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Abstract

An explicit formula for the action variables of the Kovalevskaya top as certain abelian integrals

of third kind on the Kovalevskaya curve is found. The linear system of differential equations of

Picard-Fuchs type describing the dependence of these variables on the integrals of the Kovalevskaya

system is presented in the explicit form. The results are based on the formula for the actions derived

by S.P.Novikov and A.P.Veselov within the theory of the algebro-geometric Poisson brackets on the

universal bundle of the hyperelliptic Jacobians.

1 Introduction

The Kovalevskaya top is one of the most beautiful examples of integrable systems. Kovalevskaya’s original

paper [K89] is heavily based on deep ideas from the theory of hyperelliptic Riemann surfaces and abelian

functions, giving one of the most impressive applications of this theory. From this point of view the

Kovalevskaya top is one of the genuine highlights of nineteenth century mathematics.

It is no accident that Kovalevskaya’s top became popular again with the modern renaissance of

integrable systems, which started in the sixties when the famous paper [GGKM67] about some remarkable

properties of the KdV equation appeared. The relation between the KdV theory and the Kovalevskaya top

was first mentioned in the review by B. A. Dubrovin, V. B. Matveev, and S. P. Novikov [DMN76] (see the

introduction). Later, the Kovalevskaya top was considered as the best example to demonstrate the power

of several modern methods (see e. g. M. Adler and P. van Moerbeke [AM82], L. Haine and E. Horozov
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[HH87], E. Horozov and P. van Moerbeke [HM89], A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-

Shansky [BRS89]).

The determination of action variables for the Kovalevskaya top was first discussed by S. P. Novikov

and A. P. Veselov [VN84] within the general theory of algebro-geometric Poisson brackets on the universal

bundle of hyperelliptic Jacobians. It could be shown that the Kovalevskaya top fits into this theory, and as

a result an explicit formula for the action variables was given, see (14) and (18) below. The same formula

was rederived later, using separation of variables, by I. Komarov and V. Kuznetzov [KK87]. These results

where not known to H. R. Dullin et al. who calculated the action variables for the Kovalevskaya top using

a different, numerical method [DJR94, DW94].

In this paper we present an analysis of the action variables based on the Novikov-Veselov result. First

we express the action integrals in another, more suitable form as an abelian integral of the third kind on

the Kovalevskaya curve. Using this formula we derive the Picard-Fuchs equations for the action variables.

We should mention that a similar question was discussed in a paper by J. P. Francoise [F87], but his

considerations are wrong: he assumed that the action variables are given by abelian integrals of the first

kind, which is not the case.

2 Action variables

The classical rigid body is a system with three angular degrees of freedom. Due to rotational symmetry

with respect to the direction of gravity, the corresponding angle ϕ does not appear in the Hamiltonian;

its conjugate angular momentum l is a general constant. Treating l as a parameter, the system is

usually considered to have only two degrees of freedom, the Poisson sphere S2 (γ1, γ2, γ3) acting as a

reduced configuration space. The reduced phase space consists of the variables (γ1, γ2, γ3) and the three

components (l1, l2, l3) of the angular momentum in the body-fixed frame of reference. This phase space

is equipped with the Poisson structure

{γi, γj} = 0, {γi, lj} = εijkγk, {li, lj} = εijklk, (1)

where εijk is the standard skew-symmetric tensor. This structure has two Casimir functions C1 =

γ2
1 +γ2

2 +γ2
3 and C2 = γ1l1 +γ2l2 +γ3l3; they guarantee the invariance of the Poisson sphere, C1 = 1, and

the constancy of the angular momentum l = C2. This Poisson structure is the reduction of the standard

symplectic structure on T ∗SO(3) with respect to rotations around the vertical axis [A78]. The symplectic

leaves corresponding to fixed values of C1 and C2 are topologically equivalent to the cotangent bundle of

the sphere, T ∗S2. But note that their symplectic structure is known to be different from the standard

symplectic structure on T ∗S2 by the magnetic term proportional to l [DFN90].

The special feature of the Kovalevskaya top is that the three principal moments of inertia are (2, 2, 1),

and the center of gravity (−c, 0, 0) lies on the 1-axis. The Hamiltonian is therefore

H =
1
4
l21 +

1
4
l22 +

1
2
l23 + cγ1, (2)
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and the equations of motion, if written in terms of the angular velocities (p, q, r) = ( 1
2 l1,

1
2 l2, l3), are the

Euler-Poisson equations

γ̇1 = rγ2 − qγ3 2ṗ = qr

γ̇2 = pγ3 − rγ1 2q̇ = −cγ3 − rp

γ̇3 = qγ1 − pγ2 ṙ = cγ2 .

(3)

These equations possess the three usual integrals

p2 + q2 + 1
2r2 + cγ1 = h, energy

2pγ1 + 2qγ2 + rγ3 = l, angular momentum

γ2
1 + γ2

2 + γ2
3 = 1, Poisson sphere

(4)

and the non-trivial Kovalevskaya integral

K :=
(
(p + iq)2 − c(γ1 + iγ2)

) (
(p − iq)2 − c(γ1 − iγ2)

)
= k2. (5)

Viewed as functions on the symplectic leaves C1 = 1, C2 = l, Hamiltonian H and Kovalevskaya integral

K generate independent commuting flows on the invariant tori H = h, K = k2.

