Thursday, February 21 ** Constrained min/max via Lagrange multipliers.

1. Let C be the curve in \mathbb{R}^{2} given by $x^{3}+y^{3}=16$.
(a) Sketch the curve C.
(b) Is C bounded?
(c) Is C closed?
2. Consider the function $f(x, y)=e^{x y}$ on C.
(a) Is f continuous? What does the Extreme Value Theorem tell you about the existance of global min and max of f on C ?
(b) Use Lagrange multipliers to determine both the min and max values of f on C.
3. Consider the surface S given by $z^{2}=x^{2}+y^{2}$
(a) Sketch S.
(b) Use Lagrange multipliers to find the points on S that are closest to $(4,2,0)$.
4. For the function shown on the back of the sheet, use the level curves to find the locations and types ($\mathrm{min} / \mathrm{max} / \mathrm{saddle}$) for all the critical points of the function:

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}
$$

Use the formula for f and the $2^{\text {nd }}$-derivative test to check your answer.
5. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

