Limits for functions of two (or more)
 variables

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that

$$
\lim _{x \rightarrow 0} f(x, 0)=\frac{1}{2} ; \quad \lim _{y \rightarrow 0} f(0, y)=\frac{1}{2}
$$

What can we say about $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?
(a) We don't have enough information to say anything.
(b) We don't know if the limit exists, but if it does exist, it must be $\frac{1}{2}$.
(c) The limit exists and is equal to $\frac{1}{2}$.
(d) I don't understand the question.

Make-up lecture on Wednesday's material

- Today, 3pm, right here in this room
- Lecture by Prof. Tolman; slides available from her website (link on Piazza course information page).
- Students from all sections welcome.
- 100\% optional.

Finding limits of continuous functions

Consider

$$
f(x, y, z)=\frac{\sqrt{y}}{x^{2}-y^{2}+z^{2}} .
$$

Find

$$
\lim _{(x, y, z) \rightarrow(0,1,0)} f(x, y, z) .
$$

(a) -1
(b) 0
(c) I've got $\epsilon>0$, now I'm looking for δ, and I need more time.
(d) I don't know how to start.

Practice with partial derivatives

Let $f(x, y)=\sin (3 x+x y)$. Calculate $f_{x}(x, y)$.
(a) $\cos (3 x+x y)$
(b) $(3+y) \sin (3 x+x y)$
(c) $(3+y) \cos (3 x+x y)$
(d) $x \cos (3 x+x y)$.

Practice with higher partial derivatives

Let $f(x, y)=\sin (3 x+x y)$. Calculate $f_{x y}(x, y)$.
(a) $-(3+y) x \sin (3 x+x y)+\cos (3 x+x y)$
(b) $(3+y) x \sin (3 x+x y)+\cos (3 x+x y)$
(c) $-(3+y) x \sin (3+x y)$
(d) $(3+y) x \sin (3+x y)+x \cos (3 x+x y)$

