at which £ is supported. Let A:={1,...,n} and
let y* € X4 = X" be the point corresponding to this list. Then we have that

p (&) ~ Ran X4
as prestacks.
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Proof. We begin by defining a map
F:Ran X, — p (¢
in terms of a compatible family of maps given at the level of test schemes S by

Firap : X5 (S) = p71(€)(S)
(yA,xI) — /\I(xI,S X £).

Here \; : J#ilbx1 — Hilbran x are the structure maps and y* is viewed as a constant
map from S. This definition makes sense because the condition (y*, z) € Xﬁf’a’ )(S )
implies that Supp(S x &) = {y*} C, {#'}, so that (2, 5 x &) is indeed in FZilby1(S5);
moreover it is clear that (z/, S x £) lies in p;'(£)(S) and that the maps F{;,, are
compatible over (I,ar) € fSet?.

Now we will define an inverse G : p~'(£) — Ran X4 to F, by giving a compatible

family of morphisms
Gr: p;l(f) — Ran Xy4.

Recall that an S-point of p; ! (£) consists of a pair (!, ) € J#ilbx: such that n = Sx¢&.
Since the support of ¢ is given by the set {y} C X, the support of S x ¢ is given
by the union {cy} of the graphs of the constant functions ¢« : S — X. Therefore
{cya} Ci {2}, and so for each a € A we can choose some i € I, which we'll call as(a),
such that ¢« = z'.

These choices define a map ay : A — I, and 2! gives an S-point of X4'. We define
Grs(z',n) == pa,(z"), where p,, is the structure map X4 — Ran X 4.

We need to check first of all that this gives a well-defined map of sets

Grs:p;(6)(S) — Ran X4(9);

i.e. that ju,, (2') is independent of the choice of map a; : A — I. To see this, let us

impose an equivalence relation on I by setting
i ~ j if there exists a € A such that 2’ = cja 0 ¢ = 27.

(In fact this is already an equivalence relation because we chose our list {y*} to
be repetition-free; if we had not done this, then we would now need to take the

equivalence relation generated by ~.) Then the map

qoar: A— 1/~

a — [as(a)]
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is independent of the choice of a;, and makes (A — I/~) into an object of fSet”. By
construction of I/~, () gives an S-point of XE‘[/ ~2°91) whose image in (XI(L{’(” ) > ()
is (x1).

We have the following commutative diagram

Ran X 4

V Har

X1(4[/N7qoa1) XI(L‘I,CLI)

and s0 fia, (21) = f140a,(z17) is independent of the choice of a;. This shows that G g
is well-defined.
It is also straightforward to check that G, is natural in S, and hence gives a map

of prestacks
G] : p;l(f) — RanXA.

The last thing to check is that the maps G; are compatible under surjections
o : I — J; this is straightforward as well. Given a point (z7,1) € p;'(£)(S), we have
(A(a)(z”),n) € p;1(€)(S). We choose any a; : A — I as above, such that for each
a € Awe have cyo = (Aa)(z7))4(@ = peeu(@) Then we take a; : A — J to be given
by aoay, and we see from the definitions that G j(x!,n) = G;(A(a)(x”),n), which is
the required compatibility.

Therefore, we obtain a map G : p~(£) — Ran X 4.

It is clear that G and F' are mutually inverse, and so exhibit an equivalence of

prestacks
p (&) ~ Ran X 4.
O

Combining Lemma 2.3.2 with Propositions 1.1.7 and 2.3.3 we obtain the desired

result:

Theorem 2.3.4. Assuming that X is connected, the map
p': D(Hilbx) — D(Hilbgan x)

18 fully faithful.
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Remark 2.3.5. An alternate proof of this fact is the following: we can generalise
the proof of Proposition 2.3.3 to show that for any S — Hilby the fibre-product
S XHilby FCilbran x is isomorphic to Ran X4 g, the so-called relative Ran space with
marked points. (See 2.5.12 [16] for the definition.) It is easy to check that for any
s € S, the fibre of Ran X4 g is the ordinary Ran space with marked points; it is also
easy to define a section S — Ran X4 g. Then the Theorem follows from Lemma 2.3.2
and Proposition 1.1.7.

2.4 A factorisation algebra over the variety X

In this section, we consider a factorisation algebra produced by linearising the fac-

torisation space Flbran x -

Definition 2.4.1. Set

Al = f*lw,%lbx, €D (XI) ;
ARanX = f*wj{,’)ileanX eD (Ran X) .

It is a factorisation algebra on X. We denote the chiral algebra corresponding to
A by B.

Let us make some remarks on this definition:

Remark 2.4.2. 1. Given a smooth surface S, Kotov [26] defines a factorisation al-
gebra B over S. This factorisation algebra agrees with our factorisation algebra
for X = S. Kotov claims that for S simply connected, B is commutative (The-
orem 4, [26]). We do not yet know an algebro-geometric proof of this fact, but
we expect that such a proof exists and should generalise to higher dimensions.

We expect to make use of the results of 11.7.4.

2. Since we are working with the de Rham cohomology of the factorisation space

Filbran x, we could equally well have used the variant Z%lbg,, x for this defi-

nition.

We wish to compute the chiral homology of B, which by definition is given by

/B = (pRanX)!ARanX‘
X
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Remark 2.4.3. The chiral homology of a chiral algebra, defined by Beilinson—
Drinfeld [4], is a generalisation of the notion of the space of conformal blocks associ-
ated to a vertex algebra. More specifically, in the case that V is a quasi-conformal
vertex algebra and By is the corresponding chiral algebra on A!, the degree zero piece

of the chiral homology of B is isomorphic to the space of conformal blocks of V.

Proposition 2.4.4. The chiral homology of B is given by the de Rham cohomology
of the Hilbert scheme:

/ B ~ H,(Hilby).
X

Proof. We have the following diagram, which is trivially commutative:

c}fileanX
/ \

Hilb x Ran X

pHilb\‘ Anx
pt.

Then we can see that

/ B = (Pran 3 )1 f e titbran x = (Pt )10 Wit -
X

By Theorem 2.3.4, we have an isomorphism
(pHﬂbX)!P!P!wHﬂbX =5 (PHiby ) (WHiby = He(Hilbx),
so the theorem is proved. O]

2.5 Universality of JZilb,

In this section we consider how the spaces J#%ilbx: change as we change the base
variety X.
We begin by fixing an arbitrary scheme S of finite type together with

m: X =8

a smooth morphism of dimension n. Then we can consider a relative version of the
Hilbert scheme:
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Definition 2.5.1. The relative Hilbert scheme of n points on X/S is the scheme

Hilb s representing the functor

(Schﬁg) - 0o-Grpd

& CT xg X is a closed subscheme, flat over T with
(T/8) = {5 ‘ zero dimensional fibres of finite length n. '

As in the non-relative case, Grothendieck [22] proved that this functor is repre-
sentable; it is also representable for any affine base scheme S with X affine over S
(see again [23]), and hence by gluing for any smooth family X — S. It is proper over
S, again by the valuative criterion of properness.

We let Hilbys be the disjoint union of Hilb% g for n > 0. It is an indscheme,
ind-proper over S.

Our goal is to use this definition to construct a relative version of our factorisation
space. First let us generalise the definition of a factorisation space to the relative
setting. The Ith component of a factorisation space will be an 1.f.t. prestack over S,

that is, a functor
((Schﬁ‘f)/syp — 00-Grpd.

For any finite set I let (X/S)! = X x5 X Xg...xg X ~ X! xg S denote the
I-fold fibre product of X over S. For any o : I — J, let U(a)s C (X/S)! be given
by the fibre product

U(a) x x1 (X/S)".

Definition 2.5.2. A relative factorisation space over X/S is given by the following
data:

1. For each I € fSet we have a prestack Y| x,gyr € PreStk,s representable by an

indscheme, and equipped with a map
F1Yixs = (X/9)!
over S.
2. For any o : I — J in fSet, an identification
Yixysyr = X7 X Yixys)s
of indschemes over (X/S)”. In particular, we have an ind-closed embedding

Y(Oé) : Yv(X/S)J — Y’(X/S)L
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3. For any o : I — J in fSet, an identification

XXI ((H (X/S)% > X gJ S) L)U(Oé) X xI YV(X/S)I.

Jjel
of indschemes over U(a)sg.

We require that these identifications be compatible with each other and with compo-

sition.

Remark 2.5.3. Note that a factorisation space over X/S is not necessarily a fac-
torisation space over the total space X: the condition in (2) is the same for both
definitions, but the condition in (3) is weaker than the requirement for a factorisation
space over X.

On the other hand, suppose that {YX1 — X1 } Tetsetor 15 @ factorisation space over
X. Define 37()(/5)1 = Yxr xgr S for each I € fSet. Then

Y, — (X/9)! }
sy = X/9)'}
gives a factorisation space over X/S.

Definition 2.5.4. We define the JZilbx,s)r € PreStk,g to be the functor which
sends a scheme T' — S to the set of pairs (2!, ¢), where  : T'— X is a morphism of
schemes over S and ¢ : T — Hilbx,s) with Supp(§) C, {z'}.

Here the inclusion C, is to be interpreted in the same sense as in the definition
2.1.3. That is, via the relative version of the Hilbert-Chow morphism, ¢ determines
an unordered finite collection of morphisms §; : " — X over S, and the condition is

that each of these §; is equal to the ith projection
. ! 7P
2T — (X/S) — X

of ! for some i = i(j) € I.

Let f§,q: Hilb(x/s)r — (X/S)" denote the natural projection.
Proposition 2.5.5. The collection
I Fb(x ) 5)r
defines a relative factorisation space over X/S.
Proof. The proof uses the same ideas as in Lemma 2.1.5 and Proposition 2.1.7. [
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We have seen that linearising a factorisation space produces a factorisation alge-
bra; similarly, linearising a relative factorisation space produces a relative version of a
factorisation algebra. Recall from remark 1.2.6 that, in the non-relative setting, rather
than assuming that a factorisation algebra is a D-module, we can define a factorisa-
tion structure on a O-module and then obtain the D-module structure canonically
from the axioms. However, the factorisation condition for relative factorisation alge-
bras is weaker than for ordinary factorisation algebras: the factorisation isomorphism
is given only over U(a)g rather than all of U(a).

This means that the construction used to produce the connection on the quasi-
coherent sheaf underlying a factorisation algebra no longer produces a connection
in the relative setting. Instead, we obtain only a connection along the fibres of the
morphism X — S. That is, we should expect a relative factorisation algebra to be in
particular a relative D-module, i.e. a family of objects IndCoh (X Ia x st S).

Apart from this subtlety, the definition of a relative factorisation algebra is exactly
the linear analogue of a relative factorisation space. We omit the details.

For the remainder of the section, let us restrict our attention to the case I = pt.
Consider the dualising sheaf in IndCoh ((%ﬂz’lbx/g)dR X Sur S); by abuse of notation
we will denote it by w i s Let Ax/s denote the pushforward of wsp /s under the

map

gX/S . (%Z.le/S)dR XSdR S — (X/S)dR = XdR XSdR S.

(This map is proper, so the % and ! pushforwards coincide.) This is the I = {pt}
component of a relative factorisation algebra, and is in particular a relative D-module
over X/S.

Proposition 2.5.6. Suppose that we have a fibrewise étale morphism ¢ = (px, s)

of smooth families

XLX’

S — 9.
®s

That is, X/S and X'/S" are smooth families, necessarily of the same dimension n,
and (@x, ps) are compatible maps such that for any point s € S with s’ := pg(s) € S,
— (X')

the induced morphism on fibres (X) , 15 €tale.

S S
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Then there is a natural morphism ¢x/s : (X/S)ar — (X'/S")ar, and we have a

canonical identification

A(QO) : AX/S - SO{X'//S'AX’/S"

Moreover, these identifications are compatible with composition of fibrewise étale mor-

phisms
X/S 4 Xx'/s L X",
Proof. First note that the map yx/s is defined as follows:

(X/S)ar Xar

<. \SO‘X,dR
ox/s N9

(X'/S")ar ————— X

S iR

s

s S

PdR,s

With this in mind, the result follows easily from the following claim:

Lemma 2.5.7. In the above setting, there is a natural map of indschemes
H(p) : Hilbx;s — Hilbxr /s

such that the diagram

. )
%Zlbx/s —— %Zle’/S’

fX/sl lfx//s/

X— X
Px

1s Cartesian.

Let us assume the lemma for the moment, and show how it implies the statement
of the proposition.

The map #(¢) induces a map

H(@)xss : (Hilbxss) i Xsan S = (Hilbxr)sr) T

dR, X Tyr

such that the diagram
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) H(p)x/s ,
(%Zle/S)dR XSdRS% (%Zle//S/)dR XTdRT
9x/s gxr/s’
(X/S)ar (X7/5")ar

Px/s

is Cartesian.

Then we have by proper base change

SO!X/SAX'/S/ = SO!X/S(QX//S/)* (wmzzax, /S,>
~ (gx/8)« (A (9)x/s5)’ <w.7“’ﬁlbx//s/>

= (gX/S)* (ijilbx/5>

The compatibility of these identifications with composition comes from the com-

patibility of the base-change isomorphisms with composition. O

Proof of Lemma 2.5.7. Notice that the fibrewise étale morphism ¢ = (¢, ps) can

always be factored as

X - S xg X — s X

Lk

S=——="5 — S’.
where ¢ x is étale and the square on the right is Cartesian. Thus it suffices to prove the
claim in two cases: when ¢ = (px,idg) with ¢x étale, or else when the commutative
square formed by (¢x, @s) is a pullback square.

Let us treat first the case that ¢ = (¢x,idg). Suppose we have a map T —
Filbx /s given by a pair (z,&); we wish to show that this is equivalent to a map 7" —
X X x» Hlbx:;s. We need to construct compatible maps T' — X and T' — JZilbx /s
over X'.

The map T" — X is given by x. The map T' — JZilbx: s will be given by a pair
(2',&") where Supp(¢) C, {2'}. It is clear that we must take 2’ = px o z. Also if
we choose a representative (7)) : T'— (X')" of the image of §’ in Sym(X'’) under the
Hilbert-Chow morphism, then each &; must be equal to 2’. It remains to give the

scheme structure of ¢ in 7' xg X'.
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By definition of JZilbx/ /g, & the closed embedding
5/ — T Xg X'

must factor through the formal neighbourhood of the graph of 2’ in T' xg X’. But
since px is étale, this is isomorphic to the formal neighbourhood of the graph of x in
T xg X. We have the following:

£ {z} Txg X
O
¢ (@} ¢ T xs X'

That is, we define £’ to be the image of £ under the isomorphism @.

It is clear that this gives a bijection between the T-points of JZilbx,s and those
of X xx» Hilby:s. It is also easy to see that this is functorial in T', and hence gives
the desired result.

Now let us address the second case: the morphism pg : S — S’ is arbitrary, but
px is its pullback along the smooth map 7’ : X’ — S’. Given a T-point (z,&) of
Hilbx /s, we wish to define a T-point (y, 2',{’') of Hilbx/s. As in the above discussion,
it is clear that we must have x = y and 2’ = ¢px o x, and it remains to specify the
subscheme & of {/a; — T xg X.

But in this case we have that T xg X ~ T xg X’  and that {/:E and {/:1:’\} are
identified under this isomorphism. So again, we take & to be the subscheme of T'x ¢/ X’
corresponding to &.

We again obtain a functorial identification of the T-points, and hence an isomor-

phism of the prestacks
%Zlbx/s ~ X X x %ile//S/ .
O

Observation 2.5.8. For future reference, we make the following observation about
the proof in the case ¢ = (¢x,idg). Suppose that our T-point (z,&) : T — %ilb%@
for some ¢ € N. Then in fact the inclusion of £ in the formal neighbourhood {z}

factors through the cth infinitesimal neighbourhood:
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2.5 Universality of .7%ilb,

—

£ {z}.

N

)}

So we could have defined ¢’ to be the image of ¢ under ¢(© : {z}(© = {2/},
Let us make some further remarks on the result of Proposition 2.5.6.

Remark 2.5.9. 1. The structure given by this compatible family

{(X/S) '—>«4X/s}

is of particular interest, and is the subject of the next part of this thesis: for
any fixed dimension n, we have constructed a so-called universal D-module of

dimension n.

2. We conjecture, further, that the assignment

(X/S) = {A(X/S)’ < D(XI/S)}IefSet

is also universal in a similar sense. More specifically, we expect that the chiral
algebra structures on the D(X/S)-modules Ay/s are compatible under pull-
back by fibrewise étale morphisms. In that case, this data is an example of

what should be defined as an n-dimensional vertex algebra.

3. More generally, we expect that there exists some natural condition on an as-

signment
X/S = YRan X/S

of relative factorisation spaces which will ensure that the chiral algebras formed
by linearising these spaces give a universal chiral algebra. However, it is not

clear to the author what this condition should be.

More precisely, it is certain that the analogue of Lemma 2.5.7 must hold for
I = pt, but we do not expect it to hold for |I| > 2. It already does not hold for
n = 2 and the factorisation spaces given by J77ilb, or the affine Grassmannian

over curves. In these cases, we do not even have maps

%ileQ — %ilb(X/)2 or GrG,X2 — GI"G’(X/)z,
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2 The main constructions

unless ¢ : X — X’ is an open embedding.

On the other hand, Kapranov—Vasserot [25] define a factorisation space denoted
L(X )ranc over any smooth curve C' and claim (for example in the statements of
Proposition 3.4.6 and 3.6.2) that for any étale map 7 : C' — D and for any finite
set I there is an étale map L(7) : L(X)or — L£(X)pr having many desirable

properties. They do not provide a construction of this map.
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Chapter 11

Universal D-modules and stacks of
étale germs

The goal of this chapter is to understand universal families of D-modules and O-
modules as quasi-coherent sheaves on certain stacks. These universal modules are
rules assigning to each n-dimensional variety a D-module or an O-module in a way
compatible with étale morphisms; we will introduce several stronger versions of the
compatibility condition, which will allow us to define the notion of a convergent
universal module. In particular, we introduce stacks classifying étale germs of n-
dimensional varieties, and show that the universal modules are quasi-coherent sheaves
on these stacks; we also introduce variations on these stacks corresponding to the
stronger compatibility conditions.

Moreover, we show that these stacks are isomorphic to the classifying stacks of
certain automorphism groups of the formal n-dimensional disc Spf k[t1, ..., t,], and
hence that the categories of quasi-coherent sheaves on our stacks are the same as the
representation categories of these automorphism groups. The difference between D-
modules and O-modules amounts to an action by infinitesimal translations, present
only in the case of D-modules; in the case of the stacks in this chapter, this difference
is manifested in the automorphism groups as follows: the group corresponding to O-
modules contains only those automorphisms of the formal disc preserving the origin,

while in the case of D-modules infinitesimal translations of the origin are permitted.

0.1 The key players

Let us now introduce the main players of this chapter, which fall into three classes:
we have two flavours of stacks—those corresponding to classifying stacks, and those
corresponding to stacks of germs of varieties—and in addition, we have the categories

of universal modules.
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Chapter II. Universal D-modules and stacks of étale germs

Let G denote the group formal scheme of automorphisms of the formal disc. It
has a pro-structure, since it can be viewed as the limit of its quotients G(®, which
are the automorphism groups of the cth infinitesimal neighbourhood of a point in an
n-dimensional variety. The classifying stacks of interest will be those corresponding
to these groups; quasi-coherent sheaves on these classifying stacks correspond to rep-
resentations of the associated group. There is a subgroup G of GG, of automorphisms
of étale type; it is closely related to the stacks of étale germs that we will define later.
We will see that this subgroup is dense in GG, so that the representation theory of the
two groups is very similar. More specifically, placing a finiteness condition on their
representations yields equivalent categories of representations.

The second flavour of stacks are those parametrising étale germs of n-dimensional
varieties—that is, we are interested in pointed n-dimensional varieties with morphisms

given by roofs of étale morphisms, or common étale neighbourhoods:

(V,v)

N

(Xl,l'l) (XQ,.Z’Q).

Imposing different equivalence relations on these classes of morphisms allows us to
define the different versions of the stack that we will need, corresponding to the
various classifying stacks mentioned above. The equivalence relations are defined by
identifying common étale neighbourhoods which give rise to the same isomorphisms
of the formal completions 5(\1 =2y )/(\2 or of the cth infinitesimal neighbourhoods for
¢ € N. We denote these stacks by M,,, ./\/lﬁf), and M.

Finally, we consider the category %P of universal D-modules, as introduced by
Beilinson and Drinfeld [4]. These are families of D-modules on n-dimensional vari-
eties, compatible with pullback along étale morphisms. We impose an additional re-
quirement, that these compatibilities be themselves compatible with identifications of
étale morphisms giving rise to the same morphisms of infinitesimal neighbourhoods.
This allows us to define subcategories %), and finally the category %< of
convergent universal D-modules, which are the kind of modules arising from vertex
algebras.

Extending the finiteness condition on representations alluded to above allows us
to define analogous conditions on the categories of quasi-coherent sheaves, and finally
to give a characterisation of convergent universal D-modules as those universal D-

modules which are of ind-finite type.
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The relationship between these objects is the main focus of this chapter; the results
are summarised in Figure 1.

This diagram corresponds to the setting of universal D-modules; we have an en-
tirely analogous diagram to describe the setting of universal O-modules. The key

differences are the following:

1. We replace the group G of automorphisms of the formal disc by its reduced
subgroup K = G,.q: this is the group of automorphisms which preserve the
origin of the disc. By contrast, G includes automorphisms which may involve
an infinitesimal translation of the origin. These infinitesimal translations corre-
spond to the action of the sheaves of differential operators on the corresponding

universal D-modules, not present in the case of universal O-modules.

2. We replace the stacks of étale germs of n-dimensional varieties by stacks with
the same objects but with fewer isomorphisms: in this case we only allow iso-
morphisms which fix the distinguished points of our pointed varieties, whereas
the original stacks permitted isomorphisms which could shift these points in-
finitesimally. We will denote these stacks by adding a superscript "' to the
symbol denoting the corresponding stack for the D-module setting (e.g. ME®).

3. Rather than considering universal families of D-modules, we consider families

of universal O-modules. We denote these categories by %, etc.

4. The finiteness conditions in the bottom part of the back row are simpler. In
fact, these finiteness conditions are most naturally defined in the O-module
setting; the corresponding conditions in the D-module setting are then defined
by requiring the objects to be suitably finite when regarded as objects in the
O-module setting after applying a forgetful functor.

We will give the full definitions of the stacks and categories for both the D-
and O- module settings, but for the proofs of the equivalences we will mainly focus
on the story of universal D-modules. This is the setting needed for working with
universal chiral algebras. Moreover, generally the proofs in the O-module setting are
just simpler versions of the D-module proofs. The exception is in the study of the
categories of representations; there we will see that it is first necessary to study the

groups K and K¢, and then to extend our results to G and G¢'.

IThe reader may wish to pull out the additional copy of the diagram included in Ap-
pendix B so that he can refer back to it easily while reading this chapter.
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Figure II.1: The main diagram: this chapter in one page.
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0.2 The structure of the chapter

0.2 The structure of the chapter

We will begin in section 1 by discussing and defining the stacks M%OO) and Mff’(‘”)
of unpointed and pointed étale germs, as well as the necessary variations. In section
2 we introduce the automorphism groups G and K, as well as their quotients G(©
and K(©. We will see that there is a natural map F from our stack MS”’ to the
classifying stack BG, and analogues F© for the quotients G(©). Pullback along these
maps gives rise to the functors in column (B) of the main diagram. In section 3, we
state and prove a generalisation of Artin’s approximation theorem [2] to the relative
setting, and show as a corollary that the map F(°) is an isomorphism of stacks. It
follows that the functors in the front part of column (B) are equivalences.

