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Preface

This book began as a set of lecture notes for a postgraduate course at
the University of Sydney in 1982. The aim was to start with vector spaces,
introduce sesquilinear forms, and then study the classical groups (i.e., the
special linear, symplectic, unitary and orthogonal groups) along the lines of
Artin (1957)†.

In 1983 the manuscript was extensively rewritten while on leave at the
University of Oregon and the University of New South Wales. During the
rewriting more emphasis was placed on the “buildings” of the groups and
their corresponding BN -pairs. However, the buildings and other related
geometries are constructed from the vector spaces and sesquilinear forms
in keeping with the original approach to the classical groups. In the early
parts of the book vector spaces over arbitrary division rings are considered.
But after Chapter 7 it is assumed that the vector spaces and groups are
defined over fields and that the bilinear forms have isotropic points. In the
latter half of the book more attention is given to groups defined over finite
fields. The classification of the finite simple groups was completed in 1980
and as a consequence all but 26 of the non-abelian finite simple groups are
now known to be either an alternating group or a group of Lie type. If the
dimension is large enough, a simple group of Lie type is a classical group.
Thus the classical groups play a central rôle in the study of all finite groups.
A wealth of information about the finite case can be found in Kleidman and
Liebeck (1990).

There is a uniform approach to these groups which begins with complex
semisimple Lie algebras. This was discovered by Chevalley (1955) and de-
veloped by Steinberg (1959), Tits (1959) and Hertzig (1961). However, in
order to make this book more accessible to students with a background in
linear algebra and a little group theory, but no Lie theory, I have not used
Chevalley’s approach. Similarly, even though I have included a chapter on
buildings, I have avoided basing the book on the abstract theory of buildings
and algebraic groups. The intention has always been to build up the exam-
ples from the underlying vector spaces. Moreover, excellent accounts of the
other approaches can be found in Brown (1989), Carter (1972), Ronan (1989)
and Tits (1974); the present book can be regarded as an introduction to their
works via linear algebra.

† References to the bibliography are given in the form “Name (date)”.
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The first draft of Chapters 1 through 8 was produced in 1982. I am
indebted to Cathy Kicinski for typing it, and for typing part of the bibliog-
raphy. In 1983 I typed the second draft, including the present Chapter 10,
on an Apple II computer. Not long after that the files were transferred to
a system where Knuth’s typesetting program TEX was available. Since then
the computers have changed but the typesetting program has remained TEX.

Most of the final draft was produced between January and June 1990 while
on leave at the Université du Québec à Montréal. I am especially grateful
to Pierre Leroux, André Joyal, François Bergeron and their colleagues at
LACIM (Laboratoire de combinatoire et d’informatique mathématique) for
a warm and hospitable environment and the encouragement to complete
this project. It was there that I decided to take a uniform approach to
the orthogonal groups. Originally there were two chapters: one for fields of
characteristic 2 and another for all other characteristics. In reviewing these
chapters it became apparent that many of the proofs for the groups over
fields of characteristic 2 applied generally. On the other hand, if one were
willing to exclude the characteristic 2 case it was almost always possible to
obtain much shorter proofs. I have opted for uniformity at the expense of
brevity.

The last chapter was written at the University of Sydney but it is based
on material written in 1978 at the University of Eindhoven and published as
an Appendix to Higman (1978).

The book has been greatly improved by many suggestions from the partic-
ipants in the various courses I have given at Sydney on this material and by
the remarks of Bill Kantor and Gary Seitz during my stay at the University
of Oregon. I am most grateful to Stephen Glasby, Bob Howlett and Mathew
Nicol for their numerous excellent suggestions on improving the content and
the style. Special thanks is due to Leanne Rylands for her support during
the project and for her careful reading of the many drafts.

Finally, my apologies to Dr Heldermann for the long delay in producing
the final copy and much gratitude for his patience.

March 1991 D.E.T.
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1

Groups Acting on Sets

This chapter provides a quick review of the basic notions of permutation
group theory needed in the rest of the book. The main result is Iwasawa’s
criterion for the simplicity of a primitive group. In some chapters more
specialized results about permutation groups acting on graphs and designs
are needed and these are developed when required. Not everything is proved,
but most of the unproved assertions appear again as exercises at the end of
the chapter.

Let G be a group which acts on a non-empty set Ω. That is, for each
element g ∈ G, there is a bijection α 7→ g(α) of Ω such that

1(α) = α for all α ∈ Ω, and
(gh)(α) = g(h(α)) for all α ∈ Ω and all g, h ∈ G.

In general, the groups considered in this book consist of linear transforma-
tions and usually a linear transformation is written to the left of the vector
(or subspace) on which it operates. This is the reason for using the notation
g(α) rather than αg as in Wielandt (1964).

For ∆ ⊆ Ω and g ∈ G, define g(∆) := { g(α) | α ∈ ∆ } and call the
subgroup G∆ := { g ∈ G | g(∆) = ∆ } the stabilizer of ∆ in G. The
pointwise stabilizer of ∆ is the subgroup

G(∆) := { g ∈ G | g(α) = α for all α ∈ ∆ }.

If ∆ = {α, . . . , ω}, we write Gα, ..., ω instead of G(∆).

For ∆ ⊆ Ω and g ∈ G, the assignment

∆ 7→ g(∆)

defines an action of G on the set of all subsets of Ω. The group G(Ω) is called
the kernel of the action of G on Ω. If G(Ω) = 1, G is said to act faithfully
on Ω or it is said to be a group of permutations of Ω. Each element g ∈ G∆

induces a permutation g∆ of ∆. The assignment g 7→ g∆ is a homomorphism
with kernel G(∆). Thus G∆ := G∆/G(∆) is (up to isomorphism) the group
of permutations that G∆ induces on ∆.
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A subset ∆ of Ω is said to be G-invariant if G∆ = G. A minimal (non-
empty) G-invariant subset of Ω is called an orbit. It is readily seen that Ω
is the disjoint union of its orbits and that the orbit which contains α ∈ Ω is
orbG(α) := { g(α) | g ∈ G }.

The mapping g(α) 7→ gGα is a well-defined bijection between the orbit
orbG(α) and the set G : Gα of left cosets of Gα in G. In particular, if
orbG(α) is finite, we have

| orbG(α)| = |G : Gα|.
(We use |X| to denote the size (or order) of the finite set X.)

When G has only one orbit (namely Ω), G is said to be transitive (or to
act transitively on Ω). If G is transitive and Gα = 1 for all α ∈ Ω, we say
that G acts regularly on Ω.

Suppose that G acts on Ω and that k is a natural number. Then G acts
on the set Ωk of k-tuples of elements of Ω. The action is defined by

g(α1, α2, . . . , αk) := (g(α1), g(α2), . . . , g(αk)).

Let Ω[k] be the subset of Ωk consisting of those k-tuples with distinct entries
from Ω. If G is transitive on Ω[k] and k ≤ |Ω|, then G is said to act k-
transitively on Ω.

A subset ∆ of Ω × Ω is a relation between Ω and itself. The converse of
the relation ∆ is defined to be

∆̌ := { (α, β) | (β, α) ∈ ∆ }.
For α ∈ Ω we define

∆(α) := {β | (α, β) ∈ ∆ }.
IfG acts transitively on Ω, then the assignment ∆ 7→ ∆(α) induces a bijection
between the orbits of G acting on Ω × Ω and the orbits of Gα acting on Ω.
The number of orbits of G on Ω× Ω is called the permutation rank of G.

A relation ∆ ⊆ Ω × Ω can be represented by the directed graph on Ω in
which α is joined to β whenever (α, β) ∈ ∆. If ∆ is G-invariant, then G acts
as a group of automorphisms of this graph. If ∆ = ∆̌ (i.e., if ∆ is symmetric),
we shall replace each pair of directed edges between two vertices by a single
undirected edge.

Suppose that G acts on Ω. The diagonal I := { (α, α) | α ∈ Ω }, and Ω×Ω
are G-invariant equivalence relations on Ω. If G is transitive and if I and
Ω × Ω are the only G-invariant equivalence relations on Ω, G is said to be
primitive; otherwise G is said to be imprimitive.