Integrating the equations of motion, S. Kovalevskaya demonstrated a fascinating analytical skill, the

spirit of which seems to be lost nowadays. Complexifying the variables (p, q) in terms of z1 = p + iq,

z2 = p − iq, she introduced a pair of variables w1, w2, as the roots of a certain quadratic equation,

w1,2 = R(z1,z2)∓
√

R(z1)R(z2)

(z1−z2)2

R(z) = −z4 + 2hz2 − 2clz + c2 − k2

R(z1, z2) = −z2
1z2

2 + 2hz1z2 − cl(z1 + z2) + c2 − k2,

(6)

and showed that the equations of motion can be written in the form

ẇ1 =

√
P5(w1)

w2 − w1
, ẇ2 =

√
P5(w2)

w1 − w2
, (7)

where

P5(w) = −2P2(w)P3(w), P2(w) = w2 − k2, P3(w) = (w + h)(P2(w) + c2) − 1
2
c2l2. (8)

Similar equations were known from the classical work of C. G. Jacobi about the geodesics on an

ellipsoid. K. Weierstrass and C. Neumann had shown how they may be used to derive explicit formulas

for the solutions in terms of theta-functions, so the rest of Kovalevskaya’s work was essentially technical.
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It is interesting, and more important than it seems at first sight, that S. Kovalevskaya introduced the

shifted variables

si = wi + H, (9)

which of course satisfy similar equations,

ṡ1 =

√
R5(s1)

s2 − s1
, ṡ2 =

√
R5(s2)

s1 − s2
, (10)

where

R5(s) = −2R2(s)R3(s), R2(s) = (s − h)2 − k2, R3(s) = s(R2(s) + c2) − 1
2
c2l2. (11)

The reasons why she made this shift seem to be unclear today (see e. g. Golubev’s book [G53]); somehow

the shifted variables were better suited for the theory of elliptic functions from which Kovalevskaya’s

choice was inspired.

Amazingly, the variables s1, s2 were exactly the right ones for Novikov and Veselov [VN84] to apply to

the Kovalevskaya top the theory of algebro-geometric Poisson brackets! More precisely, it can be shown

by direct calculation that the Poisson bracket of the variables s1 and s2 in the Poisson structure (1) is

zero

{s1, s2} = 0 . (12)

This is not true for the unshifted variables w1, w2: one can check that {w1, w2} �= 0. Novikov and Veselov

were able to show that in the variables s1 and s2, the symplectic structure ω has the form

ω = dα, where α = Q(h, k, l, s1) ds1 + Q(h, k, l, s2) ds2 (13)

with

Q(h, k, l, s) =
1

2
√
−2s

log
[√

−sR2(s) −
(2s − l2)c2

4
√
−s

+
√
−R2(s)R3(s)

]
. (14)

To get an intuition for how this result may be obtained, we observe that Kovalevskaya’s equations of

motion (10) may be generalized to include the flow generated by the Kovalevskaya integral K, with flow

parameter τ :

dt =
h − s1√
R5(s1)

ds1 +
h − s2√
R5(s2)

ds2 ,

dτ =
−1/2√
R5(s1)

ds1 +
−1/2√
R5(s2)

ds2 .

(15)

For τ = const, we recover the Hamiltonian flow (10); the second equation (15) then describes the trajec-

tory in (s1, s2) coordinates while the first gives the time development. Similarly, for t = const we obtain

the K-flow in phase space. Now the periods of the two flows, TH,i =
∮

γi
dt and TK,i =

∮
γi

dτ , taken

along fundamental cycles γ1, γ2 of the Kovalevskaya curve (see Figure 1)

Γ : y2 = R5(x) , (16)
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b)

γ1γ2

s

s

Figure 1: The cycles γ1 and γ2 for the cases a) when R5(s) has 5 real roots and b) when R5(s) has 3 real

roots. The cross marks the position of the pole at s = l2/2, which in case a) can be in either of the two

gaps; the dots mark the roots of R5, connected by intervals in which R5(s) > 0.

ought to be expressed as

TH,i = 2π
∂Ii

∂h
and TK,i = 2π

∂Ii

∂k2
, (17)

where

Ii =
1
2π

∮
γi

Q(h, k, l, s) ds (18)

are the action variables of the system, and hence Q(h, k, l, si) the canonically conjugate momenta to si

(i = 1, 2). Comparison with (15) shows that these momenta must fulfill the relations

∂Q

∂h
=

h − s√
R5(s)

∂Q

∂k2
=

−1/2√
R5(s)

.

(19)

The explicit form (14) of Q(h, k, l, s) may be derived from here by integration.

Notice that in the form (18) the action variables Ii depend on the branch of the multivalued function

Q on Γ. This implies only changes of Ii by some constants, but since these constants may be complex

there is a problem of choosing real action variables.

To resolve these problems we rewrite first of all the expression for Q in the following way using the

fact that (2s − l2)c2 = 2R3(s) − 2sR2(s):

Q(h, k, l, s) = Ql(s) +
1

2
√
−2s

log

[√
sR2(s) +

√
R3(s)√

sR2(s) −
√

R3(s)

]

= Ql(s) +
1√
−2s

log(Ψ +
√

Ψ2 − 1)

= Ql(s) +
1√
2s

arccos Ψ ,

(20)
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where

Ql(s) =
1

2
√
−2s

log
(2s − l2)c2

4
√
−s

and Ψ =

√
−2sR2(s)
(2s − l2)c2

. (21)

Notice that Ql(s) does not depend on the constants h and k.

Now we can write the 1-form Qds as

Qds = β + λ + dΦ (22)

where

β =
−4s3 + (4h + 3l2)s2 − 4hl2s + l2(h2 − k2)√

R5(s) (2s − l2)
ds, (23)

λ =
2s + l2

2
√
−2s(2s − l2)

ds, (24)

and dΦ is a total differential. This can be done by means of partial integrations, using

1√
2s

arccos Ψ ds = arccos Ψ d
√

2s = −
√

2sd arccos Ψ + dΦ1 = β + dΦ1 , (25)

and

Ql ds = λ + dΦ2 , (26)

where

Φ1 =
√

2s arccos Ψ, Φ2 = −1
2
√
−2s log

(2s − l2)c2

4
√
−s

, Φ = Φ1 + Φ2. (27)

Taking advantage of the fact that λ does not depend on h and k, the integrals (18) with (14) for the actions

I1 and I2 may now be expressed by the following abelian integrals of the third kind on the curve Γ:

Ii =
1
2π

∮
γi

β =
1
2π

∮
γi

−4s3 + (4h + 3l2)s2 − 4hl2s + l2(h2 − k2)√
R5(s) (2s − l2)

ds (i = 1, 2). (28)

Comparison with numerical calculation of action integrals obtained using (1/2π)
∮

p dq on T ∗SO(3)

[DJR94] shows complete agreement with this formula.

