Tuesday, April 23 ** Stokes' Theorem

1. Let S be the portion of the cylinder of radius 2 about the x-axis where $-1 \leq x \leq 1$.
(a) Draw a picture of S and compute its area without doing any integrals. Hint: How could you make this cylinder out of paper?
(b) Find a parameterization $\mathbf{r}(u, v)$ of S.
(c) Does the normal vector field associated to your parameterization point into or out of S ? First, try to determine this without doing any calculations, and then check your answer by evaluating $\mathbf{r}_{u} \times \mathbf{r}_{v}$.
(d) If necessary, change your parameterization so that the normal vector field points inwards.
(e) Now consider the vector field $\mathbf{F}=\langle-z, x z,-x y\rangle$. Compute curlF.
(f) Check that curl \mathbf{F} is the sum of $\mathbf{G}=\langle-2 x,-1,0\rangle$ and $\mathbf{H}=\langle 0, y, z\rangle$.
(g) Use geometric arguments to determine whether the flux of \mathbf{G} is positive, zero, or negative. Remember that we have oriented S so that the normals point inwards. Do the same for \mathbf{H} and curlF.
(h) Using your parametrization, directly compute the flux of curlF.
(i) Check your answer in (h) using Stokes' Theorem. Note here that ∂S has two boundary components, and make sure that your orient them correctly.
(j) Check your answer in (h) a second time by using what you learned in (g) to compute the flux of \mathbf{G} and \mathbf{H}.
2. Consider the surface S shown below, which is oriented using the outward pointing normal.

(a) Suppose \mathbf{F} is a vector field on \mathbb{R}^{3} which is equal to curl \mathbf{G} for some unknown vector field \mathbf{G}. Suppose the line integral of \mathbf{G} around the unit circle (oriented counter-clockwise) in the $x y$-plane is 25 . Determine the flux of \mathbf{F} through S.
(b) Suppose \mathbf{H} is a vector field on \mathbb{R}^{3} which is equal to curl \mathbf{B} for some unknown vector field \mathbf{B}. If $\mathbf{H}(x, y, 0)=\mathbf{k}$, find the flux of \mathbf{H} through the surface S.

Check your answers with the instructor.