If G is imprimitive and E is a G-invariant equivalence relation that is
neither the diagonal I nor the whole set Ω×Ω, the equivalence classes of E
are called blocks of imprimitivity. Thus a block of imprimitivity is a subset B
of Ω such that |B| > 1, B 6= Ω and for all g ∈ G, g(B) = B or g(B)∩B = ∅.
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1.1 Theorem. Suppose that G acts transitively on Ω. If |Ω| > 1 and
α ∈ Ω, then G is primitive if and only if Gα is a maximal subgroup of G.

Proof. Suppose that B is a block of imprimitivity that contains α. Then
Gα ≤ GB ≤ G. Since |B| > 1, Gα 6= GB and since B 6= Ω, GB 6= G. Hence
Gα is not maximal.

Conversely, suppose that H is a proper subgroup of G which contains Gα as a
proper subgroup. Then orbH(α) is a block of imprimitivity for G. (Exercise
1.11.)

At this point it is possible to give the simplicity criterion of Iwasawa
(1941). Recall that a group G is simple if 1 and G are the only normal
subgroups of G. Also, the commutator subgroup (or derived group) of a
group G is the subgroup

G′ := 〈 ghg−1h−1 | g, h ∈ G 〉.

The element [g, h] := ghg−1h−1 is the commutator of g and h. Note that if
N is a normal subgroup of G, then G/N is abelian if and only if G′ ≤ N .

1.2 Theorem. Suppose that G acts primitively on the set Ω and that
G = 〈 gAg−1 | g ∈ G 〉, where A is an abelian normal subgroup of Gα for
some α ∈ Ω. Then

(i) if N is a normal subgroup of G, either N ≤ G(Ω) or G′ ≤ N ;

(ii) if G = G′, then G/G(Ω) is a simple group.

Proof. (i) Suppose that N 6≤ G(Ω). Then N 6≤ Gα (see Exercise 1.3 (ii))
and therefore G = NGα by the maximality of Gα. If g ∈ G, then g = nh,
where n ∈ N and h ∈ Gα. Hence gAg−1 = nhAh−1n−1 = nAn−1 ≤ NA. It
follows that G = NA and therefore G/N = NA/N ' A/A∩N is an abelian
group. Hence G′ ≤ N and (i) is proved.

(ii) This follows from (i) applied to G/G(Ω).

Given a group G we set

G(0) := G, G(m) := G(m−1)′

and call G(0), G(1), G(2), . . . the derived series of G. The group G is soluble
if G(m) = 1 for some m. A theorem similar to the one just proved holds when
the subgroup A is assumed to be soluble rather than abelian. The details
are left as an exercise.
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EXERCISES

1.1 Suppose that G acts on Ω. If ∆ ⊆ Ω, show that G∆ is a subgroup of
G and that G(∆) is a normal subgroup of G∆.

1.2 If G acts on Ω, show that Ω is the disjoint union of its orbits and that
the orbit containing α ∈ Ω is orbG(α).

1.3 Suppose that G acts on Ω.

(i) Show that g(α) 7→ gGα is a well-defined bijection between the
orbit orbG(α) and the set of left cosets of Gα.

(ii) If β = g(α), show that Gβ = gGαg
−1.

1.4 Suppose that G acts on Ω and that N is a normal subgroup of G which
acts regularly on Ω. Fix α ∈ Ω and show that n(α) 7→ n defines a
bijection between Ω and N . Show that under this bijection the action
of Gα on Ω corresponds to the action of Gα on N by conjugation.

1.5 Suppose that G acts faithfully on Ω and that the only G-invariant
equivalence relations are Ω×Ω and the diagonal. If G is not transitive,
show that |Ω| = 2 and G = 1.

1.6 Suppose that G acts transitively on Ω and that H is a subgroup of G.
Show that H is transitive on Ω if and only if G = GαH for any α ∈ Ω.
Taking Ω to be the set of Sylow p-subgroups of a normal subgroup K
of G, deduce that G = KNG(P ) for any P ∈ Ω.

1.7 Show that a non-trivial normal subgroup of a faithful primitive group
is transitive.

1.8 If G acts transitively on Ω, show that the assignment ∆ 7→ ∆(α)
induces a one-to-one correspondence between the orbits of G on Ω×Ω
and the orbits of Gα on Ω.

1.9 Suppose that H is a subgroup of a group G and let Ω be the set of
cosets gH, g ∈ G. Let G act on Ω by multiplication on the left. (Thus
x ∈ G sends gH to xgH.) Show that the orbits of H on Ω correspond
to the double cosets of H in G. That is, each double coset HgH is a
union of the elements in an orbit of H.
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1.10 Suppose that G acts transitively on Ω and that ∆ is a non-diagonal
orbit of G on Ω × Ω. Show that if the graph associated with ∆ is
connected and (α, g(α)) ∈ ∆ for some g ∈ G, then G = 〈Gα, g〉.
Deduce that if the graphs associated with each of the non-diagonal
orbits of G on Ω × Ω are connected, then G is primitive. Show that
when G is finite the converse holds.

1.11 Fill in the details of the proof of Theorem 1.1. In particular, show
that orbH(α) is a block of imprimitivity for G.

1.12 Suppose that G acts transitively on Ω and that E is an equivalence
relation on {1, 2, . . . , k}. Let ΩE be the set of k-tuples (α1, α2, . . . , αk)
such that αi = αj if and only if (i, j) ∈ E. Show that

(i) ΩE is G-invariant.

(ii) Ωk is the disjoint union of all the ΩE .

(iii) G is k-transitive if and only if all the ΩE are orbits.

1.13 Show that a 2-transitive group is primitive.

1.14 Show that G is k-transitive on Ω if and only if Gα is (k−1)-transitive
on Ω− {α} and G is transitive on Ω.

1.15 Suppose that G acts faithfully and primitively on Ω and that S is a
soluble normal subgroup of Gα such that G = 〈 gSg−1 | g ∈ G 〉. If
G = G′, show that G is simple.

1.16 Suppose that G acts transitively on a set Ω of size n and that Gα has
orbits of length 1, k and l on Ω. If G is imprimitive, show that either
k + 1 or l + 1 divides n.

1.17 Suppose that G acts faithfully on Ω and that H is a subgroup of G.
Show that

(i) the centralizer CG(H) = { g ∈ G | gh = hg for all h ∈ H } of H
in G acts on the set

{α ∈ Ω | h(α) = α for all h ∈ H },

(ii) if CG(H) is transitive, then Hα = 1 for all α ∈ Ω, and

(iii) if H is transitive and abelian, then H is regular and CG(H) = H.
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Affine Geometry

In later chapters we shall restrict ourselves to the study of the structure of
groups of linear transformations of vector spaces defined over fields. But
commutativity (or the lack of it) does not affect the material in this chap-
ter. So until further notice we deal with vector spaces defined over division
rings. The main result is an affine version of the ‘Fundamental Theorem of
Projective Geometry’. This will be used in the next chapter to obtain the
projective version.

Let V be a finite-dimensional left vector space over a division ring K. An
affine space based on V is a set A on which V acts regularly. The elements
of A will be called points. The dimension of A is defined to be the vector
space dimension dimK V of V .

Since V is an additive group we use an additive notation to describe the
action of V on A. That is, for each point P of A and each vector v of V ,
there is a point P + v in A such that

(i) P + 0 = P ,

(ii) P + (u+ v) = (P + u) + v, and

(iii) given P , Q in A, there is a unique vector
−−→
PQ in V such that P +

−−→
PQ =

Q.

Given points P1, P2, . . . , Pr in A and elements a1, a2, . . . , ar in K such
that a1 + · · ·+ ar = 1, the point O+ a1

−−→
OP1 + · · ·+ ar

−−→
OPr is independent of

the choice of the point O and therefore we may unambiguously refer to it as
a1P1 + · · ·+ arPr (Exercise 2.2).

An affine subspace of A is a set B of points of the form O + w, where
O is a point and w runs through a subspace W of V . It is not hard to
see that B is an affine space in its own right based on the vector space
W . Thus the dimension of B is dimKW . We call W the direction of B.
If P1, P2, . . . , Pr are points of B, a straightforward calculation shows that
a1P1 + a2P2 + · · · + arPr is in B for all choices of a1, a2, . . . , ar such that
a1 + a2 + · · · + ar = 1. Indeed, the smallest affine subspace of A that
contains the given points P1, P2, . . . , Pr consists of the points of the form
a1P1 + a2P2 + · · ·+ arPr, where a1 + a2 + · · ·+ ar = 1.
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A frame of the subspace B is a set of points {P1, P2, . . . , Pr} such that
every point of B can be written uniquely in the form a1P1 +a2P2 + · · ·+arPr,
where a1 + a2 + · · ·+ ar = 1. We leave it as an exercise to show that B has
a frame and that the number of points in any frame of B is 1 + dimB.