It is interesting that the third action I3 = l of the Kovalevskaya top on T ∗SO(3) can also be obtained

from the differential (22) because both β and λ have poles at s = l2/2 with residues ±il/2.

Notice that the differential β + λ is living not on the Kovalevskaya curve but on its double covering

Γ̃ which is the curve of genus 4 given by the system of equations

y2 = R5(s)

z2 = −s.
(29)

Actually, one can see this curve already in the original Novikov-Veselov formula (14). The fact that one

can write down the actions of the Kovalevskaya system (3) as abelian integrals (28), although of third

kind, on the Kovalevskaya curve Γ itself, was not clear from the formula (14) and seems to be a new

important observation.
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Figure 2: The curve Γsing

3 Picard-Fuchs equation

In this section we derive the Picard-Fuchs equation for the actions I1, I2 as functions of h and k. Since

I1 and I2 are periods of the abelian differential β on Γ one can use the standard arguments to derive such

equations (see e. g. [BK86]). Let us first explain the general idea underlying this derivation.

First we must overcome the difficulty related to the fact that β has nonzero residues. To do this we

use a trick: Consider the following augmented version Γsing, of the Kovalevskaya curve Γ, given by the

equation

Γsing : y2 = R5(x)(2x − l2)2. (30)

It is a singular algebraic curve of arithmetic genus 3 with a double point at x = l2/2. Its nonsingular

model coincides with the Kovalevskaya curve Γ and has genus 2. Topologically Γsing is a genus 3 surface

with one cycle pinched. It is important for us that our differential β can be considered as a second kind

differential on Γsing since β is regular at the singular point.

The first cohomology group of Γsing has dimension 5, therefore by de Rham theory there exist 5

abelian differentials of second kind on Γsing which generate the space of all such differentials modulo

total derivatives of meromorphic functions on Γsing. In particular, we can take the standard basis of

hyperelliptic differentials

ωi =
xi−1 dx√

R5(x)
, i = 1, 2, 3, 4, (31)

plus the additional differential ω5 = β which is our 1-form (28). As we have mentioned already, as a

differential on Γsing the form β is regular at the point x = l2/2; it is de Rham dual to the vanishing cycle

on Γsing. Now if we take the derivatives

∂ωi

∂h
,

∂ωi

∂k2
, i = 1, . . . , 5 (32)

they have to be a linear combination of ωi modulo total derivatives:

∂ωi

∂h
=

5∑
j=1

Aij(h, k, l)ωj + dFi

∂ωi

∂k2
=

5∑
j=1

Bij(h, k, l)ωj + dGi , i = 1, . . . , 5,

(33)
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and therefore the periods

πi =
∮

γ

ωi, i = 1, . . . , 5, (34)

along any cycle γ on Γsing should satisfy the Picard-Fuchs equation

∂πi

∂h
=

5∑
j=1

Aij(h, k, l)πj

∂πi

∂k2
=

5∑
j=1

Bij(h, k, l)πj . i = 1, . . . , 5.

(35)

Actually, we can avoid the consideration of the singular curves because of the following fact. Let π5 =∮
ω5 =

∮
β be any period of the form β; then

∂π5

∂h
= hπ1 − π2 ,

∂π5

∂k2
= −1

2
π1.

(36)

This follows from the properties of the form Q, see (19) above.

Since the abelian differentials ω1, . . . , ω4 live on the nonsingular Kovalevskaya curve Γ, the rest of

the Picard-Fuchs equations can be derived for periods πi on Γ, i = 1, 2, 3, 4. The calculation is quite

lengthy, and the result is given in the appendix. Here we only present the algorithm used in an algebraic

manipulation program such as Maple.

Consider an abelian differential, polynomially depending on a parameter c,

ω =
Q(x, c)√
R(x, c)

dx , (37)

and its derivative with respect to the parameter,

∂ω

∂c
=

P (x, c)√
R(x, c)

3 dx , with P (x, c) = R(x, c)
∂Q(x, c)

∂c
− 1

2
Q(x, c)

∂R(x, c)
∂c

. (38)

The goal is to remove the third power of the square root, and to rewrite the differential in the form

P (x, c)√
R(x, c)

3 dx =
S(x, c)√
R(x, c)

dx + dF. (39)

This can be achieved by decomposing P into a combination of R and its derivative,

P (x, c) = A(x, c)R(x, c) + B(x, c)
∂R(x, c)

∂x
, (40)

where A(x, c) and B(x, c) are polynomials in x and c. Then integration by parts gives

P (x,c)√
R(x,c)

3 dx = A(x,c)√
R(x,c)

dx + B(x,c)√
R(x,c)

3
∂R(x,c)

∂x dx

= A(x,c)√
R(x,c)

dx + 2√
R(x,c)

∂B(x,c)
∂x dx − 2 d

(
B(x,c)√
R(x,c)

)
,

(41)
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and the result is

S(x, c) = A(x, c) + 2
∂B(x, c)

∂x
. (42)

Thus the main task is to find the decomposition (40). We assume that the polynomial R has no multiple

roots for generic c and its highest coefficient does not depend on c. If the degree of R is n, then for any

polynomial P (x, c) of degree degP ≤ 2n − 2 there exists a decomposition (40) with some polynomials

A and B of degree n − 2 and n − 1 respectively. Such a decomposition can be found in the usual way,

applying the Euclidian algorithm for two polynomials R and R′. A more effective procedure is to write

down the polynomials A and B in the general form A(x, c) =
∑n−2

i=0 ai(c)xi, B(x, c) =
∑n−1

i=0 bi(c)xi,

with unknown coefficients ai(c) and bi(c). Then the decomposition (40) is equivalent to a system of

2n−1 linear equations for these coefficients. The determinant of this linear system is proportional to the

discriminant of the polynomial R.