In section 4, we introduce the group-valued prestack G¢' of étale-type automor-
phisms of the formal disc; it will be immediate from the relative Artin approximation
theorem and the definition of G that the classifying stack BG' is equivalent to
the stack M of étale germs of n-dimensional varieties. We will then study the
representation theory of G, and identify representations of G as the subcategory of
Rep(G®) of K %-locally-finite representations. In section 5 we define the categories
of universal D- and O-modules, as well as the functor ¥ in the back part of column
(C). We then prove that this functor is an equivalence.

In section 6, we define the categories 22 and U P of cth-order and con-
vergent universal D-modules, and we prove that the functor ¥ restricts to give the
equivalences of the front part of column (C). We also characterise convergent uni-
versal D-modules as those universal D-modules which are locally finite in the sense
analogous to that in the study of Rep(G) < Rep(G)—we shall call these universal
D-modules of ind-finite type to avoid confusion with the standard use of the word “lo-
cal” in sheaf theory. In the final section, we discuss the extension of these definitions
and results to the setting of oo-categories.

Combining our results, we obtain the following equivalences of categories:

QCoh (ME% QCoh (M,,)
/ Y / X\%

Rep(K) U™ Rep(G)

D,conv
n .

That is, we have proved a variation of the theorem suggested by Beilinson and
Drinfeld [Proposition and Exercise 2.9.9, [4]]:
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Chapter II. Universal D-modules and stacks of étale germs

Theorem 0.2.1. We have the following equivalences of categories:

%no,conv ~ Rep(K)
U P ~ Rep(Q).

Composing the functors in the main diagram, we obtain a functor
Rep(G) — %P.

This functor agrees with the functor (2.9.9.1) of [4]. It follows from our results
that this functor is a fully faithful embedding, but it is not clear that it is essentially
surjective. If it is not, then not all universal D-modules are convergent; we argue that
in that case the category of convergent universal D-modules should be the preferred
setting.

Note that the statement of Proposition 2.9.9 [4] is also discussed in a more re-

stricted setting by Jordan and Orem (see section 4 of [24]).

0.3 Conventions and notation

We fix k = k, an algebraically closed field of characteristic zero. By Sch, we will
always mean the category of schemes over k. By PreStk, we mean the category of

functors
(SChAH) 5 0o-Grpd.

Unlike in the previous chapter, we now work with ordinary categories of sheaves,
D-modules, and representations, rather than DG- or oco-categories. Our categories
are cocomplete (i.e. closed under colimits); in particular, colimits of categories are
always taken in the co-category of cocomplete categories.

Note that each of the stacks appearing in the main diagram can be defined by
giving a prestack parametrising only the trivial objects; then we take the stackification
of the prestack to obtain the stacks in our diagram. (For example, the classifying stack
of a group is the stackification of the prestack classifying only the trivial principal
bundles; similarly in the third column of the diagram we can consider prestacks
classifying the “trivial” pointed n-dimensional variety, (A™, 0).) These prestacks will
be denoted by adding the subscript e, to the symbol for the corresponding stack.
In the case of the stacks of germs of varieties, it will also be convenient to consider an
intermediate prestack, which has more objects and automorphisms than the trivial

version of the prestack, but which still has the same stackification; this prestack will
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1 Stacks of étale germs

We fix a natural number n, and are interested in studying smooth pointed varieties
of dimension n up to étale morphism. We will define the stack M%OO) classifying

families of such varieties—in fact, we will first introduce the prestack <M$L°O)>
triv

classifying trivial n-dimensional pointed families, and then will define M%) to be

—_——

its stackification. We will also introduce an intermediate prestack /\/lq(fo), which has
M) as its stackification as well, but which is somewhat more manageable.

We begin in 1.1 with some preliminary definitions on n-dimensional families of
varieties and common étale neighbourhoods between them. In 1.2 we discuss equiva-
lence relations which can be imposed on common étale neighbourhoods so that they
form the morphisms of a groupoid, and in 1.3 we use these ideas to define stacks of
cth-order and étale germs of n-dimensional varieties. In 1.4 we consider the categories
of quasi-coherent sheaves on these stacks. All of this material is related to the setting
of universal D-modules, but we conclude in 1.5 with some remarks about the strict
analogues of these definitions, which will be necessary for the setting of universal

O-modules.

1.1 Families of pointed varieties and common étale neigh-
bourhoods

Recall the following notion from Proposition 1.2.5.6.
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1 Stacks of étale germs

Definition 1.1.1. Given two smooth families 7; : X; — S; a fibrewise étale morphism

between them is given by a commutative diagram

XlLXQ

Sl — SQ
fs

such that for any s € S; with §' := fs(s) € Sy, the induced morphism on fibres
(X1), = (Xy), is étale.

Notation 1.1.2. We will often use the subscripts X and S to distinguish between the
two maps comprising a fibrewise étale morphism, even when neither of the smooth

families involved is X/S.

We are interested in pointed n-dimensional varieties; in the relative setting this is

formalised as follows:

Definition 1.1.3. Fix a base scheme S € Sch. A pointed n-dimensional family over

S is a scheme X equipped with
e a morphism 7 : X — S, smooth of relative dimension n; and
e asectiono: S — X.

Notation 1.1.4. We shall denote such a family by 7 : X &2 S : o, but will often

abbreviate to (m,0) or X = S when there is no risk of confusion.

A particular n-dimensional family which will be of special importance to us is the
trivial n-dimensional family A% = S x A" over S. We will often work with the zero
section z : S — S x A" induced by the inclusion of the origin in A™. Whenever we
write S x A" = S without specifying the maps, we will always mean the canonical
projection and the zero section.

Another important pointed n-dimensional family is the following: let X — S be

any smooth family of relative dimension n, and consider the pointed family
pry: X Xg X &2 X : A, (IL.1)

We think of this as the universal pointed family over X. Whenever we write X x¢X &
X without specifying the maps, we will always mean the projection onto the first

factor and the diagonal embedding.
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We want to define a groupoid of pointed n-dimensional families over a fixed base
scheme S up to étale morphism. When S = Speck is a point, we have the notion of a
common étale neighbourhood of pointed varieties, which plays the role of isomorphism

in the groupoid, and we generalise this notion to the relative setting as follows:

Definition 1.1.5. Let m; : X; &2 S : 0; (i = 1,2) be smooth n-dimensional families
over S. A common étale neighbourhood is given by a third pointed n-dimensional
family (p : V 2 S : 7) together with a pair of étale maps (¢ : V — X3, : V —
Xs) such that ¢ and ¢ are compatible with the projections, and furthermore are

compatible with the sections on the level of reduced schemes. That is, we require
l. mop=p=myo0
2. 010Lg =¢@oTOLg, 0901Lg =1 0TOLg,

where tg @ Syeq < S denotes the canonical closed embedding. Diagrammatically, we
depict this common étale neighbourhood as follows, where the section 7 is denoted
by a dotted line to remind us that it is only compatible with the sections o; on the

reduced part of S:

X1¢/ Y \wJXg
N7

Notation 1.1.6. We will denote a common étale neighbourhood by (V, ¢,v); when

no confusion will result, we may use the notation (¢, ) or simply V.

Definition 1.1.7. In the case that the diagram is actually commutative, and not
just up to precomposing with tg, we will say that the common étale neighbourhood

is strict, and will use a solid rather than a dotted line for the section S — V.

Remark 1.1.8. We can also introduce another variation on the definition of common
étale neighbourhood: rather than requiring the middle family to live over S, we allow
smooth families over any scheme T equipped with an étale morphism to S which is
compatible with the projections. There are both strict and non-strict versions of such

étale-locally-defined common étale neighbourhoods.
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1.2 Groupoids of common étale neighbourhoods

—~—

Our goal is to define a groupoid M) (S) for each scheme S, whose objects are pointed
n-dimensional families over .S, and whose morphisms are represented by common étale
neighbourhoods. In order to do this, we need to impose an equivalence relation on
common étale neighbourhoods, so that the composition of morphisms is well-defined
and associative, and the morphisms are invertible.

Moreover, we expect that restricting a common étale neighbourhood by pulling
back along another étale morphism should not change the corresponding morphism in
our groupoid. More formally, let (V) ¢, 1) be a common étale neighbourhood between
X, 2 S and Xy 2 S5, and suppose that we have a pointed n-dimensional S-family
V' étale over V:

, fx

Then this yields a second common étale neighbourhood (V' ¢ o fx,¥ o fx):

,,V’

Motivated by this, we introduce the following equivalence relation:

Definition 1.2.1. We will say that two common étale neighbourhoods (V;, ¢;, ;)
between X; &= S and Xy & S are similar if there exists a pointed family W = S
and étale maps f; : W/S — V;/S compatible with the sections on the level of S,
such that

¢10 f1 = ¢20 fo
1o fi =10 fo.
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This is an equivalence relation, but it is slightly too restrictive for our purposes.

We modify it as follows:

Definition 1.2.2. We will say that two common étale neighbourhoods (V;, ¢;, 1;) are
(00)-equivalent if for each s € S there is a Zariski open neighbourhood S’ of s such
that the restrictions of (V;, ¢;,1;) to S’ give similar common étale neighbourhoods
between X; xg S’ &= 5" and X, xg 5" = 5.

This equivalence relation is exactly what we need to define a groupoid structure.

Given two common étale neighbourhoods

(‘/z/Sa ¢i7¢i)7 1= 1727

representing morphisms X;/S — X5/5 — X3/5, we would like to define their com-
position using the fibre product V; X x, V5, but it requires a little care to show that
this is well-defined. It is clear that this is a smooth scheme of relative dimension n
over S, but what is not immediate is the existence of a suitable section. However,
we can define a map S,.q — V1 Xx, V5 using the compatibility of the sections 7 o tg
and 7y o 1g; this map then extends to the desired section using formal smoothness
of V1 xx, Vo — S. Although the choice of extension is not unique, any two choices
differ only up to nilpotence, so the resulting common étale neighbourhoods will be
equivalent. Therefore, the composition of the morphisms X;/5 — X5/ — X3/5 is
indeed represented by the pullback:

Vi Xx, Va

T

\

Va

[/

2

/

/

It is not hard to check that this is associative.
Next, given X & S, it is straightforward to check that the identity morphism
idy—g is simply represented by (X,idx,idy). Moreover, any symmetric common

étale neighbourhood (V, ¢, ¢) is equivalent to the family (X, idy,idx) and hence also

represents the identity morphism.
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Finally, given a common étale neighbourhood, its inverse is represented by the

mirror image diagram:

///\\S e \\

\
/
\
/

Indeed, to show that the composition of this common étale neighbourhood with its

mirror image represents the identity morphism, we need only remark that
A:V -V X Vv

is an open embedding (because 1 is unramified and locally of finite type), and in
particular is étale. Pulling back the composition along A gives (V, ¢, ¢), which is
equivalent to the identity common étale neighbourhood.

We have proved the following:

Proposition 1.2.3. Under the (00)-equivalence relation and with the composition

and inverses described above, M, > (S) is a groupoid.

Remark 1.2.4. As we will see in Lemma 3.4.3 and Proposition 3.4.4, two common
étale neighbourhoods (V;, ¢;,%;) (i = 1,2) are (oo)-equivalent precisely when they
induce the same isomorphism of the formal neighbourhoods of S in the schemes X;

and Xs:

N ~ =1

wAloqgl_l =19 0 Py

Motivated by this observation, we introduce a family of coarser equivalence rela-

tions:

Definition 1.2.5. Let ¢ € N. Two common étale neighbourhoods (V;, ¢;,v;) are
(¢)-equivalent if they induce the same isomorphisms on the cth infinitesimal neigh-
bourhoods of S in X; and Xs:

-1 -1
o0 (6) " =l o (6) e x0 = xp0



1.3 Stacks of étale and cth-order germs of varieties

—_~—

Then we let Mﬁf)(s ) be the groupoid whose objects are pointed n-dimensional
families over S and whose morphisms are common étale neighbourhoods up to (c)-
equivalence.

Since (c)-equivalence is coarser than (¢ + 1)-equivalence for any ¢, and also than

(00)-equivalence, we obtain morphisms of groupoids

P

ME(S) = = METI(S) = M) — .. ..

1.3 Stacks of étale and cth-order germs of varieties

With these preliminary notions and definitions established, we can define the pre-

stacks of germs of varieties as follows:

Definition 1.3.1. Given ¢ € NU {00}, let (Mgﬁ) be the prestack that sends a
triv

test scheme S to the groupoid whose only object is the trivial pointed n-dimensional

variety m : S x A" =2 S : 2z, and whose automorphisms are given by common étale

neighbourhoods of S x A" with itself, modulo (c¢)-equivalence.

There is a distinguished class of common étale neighbourhoods of S x A", char-

acterised as follows:

Definition 1.3.2. A common étale neighbourhood V' = (V, ¢, 1) between the trivial
pointed family and itself will be called split if there exists an n-dimensional variety W
together with maps ¢, : SxW — S x A™ (not necessarily étale), an open embedding
V — 8§ x W, and a point w € W such that the following diagram commutes:

Remark 1.3.3. Split common étale neighbourhoods can be simpler to work with,
and will arise in our discussion of the Artin approximation theorem. Fortunately we

will see in Lemma 3.4.2 that all common étale neighbourhoods of the trivial pointed
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1 Stacks of étale germs

variety are (0o)-equivalent (and hence (c)-equivalent, for any ¢) to a common étale

neighbourhood which is split.

Definition 1.3.4. Let M be the stackification of (Mgf)) in the étale topology.

triv
When ¢ = oo, we call M the stack of étale germs of n-dimensional varieties. For

finite ¢, we call MY the stack of cth-order germs of n-dimensional varieties.

—_—~—

In fact we will find it convenient to work with the intermediate prestack ./\/lgf),
which lies in between (Mfﬁ) and its stackification M.
triv

Definition 1.3.5. For ¢ € NU {oo}, let M be the subprestack of M\ sending a
test scheme S to the subgroupoid M%C)(S ) of M (S) defined above. Its objects are

pointed n-dimensional varieties over S and its morphisms are represented by common

étale neighbourhoods up to (c)-equivalence.

We see that this gives a prestack whose stackification is ./\/lgf): indeed, when con-
structing the stackification of (./\/l,(f)) explicitly, as in [1, Tag 02ZM], we must add
triv

—_~—

in locally defined objects, which include all of the additional objects of ./\/lff)(S ); we

must also add in all of the locally defined morphisms between these new objects, and

P

hence in particular all of the morphisms of ./\/l,(f)(S ). The next stage in constructing

the stackification is to identify all morphisms which agree locally; however, this has

already been done in j\/lgf)(S) by our definition of (c¢)-equivalence. It follows that
we can view /\/lgf)(S ) as a (non-full) sub-groupoid of M%C)(S ), and hence by the uni-
versal property, we obtain a map from the stackification of MY into M. The

quasi-inverse to this map is induced by the obvious inclusion of (Mﬁf)) into M.
triv

Remark 1.3.6. The crucial difference between the stack M and the prestack M
(and the reason that it is simpler to work with ./\/lgf)) is that the groupoid Mf{")(s )
contains isomorphisms represented by common étale neighbourhoods which are only

defined étale-locally over the base as in Remark 1.1.8.

1.4 Quasi-coherent sheaves on Mﬁ?

We will be interested in studying the categories of quasi-coherent sheaves on the
stacks MY for ¢ € NU {oo}. Since the categories of quasi-coherent sheaves on a

prestack and its stackification are equivalent, we have the following equivalences:

QCol ((M),,,) = QCoh () = QCoh (MF).
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1.4 Quasi-coherent sheaves on Mgf)

We will find it convenient to work in the realisation of the category given by
QCoh (Msf)). (See Appendix A.2.1 for an overview of the theory of quasi-coherent
sheaves on prestacks. For more details, see Gaitsgory’s notes [14].) Concretely, an

object M of QCoh (./\/lgf)) consists of a collection of quasi-coherent sheaves together

with coherences: for each map S — MY (i.e. for each X = S smooth of relative
dimension n), we have an object My—g € QCoh (S). Moreover, we require com-
patibility under pullbacks in the following sense. Suppose that for ¢ = 1,2 we have

Si M ./\/lﬁf), two n-dimensional families, together with a map f : S; — S; and a

commutative diagram of prestacks:

s, T o),
N

%
-

¢
S

Recall that in PreStk, commutativity of a diagram is a structure, not a property, in
this case amounting to an automorphism « in ./\/l,(f)(Sl) between the objects corre-
sponding to (71, 01) and (g, 02) o f, represented by a common étale neighbourhood

of the form

Xl Ta Pa Sl XS2 X2
o1 7r1/ S \f*: Jrm2
1 Sl

We require that in such a situation, we have an isomorphism
M(f,a): f* (Mx,=s,) = Mx,=s,

in QCoh (S7). This isomorphism must be independent of the choice of representative

—~——

(Viy b, o) of the isomorphism « in M%C)(Sl). We also require that these isomor-
phisms be compatible with compositions S} ER Sy L5 S,
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2 Groups of automorphisms and their classifying stacks

1.5 Strict analogues, for the O-module setting

Let us introduce the following strict analogues, which will be important in the setting

of universal O-modules.

Definition 1.5.1. Fix ¢ € NU {oco}. Let (./\/llﬁt’(c)> be the prestack that sends a
triv

test scheme S to the groupoid whose only object is the trivial pointed n-dimensional

variety w : § x A" =2 § : z, and whose automorphisms are given by strict common

étale neighbourhoods of S x A™ with itself, up to (c)-equivalence.

Remark 1.5.2. In the case ¢ = oo, one might be tempted to consider a strict version
of (00)-equivalence, defined in the obvious way. It is straightforward to check that
two strict common étale neighbourhoods are (co)-equivalent if and only if they are
strictly (oco)-equivalent, so in fact it is not necessary to introduce this latter notion.

Definition 1.5.3. Let M2 be the stackification of (Mflt’(c)) in the étale topol-

triv
ogy. When ¢ = oo, we call MEW) the stack of pointed étale germs of n-dimensional

varieties; when c is finite, MEH is the stack of pointed cth-order germs of n-

dimensional varieties.

As in the non-strict setting, we will also work with an intermediate prestack

e~

MEH9 lying in between the prestack (ME“‘”) and its stackification. Namely, for

triv
a given test scheme S, an object of the groupoid MBSO (S) is a pointed n-dimensional
family over S, 7: X &2 § : 0. Given two such pointed families, a morphism between
them is represented by a strict common étale neighbourhood (V, ¢,1), modulo (c)-
equivalence. Similarly to in the groupoid M;C)(S ), composition is given by pullback
and inverses are given by mirror-image diagrams.

The difference between the strict and non-strict definitions lies in whether we
require morphisms to preserve the distinguished points of the n-dimensional varieties
(in the strict setting), or allow infinitesimal translations (in the non-strict setting).
As we will see in section 5, this is what gives quasi-coherent sheaves on ME“(C) the

additional structure of an action of the sheaf of differential operators.
2 Groups of automorphisms and their classifying
stacks

In this section, we introduce certain groups G and K of automorphisms of the formal

disc. We begin in 2.1 by defining the group formal scheme G and its finite-dimensional
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2.1 The group G of continuous automorphisms of the formal disc

quotients G'9; in 2.2 we introduce the reduced part K = G,q. It is a pro-algebraic
group, and contains a pro-unipotent subgroup K,. In 2.3 we give some general defi-
nitions and facts regarding representations of group-valued prestacks and classifying
stacks, and in 2.4 we apply these ideas to the groups G and K. We also begin the
comparison of the classifying stacks BG and BK with the stacks M) and M?f’(""),

which will be the motivation for the next several sections.

2.1 The group G of continuous automorphisms of the formal
disc

Definition 2.1.1. Let O,, = E[ti, ..., t,)], and let G = AutO,, be the ind-affine group
formal scheme of continuous automorphisms of O,,. Explicitly, for S = Spec(R), G(S)
is the group of automorphisms of the R-algebra R[ti,...,t,], continuous with respect

to the topology corresponding to the ideal m generated by (t1,...,%,).

A continuous homomorphism p : R[ty,...,t,] — R[t1,...,t,] is determined
by its values on the topological generators ¢,...,¢,. Given a multi-index J =
(ji,---+dn) € Z%, let us denote by % the coefficient of ¢/ = #]'---#J» in the se-
ries p(ty) € R[ty,...,t,]. For ¥ € {1,...,n}, let ey = (0,...,0,1,0,...,0) be the
multi-index with 1 only in the £'th place. With this notation,

pite =g+ Z rfk/tk/ + higher order terms. (11.2)
k=1

The condition that this determines a continuous homomorphism is equivalent to re-
quiring each 7’5 to be a nilpotent element of R. Then the homomorphism p determined
by the equations (I1.2) is invertible precisely when the matrix (Tfk,)k,k/ € M,(R) is
invertible.

This allows us to describe the indscheme structure of G explicitly:

G = C](\)/leilr\%l Spec (k:[aﬁ, (det (algk,)k,k/)_l]/((ag)]v))

Definition 2.1.2. Given ¢ € N, we can also consider G(?, the group formal scheme

of continuous automorphisms of O,,/m**:

G = colim Spec (k;[af“,, (det (afk,)k,k')_1]|J|Sc/((GS)N)),

NeN

where
| J| = Z Ji-
i=1
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2 Groups of automorphisms and their classifying stacks

Then G is an indscheme of finite type and a quotient of G, and we can express
G as the limit

G = lim G,

ceN

That is, G is a pro-object in the category of ind-affine group formal schemes.

Example 2.1.3. It may be useful to keep in mind the notationally simpler one-
dimensional setting. When n = 1, an automorphism p : R[t] — R[t] is determined

by its value on the single generator t:
p:t|—>r0+r1t+r2t2+...,

where g € Nil(R) and r; € R*.
The indscheme G is the colimit (of schemes of infinite type)

G = c](\)flei&n Spec k[ag, a1, a;t, az, as, .. .]/(a)).

On the other hand, it is also the limit of the indschemes G of finite type, where

G© = colim Spec k[ag, a1, a7 t, as, as, . . ., al/(al).
NeN

The quotient maps G© — G~V correspond to the inclusions

klag, a, al_l, as,as, . .. ,ac_l]/(aév) — klag, a1, al_l, as,as, ..., ac)/(ay)

a; — a;.

They are clearly smooth of dimension 1.

Note also that it is easy to see from this example that a continuous homomor-
phism p : R[] — R[t] always descends to give a homomorphism p(© : R[t]/m¢Tt —
R[t]/mtL. Moreover, p is invertible if and only if p(®) is invertible for some (or equiv-
alently for all) ¢ > 1, because this is a condition on the coefficients of the degree 0

and 1 terms only. This is true for n > 1 as well, for the same reasons.

2.2 The reduced part K = G,y

Definition 2.2.1. Let K = G, denote the reduced part of the indscheme G:

K = Spec k[a, (det (af ,)ix) "' s150.
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2.2 The reduced part K = Geq

It is an affine group scheme of infinite type. Geometrically, (Spec R)-points of
K correspond to continuous automorphisms p : R[t1,...,t,] — R[ti,...,t,] such
that the constant term of each series p(tx) is zero. We think of K as parametrising
automorphisms of the formal disc Spf k[ty,...,¢,] which fix the origin 0, whereas
the automorphisms parametrised by the larger group G may involve infinitesimal
translations of 0.

We view K as a pro-algebraic group: it has finite-dimensional quotients K (%),

parametrising automorphisms of k[ti, ..., t,]/m® which preserve the origin.

Definition 2.2.2. Explicitly, K(© is the algebraic group

K© = Spec kla", (det (a* )k,k/)_l]o<u|<c+1a

e
where the group structure comes from composition of the automorphisms p.