The affine subspaces of dimension 1 are called the lines of A and those of
dimension 2 are called planes. A set of points is said to be collinear if they
lie on a line. If P and Q are distinct points, the line through them is written
PQ. It consists of the points of the form aP + (1− a)Q.

If P and Q belong to a subspace B, then all the points of PQ belong to
B. Conversely, if |K| 6= 2 and if B is a non-empty subset of A with the
property that whenever P and Q are distinct points of B the entire line PQ
is contained in B, it can be shown that B is an affine subspace (Exercise 2.5).

Semilinear Transformations

For the remainder of the chapter we study maps between affine spaces. Sup-
pose that A1 and A2 are affine spaces based on the vector spaces V1 and V2

over the division rings K1 and K2. A σ-semilinear transformation from V1

to V2 is a pair (f, σ) where

f :V1 → V2,

σ :K1 → K2 is an isomorphism of division rings,

f(u+ v) = f(u) + f(v) and

f(av) = σ(a)f(v) for all u, v ∈ V1 and all a ∈ K1.

Often we omit reference to σ and simply refer to ‘the semilinear transforma-
tion f ’. We call σ the isomorphism associated with f .

For each choice of points O1 ∈ A1 and O2 ∈ A2, the semilinear transfor-
mation f induces a transformation ϕ :A1 → A2 defined by

ϕ(O1 + v) := O2 + f(v).

It follows directly from this definition that

ϕ(a1P1 + · · ·+ arPr) = σ(a1)ϕ(P1) + · · ·+ σ(ar)ϕ(Pr).

In addition, ϕ takes collinear points to collinear points and maps each affine
subspace of A1 onto an affine subspace of A2.

These considerations motivate the following definition. If A1 and A2 are
affine spaces of the same dimension, an affine isomorphism is a bijection
ϕ :A1 → A2 that sends each affine subspace of A1 onto an affine subspace
of A2. (It is tempting to define affine transformations between affine spaces
of arbitrary dimensions but then one must be careful to avoid certain patho-
logical examples. See Exercise 2.14.)
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2.1 Lemma. Suppose that A1 and A2 are affine spaces of the same di-
mension over division rings K1 and K2, |K1| 6= 2. Suppose that ϕ :A1 → A2

is a bijection such that whenever P,Q and R are collinear points of A1,
then ϕ(P ), ϕ(Q) and ϕ(R) are collinear points of A2. Then ϕ is an affine
isomorphism and dimϕ(B) = dimB for every affine subspace B of A1.

Proof. Given a subspace B, choose subspaces

B0 ⊂ B1 ⊂ . . . ⊂ Bn = A1

so that dimBi = i (i = 0, 1, . . . , n) and B = Bk for some k. Let Ci be the
smallest subspace of A2 that contains ϕ(Bi). Since |K1| 6= 2, we can choose
distinct points P,Q of Bi+1\Bi such that PQ contains a point of Bi. Then
every point of Bi+1 is either on a line through P and a point of Bi or on a
line through Q and a point of Bi. It follows that dim Ci+1 ≤ 1 + dim Ci and
hence dim Ci ≤ i for all i. But dim Cn = n and consequently dim Ci = i for all
i. If ϕ(B) were not a subspace we could choose Bk+1 so that ϕ(Bk+1) ⊆ Ck,
contradicting dim Ck+1 = k + 1. Thus ϕ(B) is a subspace of A2 of the same
dimension as B.

This lemma implies that the inverse of an affine isomorphism is also an
affine isomorphism. (The case of affine spaces over the field of two elements
needs to be considered separately.)

In preparation for the main theorem we need to consider the effect of an
affine isomorphism on parallel lines. Two lines are parallel if they coincide
or if they lie in the same plane and have no point in common. Thus an affine
isomorphism takes parallel lines to parallel lines.

A 4-tuple of points (P,Q,R, S), no three of which are collinear, is called
a parallelogram if PQ is parallel to RS and QR is parallel to SP .

2.2 Lemma. If (P,Q,R, S) is a parallelogram, then
−−→
PQ +

−→
RS = 0 and

−−→
QR+

−→
SP = 0.

Proof. Exercise 2.9.

The next result is an affine version of the ‘Fundamental Theorem of Pro-
jective Geometry’.

2.3 Theorem. Suppose that A1 and A2 are affine spaces of dimension
n ≥ 2. If ϕ :A1 → A2 is an affine isomorphism, there is a unique (invertible)
semilinear transformation ϕ∗ :V1 → V2 such that ϕ(P + v) = ϕ(P ) + ϕ∗(v)
for all P ∈ A1 and v ∈ V1.
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Proof. Choose P ∈ A1 and for v ∈ V1 define ϕ∗(v) to be the (unique)
element of V2 such that ϕ(P + v) = ϕ(P ) +ϕ∗(v). We shall show that ϕ∗(v)
does not depend on the choice of P . In any case, if v = 0, then ϕ∗(v) = 0,
and so we may suppose v 6= 0 from now on.

Suppose that Q is a point not on the line through P and P + v. Then
(P,Q,Q+v, P+v) is a parallelogram and so (ϕ(P ), ϕ(Q), ϕ(Q+v), ϕ(P+v))
is a parallelogram also. It follows from Lemma 2.2 that

ϕ(Q+ v) = ϕ(Q) + ϕ∗(v).

If R is any point collinear with P and P + v, the same argument with Q in
place of P shows that

ϕ(R+ v) = ϕ(R) + ϕ∗(v).

Thus ϕ∗(v) is well-defined.

For u, v ∈ V1 we have ϕ(P )+ϕ∗(u)+ϕ∗(v) = ϕ(P+u)+ϕ∗(v) = ϕ(P+u+v)
and hence ϕ∗(u+v) = ϕ∗(u)+ϕ∗(v). To complete the proof that ϕ∗ :V1 → V2

is semilinear we must construct an isomorphism σ:K1 → K2.

For a ∈ K1, the points P, P + v and P + av are collinear and therefore the
same is true of ϕ(P ), ϕ(P ) + ϕ∗(v) and ϕ(P ) + ϕ∗(av). It follows that

ϕ∗(av) = σv(a)ϕ∗(v) for some σv(a) ∈ K2.

Suppose that u and v are linearly independent. Then P, P +u and P + v are
not collinear and therefore neither are ϕ(P ), ϕ(P )+ϕ∗(u) and ϕ(P )+ϕ∗(v).
It follows that ϕ∗(u) and ϕ∗(v) are linearly independent. Consequently we
have σu+v(a)ϕ∗(u+ v) = ϕ∗(au+ av) and hence

σu+v(a)(ϕ∗(u) + ϕ∗(v)) = σu(a)ϕ∗(u) + σv(a)ϕ∗(v).

Therefore σu(a) = σu+v(a) = σv(a). If w is a multiple of v, then σw(a) =
σu(a) and hence σw(a) = σv(a). Thus σv(a) does not depend on v and we
may write ϕ∗(av) = σ(a)ϕ∗(v). It is very easy to check that σ :K1 → K2 is
the required isomorphism. This completes the proof.

The semilinear transformation ϕ∗ is the derivative of ϕ.

The Affine Group

Let us return to the affine space A based on the vector space V over the
division ring K. The collection of all affine isomorphisms from A to itself
forms the affine group Aff(A). Since there is only one affine space of a given
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dimension (up to isomorphism), we may also denote the affine group by
Aff(n,K), where n is the dimension of A.

For each v ∈ V , the function τv :A → A defined by

τv(P ) = P + v

is an affine isomorphism called translation by v. For ϕ ∈ Aff(A) we have

ϕτvϕ
−1 = τϕ∗(v)

and so the group T (V ) of all translations is a normal subgroup of Aff(A).
Moreover, the assignment ϕ 7→ ϕ∗ is a homomorphism from Aff(A) onto the
group ΓL(V ) of all invertible semilinear transformations of V . The kernel of
this homomorphism is T (V ).