For the Kovalevskaya case we have to solve a system of 9 equations in order to express all partial

derivatives of differentials ωi in the form (33).

The discriminant of R = R5(s) in this case is 256 k2 δ2 ∆, where

δ = resultant{R2(s), R3(s)} = c4(h − k − l2/2)(h + k − l2/2)

∆ = discriminant{R3(s)}

= −27
4

c4l4 + 8hc2(h2 + 9(c2 − k2))l2 − 16(c2 − k2)(h2 + c2 − k2)2

(43)

Each coefficient Aij , Bij is a polynomial in k2, with degree at most 5, divided by k2 δ ∆. Therefore each

coefficient of the Picard-Fuchs equation can be written as

a +
b

k2
+

c

δ
+

d0 + d1k
2 + d2k

4

∆
, (44)

where a, b, c, d0, d1, d2 are rational functions in h and l. Altogether we obtain a set of 2 × 16 × 6 such

functions of h and l. The structure of the coefficients reveals that the double roots of R5(s) correspond

to the singular points of the Picard-Fuchs equation. Consider the appendix for details.

Thus we arrive at our main result: Any action variable I of the Kovalevskaya system satisfies the

following set of Picard-Fuchs equations

∂I

∂h
= hπ1 − π2

∂I

∂k2 = − 1
2π1

∂πi

∂h
=

4∑
j=1

Aij(h, k, l)πj
∂πi

∂k2 =
4∑

j=1

Bij(h, k, l)πj , i = 1, 2, 3, 4,

(45)

where the coefficients Aij and Bij are those given in the appendix.

The monodromy group of this system is isomorphic to the modular group Sp(4, Z), acting as auto-

morphisms in the first homology of the corresponding Kovalevskaya curve.
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Notice that as a corollary we can deduce that I satisfies certain linear equations of 5th order,

∂5I
∂h5 =

∑4
i=1 ai(h, k, l) ∂iI

∂hi

∂5I
∂(k2)5 =

∑4
i=1 bi(h, k, l) ∂iI

∂(k2)i .

(46)

Since there are only derivatives of I in these equations, there is a constant solution which is I = l. The

remaining four solutions are periods of the 1-form β on the Kovalevskaya curve. The actions I1 and I2

correspond to two special real solutions of these equations.

4 Conclusion

The determination of action variables for an integrable mechanical system is an important part of its

analysis. The explicit representation of a Hamiltonian in terms actions, H = H({Ii}), tends to change

at bifurcations of the momentum mapping. Nevertheless, within domains of regularity, the geometry

of surfaces H({Ii}) = h contains all relevant information about physical periods and resonances. It is

a highly convenient starting point for studies of stability against non-integrable perturbations, and for

semi-classical quantization [B78].

Strangely enough, many well-known integrable systems of classical mechanics have not been evaluated

to this point, until very recently. Meanwhile, a few cases have been worked out in detail, including

graphical rendering of the energy surfaces. As examples, we mention the work [RWKK95, WR96] on

ellipsoidal billiards, and [RDWW96, WWD97] on quantization. For the Euler and Lagrange cases of rigid

body dynamics, the action representation of energy surfaces was first given in [R90]. The Kovalevskaya

case turned out to be much more difficult. The explicit integral (18) with Q in the form (14) was given

as early as 1984 by [VN84], but this was not used in the numerical study [DJR94]. The non-algebraic

structure of this integral causes computational difficulties.

The present paper offers two sets of formulas which overcome these difficulties. One is the abelian

integral (28). Its explicit evaluation requires integration, for each set (h, k, l) of integration constants,

along paths γi on the Kovalevskaya curve, as shown in Fig. 1. This is a lot of work, but it can be done.

The alternative is to use the set (45) of Picard-Fuchs equations to obtain, for given l, the actions I1,2

along paths in the (h, k) plane. Integration at fixed energy h thus produces an entire line on the energy

surface. However, the set of coefficients Aij and Bij is so cumbersome that it is by no means obvious

which of the two methods gives faster access to the desired results. This will be investigated in future

work.
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Appendix

A Coefficients Aij

In addition to the abbreviations δ and ∆ introduced in (43), the following expressions use

µ = k2 − 1 and ν = l4k2 − 1 .

The 16 coefficients Aij in (45) are

A0, 0 = −1
8

l2

µ
+

1
16

(−l8 − 4 (4 k2 + 3) l4) h

ν δ
+

1
32

l10 + 10 l6 − 8 (4 k2 + 1) l2

ν δ

+
1
4

(l8 + (16 k6 − 20 k4 − 7 k2 + 10) l4) h3

µ ν ∆
+

1
8

((34 k2 − 1) l6 + 4 (−11 + 2 k2 + 8 k4) l2) h2

ν ∆

+
1
16

(−9 l8 − 4 (−11 k2 + 23 + 16 k6 − 52 k4) l4)h

ν ∆

+
1
32

−27 l10 + (88 k6 − 228 k4 + 426 k2 − 259) l6 − 16 (8 k4 − 14 k2 + 9) (k2 − 1)2 l2