Note that we have obvious maps
K,K°— GL,,
where the map on (Spec R)-points sends an automorphism p to the matrix
(rf ki € GLy(R),

in the notation of (II.2). These are homomorphisms of affine group schemes. (Notice
that we might try to define a similar map for the groups G, G, but that this no

longer respects the group structure.)

Definition 2.2.3. Let K, and K denote the kernels of the homomorphisms of
group schemes K — GL, and K — GL, respectively.

)

Then K9 is a unipotent algebraic group, and K,, = lim.cy K\ is a pro-unipotent

group. We can write
K=GL,x K,  K99=GL,x K,
this will be helpful in section 4 in understanding the representation theory of K.

Example 2.2.4. Let us again consider the case n = 1, where the notation is more

pleasant. We have

K = Specklay,a;', a0, as, .. ],

K(C) = SpeC k[al,afl,CLQ,a{i, e ,CLC].
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2 Groups of automorphisms and their classifying stacks

The maps K, K® — GL, = G,, = Speck[z, 2] are induced by the algebra homo-

morphisms given by
T —r aj.
The unipotent groups are given by

K, = Specklay, as, .. ],
K9 = Specklag, as, . . ., a).

Let us consider the coalgebra structure on the algebra of functions k|asg, as, . ..], in-

duced by the composition of automorphisms p,o € K, (k). Suppose that

p:tr—>t+r2t2+r3t3+...,
Ot t+ sot® + osgtd 4L

Then
poo:tr
t 4 (ro + 59)t% + (13 + 2r9sy + 89)t3 + (14 + 335y + 1985 + 21983 + s4)t + ..
From this we see that the comultiplication satisfies

a2|—>a2®1+1®a2,
as+— a3 ® 14+ 2a, Q as +1® as,
a4»—>a4®1+3a3®a2+a2®a§+2a2®a3+1®a4,
and so on.
The action of G,, on K, (and similarly on K for any c¢) induces a grading on

the algebra of functions as follows: a k-point of G,, is of the form 2z : t — zt, for

z € k*. Conjugating p € K,(k) by z gives
zopoz titet 4 argt® + st + ..
that is, the grading on k[asg, as, .. .] is given by deg(a;) = j — 1.

Returning to the general setting (n > 1), note that the diagonal inclusion G,,, —
GL, results in a grading of the algebra of functions k[a%] ;1 of K, (and again,
similarly for Kff)): we have deg(a®) = |J| — 1. It will be important for us that the

grading is non-negative.
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2.3 Representations and classifying stacks

2.3 Representations and classifying stacks
Definition 2.3.1. By a group-valued prestack, we mean a functor
H : (Sch*)°P — Grp.

The ordinary prestack underlying H is given by composing with the forgetful
functor Grp — Set and the inclusion Set — co—Grpd.
Let H be any group-valued prestack. We wish to consider the category Rep(H)

of representations of H:

Definition 2.3.2. A representation of H on a k-vector space V' is a morphism of

group-valued functors
R:H — GLy;
that is, for any S = Spec R we have
Rr: H(S) — GL(V ®; R),
natural in R.

We can reformulate this definition in a more geometric manner as follows. Recall
that given a group H we can define the prestack BHy,;, classifying trivial principal
H-bundles: for a test scheme S, BHy;,(S) is a groupoid containing only one object,
the trivial bundle S x H — S. The automorphism group Autgg,,,,(s)(S x H — 5) is
the group H(S).

Definition 2.3.3. The classifying stack BH of H is the stackification of the prestack
BH,,, in the étale topology.

Remark 2.3.4. If H is an algebraic group, this is the usual classifying stack: that is,
S-points of BH are principal H-bundles over S, and automorphisms are morphisms
of H-bundles.

Then we have that
Rep(H) ~ QCoh (BH;,) ~ QCoh (BH),

where the second equivalence is due to the fact that QQCoh (e) is preserved by stacki-

fication.
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2 Groups of automorphisms and their classifying stacks

In the case that H is an affine group scheme, say H = Spec A with A a Hopf
algebra, then the data of a representation of H on a vector space V is equivalent to

the structure of an A-comodule on V:
V -V ®,A.

(See for example [31], Chapter VIII, Prop. 6.1.)

Observation 2.3.5. From this definition we can show that any representation V'
of an affine group scheme is locally finite: that is, every vector v € V is contained
in some finite-dimensional sub-representation. (For example, see [31], Chapter VIII,
Prop. 6.6.) This is not true of representations of more general group-valued prestacks,

as we will see in section 4.3.

Now suppose that H is a pro-algebraic group, so that
H =lim H;,
1

where H; runs over all finite-dimensional quotients of H. (The example we have in
mind is of course the group K of section 2.2.) If we forget for the moment about the
scheme structure on these groups, the pro-structure of H gives it a topology: a base
for the open neighbourhoods of 1y is given by the kernels N; of the quotient maps
H —» H,.

We might be interested in restricting our attention to only those representations
of H which are continuous with respect to this topology. If we give the vector space
V' the discrete topology, this amounts to requiring that for each v € V, the action
of H on v factors through one of the finite-dimensional quotients H;, or equivalently,
that V' is the union of the subrepresentations V;, where V; is the largest subspace of
V' on which the action of H factors through H; or on which the action of N; is trivial.

If V' is finite-dimensional to begin with, the group-valued prestack G Ly is also
a finite-dimensional algebraic group, and so this condition is automatic. Combining
this with Observation 2.3.5, we conclude that all representations of H are necessarily
continuous with respect to the discrete topology on the underlying vector space. We

have proven the following:
Proposition 2.3.6. For H = lim; H; a pro-algebraic group,
Rep(H) ~ coliim Rep(H;),
where the colimit is taken in the co-category of cocomplete categories.
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2.4 Application to G and K

Given a pro-algebraic group H we can always write it as the limit of its finite-
dimensional quotients as above; however, as with our group K = lim.ey K@ we
can often restrict our attention to a subset of these algebraic quotients. View the
collection of all finite-dimensional quotients H; = Spec A; as a category Z, whose
morphisms are surjections compatible with the quotient maps from H, and suppose
that we have a subcategory J < Z such that

JjeJ
Then for any i € Z there exists j € J such that H; is a quotient of H;: indeed, we
know that we have a surjection
JjeT
This amounts to an inclusion A4; < |J g Aj. Since A; is finitely generated and J°P
is filtered, we can find j € J such that A; — A;, which gives the desired surjection
Hj - Hz
It follows that J°P is cofinal in /°P and in particular

Rep(H) =~ colim Rep(H,).

jegor
2.4 Application to G and K

The following is immediate from the above discussion:

Rep(K) ~ QCoh (BK)

% %

ccc)éiﬁrln Rep (K(C)) — (éggrj\rfl QCoh (BK(C)).

Now we would like to make a similar comparison between the categories Rep(G) and

colim ey Rep(G@); we have the following:

Proposition 2.4.1. All representations of the group-valued prestack G are continuous

with respect to the the topology induced by the pro-structure of G':

colim Rep(G'?) = Rep(G),

ceN

where the colimit is taken in the oco-category of cocomplete categories.
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2 Groups of automorphisms and their classifying stacks

Proof. Let V' be a vector space and let
R:G— GLV

be a representation of G on V. Let v € V; we want to show that the action of G
on v factors through one of its finite-dimensional quotients G(9, i.e. that there exists

some ¢ such that for every S = Spec R the induced map
Rr,:G(S) = V&R
p = Rp(p)(v®1g)

factors through the quotient G(°)(S).
This is equivalent to showing that the restriction of Rg, to the kernel N.(S) of
the quotient map G(S) — G(9(S) is the constant map

n—=vlg

for every S = Spec R.

However, the embedding K — G allows us to view V' as a representation of K;
then by Proposition 2.3.6, there exists ¢ such that the restriction of Rg, to K(S)
factors through K (©)(S) for every S = Spec R. This implies that the restriction of R, R
to ker(K(S) — K(©(S)) is the constant map—but this kernel is exactly N,(S). O

Observation 2.4.2. Fix a base scheme S = Spec(R) and suppose that we have a

common étale neighbourhood of the trivial family:

v

PN

S x A" 5 S x A"

S.

Taking completions along the embeddings of S, we obtain isomorphisms over S
b,V = S x A,
and hence, composing, an isomorphism
pohl S x A" — S x A",

or equivalently, a continuous automorphism of Spec(R[t1,. .., t,]), i.e. an element wy
of G(S). Notice that wy lies in K (S) precisely if the common étale neighbourhood is

strict.
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2.4 Application to G and K

Motivated by this observation we formulate the following:

Proposition 2.4.3. We have a natural morphism of prestacks:

n

JaCO (M(oo)>tm — BGiyin-

Proof. On objects, we define F{™ (S x A" = §) == (S x G — S).

On morphisms, we would like to set F éoo) ([V, ¢,¢]) := wy as in the above discus-
sion. We need to show that this is well-defined and respects composition; for both of
these we will use that taking completions of morphisms respects composition.

First, suppose we have (V,¢,1), and fx : V'/S — V/S étale giving rise to a

second common étale neighbourhood (V' ¢ o fx, 9 o fx) similar to the first. Then we

have
— — -1 A~ ~ A —1 ~
gpofxovpofy =dofxofy oy
=goy !,

and hence wy = wy. Since this construction of pulling back along étale morphisms fx
generates the relation of similarity, it follows that any two common étale neighbour-
hoods which are similar will give rise to the same isomorphism on the completions.
Since any two common étale neighbourhoods which are (0co)-equivalent are locally
similar, the resulting isomorphisms of completions are locally equal, and hence equal.
It follows that F éoo) is well-defined.

Now suppose that we have morphisms A%/S — A%/S — A%/S represented by
two common étale neighbourhoods (V;/S, ¢;,;), @ = 1,2. Their composition is rep-

resented by the pullback (Vi xan Va2, ¢1 0 pry,, 102 0 pry, ), and we have

— — 1

- " . N |
¢1 0 pry, o g 0 pry, = ¢10 pry, © Pry, © %
=10t ogyoty

)

Therefore wy, x,.v, = Wy, owy,, and F S(OO respects composition. (Note that the order

of composition in G(S) is the opposite of that in Autg(S x A™).) O
We also have the following:

Proposition 2.4.4. Let c € N. Then we have a natural morphism of prestacks

F(C) : (M(C))triw — BG(C)

n triv:
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2 Groups of automorphisms and their classifying stacks

Proof. This morphism is defined analogously to F(*); the proof that it is well-defined
on morphisms is immediate from the definition of (c)-equivalence, and the proof that

it respects composition of morphisms is as above. O

Restricting our attention to strict common étale neighbourhoods, we obtain the

following analogous result:

Proposition 2.4.5. For ¢ € N, we have morphisms of prestacks

FO . (M) BK©)

triv triv-
We also have a morphism

F' . (Mrplt,(oo)) - — BKtriv~

Pulling back along the morphisms of Propositions 2.4.3 and 2.4.4 gives rise to

functors

F* : Rep(G) — QCoh (M),
F* : Rep(G”) — QCoh (M) .

In the subsequent sections, we study these functors. We will show that for finite
¢, F(©) is an equivalence of prestacks and hence F(©* is an equivalence of categories.
On the other hand, we can show only that F™ is a fully faithful embedding, but we

give various characterisations of its essential image in remark 3.4.6 and section 6.

Remark 2.4.6 (Remark on Harish-Chandra pairs). Let g denote the Lie algebra
of G; it is equal to the Lie algebra Der O, of k-linear derivations of O,. The pair
(9, K = Gieq) forms a Harish-Chandra pair (see [4], 2.9.7): K is an affine group
scheme; g is a Lie algebra with a structure of Tate vector space; we have a continuous
embedding Lie K — g of Lie algebras with open image; and we have an action of K
on g which is compatible with the action of Lie K coming from the embedding.

Given a Harish-Chandra pair (g, K'), we consider the category of (g, K')-modules:
these are algebraic (and hence, by our earlier discussion, discrete) representations V'
of K equipped with an action of g which is compatible with the induced action of
Lie K. When K = G, as in our setting, this category is equivalent to the category
of representations of G.

Thus, for G the group of automorphisms of the formal disc, the data of a represen-
tation of G on a vector space V' is equivalent to the data of a representation of K on

V together with a compatible action of g = Der O,,. This motivates one of the main
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3 Relative Artin approximation

results of this chapter: we will see that we can associate to a representation of K
and a smooth n-dimensional variety X an O-module .# on X. If our representation
is in addition a representation of (G, this amounts to having a compatible action of

Der O,,, which in turn gives rise to a D-module structure on ..

3 Relative Artin approximation

In this section, our goal is to show that for finite ¢ the morphisms F(© and F"(® from
Propositions 2.4.4 and 2.4.5 are in fact isomorphisms of prestacks, and hence that we

have
BG9 ~ M), BK© ~ Mgtﬁ(C)'

It suffices to show that the group homomorphisms F; éc) and F;(C) are bijective—that
is, given an automorphism of S x A™ over S, we need to show that we can lift it to
a common étale neighbourhood modulo (c¢)-equivalence; moreover we need to show
that if the automorphism preserves the zero section S — S x A™ then we can lift it
to a strict common étale neighbourhood; and finally we need to show that in both

cases the lifting is unique up to (c)-equivalence.

Remark 3.0.7. When ¢ = oo, the morphisms of prestacks are not isomorphisms: in-
deed, we will see that the corresponding group homomorphisms are injective, but not
surjective. We will be able to use our understanding of these group homomorphisms
to introduce yet another stack, the stack of formal germs of n-dimensional varieties,

which will be isomorphic to BG. See remark 3.4.6.

In 3.1, we state the main result that we will need, which is a relative version of
Artin’s approximation theorem. The next two sections are devoted to the proof of
this result: in 3.2 we recall some important technical definitions and results, and
in 3.3 we apply them to prove our result. Finally, in 3.4 we show how the relative
version of Artin’s approximation theorem implies that the morphisms F(© and F/(¢)

are isomorphisms.

3.1 Statement of the main result

In the case that S = Speck is a point, the results that we need follow from a well-

known result of Artin:
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3 Relative Artin approximation

Theorem 3.1.1 (Corollary 2.6, [2]). Let X1, Xy be schemes of finite type over k, and
let ©; € X; be points. Let m,, denote the maximal ideal in the completed local ring

@le, and suppose there is an isomorphism of the formal neighbourhoods
. Ao A
Qo (X1>x1 H (X2)CL’2

over k. Then Xy and X5 are étale locally isomorphic: i.e. there is a common étale
neighbourhood (U, w) of (X;,x;),i = 1,2, that is, a diagram

U
¢ (4
Xl/ \X

with ¢, étale, such that ¢p(u) = x1 and Y(u) = xs.
Moreover, for any ¢ € N, we can choose ¢ and 1) such that the resulting maps of

completions satisfy
Yoot =a (modulo mSH).

We are interested in the relative setting: m;: X; &= S :0; (i = 1,2) are pointed
n-dimensional families, and we ask when an isomorphism of the formal completions
(X;)§ can be lifted to an actual morphism of schemes, at least étale locally. We are
not able to prove a relative version of Theorem 3.1.1 in full generality; however, we
can show that it does hold when X; is a product S x Y for Y any n-dimensional
k-variety, and o is a constant section. This suffices for the applications we have in
mind.

Therefore let us fix S an affine scheme over k, and let Y be a smooth n-dimensional
variety over k, with y € Y some fixed point. Then we can form a pointed n-
dimensional family m : S xY & § : o1, where m; is the first projection, and
o1 = idg X1, is induced by the inclusion of the point y in Y. Let Y = Y;JA denote the
completion of Y at the point y, and note that (S x Y)g ~SxY.

Proposition 3.1.2 (Relative Artin Approximation). Let (my : Xo &= S : 03) be any
pointed n-dimensional family, and suppose that we have an isomorphism ¢ : S X Y =

(Xg) preserving both the projections to S and the embeddings of S':

SXY% X2

N\,
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3.2 Preliminary material

Then there exists some affine étale neighbourhood (U, w) LN (Y,y) that gives a strict

split common étale neighbourhood of the S-families of n-dimensional varieties as fol-

(V\

lows:

%Y

hs)

/ (IL3)

where V. C S x U is a Zariski open subset containing S x {u}, ¢g is the restriction

Y

of idg x¢ to V', and the section T : S — V is induced by the inclusion i, of the point
win U.
Furthermore, for any ¢ € N this common étale neighbourhood can be chosen such

that when we take completions along the closed embeddings of S,

~ ~ -1

Ysods =& (modulo m§). (I1.4)

(Here mg C Oy, is the ideal sheaf corresponding to the closed embedding o1 : S —
Xi.)

The proof is very similar to the original proof of Theorem 3.1.1 in [2]; however we
will give the generalisation explicitly below, in particular to demonstrate the equality
(I1.4), which is only implicit in [2]. Both proofs rely on the notion of a functor locally

of finite presentation, which we introduce in the next section.

3.2 Preliminary material

Definition 3.2.1. Let Y be a scheme of finite type over k. A functor
F : (Schyy)° — Set

is said to be locally of finite presentation if it maps filtered limits of affine schemes
over Y to colimits of sets. That is, if I is a filtered index category and {Y;},, is a

diagram of affine schemes over Y, then

colim F(Y;) ~ F(limY;).

iel il
The following proposition gives a useful class of functors which are locally of finite

presentation:
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3 Relative Artin approximation

Proposition 3.2.2 (Proposition 2.3, [2]). Let
Y Ys
NS
Z
!
X

be a diagram of schemes over X with Z quasi-compact and quasi-separated, and Y; of
finite presentation over Z (i =1,2). Let Homz(Y1,Ys) denote the functor:

(Schyx)? — Set
T +— HomZXXT(Yl Xx T,YQ Xx T)
This functor is locally of finite presentation.

Now we give a proposition illustrating the usefulness of functors locally of finite

presentation.

Proposition 3.2.3 (Corollary 2.2, [2]). Fiz a base scheme Y over k, choose a point
y €Y, and let m, denote the mazimal ideal of the completed local ring @yvy. Let

F : (Schyy) — Set

be a contravariant functor locally of finite presentation, and assume we have é €
F(Y) Then for any ¢ € N, there exists an étale neighbourhood (U,u) of y in'Y, and
an element & € F(U) such that

¢ =& (modulo mc™). (IL5)

Here the congruence (I1.5) is interpreted as follows: since U is an étale neighbour-

hood of Y, we have a canonical morphism
e Y = U,

inducing a function

~

F(U) = F(Y).

The content of (I1.5) is that the images of £’ and é agree after applying the canonical

function
F(Y) = F(Y,),

where Yy(c) denotes the cth infinitesimal neighbourhood of y in Y.

With this result in mind, we can prove Proposition 3.1.2.
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3.3 Proof of Proposition 3.1.2

3.3 Proof of Proposition 3.1.2
Recalling the notation from the statement of the proposition, we define a functor

F :(Sch/y)°" — Set
T — Homg(S x T, X5).

Note that

HOI’Ils(S X T, XQ) ~ HOmsxT<S X T X2 X T)
>~ Hom(SXy xy T ((S X Y) Xy T (X2 X Y) Xy T)

Therefore, applying Proposition 3.2.2 to the diagram

SxY XoxY
N /
SxY

X
J
Y,

we conclude that F' is locally of finite presentation.
In particular, F(Y) = Homg(S x Y, X,), and we have an element £ € F(Y) given

by the composition:
S % Y —> (Xg) "—) Xo.

Now we apply Proposition 3.2.3 and conclude that there exists an étale neighbour-
hood ¢ : (U,u) — (V,y) and an clement & € F(U) approximating & modulo mt

The element & corresponds to a diagram of S-schemes:

SXU%XQ

NS

We can find an open neighbourhood V' of S x {u} in S x U such that £ is étale
on V: indeed, we know that ¢’ induces an isomorphism (S x U)g =~ S x U} = (Xa)%
because it agrees with the isomorphism & on the cth infinitesimal neighbourhood.
Therefore, for each s € S, ¢ induces an isomorphism (S x U )?su (X2>(€,(s )’
and so £ must be étale in some neighbourhood of (s, u), since &’ is locally of finite
presentation.

Having fixed such a neighbourhood V| we have a candidate for the left side of the
diagram (I.3) immediately:
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3 Relative Artin approximation

\/\(\?\\" Vv

_ Q&S
foX:)

SxY

N

Indeed, it is clear that ¢g is étale and respects the sections and the projections.
To complete the right side of the diagram, it remains to show that the restriction

g of & to V commutes with the sections, i.e.
& o (idg xiy) = 0.

Observe first that since (U, u) is an étale neighbourhood of (Y, y) we have a canonical
morphism e, : Y — U. Moreover, the fact that & = ¢ (mod m¢*!) amounts to the

commutativity of the following diagram:

~ ids Xey

SxY SxU

\69;/\7\0 \5/
S % Yy(c)

~

SxY

Now the result follows easily, once we note that the inclusion i, : pt — U factors
through the inclusion of the point y in its cth infinitesimal neighbourhood Y;,(c) and

its formal neighbourhood Y via the map €y. Indeed, we have

¢ o (idg xi,) = € o (ids x (e 0 \o)) o (ids xi?)
€ o (idg x\.) o (ids xz’z(f))
—éo (ids xz';)

= ex, 0 & o (idg xi,)

= €X, o 09

= 09.

Finally, we have to check that ¢g o égl = @&. Since V is open in S x U, it suffices
to show that & o (idg x$~!) = &. For this, we again use the compatibility of & and
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3.4 Applications of the relative Artin approximation theorem

&, which tells us that the following two compositions are equal:
S x Y, LS oxy Msxa o L x,
and
Sx Y 5 83V S (Xa)s 2 Xo.
Taking completions along S, we obtain
£ o (idg xéy) = & modulo m§™.

~

This completes the proof, because é; = ¢ L. O

3.4 Applications of the relative Artin approximation theo-
rem

We shall need this theorem in the following two instances:

Corollary 3.4.1. 1. Suppose we have an automorphism of S X A" over S which

does not necessarily preserve the section Z:

SXA”%SXA"

N

Then for any ¢ € N it can be lifted to a common étale neighbourhood

such that 1/15 o(¢p C)) = a9, as morphisms on the cth infinitesimal neighbour-
hoods.

2. Suppose we have an automorphism of S X Ar preserving the section Z:
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3 Relative Artin approximation

Sx A" ——=~ 5 G x A"

N\,

It can be lifted to a common étale neighbourhood as above which is also strict.

Proof. To prove the first part, we apply Proposition 3.1.2 to the following diagram:

sz@x&”

where 25 = (idg X€;,)od0z. The diagram commutes by construction, and Proposition

3.1.2 yields a strict common étale neighbourhood:

v
ZIR
S x A" | |p S x A"

S

such that w(sc) o ( gc))_l = (9. Since g0 T = 2, and 2 0 1g = 2z o 1g, this gives a
common étale neighbourhood of the trivial pointed n-dimensional family.

To prove the second part, notice that the additional assumption that & preserves
the section is equivalent to the statement that zo = z. It follows that the common

étale neighbourhood is strict, as required. O]

Applying Propositions 3.1.2, 3.2.2, and 3.2.3, we can also prove the following

useful results:

Lemma 3.4.2. Fvery common étale neighbourhood of the trivial pointed family over
S is (00)-equivalent (and hence (c)-equivalent for any ¢ € N) to a split common étale

neighbourhood.