The group Aff(A) acts on A and T (V ) is a regular normal subgroup. The
stabilizer of a point O ∈ A is isomorphic to ΓL(V ) and therefore we may

write Aff(A) ' T (V ).ΓL(V ). More specifically, if ϕ ∈ Aff(A), let w =
−−−−→
Oϕ(O)

so that ϕ(P ) = τw(O)+ϕ∗(
−−→
OP ). Represent ϕ by the pair (τw, ϕ∗) and define

multiplication of pairs by

(τv, ψ∗)(τw, ϕ∗) = (τvτψ∗(w), ψ∗ϕ∗).

Thus Aff(A) is the semidirect product of T (V ) and ΓL(V ).

EXERCISES

2.1 If O, P and Q are points and v is a vector, show that P + v = Q if
and only if

−−→
OP + v =

−−→
OQ.

2.2 If a1 + a2 + · · ·+ ar = 1, show that the point O + a1
−−→
OP1 + a2

−−→
OP2 +

· · ·+ ar
−−→
OPr is independent of O.

2.3 Show that the smallest affine subspace of an affine space A that con-
tains the points P1, . . . , Pr ofA consists of the points a1P1+· · ·+arPr,
where a1 + a2 + · · ·+ ar = 1.

Call this the subspace spanned by P1, P2, . . . , Pr.

2.4 Show that P1, P2, . . . , Pr is a frame if and only if, for all i, Pi is not
in the subspace spanned by the remaining points.

2.5 Let B be a non-empty subset of an affine space over a field of at least
three elements. If every line that contains at least two points of B lies
entirely within B show that B is an affine subspace.
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2.6 If ϕ :A1 → A2 is an affine isomorphism induced by a semilinear trans-
formation, show that

ϕ(a1P1 + · · ·+ arPr) = σ(a1)ϕ(P1) + · · ·+ σ(ar)ϕ(Pr),

where σ is the associated isomorphism of division rings.

2.7 Show that two lines are parallel if and only if they have the same
direction.

2.8 If ` is a line and P is a point, show that there is a unique line through
P parallel to `.

2.9 Prove Lemma 2.2.

2.10 Show that an affine isomorphism takes parallel lines to parallel lines.

2.11 Suppose that f :V1 → V2 is a semilinear transformation and that W
is a subspace of V1. Show that f(W ) is a subspace of V2.

2.12 Fill in the details of Theorem 2.3. In particular, show that σ is an
isomorphism of division rings.

2.13 LetK be a division ring and letA be the set of all n-tuples (a1, . . . , an)
with entries from K. Make this set into a left vector space V over K
by defining addition and multiplication by scalars coordinatewise. Let
V act on A by addition and show that A becomes an affine space. If
B is any affine space of dimension n over K, show that there is an
affine isomorphism from B to A.

2.14 Consider the affine space of pairs (a, b) of real numbers. Let ϕ be the
map which sends (a, b) to (a2+b, 0). Show that ϕ takes collinear points
to collinear points but ϕ is not induced by a semilinear transformation.

2.15 Show that the affine group Aff(A) acts 2-transitively on the points of
A but in general it does not act 3-transitively.

2.16 Suppose that V is a finite dimensional vector space over a field F and
that W is a subspace of V . Let A be the set of subspaces U such
that V = U ⊕W . Show that A is an affine space based on the vector
space HomF(V/W,W ) of linear transformations V/W → W , where
the action of f ∈ HomF(V/W,W ) on U is defined by

U + f := {u+ f(u+W ) | u ∈ U }.
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2.17 If V is a vector space of dimension n over the finite field Fq of q
elements and if U is a subspace of dimension k, show that the number
of subspaces W of dimension l such that U ∩W = {0} is

qkl
(qn−k − 1)(qn−k−1 − 1) · · · (qn−k−l+1 − 1)

(ql − 1)(ql−1 − 1) · · · (q − 1)
.

(See Exercise 3.6 for an interpretation of the coefficient of qkl.)

2.18 If U1 and U2 are subspaces of the vector space V and dimU1 = dimU2,
show that U1 and U2 have a common complement in V .



3

Projective Geometry

Let V be a finite-dimensional left vector space over a division ring K. The set
of subspaces of V of dimension k is known as the Grassmannian Gk(V ). The
partially ordered set of all subspaces of V is the projective geometry P(V ).
If U and W are subspaces, we use U +W or 〈U,W 〉 to denote the subspace
spanned by U and W . This is the smallest subspace of V that contains both
U and W . Similarly, if v1, v2, . . . , vr ∈ V we use 〈v1, v2, . . . , vr〉 to denote
the subspace spanned by these vectors.

The elements of G1(V ) are called points, the elements of G2(V ) are called
lines, and so on. If dimK V = n, the elements of Gn−1(V ) are called hyper-
planes. In conformity with this notation the (projective) dimension of an
element of P(V ) is defined to be one less than its vector space dimension.
Thus points have dimension 0, lines have dimension 1, planes have dimension
2, and so on. If U and W are subspaces, Grassmann’s relation

dim(U +W ) + dim(U ∩W ) = dimU + dimW

remains true when dim is interpreted as the projective dimension.

In what follows it will be convenient to identify a subspace with the set
of points that belong to it. Under this identification the subspace {0} of V
corresponds to the empty set and has dimension −1. The lattice P(V ) can
be thought of as a lattice of subsets (corresponding to subspaces) of the set
of points. Its structure is determined by G1(V ) and G2(V ).

If V1 and V2 are left vector spaces of the same dimension over division
rings K1 and K2 respectively, then any bijective semilinear transformation
f :V1 → V2 induces bijections

Gk(f) :Gk(V1)→ Gk(V2)

and
P(f) :P(V1)→ P(V2).

The map G1(f) takes collinear points to collinear points. Conversely, if

ϕ :G1(V1)→ G1(V2)
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is a bijection that takes collinear points to collinear points, the proof of
Lemma 2.1 carries over to this situation (without any restriction on the size
of the field this time) and shows that ϕ extends to a (unique) bijection

ϕ :P(V1)→ P(V2)

which preserves inclusion. Such a map is called a collineation.

The aim of this chapter is to show that, when the projective dimension
is at least two, every collineation has the form P(f) for some semilinear
transformation f :V1 → V2. We do this by establishing a connection between
projective and affine geometries which allows us to apply Theorem 2.3.

Indeed, if H is a hyperplane of the projective geometry P(V ), the set
A := G1(V ) \G1(H) can be given the structure of an affine space based on
H. To see this, choose a vector u ∈ V \ H. Then every point of A can be
written as 〈u + h〉, where h ∈ H is uniquely determined by the point. The
action of w ∈ H on 〈u+ h〉 is defined by

〈u+ h〉+ w := 〈u+ h+ w〉.

The (affine) lines of A are the sets G1(W ) \ {W ∩H}, where W is a line of
P(V ) that is not contained in H. (Exercise 3.2.)

The next result is the Fundamental Theorem of Projective Geometry.

3.1 Theorem. Suppose that V1 and V2 are left vector spaces of dimension
n over division rings K1 and K2, and that n ≥ 3. If ϕ :G1(V1)→ G1(V2) is
a bijection that takes collinear points of V1 to collinear points of V2, then

(i) ϕ = G1(f), where f :V1 → V2 is a semilinear transformation with
associated isomorphism σ :K1 → K2, and

(ii) if ϕ = G1(f ′), where f ′ :V1 → V2 is a semilinear transformation with
associated isomorphism σ′ :K1 → K2, then there exists b ∈ K2 such
that for all v ∈ V1 and for all a ∈ K1 we have f ′(v) = bf(v) and
σ′(a) = bσ(a)b−1.

Proof. (i) As proved in Lemma 2.1 of Chapter 2 for the affine case, ϕ
takes subspaces to subspaces. Therefore it may be regarded as a collineation
from P(V1) to P(V2). Choose a hyperplaneH1 of P(V1), a vector u1 ∈ V1\H1,
set H2 = ϕ(H1) and choose u2 to span ϕ(〈u1〉). Give the sets

A1 = G1(V1) \G1(H1) and A2 = G1(V2) \G1(H2)

the structure of affine spaces based on H1 and H2 respectively (as indicated
above). Then ϕ induces an affine isomorphism ϕ :A1 → A2 and by Theorem
2.3 there is a semilinear transformation ϕ∗ :H1 → H2 such that for all h ∈
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H1, ϕ(〈u1 + h〉) = ϕ(〈u1〉) + ϕ∗(h). Let σ :K1 → K2 be the isomorphism
associated with ϕ∗ and define f :V1 → V2 by f(au1 + h) := σ(a)u2 + ϕ∗(h)
for all a ∈ K1, h ∈ H1. By construction, G1(f) coincides with ϕ on A1.
Also, if 〈h〉 is a point of H1, then

ϕ(〈h〉) = ϕ(〈u1, h〉) ∩H2 = 〈ϕ∗(h)〉 = 〈f(h)〉.