µ ν ∆
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A0, 1 =
1
8

(5 l6 + 4 (4 k2 + 7) l2)h

ν δ
+

1
16

−5 l8 + 2 (16 k2 − 9) l4 + 32 k2 + 8
ν δ

+
1
2

(5 l6 − (16 k4 + 12 k2 − 23) l2)h3

ν ∆
+

1
4

(−(112 k4 − 5 − 58 k2) l4 − 8 (k2 − 1) (4 k2 − 5))h2

ν ∆

+
1
8

(−3 (68 k2 − 15) l6 + 4 (−71 k2 − 36 k4 + 94 + 16 k6) l2) h

ν ∆

+
1
16

−135 l8 + 2 (−283 + 326 k2 + 96 k6 − 292 k4) l4 + 32 (4 k2 − 5) (k2 − 1)2

ν ∆

A0, 2 =
1
4

(−16 − 7 l4) h

ν δ
+

1
8

7 l6 − 2 (16 k2 − 1) l2

ν δ
+

(7 (k2 − 1) l4 + 16 k2 − 16)h3

ν ∆

+
1
2

l2 (16 k2 + 7) (2 k2 − 1) h2

ν ∆
+

1
4

((100 k4 + 32 k2 − 63) l4 − 64 (k2 − 1)2) h

ν ∆

+
1
8

9 (21 + 2 k2) l6 − 4 (k2 − 1) (32 k4 − 66 k2 + 37) l2

ν ∆

A0, 3 =
3
2

l2 h

ν δ
+

3
4

2 − l4

ν δ
+

(−6 k2 + 6) l2 h3

ν ∆
+ 3

(−l4 k2 + 2 − 2 k2)h2

ν ∆
+

1
2

(12 k4 − 48 k2 + 27) l2 h

ν ∆

+
3
4
−3 (9 + 4 k4 − 10 k2) l4 + 8 (k2 − 1)2

ν ∆

A1, 0 = −1
8

l2 h

µ
+

1
16

−(k2 − 2) l4 + 8 (k2 − 1)2

µ2
+

1
32

(−l10 − 4 (4 k2 + 3) l6) h

ν δ

+
1
64

l12 + 10 l8 − 8 (4 k2 + 1) l4

ν δ

+
1
8

(−l10 + (16 k6 − 43 k4 + 37 k2 − 9) l6 + 4 (4 k2 − 5) (k2 − 1)2 l2) h3

ν µ2 ∆

+
1
16

(−l8 + 2 (−5 + 4 k2 + 16 k4) l4) h2

ν ∆

+
1
32

(9 l10 + (64 k6 + 60 k4 − 216 k2 + 83) l6 − 16 (4 k2 − 5) (k2 − 1)2 l2) h

ν µ∆

+
1
64

27 l12 − (669 k2 − 232 − 534 k4 + 124 k6) l8 − 8 (16 k6 − 44 k4 + 35 k2 − 16) (k2 − 1)2 l4

ν µ2 ∆
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A1, 1 =
5
8

l2

µ
+

1
16

(5 l8 + 4 (4 k2 + 7) l4)h

ν δ
+

1
32

−5 l10 + 2 (16 k2 − 9) l6 + 8 (4 k2 + 1) l2

ν δ

+
1
4

(−5 l8 − (−35 k2 + 18 − 4 k4 + 16 k6) l4)h3

µ ν ∆
+

1
8

(−(58 k2 − 5) l6 − 4 (8 k4 + 10 k2 − 19) l2)h2

ν ∆

+
1
16

(45 l8 + 4 (−71 k2 + 43 + 16 k6 − 36 k4) l4)h

ν ∆

+
1
32

135 l10 − (248 k6 − 756 k4 + 1074 k2 − 431) l6 + 16 (4 k2 − 1) (2 k2 − 1) (k2 − 1)2 l2

µ ν ∆

A1, 2 =
1
8

(−7 l6 − 16 l2) h

ν δ
+

1
16

7 l8 − 2 (16 k2 − 1) l4

ν δ
+

1
2

(−7 l6 + (16 k2 − 9) l2) h3

ν ∆

+
1
4

l4 (16 k2 + 7) (2 k2 − 1) h2

ν ∆
+

1
8

(3 (44 k2 − 21) l6 − 4 (k2 − 1) (16 k2 − 41) l2)h

ν ∆

+
1
16

189 l8 − 2 (64 k6 − 196 k4 − 83 + 206 k2) l4

ν ∆

A1, 3 =
3
4

l4 h

ν δ
+

1
8
−3 l6 + 6 l2

ν δ
+

(−3 k2 + 3) l4 h3

ν ∆
+

1
2

(−6 k2 + 3) l2 h2

ν ∆
+

1
4

(12 k4 − 48 k2 + 27) l4 h

ν ∆

+
1
8

27 (−3 + 2 k2) l6 + 12 (k2 − 1) (2 k2 − 5) l2

ν ∆

A2, 0 = −1
8

l2 h2

µ
+

1
16

(−k2 + 2) l4 h

µ2
+

1
32

−(3 + k4 − 3 k2) l6 − 4 (k2 − 2) (k2 − 1)2 l2

µ3

+
1
64

(−l12 − 4 (4 k2 + 3) l8) h

ν δ
+

1
128

l14 + 10 l10 − 8 (4 k2 + 1) l6

ν δ

+
1
16

(l12 − (−40 k4 − 8 + 15 k6 + 34 k2) l8 + 4 (4 k4 − 5 k2 + 2) (k2 − 1)2 l4) h3

ν µ3 ∆

+
1
32

(l10 + (32 k6 − 24 k4 − 18 k2 + 9) l6) h2

ν µ∆

+
1
64

(−9 l12 + (236 k6 − 564 k4 + 411 k2 − 74) l8 − 16 (4 k4 − 13 k2 + 12) (k2 − 1)2 l4)h

µ2 ν ∆

+
1

128
−27 l14 + (394 k6 − 1047 k4 + 885 k2 − 205) l10 − 4 (32 k8 − 120 k6 + 158 k4 − 71 k2 + 28) (k2 − 1)2 l6