Proof. Let p: V &2 S : 7 be a pointed n-dimensional family with étale maps ¢, :
V/S — (S x A™)/S giving a common étale neighbourhood. Using classical results
on standard smooth and étale n-dimensional morphisms (see for example [30] 3.14),

we can show that for every s € S there is a Zariski open neighbourhood 7" of s in .S,
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3.4 Applications of the relative Artin approximation theorem

and an open neighbourhood U of 7(s) € p~!(T) such that we have a commutative
diagram as follows, with A étale:

Tx A" > [« 1%

z() prr T|T(\ PlU T( 14
T ————T S.

e —

By Proposition 3.1.2 we can lift A™! : T x A" — U: that is, we can find (W, w)
étale over (A",0) and N : (T x W)/T — U/T. Moreover, X is étale on some open
neighbourhood V' of T' x {w}, and (V’,¢ o Xy, o Xjy,) is a split common étale
neighbourhood, similar to the restriction of (V, ¢, ) to T ]

Lemma 3.4.3. Let (y,Y) be a pointed n-dimensional variety, and 7 : X = S : o
be a pointed n-dimensional family over S. Suppose that we have two morphisms
o, Y x S —= X compatible with the projections, and compatible with the sections
on Syeq, such that ngS = @/A) LS XY = X3,

Then there exists some fx : U — Y étale such that ¢ o (fx,ids) =1 o (fx,ids).

In particular, the liftings provided by Corollary 3.4.1 are unique up to equivalence.

Proof. We apply Proposition 3.2.2 to the diagram
Y xS (Y x 8) xx (Y x9)

X (p1,p2)

(Y xS)x (Y x.S5)

YSYsS
pry l

Y

and obtain that the functor

F: Schy, — Set
(T/)Y) = Hompy, (vxsxyxs) (T Xy (Y X 8),T xy (Y x S) xx (Y x5))

is locally of finite presentation. (Here A is the diagonal morphism, p; and py are the
projections from (Y x S) xx (Y x S) to Y x S satisfying ¢ o p; = ¢ 0 py, and pr} ¥V
is the projection onto the first Y factor.)

The fact that ¢ = 1) implies that ¢ o (ey,idg) = 1 o (€y,idg) as maps from Y xS
to X. Hence we obtain a map from ¥ x S to (Y x ) X x (Y x S) over Y, which finally
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3 Relative Artin approximation

givesus amap ¥ x S = Y xy (Y x S) xx (Y x S) corresponding to an element & of
F(Y).

Since F' is locally of finite presentation, Proposition 3.2.3 applies, and we obtain
an étale neighbourhood fx : (U,u) — (Y,y) and an element & € F(U) which agrees
with € modulo m?.

Now we remark that for any Y-scheme f : T — Y, F(T) is non-empty if and
only if o (f,idg) =¥ o (f,ids) (and moreover, in that case F'(T') consists of a single
point).

Indeed, F(T) is a subset of Hom (T" x S, T Xy (Y x S) xx (Y x S)). A map «:
TxS—=Txy (Y xS)xx (Y xJ9)is given by three maps

OéliTXS—>T
o TxS—=Y xS =223,

satisfying

YS .
foay =pry” oay;

oy =1oay. (11.6)

This « is an element of F(7T') if and only if it is compatible with the maps 7" x S —
Txy (Y xXSxY xS)and T xy (Yxg) xx (Y x 9), or equivalently if and only if

ar = pry’;
Qo = <f7 1dS)7
a3 = <f7 1dS)

Therefore, the only possible candidate for an element of F'(T") corresponds to the triple
(pr2®, (f,ids), (f,ids)), which only gives a map « in the case that the equations (I1.6)
are satisfied. This amounts exactly to the condition ¢ o (f,ids) = ¥ o (f,ids).

It follows that the existence of ¢’ € F'(U) means that fx : U — Y gives the desired
étale neighbourhood. O]

Combining Corollary 3.4.1 and Lemmas 3.4.2 and 3.4.3, we obtain

Proposition 3.4.4. For any affine base-scheme S and any ¢ € NU {oo}, the group

homomorphisms

Féc’) : Aut((M%@) (S))(S x G — §) = G9(9)

triv

Fé(c) : AUt((Mﬁf’(p)) (S)) (S X K(C) — S) — K(C)(S)

triv
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3.4 Applications of the relative Artin approximation theorem

of Propositions 2.4.4 and 2.4.5 are injective.>. When c is finite, the homomorphisms

are surjective as well.

Proof. For finite ¢, injectivity follows immediately from the definition of (c)-equiva-
lence, and Corollary 3.4.1 shows that the homomorphisms are surjective.

Now let ¢ = co. Lemma 3.4.3 implies that the homomorphisms are injective when
restricted to the set of automorphisms represented by split common étale neighbour-

hoods. By Lemma 3.4.2, this implies that they are injective. O]

It follows that for ¢ € N, F(© and F'(© give equivalences of prestacks, and using

the uniqueness of stackification, we obtain the following:

Theorem 3.4.5. Let ¢ € N. We have isomorphisms of stacks:

Remark 3.4.6. We also have morphisms

M — BG
M) 5 BE,

but they are not isomorphisms. There are two approaches to modify the stacks
involved to obtain an equivalence: we can either enlarge the automorphism groups of
the stacks on the left hand side, or we can restrict the automorphism groups of those
on the right hand side.

1. Motivated by the above discussion, we see that we can define yet another stack
of germs, this one equivalent to the classifying stack BG. It is the stackification
of the prestack (M,,)

only object is the trivial pointed n-dimensional family S x A™ = S. However,

v Which again sends a test scheme S to a groupoid whose
we would like the morphisms of this groupoid to correspond to elements of
G(S), i.e. automorphisms & of S x An, Proposition 3.1.2 tells us that we can
represent such an automorphism by a sequence of common étale neighbourhoods

{(Us, b¢, 1)}, such that for each ¢,

2By a slight abuse of notation, we understand K(°) and G(*) to mean K and G respec-
tively.

83



4 Groups of étale automorphisms and their representation theory

It follows that (U., ¢.,%.) is uniquely determined up to (c)-equivalence, i.e. as
a morphism in ( & > (S). Moreover, the sequence {(U., ¢, 1)}, deter-
triv

mines .

That is, we should define M,, to be

lim M.

ceN

We will call this the stack of formal germs of n-dimensional varieties. We can

similarly define

M = Tim M),

ceN

2. Let G° be the group-valued prestack sending a test scheme S to the image
of Aut<M(oo) (S x A" = 5) in G(S) under Fs: i.e. this is the group of all

triv

automorphisms of the formal disc which can be lifted precisely to common étale

neighbourhoods. Then we have that

M)~y pGét

n

It follows from Corollary 3.4.1 that G is dense in G, and hence we will be
able to show that restriction from G to G gives a fully faithful embedding
Resg ga : Rep(G) — Rep(G®) (see Corollary 4.4.3).

Similarly, we can define a sub-group K¢ of K such that
M) =y BK®,
In section 4 we study the representation theory of these group-valued prestacks

G and K*.

4 Groups of étale automorphisms and their repre-
sentation theory

This section is about the top rows of the main diagram (Figure 1), when ¢ = co. We

have the following stacks
M) =~ BG* — BG,
giving rise to the following categories

Rep(G) — Rep(G*') == QCoh (Mﬁfo)) :

84
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the composition of the morphisms is the functor F*. We see that in order to under-
stand the relationship between quasi-coherent sheaves on M and representations
of G, it suffices to study the restriction functor Resg ge : Rep(G) — Rep(G). In
fact we will begin by working with the group K and then applying our results to the
group G as well.

In 4.1, we define some subgroups and submonoids of G, G¢, K, and K¢. These will
be technically easier to work with than the full groups, as we will see in the subsequent
sections. In 4.2 we study the restriction functor Resg e, and show that it gives an
equivalence of the subcategories of finite-dimensional representations. Since K is an
affine group scheme, all of its representations are locally finite, from which we conclude
that the functor Resg ge is fully faithful, with essential image the subcategory of
locally finite representations of K*¢*.

We do not know whether there are any representations of K which are not locally
finite, but in 4.3 we give an example of a pair H D H’ of a pro-algebraic group H
containing a dense group-valued subprestack H’, such that H’ has representations
which are not locally finite, and hence do not extend to representations of H.

Finally, in 4.4 we study the restriction functor Resg g« : Rep(G) — Rep(G®).
Analogously to 4.2 we show that it is fully faithful, and characterise its essential

image as those representations of G¢* satisfying a suitable finiteness condition.

4.1 Unipotent subgroups and polynomial submonoids

Recall from definition 2.2.3 that the pro-unipotent group K, is the kernel of the

natural map
K — GL,;

analogously, we define the sub-group-valued-prestack K¢ of K to be the kernel of
the the restriction of this map to K. We have

K =GLy x K,

as group-valued prestacks.
Recall also that in the proof of Proposition 2.4.1 we defined for any ¢ a group-
valued prestack N, by setting N.(S) to be the kernel of the homomorphism

G(S) = GU(S).
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4 Groups of étale automorphisms and their representation theory

We noted then that N.(.S) is also the kernel of the homomorphism
K(S) — K'(S);

now we remark in addition that it is contained in K(S), and is in fact also the kernel

of the maps
K4(S) » K9(8), K — KI(9).

(That these maps are surjective is a consequence of Corollary 3.4.1.)

The prestack N, is an affine group scheme of infinite type.

Example 4.1.1. In the case n = 1, N, parametrises automorphisms p : R[t] — R][t]

of the form
Pttt retT F ottt

Definition 4.1.2. Consider for each Spec R the set M (Spec R) C K(Spec R) of poly-
nomial automorphisms: these are automorphisms p : R[t1,...,t,] — R[t1,...,t,]
such that for each k¥ = 1,...,n, p(t;) is a polynomial in the variables {¢;} with no

constant term, rather than a power series. This defines a prestack M — K — K.

This is a monoid rather than a group-valued prestack, since it is not closed under
taking inverses; however, it is in some ways easier to work with than K in that it is
an indscheme:

M = colim M,,,

aeN

where M, classifies polynomial automorphisms of degree at most a. (Note that M, is
a scheme, but is not even a monoid, since composing two polynomial automorphisms
of degree « gives a polynomial automorphism of degree o?.)

Similarly, we have the unipotent version M, = colim,en M, o, Where
M, o = Specklal]i<|si<a

classifies unipotent polynomial automorphisms of degree at most «. Although the
M, are not closed under composition, they are still closed under the action of
Gy, — GL, by conjugation, and hence each algebra k[aﬁ]lq J|<a s still graded, with
deg(af) = |J] — 1.

We also have a monoid of polynomial automorphisms M¢ in G:

M€ = colim ME,
aeN
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4.1 Unipotent subgroups and polynomial submonoids

where MS parametrises polynomial automorphisms of the formal disc of degree at

most «, whose constant terms are nilpotent. It is itself an indscheme:
ME = colim MS

where M aG ~ Parametrises only those polynomial automorphisms whose constant terms

all satisfy a = 0. As a scheme,
Mgy = Specklal]in<a/((ag)™).

Finally, notice that for any ¢, the group scheme N, also contains a monoid MM =
colimgys. 1 MYe of polynomial automorphisms.

Having established this notation, we can prove the following:

Lemma 4.1.3. Let H € {K,K,,G, N.}. Then the inclusion
H" — H
induces a map of sets
Hom pregu(H, A') — HOHlpTeStk<Hét, Al).

This map is injective.

Moreover, the same is true of the restriction map
Hom presi(H x H, A') — Homprogu( H® x H A").

Proof. The intuition behind this statement is that Artin’s approximation theorem
tells us that H® is dense in H. In order to give a rigorous proof it is useful to
restrict further to the monoid introduced above: this is still dense in H and we can
exploit its indscheme structure to study its functions. It is clearly sufficient to show
that restriction from H to the monoid, which we’ll denote by M¥ (respectively from
H x H to M" x M*™) is injective: if two maps agree on H®, they certainly agree on
M. We will carry out the proof for the case H = G; the remaining cases are very
similar (and where different, simpler).

By the universal property of colimits, a map ¢ : M% — Al is given by a compatible

family of polynomials

(fav € Klaflsza/(ag)™) , -
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4 Groups of étale automorphisms and their representation theory

For fixed IV, the compatibility between f, y is the following: if o; > as, we require
that the polynomial obtained from f,, y by setting a%¥ = 0 for all J with |J| > oy be

equal to fa, N

Similarly, a map v : G — Al is defined by a compatible family of polynomials

(gn € klahlsez, /((@)"))

Let ¢' = (fi ) and ¢* = (f2 y) be the restriction of two maps ' = (gy) and

¥* = (g%) to M. For any «, the polynomial f! y is obtained from g by setting

a® = 0 for all J with |J| > «. It is clear that if f;N = fan for every «, then

N .

gk = g%. That is, if ¢* = ¢?, then ' = 92, and so the restriction map is injective,
as required.
The argument for G¢ x G < G x G is similar. O

4.2 Representations of K

Theorem 4.2.1. Let V be a finite-dimensional vector space, and let R : K¢ — G Ly
be a representation of K¢ on'V. Then the natural transformation R extends uniquely

to a representation
E K — GLV

Equivalently, there exists some ¢ such that R factors through the finite-dimensional
quotient K(©; then the extension R is defined via the quotient K — K(©

Proof. Choose a basis {vy,...,v,} of V such that the action of G,, — GL, — K

is diagonal:

Z

with d; < dy < ... < d, an increasing sequence of integers.
Now consider the restriction of R to the monoid M, = colim, M, , — Kﬁt, and

let R;; denote the (i, j)th matrix coefficient with respect to the basis {vy, ..., v }:
Rij . Mu — Al.
As in the proof of Proposition 4.1.3, R;; is given by an infinite family of polynomials

{fiia € Kla5licisi<at,,
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satisfying the compatibility condition

fija+ilas =0, s1=a41 = fija-
Step 1 Let ap = d,,, —d; +1. We will show that in fact the polynomials f;; , depend
only on the variables {ay, ..., aq,}. In particular,
fij,a0+1 = fij7a0+2 =ty
and the function Rj; is the restriction of a function R;; : K,, — A!, correspond-
ing to the polynomial
fizaort € Klailicy.
To prove this claim, let z € G,,(k) be an arbitrary k-point, and recall that
conjugation by z gives maps
72 . M’LL _> Mu? "YZ,OC . M’LL,O[ % Mu,om
or equivalently maps 7% and VE,Q on the corresponding algebras of functions.

We know that for any k-algebra R and for any m € M, (Spec R), we have
R(zmz 1) = R(2)R(m)R(2) .
In terms of matrix coefficients, this implies that
Rijov. = zdi_deij,
or equivalently that for every «,
Y alfija) = 2% fija-
It follows that f;; . is homogeneous of degree d; — d;, and hence cannot depend
on any variable a® with |J| > d; — d; + 1.

Allowing (i,7) to vary, we obtain the global bound oy = d,, — d; +1 =
max {d; — d; + 1} on the degree of the variables appearing in the matrix co-
efficients of R.

Step 2 We have shown that each matrix coefficient extends to a function on K, but
it is not a priori clear that these assemble to give a representation R of K,

which in turn extends to all of K. We show this now.

By Step 1 and Lemma 4.1.3, if we take ¢ > «y, the restriction of R to N, is
constant. That is, N, is in the kernel of the representation R, and hence we

have a factorisation
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4 Groups of étale automorphisms and their representation theory

K¢ R aL,.

/7|
\ e

K©

So we can define an extension of R : K¢ — G Ly to all of K by defining R to

be the composition
K — K© — GLy.

By applying Lemma 4.1.3 to each of the matrix coefficients of R, we see that

this extension is unique.

Corollary 4.2.2. The restriction functor
Resy jcet : Rep(K) — Rep(K %)

1s fully faithful. Its essential image is the full subcategory Repl'f'(K ) of locally finite

representations of K.

Proof. Let (V,R) and (W,S) be two representations of K, and let (V,R), (W,S)
denote their image in Rep(K®). We consider the map

Homg (V, W) — Homye (V, W).

It is clear that this is injective. To see that it is surjective, notice that a map V. — W
compatible with R and S is necessarily compatible with the extensions R and S of
the representations to K: this amounts to the fact that for sufficiently large ¢, we

have a commutative diagram

©
Ko __R% Ly

[

GLy —— End(V,W).

So Resg get is fully faithful as claimed.
To identify the essential image, first recall that because K is an affine group

scheme, all of its representations are locally finite: any representation V' can be

90



4.3 Non-locally-finite representations

written as a union of finite-dimensional representations. This clearly still gives a
decomposition of V' when we restrict to the action of K¢, and so the essential image
is a subcategory of Rep"™(K*).

On the other hand, suppose that (V,R) € Rep""(K*®). Then we can write V =
|, Vi, where V; C V is a finite-dimensional subrepresentation of K “ Let R, : K¢ —
G Ly, denote the restriction of R to the subspace V;. Since V] is finite-dimensional,

Theorem 4.2.1 provides us with a unique extension of R;:
R;: K — GLy,.

The uniqueness of these extensions means that they agree on intersections V; NV,

and hence give a representation
R: K — GLy.

By construction, Resg xe (V,R) = (V,R) and hence (V,R) is indeed in the essential

image of Resg get. O

Remark 4.2.3. At the time of writing, we do not know whether there exist any
representations of K which are not locally finite. If there are no such representations,

then the functor
Resg e : Rep(K) — Rep(K*®)

is an equivalence.

4.3 Non-locally-finite representations

In this section, we work in a similar set-up to show that it is possible to have a
group-valued prestack which is dense in a pro-algebraic group and which still has
representations which are not locally finite. This means that if the functor Resg g
is to be an equivalence, and all representations of K are locally finite, it is a property
very particular to these group-valued prestacks.

Consider A® = colim;ey A < A® = lim;ey A?, viewed as additive groups in the
obvious way: for S = Spec R, A®(S) is the set of finite sequences in R, while A>(S)
is the set of infinite sequences, both equipped with term-wise addition.

Just as in the situation of K < K the maps from the subgroup to the finite-

dimensional quotients of the pro-group are all surjective: we have
A AC,
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4 Groups of étale automorphisms and their representation theory

corresponding to truncating the sequences at the cth term. Restriction of functions
from A>® to A™ is still injective, by the same argument as in the proof of Lemma
4.1.3.

Now consider the regular representation of A*: this is the infinite-dimensional

vector space

V = Hom(A™,A")
= lim(k[tly s atn])>

neN

with the action of A* given by precomposition with the addition map. Consider the

element v € V' given by the infinite family of polynomials

noJ
fn:ZHtZEk[tl,,tn]

j=1 i=1

Then the subspace generated by v € V under the action of A*(k) is infinite-
dimensional. For example, if e;, € A>(k) is the sequence with 1 in the iyth position
and 0 everywhere else, then e;,.v is given by the infinite sequence of polynomials

n J
=z
and so the e;,.v are linearly independent as i, varies. Hence the representation V is

not locally finite.
We conclude that

Rep""(A™) C Rep(A™).

On the other hand, there even exist finite-dimensional representations of A which
do not extend to A, which cannot happen for the case of K¢ < K. Indeed, consider

the two-dimensional unipotent representation corresponding to the assignment

0 1

It cannot be extended to Ac°.
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4.4 Representations of G

In this subsection, we compare the representations of G to those of G¢*. We distinguish
the category Rep™ (G of representations of G¢ which are locally finite when

viewed as representations of K via the inclusion
Két SN Gét

Definition 4.4.1. We shall refer to such representations as K “-locally-finite repre-

sentations of G¢.

Proposition 4.4.2. Let (V,R) € RepX""(G%) where V is a vector space and R :
G — GLy. Then R extends uniquely to a morphism

EZG%GLV

of group-valued prestacks.

Proof. Let S : K — V be the composition of R with the inclusion K¢ < G¢.
Then (V,S) is a locally finite representation of K. and hence extends uniquely to a
representation S : K — G Ly by Corollary 4.2.2.

Consider the following diagram of group-valued prestacks:

K K

L

Gt @

We wish to define the group homomorphism R completing this diagram, and to show
that it is unique.
If there is to be a function R which respects the group structures as in the above

diagram, it must satisfy
R(zk) = R(x)S(k) (I11.7)

for every k-algebra R and for all R-points z € G*(Spec R),k € K(Spec R). Notice
that the map

G¢x K = G
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4 Groups of étale automorphisms and their representation theory

given by composition of automorphisms (i.e. multiplication inside G) is surjective
on (Spec R)-points: every automorphism can be written as the composition of one
whose constant terms are zero and an étale (and in fact polynomial) automorphism.
It follows that equation (I1.7) determines R uniquely, if it exists. We need to prove

that the assignment
vk — R(z)S(k)

gives a well-defined function G(Spec R) — GL(V ®; R), and moreover that this is
functorial in the k-algebra R.
For the first point, suppose that

xk = 2K,

for some z, 2’ € G*(Spec R), k, k' € K(Spec R). Then (2/)'x = kK'k™!, and this is
an element of K®(Spec R), so that

R()'R(z) = 8(x')"'S(z) = S(¥)S(K) " = S(K)S (k)"

and hence

as required.

To show functoriality, let f : R — R’ be a homomorphism of k-algebras, and
let ¢ € G(Spec R) be an R-point, with ¢’ its image in G(Spec R'). We choose = €
G*(Spec R) and k € K(Spec R) such that g = xk; then R(g) := R(x)S(k). Letting
7' € G®(Spec R') and k' € K (Spec R') be the images of z and k respectively, we see
that ¢’ = 2’k’, and hence that R(g') = R(2')S(K'). It is clear that this is equal to the
image of R(g) in GL(V ® R).

We conclude that there is a unique morphism of prestacks R : G — GLy making
the above diagram commute. It remains to show that this morphism respects the

group structures. That is, we need to show that the following diagram commutes:

GxG—" @

GLV X GLV W GLV
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4.4 Representations of G

Fix a (possibly infinite) basis {v; };e; for V, and for any pair (i, 5) € I x I define

the projection

T4 - GLV — Al

in the obvious way. To show that mqy,, o R = (R x I_{) omg, it suffices to show that
WijomGLvoE:mjo(Exﬁ)omG : GXG-)AI

for every pair (i,7). By Lemma 4.1.3, it suffices to show that these functions agree
when restricted to G x G': but this is clear because the restriction of R to G¢' is

the homomorphism R. O
We have the following analogue to Corollary 4.2.2:

Corollary 4.4.3. The restriction functor
Resg g« : Rep(G) — Rep(G¥)
is fully faithful, with essential image Rep™ ét‘l‘f‘(Gét).

Proof. The only part that is not immediate is the surjectivity of the maps of hom-
spaces. For t = 1,2, let (V;, R;) be representations of G, with (V;, R,) the restrictions
to G, Suppose that we have a linear map f : V; — V5 compatible with the maps
R.; then we need to show that it is also compatible with R,. That is, we need to

show that the following diagram commutes:

o

GLy, — End(V;, Va).

This is similar to the argument in the last part of the proof of Proposition 4.4.2. Fix
bases {v;}ier and {w;};es for Vi and Va; then it suffices to show that the diagram
commutes after composing with the (7, 7)th projection End(Vy,V5) — Al for every
(1,7) € I x J. But then by Lemma 4.1.3 once more, it is enough to show that each of
the resulting diagrams commutes after pre-composing with the inclusion G* — G,

and this is true by our assumption on f. O
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5 Universal modules

In this section, we finally begin our analysis of universal D-modules. We will see
that they are equivalent to quasi-coherent sheaves on the stack M%OO) of étale germs.
Similarly, we will see that universal O-modules are just quasi-coherent sheaves on the
stack M2 We begin by recalling the definitions of universal modules, given by
Beilinson and Drinfeld (see [4] 2.9.9); in 5.1, 5.2, and 5.3 we prove that the category
WP of universal D-modules of dimension n is equivalent to QCoh (Mq(qoo) > In 5.4

we discuss the corresponding equivalence in the case of universal O-modules.

Definition 5.0.4. A universal O-module % of dimension n consists of the following
data:

1. For each smooth family X 5 S of relative dimension n, we have an Ox-module

ﬁX/S € QCoh (X)

2. For each fibrewise étale morphism f = (fx, fs) : (X/S) — (X'/S’) of smooth

n-dimensional families, we have an isomorphism
F(f): Fxis = (fx) Fxrys
of Ox-modules.

