Factorisation algebras associated to Hilbert
schemes of points
Emily CIliff

University of Oxford

14 December, 2015



Motivation

e Learn about factorisation:
Provide and study examples of factorisation spaces and
algebras of arbitrary dimensions.

e Learn about Hilbert schemes:
Factorisation structures formalise the intuition that a space is
built out of local bits in a specific way.
Factorisation structures are expected to arise, based on the
work of Grojnowski and Nakajima.



Outline

@ Main constructions : Hilbran x and Hgan x

@ Chiral algebras

© Results on Hran x



Section 1

Main constructions : Hilbran x and Hgan x



Notation

e Fix k an algebraically closed field of characteristic 0.
e Let X be a smooth variety over k of dimension d.

e We work in the category of prestacks:

PreStk := Fun(Sch®P, co-Grpd)

T

Sch (Yoneda embedding)



The Hilbert scheme of points

Fix n > 0. The Hilbert scheme of n points in X is (the scheme
representing) the functor

Hilb% : Sch®® — Set C oo-Grpd
S s Hilb%(S),

where

Hilb%(S) := { & C S x X, aclosed subscheme, flat over S }

with zero-dimensional fibres of length n



The Hilbert scheme of points

Example: k-points

Hilb% (Spec k) = { & C X closed zero-dimensional }

subscheme of length n
For example, for X = A? = Spec k[x, y], n = 2, some k-points are

& = Speck[x, y]/(x,y?)
& = Speck[x, y]/(x?, y)
&3 = Spec k[x, y]/(x, y(y — 1))

Notation: let Hilbx = | | 5o Hilbk.



The Ran space

The Ran space is a different way of parametrising sets of points in
X:

Ran X(S) := {A C Hom(S, X), a finite, non-empty set }.
Let A= {x1,...,x4| Xi : S — X} be an S-point of Ran X.
For each x;, let I'y, = {(s, xi(s)) € S x X} be its graph, and define
d
Fa=|JscSxX,
i=1

a closed subscheme with the reduced scheme structure.



The Ran space
The Ran space is not representable by a scheme, but it is a

pseudo-indscheme:

Ran X = colim X'.
| efSet°P

Here the colimit is taken in PreStk, over the closed diagonal
embeddings

Ala) : X? — X!
induced by surjections of finite sets

a:l — J.



Main definition: Hilbran, x

Define the prestack

Hilbran x : Sch®? — Set C oco-Grpd
S— 'Hf/bRan X(S)

by setting Hilbran x(S) to be the set

{(A,§) € (Ran X x Hilbx)(S) | Supp(§) CTaC S x X}.

Note: This is a set-theoretic condition.

Notation: We have natural projection maps

f: ,HjleanX — RanX,
p - ,HjleanX — Hi|bX .



‘Hilbran x as a pseudo-indscheme

For a finite set /, we define
Hilby: : Sch®? — Grpd
by setting Hilbx:(S) C (X' x Hilbx)(S) to be
{((x)ier, €) | ({xi}ici »€) € Hilbranx(S)} -
For oo : | — J, we have natural maps
Hilby s — Hilbx,
defined by ((x);e.€) — (A(0)(), )

Then Hilbran x = colim Hilby:.
1 efSet°P



Factorisation

Consider (Hj/bRanX)disj ={(A=A1UA,¢) € Hilbran x }-

Suppose that in fact [a, N T4, = 0, so that if we set & :=¢&N FA,_,
we see that

O{=aU&L
® (A, &) € Hilbran x for i =1,2.

Proposition

(}ﬁlean X)disj = (,Hl./bRanx X ?—[jleanX)disj'



Factorisation

In particular, when A = {x1} Ll {x2}, we can express this formally
as follows:

o Set U:= X2\ A(X) —1— X2,
e Then the proposition specialises to the statement that there
exists a canonical isomorphism

c: /HI./bX2 ><X2U > (/HI/bX X 7‘[]/bx) Xxxx U.

We have similar isomorphisms c(«a) associated to any surjection of
finite sets | — J. These are called factorisation isomorphisms.



Factorisation

Theorem

f : Hilbran x — Ran X defines a factorisation space on X. If X is
proper, f is an ind-proper morphism.



Linearisation of Hilbran x

Set-up: Let A € D(Hilby:) be a family of (complexes of)
D-modules compatible with the factorisation
structure.

Then the family { Ay := (fi)i\" € D(X')} defines a
factorisation algebra on X.

More precisely: For every a: [ = |_|j€JIJ- — J, we have
isomorphisms

0 v(a): A(a) Ay = Ay,

= {Ax:} give an object “colim Ay, " of
D(Ran X), which we'll denote by fi\.

® c(a) : j(e) (Axr) =+ j(a)" (RjesAyy)



Linearisation of Hilbran x

Definition
Set HXI = (f[)gtdq.y/bxl .

This gives a factorisation algebra

HRan X = HiWhilbg,, x -

Goal for the rest of the talk: study this factorisation algebra.



Section 2

Chiral algebras



Chiral algebras

A chiral algebra on X is a D-module Ax on X equipped with a Lie
bracket

WA g™ (.Ax &Ax) — N Ax € D(X X X).



Factorisation algebras and chiral algebras

Theorem (Beilinson—Drinfeld, Francis—Gaitsgory)

We have an equivalence of categories

factorisation algebras | _ chiral algebras
= :
on X on X



|dea of the proof

Let {Ax:} be a factorisation algebra.

J*J* (AX X -AX)

;

Axe —— i (Axe) ——— AA Ay

;

A Ax



|dea of the proof

Let { Ay} be a factorisation algebra.