ν µ3 ∆
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A2, 1 =
5
8

l2 h

µ
+

1
16

5 (k2 − 2) l4 + 24 (k2 − 1)2

µ2
+

1
32

(5 l10 + 4 (4 k2 + 7) l6)h

ν δ

+
1
64

−5 l12 + 2 (16 k2 − 9) l8 + 8 (4 k2 + 1) l4

ν δ

+
1
8

(5 l10 − (73 k2 − 87 k4 − 13 + 32 k6) l6 − 4 (4 k2 − 5) (k2 − 1)2 l2) h3

ν µ2 ∆

+
1
16

(5 l8 − 2 (16 k4 + 20 k2 − 9) l4)h2

ν ∆

+
1
32

(−45 l10 − (−536 k2 + 364 k4 + 127) l6 + 16 (4 k2 − 5) (k2 − 1)2 l2) h

ν µ∆

+
1
64

−135 l12 + (332 k6 − 1230 k4 + 1329 k2 − 296) l8 + 8 (16 k6 − 28 k4 − 17 k2 + 20) (k2 − 1)2 l4

ν µ2 ∆

A2, 2 = −7
8

l2

µ
+

1
16

(−7 l8 − 16 l4)h

ν δ
+

1
32

7 l10 − 2 (16 k2 − 1) l6

ν δ
+

1
4

(7 l8 + (16 k4 − 25 k2 + 2) l4) h3

µ ν ∆

+
1
8

((30 k2 − 7) l6 + 32 (k2 − 1) l2)h2

ν ∆
+

1
16

(−63 l8 − 4 (16 k4 − 57 k2 + 8) l4) h

ν ∆

+
1
32

−189 l10 + (136 k6 − 420 k4 + 450 k2 + 23) l6 − 128 (k2 − 1)3 l2

µ ν ∆

A2, 3 =
3
8

l6 h

ν δ
+

1
16

−3 l8 + 6 l4

ν δ
+

1
2

(3 l6 − 3 l2)h3

ν ∆
+

1
4

(−6 k2 + 3) l4 h2

ν ∆

+
1
8

(−9 (4 k2 − 3) l6 + 12 (k2 − 1) l2) h

ν ∆
+

1
16

−81 l8 + 6 (4 k4 − 14 k2 + 19) l4

ν ∆

A3, 0 = −1
8

l2 h3

µ
+

1
16

(−k2 + 2) l4 h2

µ2
+

1
32

(−(3 − 3 k2 + k4) l6 + 4 (k2 − 1)2 k2 l2) h

µ3

+
1
64

−(k2 − 2) (k4 − 2 k2 + 2) l8 − 2 (k2 + 1) (2 k2 − 1) (k2 − 1)2 l4

µ4
+

1
128

(−l14 − 4 (4 k2 + 3) l10) h

ν δ

+
1

256
l16 + 10 l12 − 8 (4 k2 + 1) l8

ν δ

+
1
32

(−l14 + (14 k6 − 37 k4 + 31 k2 − 7) l10 + (16 k6 − 36 k4 + 13 k2 + 3) (k2 − 1)2 l6) h3

ν µ4 ∆

+
1
64

(−l12 + (48 k6 − 106 k4 + 67 k2 − 8) l8 + 8 (4 k2 − 5) (k2 − 1)2 l4) h2

µ2 ν ∆

+
1

128
(9 l14 − (285 k2 + 128 k6 − 65 − 339 k4) l10 − 4 (16 k6 − 68 k4 + 41 k2 + 2) (k2 − 1)2 l6)h

µ3 ν ∆
+

1
256

(27 l16 − (804 k2 − 178 − 966 k4 + 367 k6) l12

+ 2 (32 k8 − 124 k6 + 154 k4 + 79 k2 − 87) (k2 − 1)2 l8 − 32 (4 k2 − 5) (k2 − 1)5 l4)
/

(ν µ4 ∆)
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A3, 1 =
5
8

l2 h2

µ
+

1
16

(5 k2 − 10) l4 h

µ2
+

1
32

5 (3 − 3 k2 + k4) l6 − 4 (3 k2 − 2) (k2 − 1)2 l2

µ3

+
1
64

(5 l12 + 4 (4 k2 + 7) l8)h

ν δ
+

1
128

−5 l14 + 2 (16 k2 − 9) l10 + 8 (4 k2 + 1) l6

ν δ

+
1
16

(−5 l12 + (27 k6 − 72 k4 + 58 k2 − 8) l8 − 4 (4 k4 − k2 − 2) (k2 − 1)2 l4) h3

ν µ3 ∆

+
1
32

(−5 l10 − (−58 k2 + 8 k4 + 32 k6 + 13) l6) h2

ν µ∆

+
1
64

(45 l12 − (−996 k4 − 82 + 412 k6 + 711 k2) l8 + 16 (4 k4 − 9 k2 + 8) (k2 − 1)2 l4)h

µ2 ν ∆

+
1

128
135 l14 − (674 k6 − 1779 k4 + 1401 k2 − 161) l10 + 4 (32 k8 − 88 k6 + 22 k4 + 157 k2 − 96) (k2 − 1)2 l6

ν µ3 ∆

A3, 2 = −7
8

l2 h

µ
+

1
16

−7 (k2 − 2) l4 + 40 (k2 − 1)2

µ2
+

1
32

(−7 l10 − 16 l6) h

ν δ
+

1
64

7 l12 − 2 (16 k2 − 1) l8

ν δ

+
1
8

(−7 l10 + (16 k6 − 41 k4 + 27 k2 + 5) l6)h3

ν µ2 ∆
+

1
16

(−7 l8 + 2 (16 k2 − 1) l4) h2

ν ∆

+
1
32

(63 l10 − (260 k2 − 292 k4 + 64 k6 + 31) l6)h

ν µ∆

+
1
64

189 l12 − (−462 k4 + 212 + 148 k6 + 291 k2) l8 − 8 (16 k2 − 33) (k2 − 1)3 l4

ν µ2 ∆

A3, 3 =
3
8

l2

µ
+

3
16

l8 h

ν δ
+

1
32

−3 l10 + 6 l6

ν δ
+

1
4

(−3 l8 − 3 (k2 − 2) l4)h3

µ ν ∆
+

1
8

(−6 k2 + 3) l6 h2

ν ∆

+
1
16

(27 l8 + 12 (k2 − 4) l4) h

ν ∆
+

1
32

81 l10 + 3 (2 k2 − 5) (4 k4 − 8 k2 + 13) l6

µ ν ∆

B Coefficients Bij

In addition to the abbreviations δ and ∆ introduced in (43), the following expressions use

ξ = 2h − l2 and η = l4 + 2 − 2hl2 .