Hence ϕ = G1(f) as required.

(ii) The map g := f ′f−1 is a semilinear transformation from V2 to it-
self with associated isomorphism τ := σ′σ−1 and g induces the identity
collineation on G1(V2). For v ∈ V2 we have g(v) = bvv, where bv ∈ K2.
If u and v are linearly independent, then

bu+v(u+ v) = g(u+ v) = g(u) + g(v) = buu+ bvv

and therefore bu = bu+v = bv. If w is any vector in V2, then either u, v or
else v, w is a linearly independent pair. In any case it follows that the value
of bw does not depend on w and we may dispense with the subscripts on b.
Thus f ′ = bf for some b ∈ K2.

Finally, we have

σ′(a)bf(v) = bσ(a)f(v)

and therefore σ′(a) = bσ(a)b−1 for all a ∈ K1.

This result will be used in Chapter 7 to determine the possible types of
reflexive bilinear forms on a vector space. But now we use it to describe the
group of all collineations of the projective geometry P(V ). We assume that
dimK V ≥ 3.

Every element f of the group ΓL(V ) of semilinear transformations of V
induces a collineation P(f) of P(V ) and, by the theorem, every collineation
of P(V ) has this form. Also, the elements of ΓL(V ) that fix every point of
P(V ) form the subgroup

Z(V ) := { a1 | a ∈ K },

where 1 denotes the identity transformation of V . Thus the group PΓL(V )
of collineations of P(V ) is (isomorphic to) ΓL(V )/Z(V ).

Axioms for Projective Geometry

Instead of defining a projective geometry as the set of subspaces of some
vector space it is possible to start with a set (whose elements are called
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“points”) together with a set of distinguished subsets (“lines”) which satisfy
the following axioms:

I If A and B are distinct points, there is exactly one line AB which
contains both A and B.

II Each line contains at least three points.

III There is at least one line and not all points are on that line.

IV If A, B, C, D and E are five points such that B, C and D are
collinear, A, C and E are collinear but A, B and C are not collinear,
then there is a point F collinear with D and E and with A and B.

A set of points is said to be a subspace if whenever it contains distinct
points A and B it contains the entire line AB. A chain of distinct non-empty
subspaces

B0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ Bn

is a flag of length n. The geometry is finite-dimensional if there is an upper
bound on the lengths of its flags. The dimension of a finite-dimensional geom-
etry is the length of a maximal flag. If this dimension is at least three it can
be shown that the geometry has the form P(V ) for some finite-dimensional
vector space over a division ring. The details can be found in Baer (1952),
Chapter VII. Other discussions of the axioms occur in Whitehead (1906),
Veblen and Young (1918) and Dembowski (1968). A particular case of this
result will be proved in Chapter 6.

EXERCISES

3.1 If H is hyperplane of V and A = G1(V ) \G1(H), define an action of
H on A by

〈u+ h〉+ w := 〈u+ h+ w〉,

where u ∈ V \H and h, w ∈ H. Show that A becomes an affine space
based on H.

3.2 Let A be the affine space of 3.1. Show that its lines are the sets
G1(W ) \ {W ∩H}, where W ∈ G2(V ) \G2(H).

3.3 If in 3.1 we replace u by another vector u′ ∈ V \H we obtain another
affine spaceA′ also based on H. Give an explicit isomorphism between
A and A′.

3.4 Show that the group PΓL(V ) acts faithfully and transitively onGk(V )
for 0 < k ≤ dimK V − 1.
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3.5 Let ∆ be the subset of Gk(V )×Gk(V ) consisting of the pairs (U1, U2)
such that dimK(U1∩U2) = k−1. Show that ∆ is an orbit of PΓL(V ).

3.6 If K is the finite field of q elements and dimK V = n, show that

|Gk(V )| =
k−1∏
i=0

(qn − qi)/(qk − qi).

3.7 If H is a hyperplane of V , show that PΓL(V )H is the affine group
T (H).ΓL(H).

3.8 Show that PΓL(V ) acts 2-transitively on G1(V ).
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The General and Special Linear Groups

Throughout this chapter we restrict our attention to groups associated with
vector spaces over fields. Let V be a vector space of dimension m over a field
F and assume that m ≥ 2. The group of all invertible linear transformations
from V to itself is denoted by GL(V ) and called the general linear group
of V . The group GL(V ) is a normal subgroup of ΓL(V ), the group of all
invertible semilinear transformations of V . The quotient group is isomorphic
to the group of automorphisms of F (Exercise 4.1).

If e1, e2, . . . , em is a basis for V and f ∈ GL(V ), then

f(ej) =

m∑
i=1

aijei,

for some aij ∈ F.

The assignment f 7→ (aij) is an isomorphism from GL(V ) to the group
GL(m,F) of non-singular m×m matrices over the field F (Exercise 4.2).

The Dual Space

The set V ∗ of linear functionals ϕ :V → F is also a vector space over F
provided we define ϕ1 + ϕ2 and aϕ by

(ϕ1 + ϕ2)(v) := ϕ1(v) + ϕ2(v)

and

(aϕ)(v) := aϕ(v).

We call V ∗ the dual space of V . The basis of V ∗ dual to e1, e2, . . . , em
is ω1, ω2, . . . , ωm, where ωi(a1e1 + · · · + amem) = ai. If ϕ ∈ V ∗, then
ϕ = ϕ(e1)ω1 + · · · + ϕ(em)ωm and, in particular, dimV ∗ = m. Define the
action of GL(V ) on V ∗ as follows. If f ∈ GL(V ) and ϕ ∈ V ∗, set

f(ϕ) := ϕf−1.

It turns out that the matrix of the linear transformation f (acting on V ∗)
with respect to ω1, ω2, . . . , ωm is the transposed inverse of the matrix of f
with respect to e1, e2, . . . , em (Exercise 4.2). We also find that ker f(ϕ) =
f(kerϕ).
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The Groups SL(V ) and PSL(V )

The determinant map from GL(V ) to the multiplicative group F× of non-
zero elements of F is a homomorphism onto F×. The kernel of this map is
the group SL(V ) of linear transformations of V of determinant 1. We call
SL(V ) the special linear group of V .

The groups GL(V ) and SL(V ) are subgroups of ΓL(V ) and as such they
act on the projective geometry P(V ). The groups of collineations they induce
on P(V ) are denoted by PGL(V ) and PSL(V ) and are called the projective
general linear group of V and the projective special linear group of V , respec-
tively. In Chapter 3 we showed that the subgroup of ΓL(V ) that fixes every
point of P(V ) is the group Z(V ) of scalar transformations of V . The group
Z(V ) is a normal subgroup of GL(V ) and we have PGL(V ) ' GL(V )/Z(V ).
We also have

SL(V ) ∩ Z(V ) = { a1 | am = 1 }

and

PSL(V ) ' SL(V )/(SL(V ) ∩ Z(V )).

Order Formulae

If F is the finite field Fq of q elements, we denote the groups GL(m,F),
SL(m,F), . . . etc. by the symbols GL(m, q), SL(m, q), . . . etc. To determine
the orders of these groups we first observe that GL(V ) acts regularly on the
set of ordered bases of V . When F = Fq the number of ordered bases is∏m−1
i=0 (qm − qi) (Exercise 4.5) and hence

|GL(m, q)| = qm(m−1)/2
m∏
i=1

(qi − 1).

Since |F×q | = q − 1 we have

|PGL(m, q)| = |SL(m, q)| = qm(m−1)/2
m∏
i=2

(qi − 1)

and

|PSL(m, q)| = d−1qm(m−1)/2
m∏
i=2

(qi − 1),

where d := (m, q − 1) is the greatest common divisor of m and q − 1.
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The Action of PSL(V ) on P(V )

4.1 Theorem. The group PSL(V ) acts doubly transitively on the points
of P(V ).

Proof. Let 〈u1〉, 〈u2〉, 〈v1〉 and 〈v2〉 be four points of P(V ) such that
〈u1〉 6= 〈u2〉 and 〈v1〉 6= 〈v2〉. Extend u1, u2 to a basis u1, u2, u3, . . . , um for
V and similarly extend v1, v2 to a basis v1, v2, v3, . . . , vm. Define f ∈ SL(V )
by f(ui) := vi for i = 2, 3, . . . , m and f(u1) := av1, where a is chosen so
that det(f) = 1. Then P(f) takes 〈u1〉 to 〈v1〉 and 〈u2〉 to 〈v2〉.