Ji* (Ax X Ax)

;

Ar —— i (Age) —— AA Ay

;
A Ax
This defines M A j*j* (.AX X Ax) — A!Ax.

To check the Jacobi identity, we use the factorisation isomorphisms
for I ={1,2,3}.



Aside: chiral algebras and vertex algebras

Let (V, Y(-,z),]0)) be a quasi-conformal vertex algebra, and let C
be a smooth curve.

We can use this data to construct a chiral algebra (Vc, 1) on C.

This procedure works for any smooth curve C, and gives a
compatible family of chiral algebras. Together, all of these chiral
algebras form a universal chiral algebra of dimension 1.



Lie x algebras

A Lie x algebra on X is a D-module £ on X equipped with a Lie
bracket

LKL — AL
Example: we have a canonical embedding
.AX @.Ax %j*j* (AX @.Ax) .

So every chiral algebra Ay is a Lie x algebra.



Universal chiral enveloping algebras

The resulting forgetful functor
F : {chiral algebras} — {Lie * algebras}
has a left adjoint
U : {Lie * algebras} — {chiral algebras} .

U(L) is the universal chiral envelope of L.

® U°M(L) has a natural filtration, and there is a version of the
PBW theorem.

@® UM(L) has a structure of chiral Hopf algebra.



Commutative chiral algebras

A chiral algebra Ax is commutative if the underlying Lie x bracket
is zero.

Translation into factorisation language:

Ji* (Ax X Ax)

;

Ar ——— juf* (Axe) —— AA Ay

;

A Ax



Commutative chiral algebras

A chiral algebra Ax is commutative if the underlying Lie x bracket
is zero.

Translation into factorisation language:

Ax K Ax — jij* (Ax @Ax)

;

Ap ————— " (Axe) ————— DA Ay

ok

A Ax



Commutative chiral algebras

A chiral algebra Ax is commutative if the underlying Lie x bracket
is zero.

Translation into factorisation language:

Ax K Ax — jij* (Ax @Ax)

; |

Asr ————— juj* (Axe) ———— AA Ay

;

A Ax



Commutative factorisation algebras

A factorisation algebra {Ax:} is commutative if every factorisation
isomorphism

C(a)fl J* (|X|J'€JAXIJ-) =5 jF Ay
extends to a map of D-modules on all of X/:
ngJ‘AX’J — .AXI.

Proposition (Beilinson-Drinfeld)

We have equivalences of categories

commuative commutative .
.. . commutative
factorisation ~ chiral ~
Dx-algebras
algebras algebras



Section 3

Results on Hgan x



Chiral homology

Let pran x : Ran X — pt.

The chiral homology of a factorisation algebra ARran x is defined by

/-ARanX = PRanX,1ARan X

It is a derived formulation of the space of conformal blocks of a
vertex algebra V:

HO(/VRanX) = space of conformal blocks of V.



The chiral homology of Hgan x

Goal: compute /’HRanX "= PRan X, 1Wilbg, x -

;LU/bRanX

7N

= H ~ ; Wy
Hilbx Ran X / Ran X = PHilbx,! P1WHilbran x

|
= PHilbx,! PP WHilby -
PHilbx PRan X

pt



The chiral homology of Hgan x

Theorem

p': D(Hilbx) — D(Hilbran x)

is fully faithful, and hence py o p' — idp(uiby) is an equivalence.

Corollary

/%RanX 2 PHilby,IWHilby = Har(Hilbx).



Identifying the factorisation algebra
structure on HRran x

Theorem

The assignment

X
. ~ H
dim. d Ran X
gives rise to a universal factorisation algebra of dimension d.

i.e. it behaves well in families, and is compatible under pullback by
étale morphisms Y — X.

This allows us to reduce to the study of Hgan x for
X = A9 = Speck[x1,...,Xq].



Identifying the factorisation algebra
structure on Hgan ad

Conjecture

HRran ad is @ commutative factorisation algebra.

Remarks on the proof:
® The case d =1 is clear:
‘Hilbran a1 is @ commutative factorisation space.
® The case d = 2 has been proven by Kotov using
deformation theory.



Strategy for general d: first step

The choice of a global coordinate system {x1,...,x4} gives an
identification of

Hilbx o := {¢ € Hilbx | Supp(¢§) = {0}}
with Hilbx , for every p € X = Ad.
= Hilbx ~ X x Hilbx g .
It follows that

HX ~wx ® H(;R(Hile,O)-



Strategy for general d: second step

Universality of Hrane means that, in particular, the fibre of H 4
over 0 € A9, is a representation of the group

G = Autk[ts, ..., tq].

This fibre is Hiz(Hilbx o), and the representation is induced from
the action of G on the space Hilbx g.



Strategy for general d: steps 3, 4 ...

Claim 1. The induced action is canonically trivial, except
perhaps for an action of G, C G corresponding to a
grading.

Claim 2: This forces the chiral bracket

JuJ" (wx Mwx) ® Hig(Hilbx o) ® Hgr(Hilbx o)
— A!(wx) & HJR(HiIbX,O)

to be of the form p,, ® m, where mis a map

H3r(Hilbx o) ® Hir(Hilbx o) = Hir(Hilbx o).

Claim 3: m induces a commutative Dx-algebra structure on
Hx =wx ® Hd.R(H”bX,O)-

Claims 1 and 2 seem straightforward to prove in the non-derived
setting, but in the derived setting there are subtleties.



Future directions

Push forward other sheaves to get more interesting
factorisation algebras: replace WHilb by sheaves constructed
from e.g. tautological bundles, sheaves of vanishing cycles.

How is this related to the work of Nakajima and Grojnowski?
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