The 16 coefficients Bij in (45) are
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B0, 0 = −1
2

(h2 + 1)h

ξ k2
+

1
8
−l6 + 8h l4 − 4 (4h2 + 1) l2

η ξ δ
+

1
2

(−3 l4 − 2 h (2 h2 + 1) l2 + 4 (h − 1) (h + 1)) k4

η ∆

+
1
4

(3 (8h2 + 5) l4 + 8h (2h4 + h2 + 3) l2 − 16 (h − 1) (h + 1) (h2 + 1)) k2

η ∆

+
1
8

63 h l6 + (28h4 − 94 h2 − 27) l4 − 8 h (2 h6 + h4 + 4h2 − 1) l2 + 16 (h − 1) (h + 1) (h2 + 1)2

η ∆

B0, 1 =
1
2

5 h2 + 1
ξ k2

+
1
4

4 − 3 l4 + 8h l2 + 16h2

ξ η δ
+

(5 (2h2 + 1) l2 − 2 h) k4

η ∆

+
1
2

(−10 h l4 − (40 h4 + 68h2 + 35) l2 + 4 (6h2 + 1)h) k2

η ∆

+
1
8
−63 l6 − 8 h (27 h2 − 8) l4 + 4 (20h6 + 26h4 + 91h2 + 16) l2 − 80 (h2 + 1)h3

η ∆

B0, 2 = −7
2

h

ξ k2
+

1
2
−16 h + l2

ξ η δ
+ 2

(−1 − 7 h l2) k4

η ∆
+

1
2

(−3 l4 + 2h (28h2 + 53) l2 − 24 h2 + 8) k2

η ∆

+
1
4

(166 h2 + 15) l4 − 4 h (14 h4 + 21h2 + 69) l2 + 8 (7h2 − 1) (h2 + 1)
η ∆

B0, 3 =
3
2

1
ξ k2

+ 3
1

ξ η δ
+ 6

l2 k4

η ∆
+ 3

(−(4 h2 + 7) l2 + 2h) k2

η ∆

+
3
2
−12 h l4 + (4h4 + 6h2 + 19) l2 − 4 (h2 + 1)h

η ∆

B1, 0 = −1
2

(h2 + 1)h2

ξ k2
+

1
16

−l8 + 8h l6 − 4 (4h2 + 1) l4

η ξ δ

+
1
2

(−6 h l4 − (−1 − 6 h2 + 4h4) l2 + 4 (h − 1) (h + 1)h) k4

η ∆

+
1
8

(9 l6 + 4 (14h2 + 13)h l4 + 4 (8h6 − 20 h2 − 4 h4 + 1) l2 − 32 (h − 1) (h + 1) (h2 + 1)h) k2

η ∆

+
1
16

(3 (44h2 − 9) l6 + 2 (32h4 − 124 h2 − 67) h l4 − 8 (4 h8 + h4 + 2h6 − 27 h2 + 2) l2

+ 32 (h − 1) (h + 1) (h2 + 1)2 h)/(η ∆)
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B1, 1 =
1
2

(5h2 + 1)h

ξ k2
+

1
8
−3 l6 + 8h l4 + 4 (4h2 + 1) l2

η ξ δ
+

1
2

(7 l4 + 2 (10h2 − 3)h l2 − 20 h2 + 4) k4

η ∆

+
1
4

(−(56 h2 + 43) l4 − 40 (2 h2 − 1) (h2 + 1)h l2 + 16 (5h2 − 1) (h2 + 1)) k2

η ∆

+
1
8
−75 h l6 − (−246 h2 − 103 + 236 h4) l4 + 8 (10h6 + 13h4 + 28h2 − 13) h l2 − 16 (5 h2 − 1) (h2 + 1)2

η ∆

B1, 2 = −7
2

h2

ξ k2
+

1
4

l4 − 16 h l2

ξ η δ
+

(−(1 + 14h2) l2 + 14h) k4

η ∆

+
1
2

(22 h l4 + (56h4 + 44h2 + 7) l2 − 56 (h2 + 1)h) k2

η ∆

+
1
8

9 l6 + 8 (45h2 − 26) h l4 − 4 (42h4 + 28h6 + 99h2 + 5) l2 + 112 (h2 + 1)2 h

η ∆

B1, 3 =
3
2

h

ξ k2
+

3
2

l2

ξ η δ
+ 6

(−1 + h l2) k4

η ∆
+

3
2

(−3 l4 − 2 (4 h2 + 3)h l2 + 8h2 + 8) k2

η ∆

+
3
4
−(26 h2 − 15) l4 + 4 (2h4 + 3h2 + 7)h l2 − 8 (h2 + 1)2

η ∆

B2, 0 =
1
4
− 1

2
(h2 + 1)h3

ξ k2
+

1
32

−l10 + 8h l8 − 4 (4 h2 + 1) l6

η ξ δ

+
1
4

(−(10 h2 − 1) l4 − 4 (h2 − 2) (2h2 + 1)h l2 + 8 (h − 1) (h + 1)h2) k4

η ∆
+

1
8
((15h l6

+ (2h + 1) (2h − 1) (12h2 + 7) l4 + 8 (4h6 − 2 h4 − 11 h2 − 3)h l2

− 32 (h − 1) (h + 1) (h2 + 1)h2)k2)/(η ∆) +
1
32

(−27 l8 + 6 (40h2 − 17) h l6

+ 8 (−61 h4 − 18 h2 + 18h6 − 2) l4 − 32 (2 h8 + h6 + h4 − 15 h2 − 1)h l2

+ 64 (h − 1) (h + 1) (h2 + 1)2 h2)/(η ∆)