These isomorphisms are required to be compatible with composition in the following
sense. Suppose we are given three smooth n-dimensional families with fibrewise étale

morphisms between them:

X Ix X/ 9x X
L ‘L/ Sl//
fs gs ’

We require the following diagram of isomorphisms to commute:

7 Z(f) o
X/S xFx'/8

9(9@}‘)[ l x7(9)

(gX o fX)*gX"/SN — f;}g}yX///Su,
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5 Universal modules

A morphism ¢ : . F — ¥ of universal O-modules is a collection of morphisms

bxss 1 Fxis — Ix/ss

indexed by n-dimensional families, compatible with the structure isomorphisms. That
is, for any fibrewise étale morphism f = (fx, fs) : (X'/S") — (X/S), the following

diagram should commute:

Fx1s —=— fxFx1s

¢x/sl lf}}fbx//y

Gx)5s —=— [xGx1)s-
In this way we obtain a category Z° of universal O-modules of dimension n.
Similarly, we can define the category %P of universal D-modules of dimension n:
Definition 5.0.5. A universal D-module of dimension n is a rule .# which assigns:
1. to each smooth X — S of relative dimension n a left Dx/g-module % (X/S);

2. to each fibrewise étale morphism f = (fx, fs) : (X/S) — (X'/S’) of smooth

n-dimensional families, an isomorphism
F(f): F(X/)8) = [*F(X']S),
in a way compatible with composition.

Let us be a little more precise. The category D(X/S) is (by definition) the category
of quasi-coherent sheaves on (X/S)4r, where (X/S)qr is the following fibre product:

(Recall that we associate to any prestack ) its de Rham prestack Yar:
Yar : T+ Var(T) = Y(Trea).

Then we define the category of left D-modules on Y to be the category QCoh (V4r).
The forgetful functor from D-modules to O-modules is given by pullback along the
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natural map pary : Y — Yar. See Appendix A.2.3 for an overview, or see [18]
for more details, as well as the full definition in the (oo, 1)-categorical and derived
setting.)

This means that the object .#(X/S) is given by a collection of objects

F(X/S)r-(x/8)ar € Q0N (T)

indexed by affine schemes T and morphisms 7' — (X/S)qr, along with isomorphisms
describing compatibility with pullbacks.

Recall from the proof of Proposition 1.2.5.6 that if we have a fibrewise étale mor-
phism of n-dimensional families f = (fx, fs) : (X/S) — (X'/S’), we obtain a mor-
phism fx/s: (X/S)ar — (X'/S")ar as follows:

(X/S)ar Xar

R \fx,dr{
Ix/s I

(XS ar —————— X

S IR

s

s S

PdR,s

Then the compatibility isomorphism % (f) associated to .% is an isomorphism be-
tween .7 (X/S) and [, (X'/S’) in QCoh ((X/S)ar)-

Notation 5.0.6. We will always use the subscript ey,s to denote the morphism
of relative de Rham prestacks induced by a fibrewise étale morphism between two
smooth families, even when neither of the smooth families involved is actually denoted

by X/S.

Remark 5.0.7. At this stage, the reader may wonder why we have chosen to use left
relative D-modules, rather than right, which is the more usual category in which to
work. (See for example the discussion of the category IndCoh ((X/S)qr) of relative
crystals in [20], part III, chapter 4, section 3.3.) We have several reasons for this

choice.

1. We wish, at least for the moment, to remain consistent with the definition of

universal D-module given by Beilinson and Drinfeld.
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2. Also for the moment, we wish to work with abelian categories rather than DG-
categories; the !-pullback functors needed in the definition of the category of

ind-coherent sheaves on a prestack are inherently derived.

3. Suppose for the sake of argument that we are working with DG-categories rather
than abelian categories. As will be seen in the following sections, we are going
to compare universal D-modules to sheaves on the stack MS’"). We will see
that, given a universal D-module .# and a map S — M%OO) corresponding to
a pointed family 7 : X & S : o, we pull back the D-module .#(X/S) by the
section o, thus obtaining a D-module on S. These should be compatible with

pullback along maps S — 5’.

If we try to work with right D-modules, we should obtain a family of ind-
coherent sheaves on S, compatible under !-pullback, and we might be tempted
to call this an ind-coherent sheaf on M. However, at this stage we run into
technical difficulties. The category IndCoh (S) is only well-behaved for schemes
S of finite type—for example, the pull-back f' is defined only for morphisms of
finite type.

As a consequence, the category IndCoh ()) is defined only for prestacks which
are locally of finite type. (See [15] 1.3.9 for the definition of prestacks locally of
finite type (or Lf.t.), and [17] 10.1 for the definition of IndCoh (})—or, for an
overview, see Appendix A.1 and A.2.2.) The reason that the definition works
for an 1.f.t. prestack ) is that such a prestack is determined by its S-points for
S of finite type. Our problems arise because the stack M is not 1E.t.

On the other hand, QCoh ()) is defined for any prestack, so we do not have the

same difficulties when working with left D-modules.

4. One might have the intuition that the structure of a universal D-module is
determined by its behaviour associated to the trivial pointed neighbourhood
A" 2= pt, or perhaps at worst A" x A™ = A™ and to common étale neigh-
bourhoods of this neighbourhood, and consequently that it should be enough
to consider base schemes of finite type. However, in order to make this intuition
more rigorous, we will need to formulate the notion of a convergent universal
D-module, which we will do in section 6. We will see then that we can construct
sheaves corresponding to convergent universal D-modules from quasi-coherent

sheaves on the stacks /\/lgf) or equivalently BG®). Since these stacks are 1.f.t.,
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5 Universal modules

it is possible to formulate an ind-coherent version as well as a quasi-coherent

version, in the DG setting. We will discuss this more in 7.3.

Theorem 5.0.8. The category L of universal D-modules of dimension n is equiv-

alent to the category of quasi-coherent sheaves on M.

P

Proof. Recall that it suffices to show that QCoh M) ~ P. The idea behind the

proof is quite simple, but there are many technical details to be checked. We proceed
by defining functors in both directions and checking that they are quasi-inverse to

each other.

5.1 From universal D-modules to quasi-coherent sheaves

First we define the functor 6 : P — QCoh (M,(loo)). Given a universal D-module

Z, we wish to define a quasi-coherent sheaf 6(.%) on M. That is, given any S
and any morphism (7,0) : S — M) representing a pointed n-dimensional family
(m: X &2 S :0), we need to define a quasi-coherent sheaf (%) x=g on S. We have
F(X/S) € QCoh ((X/S)ar), and o : S — X induces a section 7 : S — (X/S)ar, so

we simply set
O(F)x=s =0 F(X/S).

(We adopt the convention of denoting the map into the relative de Rham stack

induced by a section by ®.) Next we need to define the compatibility isomorphisms.

—_—

Suppose we have a commutative diagram in PreStk of schemes mapping to M.

é Ve v
(r2.0) /\(;:) / \ pr,
SQ — M, X1 Ta i | Pa Sl X 8y X2 HXQ
f \ ( : o1 | |m Sy froa | | frm o2 | | m
o / \
S Sh S f Ss.

We need to specify an isomorphism

6(«?)(]‘1 Oé) : f* (9(9’))(2?52) - 9(9)){1?51;
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it arises naturally from the universality of .#. Indeed, from the definition of .# we

have isomorphisms

T (bayids,) 1 F (Va/S1) =2 (¢arids,) /s F (X1/51);
f(erQ O¢avf) ( a/Sl) (erQ o¢a7f);(/sy(X2/S2)'

Note that (¢, ids, ) x/s © Ta = &1 and (pr,, 0¥q, f)x/s © Ta = 02 © f, so that setting
0(F)(f, ) =Ta" (F(¢a,ids,) 0 F (pr, o, /)7')
we obtain an isomorphism
[703" F(Xs/S5) = 01" F (X1/51),

as required.
Let us now check that 0(.%)(f, «) is independent of the choice of common étale

neighbourhood (V,,, ¢4, ¥,) taken to represent the isomorphism a between (X; = 5)
and (S xg, X» = S1) in MEV(Sy). It suffices to show that if (Vy, ¢a, ) and

(V! ¢, 1. are (00)-equivalent common étale neighbourhoods, then
T (F (¢a,ids,) 0 F (Yo, ids,) ") =T (F (4, 1ds,) o F (¥, ids,) ")

as morphisms of quasi-coherent sheaves on S;. It is enough to show that they agree
on an open cover of S;, and hence we can assume that (V,,, ¢a, ) and (V., L, 9)
are in fact similar. Finally, we can assume that ¢!, = ¢, 0g and ¢/, =1, 09 for some
g:V'/S1 — V/S; étale and compatible with the sections on S . This is because
this relation generates the equivalence relation of similarity.

In this case, using the compatibility of .% (e) with respect to composition, we have

F* (y(gba © g7idS1) © y(,@ba ©g, idS1)_1)
=7 (5357 (6ar1ds,) 0 F(g,1d5,)) © (9357 (Varids,) 0 F(g,ids,)) ")
=7 (gX/SJ (gbaa 1d51) © gX/S‘gZ(w id51)_1)
=T (cgZ ¢oz> ldsl) © Lgf(qﬂou idS1)_1) )

and so the assignment (f, [(Va, @a, ¥a)]) = 0(F)(f, ) is well-defined with respect to

the (00)-equivalence relation on common étale neighbourhoods.

Remark 5.1.1. Note that in general this assignment is not well-defined with respect

to (c)-equivalence for any finite ¢. We will return to this point in section 6.
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One can also check that the 6(.F)(f,«) are compatible under composition, and

—_~—

hence 0(.%) is indeed an object of QCoh (M%OO)). See Appendix C for the details of
the proof.

The definition of § on morphisms is straightforward: given a morphism F : % — ¢
of universal D-modules, the morphism 0(F') : 0(.F) — 6(¥) of quasi-coherent sheaves
is given by 0(F)x=s =" (F(X/9)) :

0(F)x=s =0 (F(X/S)) — 0(9)x=5 = 77 (9 (X/5)).
This completes the construction of the functor

0: %P — QCoh (Mﬁf")> .

5.2 From quasi-coherent sheaves to universal D-modules

Now we will construct the quasi-inverse functor

—_—

¥ : QCoh (M,&“’) —UP.

Let M € QCoh M , and let X — S be smooth of relative dimension n. We

need to define an object W(M)(X/S) € QCoh ((X/S)ar). More precisely, for any
T — (X/S)ar, we need to define W(M)(X/S)r—(x/s)an» together with isomorphisms
describing the compatibility with pullbacks.

By definition of (X/S)4r, a morphism T — (X/S)qr is given by a pair of mor-

phisms (g, h) as in the following commutative diagram:

Tred # X

T — S.
To define an object of QCoh (T') using M, we need an object of MSZOO)(T), ie. a
pointed n-dimensional family over 7. An obvious candidate is T" xg X, which is
smooth of dimension n over T'. To define a section, note that we can define ¢° :=

(t7,9) : Treg = T xg X. Then we have the following commutative diagram:
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5.2 From quasi-coherent sheaves to universal D-modules

TredLTXSX

2
P
.
o -
.

Lt -

-

.

.
P

-

T:T

where formal smoothness of T' xg X — T allows us to lift ¢° to a section o. This

—~—

gives us an object of MY (T).

Of course, o is not unique, but any other choice ¢’ of lifting will yield an object of

—_—

M (T') canonically isomorphic to the original one. Indeed, we have the following

common étale neighbourhood:

S

T X/T;i
T /

Hence up to a canonical isomorphism, we obtain Mrpy x=r € QCoh(T), and we
define

s X

(e

X\T
\”

T.

V(M) (X/S)TH(X/S)dR = Mrpygx=r-

To complete the construction of W(M)(X/S) € QCoh((X/S)ar), we need to
specify the compatibilities under pullback. Assume we have a commutative diagram
in PreStk:

h
7 2", (X/8)ar
ﬁ o

e

T

i.e. (g1,h1) = f*(g2,h2) = (g2 © frea; ha o f). We need to exhibit an isomorphism
F (UMYX S) s (x/8)an) = UM )X/ S)1-(x/8)an

or equivalently f*Mrp,x(x=1, = Mp «.x=1,. To do this, it suffices to show that the

following diagram commutes canonically in PreStk:
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(prr,,02) /\(;)
f o
&

i.e. to exhibit a canonical (up to (oco)-equivalence) common étale neighbourhood

between Ty xg X & Ty and Ty X7, (Ty X X) = T;. The obvious candidate is

T XSX

T1 XSX o1 Tl X1y (T2 XsX)

01 / Tl \f*;
Tl / \ Tl |

The (reduced) commmutativity of this diagram follows from noting that oy o 1y, =

(LT17g1> and f*UZ ol = (['TngQ o fred) as maps (T1>red — Tl Xs X.
This yields the desired isomorphism?

(1L.8)

M(f, Ty x5 X) : f*Mryxxer, = M xoxern,

and the compatibility of these isomorphisms comes from the structure of M. Indeed,

suppose we have the following commutative diagram

T3
@,
f T <

T, (g2, h2) ; (X/S)dR

f1T
%

T

Then we need to show that the isomorphism f{ f5 Mrp,« o x=r, = Mp «xox=r is equal

to the composition

X Lk ~ * ~
JifaMryxsx=13 == f[i Mp,xsx=1, = M1 xsx=T11-

3Here and in the following we suppress the étale morphisms and write simply (7} xg X)
for the common étale neighbourhood (II.8).
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5.2 From quasi-coherent sheaves to universal D-modules

That is, we need to prove that
M(f,Tl XsX = Tl) Ofl*M(fg,TQ XsX = TQ) = M(fgofl,Tl XsX = Tl)

This follows from the compatibility of M with respect to pullbacks, and the fact that
the composition of the morphisms represented by the common étale neighbourhoods
given by (T} xg X) and (T, x5 X) is represented by the common étale neighbourhood
(Ty xg X) between (T} xg X = T1) and (fy o f1)* (T3 x5 X = T3).

Therefore W(M)(X/S) € QCoh ((X/S)ar), as claimed.

Finally, to show that W (M) € %P we need to define the isomorphisms W(M)(f)
associated to fibrewise étale morphisms f = (fx, fs) : (X/S) — (X'/S’). We need
to define an isomorphism W(M)(X/S) = f% gV (M)(X'/S’) of sheaves on (X/.5)dr,

i.e. a compatible family of isomorphisms

W(M)(X/S)ro(x/S)an == (f;(/s‘I’(M)(X//S/)) (IL.9)

T—(X/S)ar

for each T' — (X/S)qr.
Let T'— (X/S)4r be the morphism corresponding to the pair (g : Tyeq — X, h :
T — S). Unwinding the definitions, we see that
(f;(/S\D(M) (X//S/))Tﬁ(x/s)dR = \IJ(M) (X,/S,)TH(X'/S')dR

where the morphism 7" — (X'/S")4r corresponds to the pair (fx o g, fs o h). So we

can rewrite (I1.9) as
Mry sxor = MTXS,X/:T-

To define such an isomorphism, it suffices to exhibit an isomorphism of the

—_—

corresponding objects in M (T'), i.e. a common étale neighbourhood between
(T'xg X =T) and (T xg X' = T). We can take the following representative:

105



5 Universal modules

The reduced commutativity of the right side of the diagram follows from noting that

oot = (tp,g) while 0’ o1 = (v1, fx 0 g).
Because of the structure of M, these isomorphisms are compatible with pullback

along maps 7" — T, and hence give the desired isomorphism
U(M)(f) - W(M)(X/S) = fx)s W (M)(X'/S").

Indeed, this compatibility with pullbacks amounts to the commutativity of the

following diagram:

f* (M(idg,, Th xs X))

* *
f (MTQXSX:TQ) f (MTQXSIX/:TQ)
M(f, T XSX)/[ M(f, Ty xgr X')
MT1><5X<:’T1 MT1><S/X’C’T1'

]\4(idT1 s T Xgr X’)

In turn, the maps W(M)(f) are themselves compatible with composition: this
amounts to the fact that given any two fibrewise étale morphisms X/S — X'/S" —
X"/S" and any T'— (X/S) 4z, we have

M(ldT,T XS/X/>OM(idT,T X5X) :M(ldT,T X5X>,

where T' xg X represents a morphism from 7" xg X/T to T xg X'/T in the first
instance and from 7" xg X/T to T xg» X" /T in the second, and T x g X' represents
a morphism from T xg X'/T to T xg» X" /T. We conclude that ¥(M) is indeed a
universal D-module.

P

The definition of ¥ on morphisms of QCoh (M;oo)) is clear: a morphism F' :

M — N of quasi-coherent sheaves on /\/lq(fo) amounts to a compatible family of

morphisms Fx—g : Mx=s5 — Nx=g € QCoh (S) indexed by morphisms S — M.
Then we define W(F') : (M) — U(N) by setting

\IJ(F)(X/S)TA)(X/S)Q{R : MTXsX:’T — NTXsX:’T

to be equal to Fry x=7r. It is not hard to see that this definition is compatible with
pullback by morphisms 77 — T as well as with the structure morphisms V(M )(f)
and WU(N)(f) corresponding to fibrewise étale morphisms f = (fx, fs) : X'/S" —
X/S. Tt is also immediate that W(F o G) = U(F) o U(G), and so ¥ gives a functor

QCoh (M%"O)) — wP.
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5.3 Compeatibility of 8 and ¥

5.3 Compatibility of § and ¥

It remains to check that # and ¥ are indeed quasi-inverse. First suppose that we have

M e QCoh (M%OO)) and consider 6 o ¥(M) € QCoh (M%OO)). For (m: X =2 §:

—_——

o) € M%) we have
(60 U(M))xzg =0 U(M)(X/S).

Here 7 : S — (X/S)4r corresponds by definition to the pair (o otg,idg), so it follows
that

U (M)(X/S) = Mgy sxes,
and (S xg X & §) ~ (X & 5). Therefore
(00 W(M))ymg > Mxzs,

which gives the natural isomorphism between 6 o ¥ and Id .
QCoh (Mﬁf”)
Conversely, let . # € %P and consider ¥ o §(.F). Take 7 : X — S smooth of
dimension n and T — (X/S)qr corresponding to a compatible pair of morphisms

(9:Tea — X,h:T — S). Then

(Vod(7)) (X/S>TA(X/S)dR = Q(y)prT:TXSX:’T:o‘
7 (F(T xs X/T)),

where o is a section T — T X ¢ X such that ooty = (idr, g). Notice that f := (pry, h)
gives a fibrewise étale map (7' xg X)/T — (X/S5), so that we have

F(f): F(T xs X[T) = [x)s:F (X/5).

Finally, unwinding the definitions of fx,s and @ shows that fx,s0a : T — (X/S)ar

agrees with (g, h); hence we have

7 (F(T x5 X/T)) =~ 5 5,67 (X/9)
~ ﬁ(X/S)T—)(X/S)dR

as required. These isomorphisms gives the desired natural isomorphisms between

Vo6 and Idyr. The proof is complete. m
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6 Convergent and ind-finite universal modules

5.4 The O-module setting

We have an analogous result in the case of universal O modules:

Theorem 5.4.1. The category %° of universal O-modules of dimension n is equiv-

alent to the category QCoh (Mﬁt’(oo)> and hence to the category QCoh (Mﬁt’(oo)).

Proof. The idea behind the proof is similar to the case of universal D-modules: we
proceed by defining functors in both directions and checking that they are quasi-

inverse to each other. In brief, we have

0:%° — QCoh (Mﬁ“‘”)) (11.10)

F s ((r: X28:0) = 0"(Fxys));

~——

¥ : QCoh (Mﬂt’(‘”)) — U° (IL.11)

M — ((X — S) — Mprl:XXSXﬁX:A) .

We refrain from spelling out the details—the definitions and arguments are along the

same lines as those used in the proof of Theorem 5.0.8, but simpler. O]

6 Convergent and ind-finite universal modules

So far, we have identified the category of universal D-modules with the category
of representations of the group-valued prestack G®. Furthermore, we have identified
Rep(G) as a full subcategory of Rep(G*®). In this section, we study the corresponding
full subcategory of ZP.

We have two approaches: in 6.1 we take the first approach, via the description
of Rep(G) as colim.cy Rep(G'?), as in Proposition 2.4.1. The second method uses
the characterisation of representations of G as those representations of G which are
locally finite when viewed as representations of K¢, as in Corollary 4.4.3. We discuss
this in 6.2 and 6.3. Comparing the results obtained from each of these approaches
allows us to provide two characterisations of those universal D-modules which lie in
the essential image of Rep(G) under the equivalence Rep(G¢') = %P. We will call

these the convergent universal D-modules.
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6.1 Convergent universal modules

6.1 Convergent universal modules

Recall the stack of formal germs introduced in Remark 3.4.6:

M, = lim M9,

ceN

Combining the results of Proposition 2.4.1, Corollary 4.4.3, and Theorem 5.0.8, we

obtain the following diagram:

Rep(GE) ~ QCoh M£{’°>) —=— D

/ </

Rep(G) = QCoh (M,,)
! ]

colim Rep(G©) colim QCoh (M C)>

ceN JA ceN JA

Rep(G(©) = QCoh ( §f))

Since our goal is to identify Rep(G) with a category of universal D-modules, we

must now study the essential image of QCoh (Mgf)) under ¥ for each ¢ € N.
Suppose that M € QCoh (Mfﬂ) — QCoh( %OO)) Then we know that M

consists of the data of a sheaf

Mx—g € QCOh (S)

e~

for each object (X = 5) € M) together with isomorphisms
M(f, @) : [*Mxreg =5 My=s € QCoh (5),
for any commutative diagram in PreStk of the form

Ve

Pa ?\oz \d’a)
/ Prx,

X1 Too i | Pa S1 Xg, Xo — Xy

o1 T Sl f*o’g f*7r2 (o) ™2

7N

Sl Sl T SQ.
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6 Convergent and ind-finite universal modules

—_~—

The fact that M is an object of QCoh (M,(f)) amounts to the condition that

M(f,a) = M(f,o') whenever any representatives of o and o' are (c)-equivalent
(c.f. Remark 5.1.1). Let us consider the implications of this condition for the corre-
sponding universal D-module W(M). Suppose that we have two étale maps fi, fo of

n-dimensional families over some base scheme S

XLX’

K

S S,

inducing the same isomorphism of the cth infinitesimal neighbourhoods of S in X
and X"

A= 57 X§ = X
Then we obtain isomorphisms
U(M)(fi)  W(M)(X/S) = fix/s¥(M)(X'/S) € QCoh ((X/S)ar), i=1,2,
and pulling back along 7 : S — (X/S)ar yields maps
FUM)(f) : 57 U(M)(X/S) = 7 f15,sU(M)(X'/S) € QCoh (S), i=1,2.

Note that fi y/s00 = 0’ = fa x/s00, and so the maps 7*WU(M)(f;) are maps between
the same sheaves on S. From the definition of W(M), we identify

FU(M)(X/S) = Mx=g; o U(M)(X'/SI) = Mxi—s,

and we see that for i = 1,2 the map "W (M )(f;) is given by the structure isomorphism

M (idg, o;) of M, where «; is the isomorphism in M) represented by the common

étale neighbourhood

X

idyf\ X

X X'

N
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6.1 Convergent universal modules

Since these two common étale neighbourhoods are (c)-equivalent, it follows that
M(ids, 041) = M(lds, a2).

Motivated by this observation, we formulate the following definition:
Definition 6.1.1. A universal D-module .% is of cth order if whenever we have two
étale morphisms f1, fo of n-dimensional families over S

fi X

~

o /

(ORI
0 2

such that
79 = S0 X 2 X09,
then we have that
" F(fi) =" F(f2) 1 0" Fxs == ?*9X//s-

We let %2 denote the full subcategory of %P whose objects are the universal
D-modules of cth order.