One of the aims of this chapter is to prove that, with two exceptions,
PSL(V ) is a simple group. To do this we make use of Iwasawa’s simplicity
criterion which was proved in Chapter 1. The fact that PSL(V ) is a primitive
group is an immediate consequence of the theorem just proved (cf. Exercise
1.13). The other conditions that we need will be obtained by studying the
elements of SL(V ) known as transvections.

Transvections

Consider a linear transformation t ∈ GL(V ) that fixes every element of a
hyperplane H of V . Let v ∈ V \H and let ϕ be the linear functional defined
by

ϕ(av + h) := a for all a ∈ F and h ∈ H.

Then H = kerϕ and if w ∈ V , we have w − ϕ(w)v ∈ H. Consequently
t(w − ϕ(w)v) = w − ϕ(w)v and it follows that

t(w) = w + ϕ(w)u, where u := t(v)− v.

Conversely, if ϕ ∈ V ∗ and if u is a vector such that ϕ(u) 6= −1, then the
map defined by

tϕ,u(w) := w + ϕ(w)u

is an element of GL(V ) which fixes every vector in ker ϕ. If ϕ(u) = 0, we say
that tϕ,u is a transvection. If ϕ(u) 6= 0,−1, we say that tϕ,u is a dilatation.
(If ϕ = 0 or u = 0, then tϕ,u = 1.)

When considered as transformations of P(V ), transvections are known as
elations. In matrix theory, the elementary row operations are effected by
multiplying by transvections, dilatations and permutation matrices. This is
the basis of the proof of Theorem 4.3 below.



Transvections 21

4.2 Theorem.

(i) tϕ,au = taϕ,u.

(ii) tϕ1+ϕ2,u = tϕ1,u tϕ2,u, whenever ϕ1(u) = 0.

(iii) tϕ,u1+u2
= tϕ,u1

tϕ,u2
, whenever ϕ(u2) = 0.

(iv) f tϕ,uf
−1 = tf(ϕ),f(u) for all f ∈ GL(V ).

Proof. Exercise 4.7.

We shall see that, provided the basis is suitably chosen, the matrix form
of a transvection is extremely simple. Suppose that e1, e2, . . . , em is a basis
for V and that ω1, ω2, . . . , ωm is the dual basis. If ϕ and u are non-zero
elements of V ∗ and V such that ϕ(u) = 0, there is an element f ∈ GL(V )
such that f(ϕ) = ωm and f(u) = e1. Then by Theorem 4.2 (iv) we have

ftϕ,uf
−1 = tωm,e1 .

The matrix of tωm,e1 with respect to e1, e2, . . . , em is
1 0 . . . 1
0 1 . . . 0

. . .

0 0 . . . 1


and hence det(tωm,e1) = 1. This shows that in GL(V ) all transvections are
conjugate to tωm,e1 and consequently they all belong to SL(V ). Moreover,
if m ≥ 3, the element f can be chosen in SL(V ) and therefore, in this
case, SL(V ) has only one conjugacy class of transvections. (If m = 2, the
conjugacy classes of transvections are in one-to-one correspondence with the
cosets of { a2 | a ∈ F× } in F×.)

Now let P = 〈u〉 be a point of P(V ) and consider the set

XP := { tϕ,u | ϕ ∈ V ∗, ϕ(u) = 0 }.

4.3 Theorem. (i) XP is an abelian normal subgroup of GL(V )P .

(ii) SL(V ) = 〈 fXP f
−1 | f ∈ SL(V ) 〉.

Proof. It follows from Theorem 4.2 (ii) that XP is an abelian group and
from Theorem 4.2 (iv) that XP is normal in GL(V )P . The argument imme-
diately preceding this theorem shows that every transvection is conjugate in
SL(V ) to one of the form taϕ,u for some fixed ϕ ∈ V ∗, u ∈ V . In particular,
the subgroup

〈 fXP f
−1 | f ∈ SL(V ) 〉
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contains all the transvections of SL(V ). It remains to show that every ele-
ment of SL(V ) is a product of transvections. We do this by relating transvec-
tions to the elementary row operations of matrix theory.

Choose a basis e1, e2, . . . , em for V and let ω1, ω2, . . . , ωm be the dual basis.
If i 6= j and f ∈ GL(V ), the matrix of tωj ,aeif with respect to e1, e2, . . . , em
is obtained from the matrix of f by adding a times the jth row to the ith
row. This is because

tωj ,aei = 1 + aeij ,

where

eij(v) := ωj(v)ei

The matrix of eij has 1 in the (i, j)th place and 0 everywhere else. Thus
multiplication by tωj ,aei (on the left) effects an elementary row operation on
the matrix of f . But it is clear that by using elementary row operations of
this type the matrix of f can be reduced to the diagonal matrix

1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . d


where d := det(f). In particular, every element of SL(V ) can be expressed
as a product of transvections.

The Simplicity of PSL(V )

4.4 Theorem. If m ≥ 3 or if |F| ≥ 4, then SL(m,F)′ = SL(m,F).

Proof. Suppose that m ≥ 3 and choose a pair of transvections tϕ1,u and
tϕ2,u with ϕ1 and ϕ2 linearly independent. We know that for some f ∈ SL(V )
we have tϕ1,u = f tϕ2,uf

−1 and therefore

tϕ1−ϕ2,u = f tϕ2,uf
−1 t−1

ϕ2,u ∈ SL(V )′.

Since SL(V ) is generated by its single conjugacy class of transvections we
have SL(V )′ = SL(V ).

Now suppose that m = 2 and |F| ≥ 4. Choose a basis e1, e2 with dual basis
ω1, ω2 and define f ∈ SL(V ) by f(e1) := ae1 and f(e2) := a−1e2, where
a2 6= 1. Then

f tω2,be1f
−1 = tω2,a2be1
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and consequently SL(V )′ contains the transvection

f tω2,be1f
−1t−1

ω2,be1
= tω2,(a2−1)be1 .

It follows that SL(V )′ contains all the transvections and hence SL(V )′ =
SL(V ) as required.

4.5 Theorem. The groups PSL(m,F) are simple except for PSL(2,F2)
and PSL(2,F3).

Proof. This follows from Theorem 1.2 (Iwasawa’s criterion) together with
Theorems 4.1, 4.3 and 4.4. The groups PSL(2,F2) and PSL(2,F3) are gen-
uine exceptions to this theorem This will appear as a consequence of the
more extensive calculations with PSL(2,Fq) in the next section.

The Groups PSL(2, q)

Let Ω := {1, 2, . . . , n} and recall that the alternating group An consists of
the permutations of Ω that can be written as a product of an even number
of transpositions. (A transposition is a permutation that interchanges a pair
of elements of Ω and fixes the rest.) The group An is the unique subgroup
of index 2 in the symmetric group Sn of all permutations of Ω. For certain
small values of m, n and q the groups An and PSL(m, q) are isomorphic.

Consider the group PSL(2, q). It acts on the projective line P(V ), where
V := 〈e1, e2〉 is a two-dimensional vector space over Fq. Identify the point
〈ae1 + be2〉, b 6= 0 with ab−1 ∈ Fq and set ∞ := 〈e1〉. The projective line
P(V ) may be regarded as the set P := Fq ∪ {∞} and PSL(2, q) may be
identified with the group of linear fractional transformations

z 7→ az + b

cz + d
,

where ad− bc is a square in F×.

Note that
PSL(2, q)∞ = { z 7→ a2z + b | a ∈ F×, b ∈ F }

and that
PSL(2, q)∞,0 = { z 7→ a2z | a ∈ F× }

is a cyclic group of order q − 1 if q is even or of order (q − 1)/2 if q is odd.

The group
X∞ = { z 7→ z + b | b ∈ F }

is a Sylow subgroup of PSL(2, q) and isomorphic to the additive group of Fq.
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The group PSL(2, q)∞ is the semidirect product of X∞ and PSL(2, q)∞,0.