B2, 1 =
1
2

(5h2 + 1)h2

ξ k2
+

1
16

−3 l8 + 8h l6 + 4 (4h2 + 1) l4

η ξ δ

+
1
2

(6h l4 + (20h4 − 14 h2 − 5) l2 − 4 (5 h2 − 1)h) k4

η ∆

+
1
8

(−21 l6 − 4 (22 h2 + 5)h l4 − 4 (12 h4 + 40h6 − 52 h2 − 7) l2 + 32 (5h2 − 1) (h2 + 1)h) k2

η ∆
+

1
16

(−(68 h2 − 87) l6 − 2 (256 h4 − 252 h2 − 47) h l4 + 8 (20h8 + 53h4 − 51 h2 + 26h6 − 2) l2

− 32 (5h2 − 1) (h2 + 1)2 h)/(η ∆)
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B2, 2 = −7
2

h3

ξ k2
+

1
8

l6 − 16 h l4

ξ η δ
+

1
2

(−l4 − 14 (2h2 − 1)h l2 + 28h2) k4

η ∆

+
1
4

((32h2 + 7) l4 + 4 (28h4 + 14h2 − 25) h l2 − 112 (h2 + 1)h2) k2

η ∆

+
1
8
−51 h l6 + (388h4 − 230 h2 − 19) l4 − 8 (14 h6 + 21h4 + 45h2 − 18)h l2 + 112 (h2 + 1)2 h2

η ∆

B2, 3 =
3
2

h2

ξ k2
+

3
4

l4

ξ η δ
+ 3

((2h2 − 1) l2 − 2 h) k4

η ∆
+

3
2

(−2 h l4 − (8 h4 + 4h2 − 7) l2 + 8 (h2 + 1)h) k2

η ∆

+
3
8

9 l6 − 8 (7 h2 − 4) h l4 + 4 (6h4 + 4h6 + 13h2 − 5) l2 − 16 (h2 + 1)2 h

η ∆

B3, 0 =
1
4

h − 1
16

l2 − 1
2

(h2 + 1)h4

ξ k2
+

1
64

−l12 + 8h l10 − 4 (4h2 + 1) l8

η ξ δ

+
1
8

(3 l6 − 4 (2 h − 1) (2h + 1)h l4 − 4 (−1 − 3 h2 + 4h6 − 6 h4) l2 + 16 (h − 1) (h + 1)h3) k4

η ∆
+

1
16

((3 (2h2 − 5) l6 + 2 (40h4 + 12h2 − 19)h l4 + 16 (4h8 − 2 h6 − 10 h4 − 1 − 3 h2) l2

− 64 (h − 1) (h + 1) (h2 + 1)h3)k2)/(η ∆) +
1
32

(−90 h l8 + (212h4 − 8 h2 + 27) l6

+ 8 (20h6 − 60 h4 − 14 h2 − 3) h l4 − 16 (2h8 + 4h10 + 3h6 − 29 h4 − 3 h2 − 1) l2

+ 64 (h − 1) (h + 1) (h2 + 1)2 h3)/(η ∆)

B3, 1 =
3
4

+
1
2

(5 h2 + 1)h3

ξ k2
+

1
32

−3 l10 + 8h l8 + 4 (4h2 + 1) l6

η ξ δ

+
1
4

((2h2 − 5) l4 + 4 (10h4 − 7 h2 − 2)h l2 − 8 (5 h2 − 1) h2) k4

η ∆
+

1
8
((−11 h l6

− (−48 h2 + 48h4 − 35) l4 − 8 (h − 1) (h + 1) (20h4 + 26h2 + 3)h l2 + 32 (5h2 − 1) (h2 + 1)h2)

k2)/(η ∆) +
1
32

(63 l8 + 10 (8h2 + 11)h l6 − 8 (−113 h4 + 22h2 + 138h6 + 8) l4

+ 32 (10h8 + 13h6 + 29h4 − 23 h2 − 1)h l2 − 64 (5h2 − 1) (h2 + 1)2 h2)/(η ∆)
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B3, 2 = −7
2

h4

ξ k2
+

1
16

l8 − 16 h l6

η ξ δ
+

1
2

(6 h l4 − (−1 − 14 h2 + 28h4) l2 + 28h3) k4

η ∆

+
1
8

(3 l6 + 4 (2h2 − 23) h l4 + 8 (14h4 + 28h6 − 22 h2 − 1) l2 − 224 (h2 + 1)h3) k2

η ∆
+

1
16

(

−(268 h2 + 15) l6 + 2 (416h4 − 188 h2 + 119)h l4 − 8 (42 h6 + 28h8 + 97h4 − 1 − 30 h2) l2

+ 224 (h2 + 1)2 h3)/(η ∆)

B3, 3 =
3
2

h3

ξ k2
+

3
8

l6

ξ η δ
+

3
2

(−l4 + 2 (2h2 − 1) h l2 − 4 h2) k4

η ∆

+
3
4

(7 l4 − 4 (4 h4 + 2h2 − 3)h l2 + 16 (h2 + 1)h2) k2

η ∆

+
3
8

21 h l6 − (−26 h2 + 60h4 + 19) l4 + 8 (2h6 + 3h4 + 7h2 − 2)h l2 − 16 (h2 + 1)2 h2

η ∆
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