—_——

Proposition 6.1.2. The functor ¥ : (QCoh (M;OO)) =5 UYP restricts to an equiva-

lence

n

w@:gam<M9>A»%ﬂ@.

—_~—

Proof. By the above discussion, the restriction ¥ of ¥ to QCoh (Mgf)) is a fully

faithful embedding into w2 To complete the proof, it suffices to show that the

—_——

functor 6 : P = QCoh (M%OO)) restricts to a functor

ewz@f@t+qam(w&0.

So let us assume that % € %RD’(C), and consider the quasi-coherent sheaf 0(.%) €

QCoh (M;OO)). Suppose that we have a diagram in PreStk of the form:
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6 Convergent and ind-finite universal modules

(n,0")

S — /\/ln

T 6\
&
S

Assume in addition that we have two isomorphisms

o; € Hom/\//l?f;(S) ((7’(’, U)? (ﬂ-/? OJ) © f)

which make this diagram commute, and which are (c¢)-equivalent, although not neces-

—~—

sarily (co)-equivalent. In order to show that 0(.%) is a quasi-coherent sheaf on M,
we need to show that the structure isomorphisms 0(.%)(f, «;) agree with each other.

Let us choose representatives of the isomorphisms «; as follows:

\

Pi SXS/X/%X/

\ Y

Then it suffices to show that

T_l* (ﬁ((bl, ldS) O ﬁ(’l/)l, ids)_1> = 7—_2* (ﬁ(QSQ, lds) O ﬁ(wg, ids)_l) .

Equivalently, we can compose the representatives of a; and ;! to obtain a com-

mon étale neighbourhood which we’ll call aqs:

Vi Xgxgxr Va

Vi
1 A \1/’1) " ; A ®2
/ :__ 2 \L ;_ \

S

X S xg X' X

S/ \S/ \
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6.1 Convergent universal modules

Now we need to show that
72" (F(¢1 0 pry,,idg) o F (¢2 0 pry,,ids) ") = idsz(x/s) -

We can use the fact that .Z is of cth order: it suffices to show that a5 is (¢)-equivalent

to the identity. But of course
-1 -1 -1
(¢10pry,) o ((¢z opry, ) )> = ¢{? opr] o (pr%)> o ( §)>
-1 —1
= ol (v17) oul? o (0f)
=id

© -
XS

—_~—

So 0(.7) is indeed an object of the subcategory QCoh (Mﬁ?), and the proof is
complete. O

The following is immediate:
Corollary 6.1.3. We have an equivalence of categories
UP O ~ Rep(G).
We have the following nested sequence of subcategories of %
o YD) s Py P
Definition 6.1.4. Let

UL = colim U
ceN

It is a full subcatgory of P. An object of ZP<™ will be called a convergent

universal D-module of dimension n.

Corollary 6.1.5. The essential image of colim.cy QCoh (./\/lgf)) in UP is UP ™.

We have an equivalence of categories
Rep(G) = gZ/nD’CO””.

We can similarly define the category % of cth-order universal O-modules and

can show that

UL ~ QCoh (MEH)
for any ¢ € N. Letting Z,°°" := colim ey %no’(c), we obtain the following:
Proposition 6.1.6. We have an equivalence of categories

Rep(K) = %no’c""”.
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6 Convergent and ind-finite universal modules

6.2 Ind-finite universal O-modules

In this subsection, we take a different approach, beginning with the identification
Rep(G) = Repye 1 (GY).

As has generally been the case when working with the groups G¢ and K¢, we will
begin by studying the picture for K¢, and then extend our results to G¢'.

Our first step is to identify the subcategory of QCoh (M?f’(‘”)) corresponding to
the locally finite representations of K. First notice that a representation V of K¢ is
finite-dimensional if and only if the corresponding sheaf M on QCoh (BKét) and hence
on QCoh (M?Lt’(oo)> is of finite type: that is, for every S = Spec R — BK®' ~ Mﬁt’(‘”),
the corresponding sheaf Mg € QCoh (S) is of finite type.

Remark 6.2.1. This is equivalent to requiring the sheaf Mg to be of finite presen-
tation, and in fact to be locally free. This follows from three facts: these properties
are all equivalent for QCoh (pt) ~ Vect; they are preserved by pullback; and every
morphism S — (Mﬂt’(oo)> ~ factors through S — pt.

However, it is not equi%ﬁent to requiring the sheaf Mg to be coherent, because
coherence is not preserved under arbitrary pullbacks. For example, if V' = k is the
trivial representation, with M the corresponding sheaf on S, then Mg = R for every
S = Spec R. If R is a k-algebra which is not coherent as an R-module, then Mg is

finitely generated, but it is not coherent.

It follows that the essential image of Rep"*(K*) in QCoh (Mﬂt’(m)> is the full

subcategory generated by those sheaves M € QCoh (Mrpf’(oo)> which can be written
as a union M = |J, M; of sheaves M; of finite type.

Definition 6.2.2. Let ) be a prestack, and M € QCoh (Y) be a sheaf that can be
written as the colimit of its subsheaves of finite type. Then we say that M is of
ind-finite type. We denote the full subcategory of ind-finite sheaves by QCoh™* (V).

Of course, for any sheaf M € QCoh ()) and for any S = Spec R, we can always
write Mg as a union of finitely generated subsheaves; however, this cannot always

be done in a way compatibly with all pullbacks and automorphisms of S-points of

QCoh ().

Example 6.2.3. Recall the notation of section 4.3. Let ) = BA*, and let M €
QCoh ()) be the sheaf corresponding to the regular representation V. Then M is not
an object of QCoh™" ().
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6.3 Ind-finite universal D-modules

We do not know if QCoh!* (M?Lt’(oo)> is equal to QCoh (M?Lt’(oo)>, or if it is a
proper subcategory. By construction, this question is equivalent to the question of
whether Rep"*(K) is a proper subcategory of Rep(K*).

Now we can study the essential image of QCoh™" (ME““‘”) in %°. Tt is the full
subcategory whose objects are those universal O-modules which can be written as a

union of their submodules of finite type:

where .#; € %, is such that for any X/S smooth of dimension n, .%; x/s € QCoh (X)
is of finite type. This is equivalent to requiring .%; x,s to be locally free of finite rank:

this is because the translation-invariance of . ensures that .%; x s is of constant rank.

Definition 6.2.4. If .7 is a universal O-module satisfying this condition, then we
shall say that .% is a universal O-module of ind-finite type. We denote the subcategory
of universal O-modules of ind-finite type by Z°:t.

The following result is clear by definition:

Proposition 6.2.5. The equivalence Rep(K %) = %° restricts to give an equiva-

n

lence of categories

Rep(K) = %no’i'f'.

6.3 Ind-finite universal D-modules

Similarly, it is clear that the essential image in QQCoh <M£L°O)> of Rep G is the sub-
category of sheaves M € QCoh (/\/l,(fo)> such that the pullback of M along the map

MEE(OO) N M%OO)
is of ind-finite type. We denote this category by

QCoh (M) — QCoh (M)

MBS g 5,

Again, we do not know whether this is in fact a proper subcategory.

We can again characterise the image of this subcategory in %,P:

Definition 6.3.1. A universal D-module .# is of ind-finite type if it is of ind-finite
type when regarded as a universal O-module. We denote the full subcategory of

universal D-modules of ind-finite type by %P,
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7 Remarks on oo-categories

Remark 6.3.2. Let us emphasise that the decomposition of .% into subsheaves of
finite type only needs to respect the O-module structures; we do not expect the
subsheaves .%; C .Z to be sub-D-modules of .%.

Proposition 6.3.3. The equivalence Rep(G®) = %P restricts to an equivalence of

n

subcategories
Rep(G) = % PF-,

Combining this with our previous results (essentially, travelling to the left and
then back again to the right along the middle two rows of the main diagram in Figure

1), we deduce the following:

Proposition 6.3.4. A universal O- or D-module is of ind-finite type if and only if

1t 18 convergent.

Our proposal is that these categories of convergent universal modules, rather than
the full categories of universal modules as defined in [4], are the more natural cate-
gories with which to work. Of course, we do not know if in fact the categories are

equivalent.

7 Remarks on oco-categories

In this section, we extend our results to the oo-categories of representations and
universal modules. In fact, none of these categories are previously well-established in
the literature, so we have some freedom to choose our definitions to allow our results
to extend. We will provide some justification of our choices as we proceed, but the
very fact that our results extend so naturally is in itself a good defence for these
definitions.

The motivation for working with oco-categories rather than ordinary categories is
the following. Recall that we are interested in the study of universal chiral algebras
of dimension n, under the hypothesis that these give the correct notion of an n-
dimensional vertex algebra. In particular, a universal chiral algebra of dimension n
is a universal D-module. Although the (ordinary) categories of universal D-modules
and representations of G may be interesting in their own right, if we wish to work
with universal chiral algebras of dimension two or higher, we immediately see that it
is necessary to work in the derived setting. For example, if we insist on remaining in
the abelian categories, the definitions of universal chiral algebras and Lie x algebras

(as in [9]) become equivalent.
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7.1 Conventions

7.1 Conventions

Henceforth all categories of sheaves, modules, vector spaces, and D-modules will be
assumed to be the (oo, 1)-categories, unless otherwise specified. We shall appropriate
notation established earlier in the chapter for abelian categories without further deco-
ration by symbols such as “d.g.” or “c0”; when we wish to refer to the abelian hearts
of these categories, we shall indicate it with a superscript ©. When we say “cate-
gory”, we mean cocomplete (0o, 1)-category; it is in this sense that we take colimits,

for example.

7.2 oo-categories of universal modules and representations

We can begin by naively extending the definition of a universal D-module (and
similarly a universal O-module), repeating the definition 5.0.5 in the setting of oo-
categories. (We will carry this out explicitly for cth-order D-modules in 7.3.) The

functors # and ¥ of Theorem 5.0.8 admit oco-categorical extensions, and provide an

equivalence between the categories QQCoh <./\/l7(1°°)> and ZP. The equivalence be-

tween M and BG¢ is purely geometric, valid before considering categories or

oo-categories of sheaves, and hence we still have the equivalence
QCoh (BG*) ~ QCoh (M)

In fact, apart from the first column, the entire content of the main diagram lifts
immediately from Cat to DGCat with no serious modifications.
However, it is not immediately clear what we should take for the oo-category of

representations of our groups. For an algebraic group H, we take
Rep(H) := QCoh (BH),
as in e.g. 6.4.3, [7]. Since BH is a smooth Artin stack, we can show that
Ty : QCoh (BH) — IndCoh (BH)
is an equivalence of categories, so we could also have defined
Rep(H) = IndCoh (BH) .

Recall that the functors T intertwine the *-pullback on QCoh (e) with the -pullback
on IndCoh (e).
On the other hand, given a pro-algebraic group H, we can consider the category

QCoh (BH), but the category IndCoh (BH) is not defined, because the stack BH is
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7 Remarks on oo-categories

not locally of finite type. It can, however, be written as the limit of stacks which
are locally of finite type, and this leads us to a second potential definition for the
category of representations.

More precisely, recall that if we write H = lim; H;, with H; finite-dimensional
quotients, and all maps H; — H; smooth surjections of algebraic groups, then by

Proposition 2.3.6
Rep"” (H) ~ coliim Rep” (H;).
Motivated by this fact, it is natural to consider the category
coliim Rep(H;) = coliim QCoh*(BH;) ~ coliim IndCoh'(BH,),

and unlike in the abelian categories, this category is not all of QCoh(BH). In-
stead, we think of QCoh (BH) as the DG-category of representations of H, and
colim; Rep(H;) as the subcategory of representations of H which are locally finite. In
the oo-categorical setting, this condition is not automatically satisfied, but it is one

which we are happy to impose. In other words, we set
Rep(H) := colim Rep(H;).

Similarly, for a group formal scheme that can be written as L = lim; L; (such
as the group G of automorphisms of the formal disc) with H = L,.q = lim; L; 1eq

pro-algebraic group, we set
Rep(L) := colim Rep(L;).

Although the L; are themselves indschemes, they are of finite type, and hence BL;
is locally of finite type and Rep(L;) is given by QCoh (BL;) ~ IndCoh (BL;).

We do not know how to define a corresponding category for an arbitrary group-
valued prestack. In the case of G and K¢, for example, the stacks BG® and BK*®
seem to be quite intractable. Fortunately the relative Artin approximation theorem
and its corollaries from section 3.4 allow us to approximate these stacks using the
stacks BG(©) and BH(, which are easier to work with. By restricting our attention
to representations which are sufficiently finite-dimensional in flavour, we can avoid
working with the stacks BG® and BK® entirely. The cost, however, is that the
corresponding categories of representations do not correspond to the categories of
arbitrary universal modules, but only those of convergent universal modules. In fact,

though, we view this as an advantage rather than a cost.
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As a consequence of this discussion, we shall henceforth ignore the back two rows
of the main diagram, and shall only work with the front part of the diagram, which
can be described entirely using stacks which are locally of finite type. Thus far, we

have the following:

Rep(G)

colim Rep (G(C)) = colim QCoh (BG(C)) — colim QCoh (./\/l,(f))

ceN JA ceN JA ceN JA

Rep (G9) === QCoh (BG) — QCoh (M)

Recall the discussion in remark 5.0.7 on the use of the categories QCoh (o) as
compared to IndCoh (). At that stage, we defended the use of QCoh ((X/S)q4r),
corresponding to relative left D-modules, rather than its more well-studied and better-
behaved counterpart IndCoh ((X/S)qr), corresponding to relative right D-modules.
Our reasons were threefold: we wished to remain consistent with the definitions of
Beilinson and Drinfeld and to work with abelian categories rather than oo-categories,
and moreover we needed to work with prestacks which were not locally of finite type,
and so we could not rely on the theory of ind-coherent sheaves.

Indeed, all of the stacks appearing in the back rows of the main diagram from
Figure 1 are of infinite type and hence not well-suited to being studied using the
theory of ind-coherent sheaves—but by restricting our attention to the category of
convergent universal D-modules, as we have just decided to do, we can avoid using
these stacks, instead using only the stacks in the front rows of the diagram, which are
locally of finite type. In particular, we can work with ind-coherent sheaves on these
prestacks.

Furthermore, we argued that the correct notion of universal D-module should
include the convergence condition, regardless of whether it agrees with the definition
given by Beilinson and Drinfeld even in the abelian setting. In other words, our three
motivations for working with quasi-coherent rather than ind-coherent sheaves have
disappeared, and consequently we now feel free to use the better-behaved theory of
ind-coherent sheaves in the co-categorical setting and to define an co-category which
will correspond to universal right D-modules.

By taking ind-coherent sheaves rather than quasi-coherent sheaves at each stage,

we obtain the “right D-module” version of the above diagram. However, note that
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7 Remarks on oo-categories

each of the stacks appearing in the diagram is (equivalent to) a smooth Artin stack,
so that the categories of quasi-coherent sheaves and ind-coherent sheaves are in fact
equivalent via the funtors Y. In other words, the diagrams are actually equivalent,
termwise, and the functors T between the terms intertwine the morphisms of the

diagram as well.

7.3 oo-categories of convergent universal modules

We have (equivalent) categories

colim QCoh (M) .
colim IndCoh (M)

ceN
which should, formally, correspond to categories of universal left and right D-modules,
but which in flavour belong to the third column of the main diagram from Figure 1.
In order to give an equivalent description of these categories in the language of the
fourth column, of “universal modules”, we must apply a construction analogous to
that of the functor W. We first study the co-categorical analogue of universal right
D-modules of cth order; that is, we apply a version of the functor W to the category
IndCoh ( 7(16)>. (The QCoh (Mgf)) setting is completely analogous.) We do this
here only informally, as the full technical definition is no more enlightening.

Given an object M € IndCoh <M$f)>, we begin to argue as in the proof of Theo-

rem 5.0.8 in subsection 5.2 and obtain the following data:
1. For any X — S smooth of dimension n with S a scheme of finite type, we have
F(X/S) € IndCoh ((X/S)ar) ,
given by the compatible family

{ﬁ(X/S)TH(X/S)dR = MTXSX:’T € IndCoh (T)}TESCh/(X/S)dR .

2. For any any pair (X/S), (X', 5") of smooth n-dimensional families, and for any
fibrewise étale morphism f : (X/S) — (X’/S’), an isomorphism

F(f): Fxjs == f)!(/sffX'/s'

in IndCoh ((X/S)ar), defined for each T-point T' — (X/S)ar to be equal to the

compatibility isomorphism

MTXSXﬁT - MTXS/X’?T € IndCoh (T) .
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7.3 oo-categories of convergent universal modules

The fact that M depends only on morphisms in M%C)(T) (as compared to in
ME(T)) tells us that for any sections o : $ — X, o : S — X’ compatible
with f on the level of S/ _,;, the map

red?

FZ(f) FF(X/)S) = o F(X'/S)

depends only on the restriction of f to the cth infinitesimal neighbourhood of

S — X.

In subsection 5.2 we then showed that the isomorphisms .% (f) were compatible
with composition. Since we are now working in oco-categories, this compatibility is
now a structure rather than a condition, and so we obtain additional data. The first

few stages look like this:

3. Given three smooth families with fibrewise maps between them
(X/S) > (X'/S) & (X"/8"),
we have a natural isomorphism
arg: fxysF(9) 0 F(f) = F(go f)

of isomorphisms % (X/S) — (go f)'#(X"/S"). (Note that we have omitted

from our notation the canonical isomorphism (go f)' = f'og'.)

This natural isomorphism is defined for each T-point 7' — (X/S)ar to be the

natural transformation between the two maps
Mrysx=1 = Mrxyx=1 = Mrx yxr=T
and
Mry o xeor — MTXSNX”:’T7
which comes from the structure of M as an object of IndCoh (Mﬁf))
4. Given four smooth families with fibrewise maps between them

(X/8) & (X'/8') & (X"/8") % (X"'/S"),
the data of (3) gives us two natural isomorphisms between the maps

f'd Z(h)o f'F(g)0 Z(f) and F(hogof)
as follows:
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7 Remarks on oo-categories

af.g

f'gZ(h)o f7(g) 0 F(f) == figF(h)o F(go f)

ag,hﬂ ﬂ%t)f,h

fF(hog)oZ(f) F(hogof)

Af,hog

There is a 3-morphism by, ; making this diagram commute.

5. ...and soon ...

Definition 7.3.1. A collection .% = ({Z(X/S)} {F(f)} {asg}, {brgn},...) as
above will be called a universal right D-module of cth order. Such objects form

an oo-category T%np’(c), equivalent by construction to the category IndCoh (Mgﬁ).

Definition 7.3.2. The oco-category of convergent universal right D-modules is by
definition the colimit

TPy = colimr%np’(c).
ceN

We think of an object of "%,P°™ as a family

T = ({F XN AF ()} {argd, {brants )

as in the above description, except with the condition in (2) pertaining to (c¢)-
equivalence for morphisms omitted; instead, we assume that .# has an exhaustive
filtration by subobjects . (), where for each ¢, .#(©) does satisfy the condition in (2).

Remark 7.3.3. Of course, it is impossible to specify such an object completely in this
manner. However, this description in terms of families of sheaves has a significantly
more geometric feel than that of the category of representations of G. This is a
particular aspect of the difference between the study of vertex algebras (living on
the same side of the story as Rep(G)) and the study of chiral algebras (living on the

geometric side).

We have, immediately, the following diagram (with equivalences along the rows):

Rep(G) —""" """ " " - ooooomoooomooooooooooooooooooes > gy Diconv

colim Rep (G(C)> = colim IndCoh (BG(C)) — colim IndCoh (Mﬁf)) — colim "%, P:(©)
ceN JA ceN JA ceN JA ceN JA

Rep (G<C>) ———— IndCoh (BG(C)> IndCoh (Mﬁ?) ——— PO,
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We have a completely analogous diagram for convergent universal left D-modules,
using quasi-coherent sheaves. Because all of the categories in the first three columns
are equivalent whether we use IndCoh (e) or QCoh (e), we deduce that the categories
of universal right and left D-modules are equivalent as well.

This is somewhat surprising: we do not have, in general, that the categories
QCoh ((X/S)ar) and IndCoh ((X/S)qr) are equivalent. We can only say that

T(X/S)dR : QCOh ((X/S)dR) — IndCoh ((X/S)dR)

is a fully faithful embedding. However, as a consequence of the convergence condition,
we can see that any universal family (X/S) — Z#(X/S) € IndCoh ((X/S)4r) will
actually take values in the essential image of these functors Y. Consequently, the
categories of convergent universal right and left D-modules are in fact canonically
equivalent.

A final remark on the convergence condition is the following: even in the right D-
modules setting, where we do work with ind-coherent sheaves, we still do not obtain a
category whose objects are all compatible families of ind-coherent sheaves (or relative
right D-modules) indexed by smooth n-dimensional families X/S. Instead, what we
obtain is, informally, closer to the ind-completion of a category of universal families
of coherent sheaves. This is close in spirit to the description of convergent universal

D-modules as ind-finite families of modules from section 6.3.

7.4 An example: Ayx/g

Recall from Proposition 1.2.5.6 that the assignment
A X/S — AX/S = (gX/S)*CUjfile/S S D(X/S)

is compatible with pullback by étale morphisms. We claim now that it gives a con-
vergent universal (right) D-module of any fixed dimension n.

Fix ¢ € N, and consider the assignment

(e _ [ <c
X/S = Ayg = (9)(/5)*“;%;1;9 ;

X/s
where %ﬂilb;{; ¢ is the union
| | it s,
k=0

and g)g(;s is the restriction of gx/g to %Z’lb}%‘;s.
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7 Remarks on oo-categories

It is clear that the isomorphisms A(y) of Proposition 1.2.5.6 restrict to give iso-
morphisms of the submodules A < A,. Tt is also clear that A, = colim,ey AL, s0
in order to show that A is a convergent universal D-module, it suffices to show that
each A is a universal D-module of cth order. This follows from observation 1.2.5.8:

we noted that the isomorphisms

HilbsE

X/S =~ X X x7 %Zlb;?/s

near a point x € X depend only on the restriction of px to the cth infinitesimal
neighbourhood of z. It follows that the same is true of the corresponding morphism
A© () of D-modules.

Now we begin the identification of the universal D-module A(®) as a representation
of G, Let us first determine the underlying complex of vector spaces V(¢ € Vect.
The universal D-module A®© determines an ind-coherent sheaf M(© on the stack M\

given by

(r: X=2S5:0)— M)((C)QS = E!Ag?)/s.

In turn, M(© gives rise to a sheaf on the stack BG, or equivalently on the
prestack BGEfi)V, and hence corresponds to a representation of G(¢ with underlying

() .
vector space V9 := MPHBG(@ )

"

Here the map pt — BG;., corresponds to the trivial principal G(-bundle given

by G — pt. Under the equivalence of BG(® and M%C), it corresponds to the map
pt — MY given by the trivial n-dimensional family

In other words, V(© = Z!AX,)L ot = Z'(fan)sw win<e- We have the following Carte-
AT

sian diagram:
(Hilbg: o) —— (S5 4

. < <
p(%dbfg’f)dﬁ l l (f,gnc)dR = g&wf/pt

Z = ZdR

By base-change, we have

C) ~ —=N!
v (p(yfzzb§,§)dR)*(Zl> Wi ss

~ H, (Hilbgy ).
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7.4 An example: Ax/s

Here Hilbgn o is the punctual Hilbert scheme, parametrising closed subschemes
supported at the origin. For example, when n = 2, each component Hilby»  is an

irreducible variety, of dimension ¢ — 1 (for ¢ > 1.) In that case we have
H,.(Hilbaz2 o) = Sym(k[t]),

where by H, we mean the homology of the complex H,.