If q is even, we have

|PSL(2, q)| = q(q2 − 1)

and if q is odd, we have

|PSL(2, q)| = 1
2q(q

2 − 1).

Since |P| = q + 1, PSL(2, q) is a subgroup of the symmetric group Sq+1.
So just by comparing orders we find that

PSL(2, 2) ' S3, PSL(2, 3) ' A4, and PSL(2, 4) ' A5.

In particular, neither PSL(2, 2) nor PSL(2, 3) are simple groups.

It follows from Theorem 4.5 that A5 is a simple group and it is easy to
show (by induction) that An is simple for n ≥ 5 (Exercise 4.8). It can be
shown that, up to isomorphism, there is only one simple group of order 60 and
from this it follows that PSL(2, 5) ' A5. (See Exercise 6.4 for a description
of this isomorphism.)

The simple groups PSL(m, q) and An whose orders are less than 1000 are
given in the following table.

group order

PSL(2, 4) 60
PSL(2, 5) 60

A5 60
PSL(2, 8) 504
PSL(2, 11) 660

group order

PSL(2, 7) 168
PSL(3, 2) 168
PSL(2, 9) 360

A6 360

In addition to the coincidences of orders in the above table we have

|PSL(3, 4)| = |PSL(4, 2)| = |A8|.

(See Exercise 6.6.)

To see that PSL(3, 4) is not isomorphic to PSL(4, 2) notice that the
centre of a Sylow 2-subgroup of PSL(3, 4) has order 4, whereas the centre
of a Sylow 2-subgroup of PSL(4, 2) has order 2. In both cases the upper
triangular matrices with all diagonal elements equal to 1 form a Sylow 2-
subgroup. See Lemma 5.7 for the relevant commutator relations.
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4.6 Theorem. The only isomorphisms between the groups PSL(m, q)
and An are the following:

(i) PSL(2, 3) ' A4,

(ii) PSL(2, 4) ' PSL(2, 5) ' A5,

(iii) PSL(2, 7) ' PSL(3, 2),

(iv) PSL(2, 9) ' A6,

(v) PSL(4, 2) ' A8.

These isomorphisms will be studied in detail in later chapters. A proof
of this theorem can be found in Huppert (1968/69), §5 and §6 and in Artin
(1955a). These proofs have been used as the basis of exercises in the following
chapters. (Exercises 4.11, 5.18, 5.19 and 6.6.)

EXERCISES

4.1 Show that ΓL(V )/GL(V ) ' Aut(F).

4.2 Suppose that e1, e2, . . . , em is a basis for V and that ω1, ω2, . . . , ωm
is the dual basis for V . For f ∈ GL(V ), write

f(ej) =

m∑
i=1

aijei.

(i) Show that the assignment f 7→ (aij) is an isomorphism from
GL(V ) onto the group of non-singular matrices over F.

(ii) Show that the matrix representing the action of f on V ∗ with
respect to ω1, ω2, . . . , ωm is the transposed inverse of (aij).

4.3 If ϕ ∈ V ∗ and f ∈ GL(V ), show that ker f(ϕ) = f(kerϕ).

4.4 Show that if dimV ≥ 3, PGL(V ) does not act 3-transitively on the
points of P(V ).

4.5 Show that the number of ordered bases of a vector space of dimension
m over Fq is

m−1∏
i=0

(qm − qi).

4.6 Show that if q is even, PSL(2, q) is 3-transitive on the points of the
projective line over Fq.

4.7 Prove Theorem 4.2.
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4.8 Assuming that A5 is simple, show by induction that Am is simple for
m > 5.

4.9 Show that if f ∈ ΓL(V ) commutes with every element of SL(V ) and
dimV ≥ 2, then f ∈ Z(V ).

4.10 Show that the transvections tϕ,u and tψ,v commute if and only if
ϕ(v) = ψ(u) = 0.

4.11 Suppose that q is a power of a prime and that p is a prime which does
not divide q. If p = 2, suppose that q ≡ 1 mod 4. Let f be the least
positive integer such that p divides qf − 1.

(i) Show that if p divides qi − 1, then f divides i.

(ii) Show that pa divides i if and only if pa divides (qfi−1)/(qf −1).

(iii) Show that f divides p− 1.

(iv) Given m, let l = bm/fc be the largest integer ≤ m/f and let
D be the direct product of l copies of GL(f, q). Regarding D as
the set of l-tuples (x1, x2, . . . , xl) with xi ∈ GL(f, q), show that
the symmetric group Sl acts as a group of automorphisms of D,
permuting the entries of the l-tuples. Let E be the semidirect
product of D by Sl and show that a Sylow p-subgroup of E is
isomorphic to a Sylow p-subgroup of GL(m, q).

(v) Interpret Fqf as a vector space of dimension f over Fq and show
that multiplication by an element of Fqf induces a linear trans-
formation of this space. Deduce that the Sylow p-subgroups of
GL(f, q) are cyclic.

(vi) Show that the order of a Sylow p-subgroup of Sl is pk, where
k = b lpc+ b lp2 c+ · · · , and then show that k ≤ l/(p− 1).

(vii) Show that the order of a Sylow p-subgroup P of PSL(m, q) is
strictly less than (q

√
3)m when p is odd and strictly less than

(2q)m when p = 2. Show that a Sylow subgroup corresponding
to the characteristic of Fq has order larger than |P | except in
PSL(2, 8) when p = 3 and in those groups PSL(2, 2r) for which
p = 2r + 1 is prime. (When p = 2 and q ≡ 3 mod 4, the only
additional exceptions are the groups PSL(2, q) for which q =
2s − 1 is prime.)
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BN-pairs and Buildings

It was mentioned in the Preface that most of the groups studied in this
book can be obtained from the classical Lie algebras by constructions due
to Chevalley, Steinberg, Tits and Hertzig. Whilst this provides a uniform
approach to these groups it does not immediately yield descriptions related
to the geometry of the underlying vector space (see Ree (1957) or Carter
(1972) for the actual connections).

Various ways of obtaining geometries associated with the groups have been
studied extensively by Jacques Tits. Here we shall be particularly concerned
with the notion of the Tits building of a group (Tits (1974)) and the related
algebraic concept of BN -pair, also due to Tits (1962). This does not mean
that we shall investigate Lie algebras or abstract buildings; rather we show
directly how the BN -pairs and buildings arise from the underlying projective
geometry.

The BN-pair Axioms

A BN -pair in a group G is a pair of subgroups B and N such that

(i) G = 〈B,N〉
(ii) H := B ∩N is a normal subgroup of N .

(iii) W := N/H is generated by elements {wi | i ∈ I } such that w2
i = 1 for

all i ∈ I.

(iv) If wi = niH and n ∈ N , then

(a) niBni 6= B and

(b) niBn ⊆ (BninB) ∪ (BnB).

Any subgroup of G conjugate to B is called a Borel subgroup. The group W
is called the Weyl group and |I| is the rank of the BN -pair. The generators
for W are uniquely determined by the other conditions and therefore the
rank is well-defined. (See Chapter 9 for the details.)

Some simple consequences of these axioms can be found in the exercises at
the end of this chapter and in Chapter 9. More detailed treatments of groups
with BN -pairs can be found in the works of Bourbaki (1968), Chapitre IV,
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Carter (1972, 1977 and 1985), Suzuki (1982) and Tits (1974). For the re-
mainder of this chapter we shall concentrate on constructing the standard
BN -pair for SL(V ).

The Tits Building

Recall from Chapter 3 that the projective geometry P(V ) is a partially or-
dered set in which the partial order is inclusion of subspaces, and that a flag
of P(V ) is just a chain of distinct subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vk. A proper
flag is one in which neither {0} nor V occurs. Regarding flags simply as sets
of subspaces we order them by inclusion and in this way turn the set ∆(V )
of all proper flags of P(V ) into a partially ordered set whose least element is
the empty flag ∅.

The type of a proper flag V1 ⊂ V2 ⊂ · · · ⊂ Vk is the set {d1, d2, . . . , dk}
where di := dimVi for i = 1, 2, . . . , k. The group SL(V ) acts on ∆(V ) and
it is easy to see that two flags are in the same orbit of SL(V ) if and only if
they have the same type. If m := dimV , the maximal flags are those of type
{1, 2, . . . , m − 1}. The group B in the BN -pair for SL(V ) will turn out to
be the stabilizer of a maximal flag.

