
Tuesday, April 23 ∗∗ Stokes’ Theorem

1. Let S be the portion of the cylinder of radius 2 about the x-axis where −1 ≤ x ≤ 1.

(a) Draw a picture of S and compute its area without doing any integrals. Hint: How could

you make this cylinder out of paper?

(b) Find a parameterization r(u, v) of S.

(c) Does the normal vector field associated to your parameterization point into or out of S?

First, try to determine this without doing any calculations, and then check your answer by

evaluating ru × rv .

(d) If necessary, change your parameterization so that the normal vector field points inwards.

(e) Now consider the vector field F = 〈− z, xz, −x y
〉

. Compute curlF.

(f) Check that curlF is the sum of G = 〈−2x, −1, 0
〉

and H = 〈
0, y, z

〉
.

(g) Use geometric arguments to determine whether the flux of G is positive, zero, or negative.

Remember that we have oriented S so that the normals point inwards. Do the same for H
and curlF.

(h) Using your parametrization, directly compute the flux of curlF.

(i) Check your answer in (h) using Stokes’ Theorem. Note here that ∂S has two boundary

components, and make sure that your orient them correctly.

(j) Check your answer in (h) a second time by using what you learned in (g) to compute the

flux of G and H.

2. Consider the surface S shown below, which is oriented using the outward pointing normal.
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26. The curl of a vector field F at the origin is v0 = ⟨3, 1, 4⟩. Estimate
the circulation around the small parallelogram spanned by the vectors
A =

〈
0, 1

2 , 1
2
〉

and B =
〈
0, 0, 1

3
〉
.

27. You know two things about a vector field F:
(i) F has a vector potential A (but A is unknown).

(ii) The circulation of A around the unit circle (oriented counterclock-
wise) is 25.
Determine the flux of F through the surface S in Figure 22, oriented
with an upward-pointing normal.
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FIGURE 22 Surface S whose boundary is the unit circle.

28. Suppose that F has a vector potential and that F(x, y, 0) = k. Find
the flux of F through the surface S in Figure 22, oriented with an
upward-pointing normal.

29. Prove that curl(f a) = ∇f × a, where f is a differentiable func-
tion and a is a constant vector.

30. Show that curl(F) = 0 if F is radial, meaning that F =
f (ρ) ⟨x, y, z⟩ for some function f (ρ), where ρ =

√
x2 + y2 + z2.

Hint: It is enough to show that one component of curl(F) is zero, be-
cause it will then follow for the other two components by symmetry.

31. Prove the following Product Rule:

curl(f F) = f curl(F) + ∇f × F

32. Assume that f and g have continuous partial derivatives of order 2.
Prove that

∮

∂S
f ∇(g) · dr =

∫∫

S
∇(f ) × ∇(g) · dS

33. Verify that B = curl(A) for r > R in the setting of Example 4.

34. Explain carefully why Green’s Theorem is a special case
of Stokes’ Theorem.

Further Insights and Challenges
35. In this exercise, we use the notation of the proof of Theorem 1 and
prove

∮

C
F3(x, y, z)k · dr =

∫∫

S
curl(F3(x, y, z)k) · dS 12

In particular, S is the graph of z = f (x, y) over a domain D, and C is
the boundary of S with parametrization (x(t), y(t), f (x(t), y(t))).
(a) Use the Chain Rule to show that

F3(x, y, z)k · dr = F3(x(t), y(t), f (x(t), y(t))
(
fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

)
dt

and verify that
∮

C
F3(x, y, z)k · dr =

∮

C0

〈
F3(x, y, z)fx(x, y), F3(x, y, z)fy(x, y)

〉
· dr

where C0 has parametrization (x(t), y(t)).

(b) Apply Green’s Theorem to the line integral over C0 and show that
the result is equal to the right-hand side of Eq. (12).

36. Let F be a continuously differentiable vector field in R3, Q a point,
and S a plane containing Q with unit normal vector e. Let Cr be a circle
of radius r centered at Q in S, and let Sr be the disk enclosed by Cr .
Assume Sr is oriented with unit normal vector e.

(a) Let m(r) and M(r) be the minimum and maximum values of
curl(F(P )) · e for P ∈ Sr . Prove that

m(r) ≤ 1

πr2

∫∫

Sr

curl(F) · dS ≤ M(r)

(b) Prove that

curl(F(Q)) · e = lim
r→0

1

πr2

∫

Cr

F · dr

This proves that curl(F(Q)) · e is the circulation per unit area in the
plane S .

17.3 Divergence Theorem
We have studied several “Fundamental Theorems.” Each of these is a relation of the type:

Integral of a derivative
on an oriented domain

= Integral over the oriented
boundary of the domain

Here are the examples we have seen so far:

• In single-variable calculus, the Fundamental Theorem of Calculus (FTC) relates the
integral of f ′(x) over an interval [a, b] to the “integral” of f (x) over the boundary
of [a, b] consisting of two points a and b:

∫ b

a
f ′(x) dx

︸ ︷︷ ︸
Integral of derivative over [a, b]

= f (b) − f (a)︸ ︷︷ ︸
“Integral” over the boundary of [a, b]

(a) Suppose F is a vector field on R3 which is equal to curlG for some unknown vector field G.

Suppose the line integral of G around the unit circle (oriented counter-clockwise) in the

x y-plane is 25. Determine the flux of F through S.

(b) Suppose H is a vector field on R3 which is equal to curlB for some unknown vector field B.

If H(x, y,0) = k, find the flux of H through the surface S.

Check your answers with the instructor.