Then it is easy to see from the proof of Proposition 1.2.5.6 that the action of G on
Ve = H.(Hilbiﬁp) is induced from the action of G on the variety Hilbiﬁ,o. Recall
that V(@ is the complex of vector spaces used to compute the homology, but that
we haven’t actually taken homology yet. If we do, it is straightforward to show (for
example by modifying the proof of Proposition 6.4 of [6] to the setting of ind-affine
group formal schemes) that the action of G(© will be trivial: G(© is connected, so the
action of G® on the variety Hilbi,iO induces the trivial action on homology. Since
we are interested in the action of G(® on the complex V() before taking homology,
we must be slightly more careful. We sketch an argument below.

Let us begin by giving some general background on the DG-category Rep(H) of
representations of H, an algebraic group or ind-affine group formal scheme of finite
type. (In particular, we could take H to be K or G©).)

Let the identity of the group be denoted by

GHZ{l}—>H,

and let H) denote the completion of H along this map. We have a exact sequence of

group-valued functors
1— H)— H— Hqg — 1,
inducing maps of the classifying stacks which give a Cartesian diagram
BH) — 5 pt

|

BH —__ BHyg.
B

This allows us to identify the DG-category Rep(Hgr) := IndCoh (Hggr) with the
category of pairs (.#,t), where .# € IndCoh (H) is a representation of H, and ¢ is a
trivialisation of .# when viewed as a representation of . That is, Rep(Hgr) is the

category of infinitesimally trivial representations of H.
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7 Remarks on oo-categories

Let us emphasise that since we are working the DG-setting, the data of a triv-
ialisation is indeed data, not simply a condition on the sheaf .#. More precisely,
let L be an arbitrary group-valued prestack satisfying the above conditions. Then a

trivialisation of 4 € Rep(L) = IndCoh (BL) is an isomorphism
t:.F — (ppr)'(Ber)'? € IndCoh (Bey) ,

where Bey, : pt = B{1} — BL and ppy : BL — pt are the obvious maps. In this

language, we have

R ? Z € IndCoh (BH)
H ~ )
ep(Har) {(/,t) t:a'F = (ppur ) (Benp)'a'.F € IndCoh (BH.) }

Claim 7.4.1. Suppose H is a connected algebraic group.

1. If # € IndCoh(BH), then all trivialisations of % are canonically isomorphic.

2. Suppose H is the semi-direct product of a unipotent group by a semi-simple
group. Then o' : IndCoh(BH) — IndCoh (BH?) is fully faithful.

Remarks on the proof.

1. See 20.8, [11] for a discussion related to the first part of the claim. Frenkel
and Gaitsgory use the language of weakly and strongly H-equivariant objects

of Vect, rather than working with sheaves on BH and BHgg.

2. We do not know in what generality the second part of the claim holds, although
we suspect that some results are known already to experts. The statement is

that the natural map
Rep(H) — Rep(h)

is fully faithful, or equivalently that given two representations V, W of H the

natural map
Exty (V, W) — Exty (V, W)

is an equivalence. For the abelian categories, this is known, but since the DG-
categories Rep(H) and Rep(h) are not simply the DG versions of their hearts,

we cannot extend the result immediately.

On the other hand, if we assume that the connected group H is a semi-simple or
unipotent algebraic group, we have Rep? G (H) = Rep? 4(b). We can use this to-
gether with the fact that Rep(H) and Rep(h) are subcategories of D(Rep” (H))
and D(Rep” (b)) to obtain our result.

126



7.4 An example: Ax/s

Then we can extend to the case where H is a semi-direct product of a semi-
simple and a unipotent algebraic group. The case that we are interested in
is the group K© = GL, x quc), which is not quite of this form; however, at
least we will be able to use these results to study the action of its subgroup
SL, x K.

Notice that a o Beyy o ppur = Bey o ppy o a. Then it follows from Claim 7.4.1

that for H satisfying the conditions of the claim

F € IndCoh (BH)
Rep(Hgr) = {(fas) s:.F = (ppn) (Bey)' Z € IndCoh (BH) }

~ {F € IndCoh (BH)| there exists a trivialisation of .# }.

That is, the infinitesimally trivial representations of H are just the trivial represen-
tations of H.

To see how this applies to our situation, note the following: suppose H acts on a
proper scheme Y. The induced action on He(Y') = (py )wy = (py).wy is encoded in
the sheaf v.wy gy € D(BH) = IndCoh (BHgr), where v is the map in the following

Cartesian diagram:

Y/H — BH.
ol

Indeed, by base-change, the underlying vector space is

(BeH)!(V)*W(Y/H) = (py)«wy.

To view v,wy, g as a representation of H rather than Hyr, we pull back by the map
£ : BH — BHar. In the language of D-module theory, this amounts to forgetting
the D-module structure; in the language of infinitesimally trivial representations, it
amounts to forgetting the trivialisation of the h action. Either way, we see that if H
is a connected algebraic group satifying the conditions of Claim 7.4.1 (2), the induced
representation on He(Y") is equipped with a canonical trivialisation.

We conclude that because the action of K¢ = GL,, x K on the complex V' (©

is induced by the action on the variety Y = Hilbiﬁvo, the restriction of this action to
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7 Remarks on oo-categories

SL,, X Kl(f) is trivial. To further deduce that the action of SL,, X GSLC) on V' is trivial,
we note that the above arguments show that it is infinitesimally trivial. Hence V(¢
is trivial as a (Lie(SL, Gq(f)), SL, X Kq(f))—module, and thus as a representation of
SL, X Gl

Finally, we deduce that V' = (J .y V() is (canonically) trivial as a representation
of SL,, x G\, Therefore, in order to identify V' as a representation of GG, it remains
to determine the action of G,, on the complexes V(. At the time of writing, the
author can say nothing about this action for general n and general ¢ before taking

homology.
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Appendix A

Preliminaries: the geometry of
prestacks

In this section, we collect together some necessary definitions and results on the
geometry of prestacks.

We work in classical, rather than derived, algebraic geometry.! In particular, we
work with the category Sch of schemes over k, and its full subcategory Schf ~ k-alg®P
of k-algebras. We will be interested in the co-category of prestacks, which are simply

functors:
PreStk := Fun ((Sch*™)°P, 00-Grpd) .

We view prestacks as geometric objects, rather than just as categorical gadgets:
they are generalisations of more familiar objects from algebraic geometry (including
schemes, formal schemes, and stacks), and we can study them using the tools of
classical algebraic geometry as well, by defining categories of sheaves and D-modules
on them. There are for us two main advantages of working in the generality of the
category of prestacks: first is that it is cocomplete, that is, we can take arbitrary
small colimits. The second is that working with oo-groupoids rather than sets allows

us to encompass the study of stacks. Let us now discuss these ideas briefly.

IThat is, we work with ordinary schemes and algebras, rather than their DG generali-
sations, and we work with the category of classical prestacks, which Gaitsgory et al. often
denote by =9PreStk or “'PreStk. Although all of the definitions and results in this section
follow their work, we have simplified the exposition to leave out the technicalities necessary
for the DG setting.
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1 Special classes of prestacks

1.1 Schemes

First, we view schemes as particular examples of prestacks via the Yoneda embedding;:
a scheme X gives rise to a functor, which we will also denote by X, in the following
way:
(Sch*)°P — Set C co-Grpd
S — X(5) := Homge (5, X).
If a prestack ) is equivalent to the functor defined by a scheme X, we say that ) is
representable by the scheme X. Even if ) is not representable, for any affine scheme

S we have a canonical identification between the groupoid Y(.5), and the groupoid of

maps of prestacks S — ). We call these the S-points of ).

Definition 1.1.1. Let F' : )y — )» be a morphism of prestacks. We say that F' is
schematic if for any base scheme S and any S-point f € )5(S), the pullback S x5, Yy
is representable. We say that F' is a closed embedding (resp. separated, proper, etc.)

if it is schematic and in addition the projection maps
S Xy, ;))1 — S

are closed embeddings (resp. separated, proper, etc. maps) of schemes.

1.2 Indschemes

A particular class of prestacks that we will find it easy to work with is the class of
indschemes. For example, we will see that it is much easier to work with D-modules

over indschemes than over arbitrary prestacks.

Definition 1.2.1. Let ) be a prestack such that

Y =~ colim Z (1),
Ies

where S is a filtered category, and Z : & — Schy; is a functor such that for all
a:J —1¢eS8, the morphism

Z(a): Z(J) = Z(I)

is a closed embedding of schemes of finite type. Then ) is an indscheme; we may also
say that Y is ind-representable. We denote by IndSch the full subcategory of PreStk

whose objects are indschemes.
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Example 1.2.2. Familiar examples of indschemes are given by schemes of infinite

type and formal completions of schemes.

Definition 1.2.3. Let F' : )y — )» be a morphism of prestacks. We say that F'
is indschematic if for any scheme S mapping to )s, the pullback S xy, Y is an

indscheme.

Example 1.2.4. Any morphism between indschemes is indschematic. This uses the

fact that indschemes are given by colimits over filtered index categories.

So suppose that F' : )y — )s is a morphism of indschemes, and consider S €

Sch/y,. Then we can write
S Xy, V1 =~ C(I)gn Z(I) (A.1)

for some filtered S and functor Z, and we have tautological maps Z(I) — S Xy, Vi
for each I € §. Composition with the projection yields maps

Z(I) = S xy, Y1 — S.

Definition 1.2.5. We say that F' as above is ind-proper (resp. ind-closed) if for
every S € Sch/y, and for every presentation as in (A.1), all of the maps Z(I) — S

are proper (resp. closed).

Remark 1.2.6. There is a more general definition of an ind-proper or ind-closed
morphism of general prestacks (see for example section 1.1 of [16]), but we will not

need it.

1.3 Pseudo-indschemes

Definition 1.3.1. Let ) be a prestack such that
Y~ ccl)ggn Z(I), (A.2)

where now S is an arbitrary index category (not necessarily filtered) and the functor
Z has image in IndSch. Whereas in the definition of an indscheme we required
morphisms « in S to be mapped to closed embeddings of schemes, we now require
that Z(«) be an ind-proper morphism of indschemes.

Then we say that Y is a pseudo-indscheme.

Example 1.3.2. Our first example of a pseudo-indscheme will be the Ran space of

a separated scheme X. See I.1.1.
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Remark 1.3.3. Every pseudo-indscheme ) can in fact be expressed as a (not neces-
sarily filtered) colimit of schemes, simply by expanding a colimit expression of each
indscheme in the presentation (A.2) of ), so that we could have given a definition
of pseudo-indschemes without referring to indschemes. However, many of the many
of the pseudo-indschemes that we use in this thesis will be defined as colimits of

indschemes, so it is convenient for us to work with the definition given above.

There are several good properties that are satisfied by indschemes which are not
satisfied by pseudo-indschemes, arising from the fact that filtered colimits are much

better behaved than arbitrary colimits. For example:

1. A functor which is ind-representable always takes values in Set C co-Grpd; this

is not true of a functor representable by a pseudo-indscheme.

2. As mentioned in example 1.2.4, a morphism between two indschemes is always
indschematic. By contrast, there is in general no nice expression for the pullback
of a morphism between two pseudo-indschemes, because arbitrary colimits do

not commute with finite limits.

However, it is still possible to study pseudo-indschemes because they have rea-
sonable categories of D-modules. This is roughly because the ind-proper morphisms
Z(«) : Z(J) — Z(I) in the colimit expression (A.2) induce well-behaved pushforward
and pullback functors between the categories of D-modules on Z(I) and Z(J).

1.4 Stacks

We will mostly be interested in étale stacks, i.e. prestacks satisfying descent in the
étale topology. Let us be a little more precise. Suppose that Y is a prestack, 7" is an

affine scheme, and
f:8— T e Sch™

is an étale cover.
Then we form the Cech nerve S*/T

"'SXTSXTSSSXTS::S,

and consider the corresponding cosimplicial object Y(S®/T"). We have a canonical

map
Y(T) = Tot(Y(5°/T)),
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and we say that ) satisfies étale descent if this map is an equivalence of co-groupoids

for every T and étale cover f : S — T as above.

Example 1.4.1. Every indscheme satisfies étale descent; this is because the finite
limits in the Cech nerve commute with the filtered colimits in the presentation of the

indscheme. On the other hand, not all pseudo-indschemes are stacks.

Given any prestack ), there exists a unique (up to equivalence) stack YT and a
morphism F : Y — V7T of prestacks such that any morphism from ) to another stack
Z factors uniquely (again up to equivalence) through Y — Y.

Definition 1.4.2. We call Y the (étale) stackification of Y.

We will use this notion many times, in particular in constructing stacks of étale
germs of varieties. An explicit construction of the stackification is given in Lemma

8.8.1 of [1] for prestacks with values in Grpd (as compared to co-Grpd).

1.5 Prestacks locally of finite type

In order to define certain categories of ind-coherent sheaves and D-modules on our
prestacks (following Gaitsgory and Rozenblyum), we will find it necessary to impose

the following finiteness condition:

Definition 1.5.1 (1.3.2, [15]). A prestack Y is locally of finite type if it is the left

Kan extension of its own restriction along the embedding
Schif s SchAf,

That is, we have a functor

Res : Fun ((SChAH)Op, 0o-Grpd) — Fun ((Sch?f)‘)p, 0o-Grpd) ,
given by restriction. It has a left adjoint

LKE : Fun ((Sch?tf_f)o", oo—Grpd) — Fun ((SchAH)Op, oo—Grpd) ,
and ) is locally of finite type if the natural map

LKE(Res())) = Y

is an equivalence.

The functor LKE is a fully faithful embedding, so that we can equivalently define
the oco-category PreStk ¢ of locally finite-type prestacks to be the oo-category of

functors

Fun ((Schff)"p, 0o-Grpd) .
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2 Sheaves on prestacks

We will be interested in studying categories (and (oo, 1)-categories, or rather DG-
categories) of sheaves on prestacks: in particular, we wish to define categories of
quasi-coherent and ind-coherent sheaves, and of D-modules. The theory has been
developed by Gaitsgory and Rozenblyum in a series of papers and notes—here we
attempt only to give the most important definitions and ideas used in this thesis. In
the following, we will give definitions and results for oo-categories, and will mention
explicitly (for example, by decorating the category with a Q) when results apply
specifically to the abelian hearts.

2.1 Quasi-coherent sheaves

Let Y be an arbitrary prestack, and consider the category Sch‘;‘;f of affine schemes

equipped with a map to ). We view QCoh (e) as a functor on this category:

(Schif)o» — DGCatsymnon
(S = ) — QCoh (5)
(f:S—=T)— (f": QCoh (T) — QCoh (5)).

Definition 2.1.1. The symmetric monoidal DG-category of quasi-coherent sheaves

on ) is given by the limit

QCoh (Y):= lim  QCoh(9).

SE(Schiy)op

That is, we think of a quasi-coherent sheaf M on ) as the following collection of
data:

1. For each f: S — )Y, a quasi-coherent sheaf

F*M € QCoh (S).

2. For each morphism g : S; — S5 of affine schemes over ), an isomorphism
M(g) = g*(f3 M) = fiM € QCoh (51).

3. Higher coherence data: for example, given a diagram of schemes over ),

Sy 2 Sy Ly S
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we obtain two isomorphisms in QCoh (.S}):

* * [ L * [ ¥ M (g20g1) *
g1 0 g5 (f3M) = (g20g1)"(f3 M) e JiM;

¥ (o 9IM(92) 4 M(g1) ,x
91092(f3M)1—2>91(f2M)i>f1M-

We have a natural isomorphism M (gs 0 g1) = M(g1) © g M (g2).

We also have higher coherence isomorphisms for repeated compositions.

Definition 2.1.2. Let F': )} — )» be a morphism of prestacks. Then we define the
pullback functor of F

F*: QCoh (),) — QCoh ()1)

using the universal property of limits: it suffices to define a compatible family of
functors QCoh (),2) — QCoh (S) for S € Sch%f,fl. Given S — Y, we compose with
the morphism F' to obtain S — ), and then we take the tautological projection
QCoh ()n) — QCoh (S). It is easy to see that these functors are compatible.

In terms of the description of a sheaf M on ), as the family (f*M, M(g)), we can
describe F*M explicitly as well: given f : S — ), we need to specify f*(F*M) €
QCoh (5). It is just (F o f)*M.

We have the following three convenient properties of quasi-coherent sheaves. The
first two results simplify computations when working with prestacks which are ind-

schemes or locally of finite type:

Lemma 2.1.3 (2.1.2 [19]). Let
Y =~ colim Z(I)

1eS

be an indscheme. Then the tautological maps Z (1) — Y induce functors
QCoh(Y) — QCoh(Z(I))
and hence a functor
QCoh(Y) — Ileigr;p QCoh(Z(1)).

This functor is an equivalence.
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Lemma 2.1.4 (Lemma 1.2.7, [14]). Let Y be a prestack locally of finite type. There
1 a natural map

QCoh(Y) — lim  QCoh(S);

A
Se(Schpllyer
it 1s an equivalence.

The third result tells us that, from the perspective of quasi-coherent sheaves, the

geometry of a prestack depends only on its stackification:

Lemma 2.1.5 (Corollary 1.3.6, [14]). Let Y be a prestack. Then the canonical map

Y — YT induces an equivalence
QCoh (YT) = QCoh(Y).

We will use this result in our discussion of universal D-modules and quasi-coherent
sheaves on the stack of étale germs.

There is a natural t-structure on QCoh ()) induced by requiring the projections
QCoh () — QCoh (S)

to be exact. Notice that the functors f* : QCoh (7) — QCoh (5) in the limit diagram
are exact. It follows that the heart QCoh ()" can therefore be identified with the
limit (over cocomplete abelian categories) of the abelian categories QCoh (5)”.

It also follows that the functors

F*: QCoh (),) — QCoh ()1)

are also exact, and hence induce the expected functors at the level of abelian hearts.

The results in Lemmas 2.1.4 and 2.1.5 hold also for the abelian categories.

2.2 Ind-coherent sheaves

In fact, it turns out that for many purposes, the category of ind-coherent sheaves is
a better-behaved alternative to the category of quasi-coherent sheaves. A significant
advantage of working with ind-coherent sheaves is that we can define continuous
pullback functors f'; we will see that especially when working with indschemes and
pseudo-indschemes this gives us a much better handle on the corresponding categories
of sheaves.

On the other hand, a disadvantage of the category of ind-coherent sheaves is that
it cannot be defined for arbitrary prestacks, and is only well-behaved for schemes and
prestacks which are (locally) of finite type. Hence in this section we work with the

categories Schyy, and PreStk; ¢y .
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2.2 Ind-coherent sheaves

Definition 2.2.1. Let S € Schy . Consider the full subcategory Coh (S) C QCoh (5)
of coherent sheaves (that is, those M € QCoh (S) which have bounded cohomology,
finitely generated over Og). We define the category of ind-coherent sheaves on S to
be the ind-completion of Coh (.5):

IndCoh (S) = Ind(Coh (S)).

More precisely, IndCoh (S) is a cocomplete compactly generated DG-category
equipped with a fully faithful and continuous functor Coh (S) — IndCoh (S), which
is universal for continuous functors from Coh (S5) to cocomplete categories C. Con-
cretely, objects of IndCoh (S) are formal filtered colimits colim;e; x; of objects in
Coh (S). Morphisms are uniquely determined by requiring that objects of Coh (5)
become compact in IndCoh (.5):

Homy; hes)(colim z;, colim ;) ~ lim Hom;y wes) (x;, colim vy
ndCoh(s) olim z;, colir Y;) L, ndCoh(s) (T oli Y;)

o~ Zlelglp C(J?gﬂ Hommacon(s)(%i, ¥5) =~ Zlel}glp C(J?él}n Homcon(s) (@i, y;5)-
The embedding Coh (S) < QCoh (S) gives rise to a canonical functor
Vg : IndCoh (S) — QCoh (5).

There is a canonical t-structure on IndCoh (S) induced by the t-structure on
Coh (5); it follows from the fact that the ¢-structure on QCoh () is compatible with
the t-structure on Coh () and with filtered colimits that the functor Uy is t-exact.

The functor Wy satisfies the following additional properties:?

Lemma 2.2.2. 1. (Lemma 1.1.6 and Proposition 1.6.4, [17].) The scheme S is

smooth if and only if Vs is an equivalence.

2. (Proposition 1.2.4, [17].) For every n, the induced functor
Ug : IndCoh (S)”™" — QCoh(S)™"
15 an equivalence. In particular, we have an equivalence of the abelian hearts
Ug : IndCoh (S)” = QCoh(S)"
for any S of finite type.
3. (Proposition 1.5.3, [17].) The functor Vg admits a fully faithful left adjoint Zg.

Let us now consider how maps f : S — T of schemes of finite type induce functors

between the categories IndCoh (S) and IndCoh (T').

2Let us emphasise again that in this thesis we are working only with classical schemes,
rather than DG-schemes.
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2 Sheaves on prestacks

2.2.1 The (IndCoh, x)-pushforward

First, given any S, T € Schgy. and any f : S — T, there is a unique continuous functor
frrdCoh - TndCoh (S) — IndCoh (T),
induced by the composition
Coh (S) 2% QCoh (S) £ QCoh (T)* = IndCoh (T)* .

(Here C™ is our notation for the full subcategory of objects living in C=" for some n.
The equivalence IndCoh (T)* =5 QCoh (T)" is given by ¥r.)

We have the following properties, by construction:

Lemma 2.2.3 (Propositions 3.1.1 and 3.6.7, [17]). The functor fM4C" s left t-exact,
and is compatible with the pushforward functor f, : QCoh(S) — QCoh(T) of quasi-

coherent sheaves:
fooWs 2 Wpo fIM and Zpo f, ~ fIM%"h o Eq.
We can also show the following:
Lemma 2.2.4 (Proposition 3.2.4, [17]). The assignment

S+ IndCoh (S)
(f : S = T) s (fImOh . IndCoh (S) — IndCoh(T))

gives rise to a functor
IndCoh : Schy, — DGCateons.
Moreover, the assignment
S+ W : IndCoh(S) — QCoh(S)
extends to a natural transformation

IndCoh (S) = QCoh/(S).
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2.2 Ind-coherent sheaves

2.2.2 The (IndCoh, %)-pullback

Let us again consider f : S — T a morphism of schemes of finite type. Then
f*: QCoh (T') — QCoh (S) maps coherent sheaves to coherent sheaves, and hence

there is a morphism
frmdcehx - TndCoh (T') — IndCoh (S)
induced by the following composition:
Coh (T) L5 Coh (S) = QCoh (S)™ = IndCoh (S)™ .
It satisfies the following properties:

Lemma 2.2.5. 1. (Propositions 3.5.4 and 3.5.11, [17].) The functors f* and

fmdCohx qre compatible under the functors U and =:

f* o \IJT ~ \IJS o f]ndC’oh,* and f[ndCoh,* o ET ~ ES o f-*

2. (Corollary 3.5.6, [17].) The assignment

S+ IndCoh (S)
(f : S = T) s (fmh* . IndCoh (T) — IndCoh(S))

upgrades to a functor
IndCoh™ : Schﬁ — DG Cat oy
Furthermore, the assignment
S+ Wg: IndCoh(S) — QCoh(S)
upgrades to a natural transformation

U : IndCoh™ — QCohg,y,, -

3. (Lemma 3.5.8, [17].) The functor fIn4Coh* is left adjoint to the functor fMmdcoh
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2 Sheaves on prestacks

2.2.3 The !-pullback

We will now define the !-pullback functor for morphisms between schemes of finite
type. We can define it directly for f : S — T proper; the construction for more
general f is much more involved.

First assume that f is proper. We can show (see Lemma 3.3.5 and Corollary
3.3.6, [17]) that the functors

f« 1 QCoh (S) — QCoh (T)
fidCeh - IndCoh (S) — IndCoh (T)

both send Coh (S) to Coh (T)—so f4Ch gends compact objects of IndCoh (S) to
compact objects. It follows that its right adjoint

f': IndCoh (T) — IndCoh (S)

is continuous. (Note that this is not necessarily true of the right adjoint fQCob .

QCoh (T) — QCoh (S) of £..)
Lemma 2.2.6 (Corollary 3.3.9, [17]). The assignment

S — IndCoh(S)
(f:S—=T)w (f : IndCoh(T) — IndCoh(S))

upgrades to a functor

IndCoh' : Sch?®

f.t.,proper

— DGCatcom.

(Here Schyy. proper is the category of schemes of finite type with proper morphisms

between them.)

Fact 2.2.7. The functors f' and fQ"' are compatible under the functors ¥ when
restricted to IndCoh (T) ", but not in general on all of IndCoh (T'). See Lemma 3.4.4

and remark 3.4.5 of [17] for a proof and a counterexample, respectively.

In order to define the !-pullback of a more general morphism f : S — T of schemes

of finite type, we introduce an (0o, 2)-category C as follows:
e Objects of C are schemes S of finite type.

e l-morphisms S; — S5 are diagrams of the form
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2.2 Ind-coherent sheaves

g
Sig — 51

|

Ss.

e 2-morphisms (f, S12,9) — (f',S14,9') are given by proper maps h : S1» — S},

such that the following diagram commutes:

g
Sipg— 5

Y

So A S o

Of course, we can also view C as an (0o, 1)-category by considering only those
2-morphisms such that A is an isomorphism.

It is easy to see that we have faithful (but not full) functors

SChf_t' — C

Sch? — C

given as the identity on objects and by sending a morphism f : S — T to the

morphism (f, S,idg) and (idg, S, g) respectively. The important result is the following:

Theorem 2.2.8 (Theorem 5.2.2, [17]). There exists a canonically defined functor of

(00, 1)-categories

IndCohe : C — DG Cat oy

such that

1. The restriction of IndCohe to Schg is canonically isomorphic to the functor
IndCohgcn,, of Lemma 2.2.4.

2. The restriction of IndCohe to Schit

1. proper 15 Canonically isomorphic to the func-
tor IndCoh' of Lemma 2.2.6.

8. The restriction of IndCohe to Schf; ., is canonically isomorphic to the functor
IndCoh™ of Lemma 2.2.5.
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2 Sheaves on prestacks

In particular, the restriction of IndCohe to Sche P gives a functor
IndCohgg, . : Sch? — DGCateont,

satisfying the following properties:

1. For S € Schyy., IndCohg,,  (S) ~ IndCoh (5).

2. For f:S — T a proper map of schemes of finite type,

IndCoh!SChf't' (f) ~ f.

In particular, it is right adjoint to fmdceh,

3. For 7 : S — T an open embedding of schemes of finite type,
IndCohgg, () = j™mI<°m=,
Notation 2.2.9. We shall write f' := IndCohéchH‘( f) for any morphism f: S — T
of schemes of finite type.

We have base-change formulas relating the pushforward and pullback functors:
let S,T,T" € Sch., and consider the Cartesian diagram of DG-schemes. 3

/

g7 g

1

T/TT

Proposition 2.2.10. 1. (Proposition 5.2.5, [17].) There is an equivalence
g! o f*lndCoh ~ (f/)indC’oh o (g/)!

2. (Lemma 3.6.9, [17].) The natural transformation
fIndCoh,* o glndCoh oy (g/)lndCoh o (f/)lndCoh,*
s an equivalence.
3. (Proposition 7.1.6, [17].) The natural transformation

(f/)fndCoh,* o g! N (g/)! o f[ndCoh,*

induced by the base-change equivalence in (1) is an equivalence.

3This is the one occasion in these notes where we need to work with DG-schemes. How-
ever, we will in fact only use these results when working with D-modules, and as we will see
in 2.3.5 in that case it suffices to consider the ordinary fibre product of classical schemes or
prestacks.
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2.2 Ind-coherent sheaves

2.2.4 Monoidal structures and the dualising sheaf

Recall that QCoh (S) has a natural symmetric monoidal structure. It turns out that
IndCoh (5) is naturally a module over QQCoh (S): the action

QCoh (5) ® IndCoh (S) — IndCoh (5)

is induced by the action of QCoh (S)*" on Coh (.S), which is just given by the ordinary
(derived) tensor product of sheaves. (See 1.4, [17].) We use the notation

(&, F) € QCoh (S) ® IndCoh (5) — & ® .# € IndCoh (5) .
We have two projection formulas:
Lemma 2.2.11. Let f: S — T be a morphism of schemes of finite type.

1. (Proposition 3.1.3, [17].) Suppose that we have & € QCoh(T) and Fg €
IndCoh (S). Then

CgoT ® f*IndCoh(ﬁS) ~ f*lndCoh(f*<(gaT> ® ﬁs)

2. (Proposition 3.0.11, [17].) Suppose that we have & € QCoh(S) and Fr €
QCoh(T). Then

f*<éaS> & ,?T ~ findCoh(éaS ® fIndCOh’*yT).

In fact, the symmetric monoidal structure on QCoh (S) induces a symmetric
monoidal structure on IndCoh (S5) as well (see 5.6.7, [17]): first, we define an ex-

ternal tensor product
IndCoh (S) ® IndCoh (T) = IndCoh (S x T),
using the observation that the composition
IndCoh (S) ® IndCoh (T') 222¥% QCoh (S) ® UT 2 QCoh (S x T)

takes compact objects in IndCoh (S) ® IndCoh (T") to Coh (S x T'). Then we have the

following:

Lemma 2.2.12 (Proposition 4.6.2, [17]). The external tensor product gives an equiv-

alence

IndCoh (S) ® IndCoh/(T) = IndCoh (S x T).
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2 Sheaves on prestacks

Now the monoidal operation on IndCoh () is given by the composition
IndCoh (S) ® IndCoh (S) 2 mdCoh (S x §) 25 IndCoh (S).
We use the notation
(&,.F) € IndCoh (S) ® IndCoh (S) — & @ .# € IndCoh (S).
The unit in this symmetric monoidal category is the object
ps(k) € IndCoh (9),
where pg : S — pt = Speck is the projection to the point, and
k € IndCoh (pt) ~ Vect

is the complex with the field £ concentrated in degree 0.

Definition 2.2.13. We denote this object by ws = pg(k), and call it the dualising
sheaf.

The symmetric monoidal structure on IndCoh (5) is compatible with the action
of QCoh (5) in the following sense: suppose we have & € QCoh (S) and F#,.%, €

IndCoh (S). Then we have canonical isomorphisms
ER(FLR F) (627 Fo~ TR (6.F).

Lemma 2.2.14 (Corollaries 5.7.4 and 9.3.3, [17]). We have a symmetric monoidal

functor
Tg: QCoh(S) — IndCoh(S)
given by
E— & R wg.

It intertwines the x-pullback functors for quasi-coherent sheaves with the !-pullback

functors for ind-coherent sheaves:
f!oTTszof*.

It sends compact objects to compact objects and is fully faithful. It is an equivalence
if S is smooth.

In particular, the dualising sheaf wg = Tg(Og) is compact.
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2.2 Ind-coherent sheaves

2.2.5 Ind-coherent sheaves on prestacks locally of finite type

We extend the definition of IndCoh from schemes of finite type to prestacks ) locally

of finite type using the functor IndCoh!SChf't' as follows:

IndCoh () = lim  IndCoh (S).
se((sehffl)/y)™

That is, an object M of IndCoh (Y) is given by a family
{y'M € IndCoh (5)} o .,
together with compatibility isomorphisms
M(f): flyM =5y M

for any f: (S; 25 V) — (S2 2 ) in (Schih) 5. We also have higher coherence
data.

Given a morphism F : )y — Y, € PreStk; ¢, , there is a natural morphism F' :
IndCoh ()h) — IndCoh ())) defined as in the construction of f* : QCoh ()s) —
QCoh (Y1). We cannot define the s-pushforward F, in general, but it is defined for
F' schematic and quasi-compact; when F' is schematic and proper, F, is left adjoint
to F'.

In particular, we have wy = p!y(k), where py : Y — pt. We call this the dualising
sheaf of Y. The category IndCoh ()) has a symmetric monoidal structure induced
from the symmetric monoidal structures on IndCoh (5), and wy is the unit.

The base-change and projection formulas given in Lemmas 2.2.10 and 2.2.11 con-
tinue to hold for ind-coherent sheaves on prestacks locally of finite type.

The functors Tg : QCoh (S) — IndCoh (5) give rise to a monoidal functor

Ty : QCoh () — IndCoh ()
F = F ®U.)y.
Lemma 2.2.15 (Lemma 10.3.4, [17]). The functor Yy is fully faithful.

Lemma 2.2.16 (Theorem 10.1.1, [19]). Let Y be an indscheme which can be expressed

as a colimit

Y =~ colim Z(I)
Ies

where the index category S is equivalent to the poset N. Suppose that Y is formally
smooth and locally of finite type. Then the functor

Ty : QCoh(Y) — IndCoh ()

s an equivalence.
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2 Sheaves on prestacks

2.3 D-modules

We approach the study of D-modules from the perspective of crystals, following Gaits-
gory and Rozenblyum.

Definition 2.3.1. Given a prestack ), we define its de Rham prestack YVar to be the

functor
S — y(Sred)u
where S,4 is the underlying reduced scheme of S.

There is a natural map of prestacks

Y — Var
(S = V)= (Speg = S = )).

We denote this map by par. y.

Proposition 2.3.2 (Proposition 1.1.4, [20] II1.4). If Y is locally of finite type, so is
YVar-

A map F': Yy — Y, of prestacks induces a map Fygr : V1 dar — Va.ar in the obvious
way, and the assignment Y +— Y4r extends to a functor dR : PreStk — DGCateopt .

2.3.1 Right D-modules

Definition 2.3.3 (Section 1.2, [20] II1.4). Let Y € PreStky ;. The category of right
crystals is by definition

Crys(Var) == IndCoh (Y4r) -
Given a morphism F': )} — Y, in PreStk; ¢ we obtain a morphism
Far : Viar — Va2drs
and consequently can form
Fig - IndCoh (Va4r) — IndCoh (V) 4r) -
We denote this functor by

FIE: Crys(s) — Crys(D)),
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2.3 D-modules

and note that the assignment ) +— Crys(Y), F' — F dR,! upgrades to a functor
Crys! : PreStky ;.. — DGCateont.

Indeed, it is just the composition of the functors dR and IndCoh'. There is a natural

transformation oblvgg : Crys' — IndCoh' given by
oblvary = pyr y : IndCoh (V4r) — IndCoh (V).

When we interpret objects of Crys()) as right D-modules on ), oblvgg y is just the
functor of forgetting the D-module structure on a sheaf.

We have the following alternative presentations of the category Crys()):

Lemma 2.3.4 (Proposition 1.2.5, [20] II1.4). For Y € PreStk, s, we have an equiv-

alence

Crys = lim  Crys(S),
ys(V) sem ys(5)

where C is the category Schfﬁred, Schffr, Schﬁi, or Schyy..

Remark 2.3.5. In fact, this lemma holds even if we start with a DG-prestack Y

(which is locally almost of finite type), i.e. a functor
(DG-Schf, )™ — oco-Grpd.

Then the lemma implies that Crys()) is determined by the underlying classical
prestack ©'Y, which is the restriction of Y to Sch?tf_f. Together with the observation
that Yar =~ (“Y)qr, this implies that Crys()) ~ Crys(?'Y). In particular, when work-
ing with crystals, the base-change formulas from Lemma 2.2.10 hold for the classical

fibre product of schemes; it is not necessary to work with the DG fibre product.

2.3.2 D-modules on pseudo-indschemes

Suppose that ) ~ colim;es Z([) is a pseudo-indscheme. Then it follows from Lemma
2.3.4 that

Crys(Y) = Ilign Crys(Z(1)),
€Sop
where the morphisms in the diagram are given by

Z(a)®: Crys(Z(I)) — Crys(Z(J)).
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2 Sheaves on prestacks

However, the properness assumptions on the maps Z(«) imply that the functors
Z (o)™ = (Z(a)gqr)' have left adjoints

(Z(a)qr )" - IndCoh (Z(J)) — IndCoh (Z(I)).
Hence we can form the colimit
c%lgn Crys(Z(1)).
The following is a particular case of Lemma 1.3.3, [13]:

Lemma 2.3.6. Forany I € S, the tautological functor Crys(Y) — Crys(Z(I)) admits
a left adjoint Crys(Z(1)) — Crys()). These induce a functor

colim Crys(Z(1)) — Crys(Y),
and this is an equivalence of DG-categories.
2.3.3 De Rham cohomology of prestacks
Given an arbitrary map F': ), — Y, the functor

FaRt Crys()s) — Crys(Dh)

does not admit a left adjoint in general. However (as in 1.5 of [16]) we can define a

full subcategory

Crys(V1)good for # C Crys(M1)
whose objects are those .# € Crys())) for which the functor
Crys()s) — 0o-Grpd
4 s Homgpysooy) (F, F™'D)
is co-representable. That is, there exists some .’ € Crys())) such that
Homcuys(yy) (F, F™'G) = Homeuysyy) (F',9)
for every & € Crys(),). Then we define

E . Crys(yl)good for F — Crys(yQ)
F = F'.
Remark that if F satisfies sufficient properness conditions (for example, if it is an

ind-proper map of indschemes) then Crys())go0d for 7 18 all of Crys())), and ) is

jllSt (FdR)IndCOh.

*
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2.3 D-modules

Definition 2.3.7. We call F| the partially-defined left adjoint of FIR*,

We allow ourselves the following abuse of notation: the dualising sheaf of Ygr
will be denoted by wy rather than wy,,, and will still be called the dualising sheaf
of Y. Note that its image under the forgetful functor Crys()) — IndCoh () is the
dualising sheaf in IndCoh () as originally defined.

Definition 2.3.8. Let Y be a prestack such that
wy = p3* (k) € Crys(V)good for py-
Then we set
Ho(Y) = (py)ipy (k) € Vect.
This is the de Rham cohomology of ).

If F': Y1 — )», then we have a canonical isomorphism
Wy, ~ FdR’!wa.
If wy, € Crys(V1)good for F, then this induces a map
F(wy,) = wy,.
In particular, we obtain a map
Try, (F) : Ho(Q1) — He(D2),

provided that both sides are defined.
Suppose that J =~ colimses Z(I) and Y’ ~ colimpes Z'(I') are two pseudo-
indschemes. Suppose further that we have a functor ¢ : § — &’ and a natural

transformation

F,:Z=20¢
F(I): Z(I) = Z'(¢(I)).

By the universal property of colimits, this induces a morphism
F: Y=Y,

and we can show (1.5.5-6, [16]) that wy € Crys())good for F-
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2 Sheaves on prestacks

In particular, for any pseudo-indscheme ), the map ) — pt fits into the above

set-up, and so He()) is always defined, and there is a canonical map
Try, : He(Y) — He(pt) = k € Vect.
We can also show that

Ho(Y) =~ colimHe(Z(1)).

IeS

It follows that He()) always lives in non-positive cohomological degree. Moreover,

the degree zero part of the trace map
is non-zero whenever ) is non-empty, and is an isomorphism if all Z(I) are connected.

Definition 2.3.9. If ) is a prestack such that Try is an equivalence He()) = k, we
say that ) is homologically contractible.

Remark 2.3.10. Note that ) is homologically contractible if and only if the pullback
p!y is fully-faithful.

2.3.4 Left D-modules

We can also consider the category of left crystals on a prestack ):

Definition 2.3.11 (2.1.1, [18]). We set

Crys' (V) == QCoh (Y4r) =  lim  QCoh(S).
Se(Sch‘%f,de)OP

Note that ) does not need to be locally of finite type for this definition. If S
is a smooth scheme of finite type, one can show that Crys'(S ) is equivalent to the
category of left modules over the algebra Dg of differential operators on S. In other
words, this definition is indeed an extension of notion of left D-modules. See section
5 of [18] for a detailed discussion.

Given any map F': Y; — Vs of prestacks, we have the functor

(Far)" : QCoh (Va,4r) — QCoh (V1 ar) -

We adopt the notation
F: Crys'(),) — Crys'(Q))
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for this functor. These assignments extend to a functor
Crysl : PreStk — DGCatgpt.
We have a canonical natural transformation
oblv' : Crys' = QCoh}, g
which is given by the forgetful functors

oblv), i= pip 5 : QCoh (Yar) — QCoh (V).
Analogously to Lemma 2.3.4, we have:

Lemma 2.3.12 (Corollaries 2.1.4 and 2.2.4, [18]). For Y € PreStk;s., we have an

equivalence

Crys' (V) = lim  Crys(S),
Se(Cyy)er

where C is any of the categories
Seh Pt Schll Sehitt, Sehyy., SchFet | Seh, or Seh™.
Recall that for any ) € PreStk; ;. we have a functor
Ty : QCoh (Y) — IndCoh () .

Applying this to Vg, we obtain the following commutative diagram

Tydn

Crys' (V) ——— Crys())

OblvéR’y ‘/ ‘/ObIVdRJ)

QCoh (Y) 7 IndCoh ()

Lemma 2.3.13 (Proposition 2.4.4, [18]). The functor Yy,, is an equivalence.

Since the T functors intertwine the *-pullback functors for quasi-coherent sheaves
with the !-functors for ind-coherent sheaves (see Lemma 2.2.14), we also have the

following commutative diagram for any F': ); — ) € PreStky ¢
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TyZ,dR
Crysl(yQ) —— Crys()%)

FT,ll ‘/FdR,!

Crysl(yl) S Crys()1)

Yi,dr

By Lemma 2.3.13, for any ) € PreStk; ¢, we can consider a single category
D(Y)

of D-modules on ), with realisations as either the category of left crystals or right
crystals on ). We hence have two forgetful functors, to the categories QCoh ()) and
IndCoh ()):

D(Y)
°b1"f1&/ wa,y
QCoh () IndCoh ()) .
Yar

We denote the functors F4®*' or F' simply by
F':D(Ys) = D(1)
when this will not be ambiguous.

Notation 2.3.14. If Y = colim;cs Z(I) is a pseudo-indscheme, we have for each I a

pair of adjoint functors
M :D(Z(I)) = DY) : (A

Notation 2.3.15. The category D(Y) of D-modules has a symmetric monoidal struc-
ture, coming from the symmetric monoidal structures on QCoh () and IndCoh (Y).
When we are thinking of the left realisation of D-modules, we will use the notation
®, but when we are thinking right realisation, we will typically denote the tensor
operation by ®', just as we did for ind-coherent sheaves.

The compatibility between the two realisations is the following: suppose we have
D-modules on a scheme X given by quasi-coherent sheaves .#, %4 € QCoh (Xgr). If we
view them instead as right D-modules, they correspond to the ind-coherent sheaves

given by . ® wx and 4 ® wx. The tensor product of the quasi-coherent sheaves
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2.3 D-modules

(or left D-modules) is simply .# ® ¢, which corresponds to the ind-coherent sheaf
(F ®¥) ®wx under the equivalence Y x, .. On the other hand, the compatibility of
the action of QCoh (X4r) on IndCoh (X4gr) with the monoidal structures of the two

categories implies that

(Z @9)Qux ~ (F Qux) @ (4 @ wx).
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Appendix B

The main diagram

We include on the next page an extra copy of the main diagram. The reader may

wish to cut it out for ease of reference while reading Chapter II.
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Appendix C

Proof of compatibility of 6 with
composition

In this section, we show that for .# € %P the assignment (f,a) — 0(F)(f,a) is
compatible with composition.

Suppose that we have a commutative diagram as follows

S3
(73,
o)
% \(m,@) Mo
fl/i\ OX\
>
Sh

with the commutativity of the diagram given by morphisms a and 3 represented by
common étale neighbourhoods (Vy,, ¢a,?s) between X;/S; and (S; xg, X2)/S1, and
(Ws, ¢, 13) between Xy/S5 and (53 x g, X3)/S2. Then the commutativity of the large
triangle in the diagram is given by the morphism f; /3 o« represented by the pullback
of the common étale neighbourhoods:
(Voz X(31X52X2) (S1 X5, Wg), da 0 pry,, fihg o pI‘SlXSQWﬁ>
= (Va X x, W3, 0o 0PIy, P X wﬁ) )
We wish to show that
O(F)(fao f1, [iBoa)=0(F)(f1,a) 0 fTO(F)(f2,5). (C.1)
From the definition of f;3 o a, we have that

0(F)(fa0 f1, fiBoa)
= TfBoa (9(% opry,,ids,) o F(prx, ots o pry,, f2 0 fl)_1> . (C.2)
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Applying the compatibility of .% (e) with composition of fibrewise morphisms, we

can rewrite (C.2) as follows:

s ((bry,,ids )57 (6aids,) 0 F (pry, ,ids,) o F (pryy,, f1)
oPriy, F)ss (3, 1d,) ™ o (brig,. f)s(s, iy Vs (ory, )1 (C3)
Next we note the following equalities:
(a) (pry,,ids,)x/s © Tfrpoa = Ta;
(b) (Prw,. f1)x/s © Tfpoa = T3 © [1;
(¢) (¥3,ids,)xs ©T5 = f303;
(d) (ta,ids,)x/s 0 Ta = fioo.
We will use these repeatedly in the remainder of this section. For example, using
(a),(b),(c), we can rewrite (C.3) in the following way:
Ta T (¢, ids,) © Trrgoa F (pry,, , idg,

O Tfigoa F (Pl fi)" o [i75 F (Vs ids,) " o fi fios F(pry,, f2) 7' (CA4)

On the other hand, the right hand side of (C.1) is given by

0(F)(fr, ) o f10(F)(f2, )
= (ﬁ* (ﬁ(qﬁa;id&) Otga(erg Owomfl>_1))
o [iT5" (F (ds,1ds,) o F (pry, s, f2)7') . (C.5)

We expand this using the compatibility of .#(e) with composition, and use the
equalities (c¢) and (d) to obtain
Ta' F (da,ids,) 0 Ta" F (Yo, ids,) ™" o fiow F (pry,, f1) ™
o [i75"F (9,1ds,) o fi75"F (Vp,ids,) " o fi f308 F(pry,, f2) . (C.6)

Comparing (C.4) and (C.6) we see that to prove the desired equality (C.1), it

suffices to show that

o' T (Va,ids,) ™ o fiog F(pry,, fi) ' o fi75" F (65, 1ds,)

= Tf{‘ﬁoa*ﬁ(prVM idS1) o Tf{ﬁoa*y(prwﬁa fl)_1>
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Appendix C. Proof of compatibility of # with composition

or equivalently that

ffaz*ﬁ(prxz, f1) 07" F (Ya,ids,) © Trroa” F (pry, . ids,)
= 175" 7 (03,1ds,) © Tfipoa” 7 (Plw,, 1) (C.7)
Using (b), the right hand side of (C.7) becomes

s (0w, )57 (93,1ds,) 0 F (prug,. f1))
= Tfipoa F (9p 0 Pryy,, f1). (C.8)

Meanwhile, using (d) and (a), the left hand side of (C.7) can be written as

Tfl*ﬂoﬂé* ((¢aa idSl)}/S(PrVaa id51>*ﬁ(er27 fl)
O(pl"va, id51)*9(¢avid51) © f/\(prva, id5'1)) . (Cg)

Using once again the compatibility of .7 (e) with composition, we see that this is

equal to

Tigoa 7 (Prx, oo © Ply,, f1). (C.10)

Since pry, oY, 0pry, = ¢gopry, - the expression in (C.8) is equal to the expression
in (C.10) and so the proof is complete.
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