A frame in P(V ) is a set of points F := {〈e1〉, 〈e2〉, . . . , 〈em〉}, where
e1, e2, . . . , em is a basis for V . The apartment Σ(F) of the frame F consists
of those proper flags V1 ⊂ V2 ⊂ · · · ⊂ Vk for which each Vi is spanned by
some subset of {e1, e2, . . . , em}. It is not hard to see that the maximal flags
in Σ(F) correspond to the m! orderings of e1, e2, . . . , em (Exercise 5.3). The
group SL(V ) is transitive on the set of all apartments and it will turn out
that the stabilizer of an apartment is the group N of the BN -pair.

The set ∆(V ) of all proper flags of P(V ) together with the set A of all
apartments is known as the building of P(V ) and the maximal flags are
called the chambers of ∆(V ). (See Chapter 9 for the abstract definition of a
building.) The group PΓL(V ) acts faithfully on ∆(V ) and A and preserves
the partial order. In Chapter 7 we shall determine all the maps of ∆(V ) with
this property.

The BN-pair of SL(V )

Now suppose that V1 ⊂ V2 ⊂ · · · ⊂ Vm−1 is a chamber (maximal flag) and
choose a basis e1, e2, . . . , em for V so that Vi = 〈e1, e2, . . . , ei〉 for 1 ≤ i < m.
Let B be the stabilizer of this chamber in SL(V ) and let N be the setwise
stabilizer of the frame {〈e1〉, 〈e2〉, . . . , 〈em〉}. That is, f ∈ SL(V ) is in B if
and only if f(Vi) = Vi for all i and f ∈ N if and only if f(ei) is a scalar
multiple of ej for some j. Thus, with respect to the basis e1, e2, . . . , em, the
elements of B have upper triangular matrices and the elements of N have
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monomial matrices (i.e., exactly one non-zero entry in each row and column).
The group

H := B ∩N

is the pointwise stabilizer of the frame and consequently its elements are
precisely those elements of SL(V ) that have diagonal matrices with respect
to the given basis.

Each monomial matrix factorizes (uniquely) in GL(m,F) into a product
of a diagonal matrix and a permutation matrix. A permutation matrix is a
monomial matrix all of whose non-zero entries are 1. The permutation π of
{1, 2, . . . ,m} corresponds to the permutation matrix with 1 in the (π(i), i)-th
place (for i = 1, 2, . . . ,m) and 0 elsewhere.

It follows that W := N/H is isomorphic to the group of all m ×m per-
mutation matrices. In other words, W is the symmetric group Sm. We shall
show that B, N , W and I satisfy the BN -pair axioms, where I is the set
{1, 2, . . . , m− 1} and for i ∈ I, wi is the transposition (i, i+ 1) of Sm.

We observed in the proof of Theorem 4.3 that multiplying g ∈ SL(V ) on
the left by the transvection 1 + aeij effects an elementary row operation on
the matrix of g, adding a times row j to row i. Similarly, multiplication on
the right by 1 + aeij effects an elementary column operation. The element
1 + aeij belongs to B whenever i < j. Using the elementary row operations
corresponding to these transvections the matrix of g can be reduced to one
in which there is exactly one non-zero entry in the first column, say in row
i1. Then using elementary column operations corresponding to the above
transvections the other entries in row i1 can be reduced to zero. Continuing
in this fashion, g can be reduced to a matrix in which there is exactly one
non-zero entry in each row and each column; i.e., g can be reduced to an
element of N . Thus

SL(V ) = BNB

and, in particular,
SL(V ) = 〈B,N 〉.

This establishes the first of the BN -pair axioms and also shows that double
coset representatives for B may be chosen from N . If n ∈ N and w = nH, it
is customary (and well-defined) to write BwB in place of BnB. This allows
us to write

SL(V ) =
⋃
w∈W

BwB. (5.1)

Later we shall show that each double coset determines a unique element
of W . But before doing that we shall look at a ‘geometric’ interpretation of
(5.1).
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Chambers

Let M denote the chamber

{ 〈e1, e2, . . . , ei〉 | 1 ≤ i < m }

with stabilizer B and let F denote the frame

{〈e1〉, 〈e2〉, . . . , 〈em〉 }

with stabilizer N . Since SL(V ) is transitive on chambers we may identify
them with the cosets gB of B. Then the double cosets BgB correspond to
the orbits of SL(V ) on pairs of chambers: each orbit has a representative of
the form (M, g(M)) (cf. Exercises 1.8 and 1.9).

5.2 Theorem. If M1 and M2 are chambers of ∆(V ), there is an apart-
ment Σ such that M1, M2 ∈ Σ.

Proof. We may suppose that M1 = M , where M is defined above. If
w ∈ W , then w(M) is well-defined and it follows from (5.1) that the orbits
of SL(V ) on pairs of chambers are represented by the pairs (M,w(M)),
w ∈ W . That is, each orbit is represented by a pair of chambers of the
apartment Σ(F).

This is the ‘geometric’ version of (5.1). Indeed Theorem 5.2 can be proved
directly (Exercise 5.10) thus giving another proof of (5.1).

Flags and Apartments

We now return to the question of the uniqueness of the double coset rep-
resentatives. It is possible to show directly that for w1, w2 ∈ W we have
Bw1B = Bw2B if and only if w1 = w2. But instead of using a direct ar-
gument we shall obtain the result via a more detailed study of flags and
apartments.

5.3 Lemma. If Γ1 and Γ2 are subsets of a basis {e1, e2, . . . , em} for V
and if U1 and U2 are the subspaces spanned by Γ1 and Γ2 respectively, then
Γ1 ∪ Γ2 is a basis for U1 + U2 and Γ1 ∩ Γ2 is a basis for U1 ∩ U2.

Proof. The set Γ1 ∪ Γ2 certainly spans U1 + U2 and it is linearly inde-
pendent. Therefore it is a basis for U1 + U2. A simple calculation, using
Grassmann’s relation, shows that

dim(U1 ∩ U2) = |Γ1 ∩ Γ2|
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and therefore Γ1 ∩ Γ2 is a basis for U1 ∩ U2.

5.4 Theorem. Suppose that F1 and F2 are frames and that F and F ′

are flags which belong to both apartments Σ(F1) and Σ(F2). Then there is
a map f ∈ SL(V ) such that f(F ) = F , f(F ′) = F ′ and f(F1) = F2.

Proof. Suppose that F is the flag V1 ⊂ V2 ⊂ · · · ⊂ Vk and that F ′ is the
flag V ′1 ⊂ V ′2 ⊂ · · · ⊂ V ′l . Since F ∈ Σ(F1), F1 is the union of disjoint subsets
Φ1, Φ2, . . . , Φk+1 such that for 1 ≤ i ≤ k,

Φ1 ∪ Φ2 ∪ · · · ∪ Φi

is a frame for Vi. Similarly, F1 is the disjoint union of subsets Φ′1, Φ′2,
. . . , Φ′l+1 such that for 1 ≤ i ≤ l,

Φ′1 ∪ Φ′2 ∪ · · · ∪ Φ′i

is a frame for V ′i .

A straightforward calculation, making use of Lemma 5.3, shows that

|Φi ∩ Φ′j | = dim(Vi ∩ V ′j /(Vi−1 ∩ V ′j + Vi ∩ V ′j−1)).

By symmetry, a similar result holds for F2. That is, F2 is the disjoint union
of subsets Γ1, Γ2, . . . , Γk+1 and of subsets Γ′1, Γ′2, . . . , Γ′l+1 such that

Γ1 ∪ Γ2 ∪ · · · ∪ Γi

is a frame for Vi and
Γ′1 ∪ Γ′2 ∪ · · · ∪ Γ′i

is a frame for V ′i . It follows that

|Γi ∩ Γ′j | = |Φi ∩ Φ′j |

and therefore we may choose f ∈ SL(V ) so that f(Φi ∩Φ′j) = Γi ∩ Γ′j for all
i and j. We have f(Vi) = Vi, f(V ′j ) = V ′j and f(F1) = F2. This completes
the proof.

5.5 Theorem. For n1, n2 ∈ N , Bn1B = Bn2B if and only if n1H = n2H.

Proof. We have already observed that any pair of maximal flags can be
transformed into a pair of the form (M,n(M)), for some n ∈ N , where M is
the flag

{ 〈e1, . . . , ei〉 | 1 ≤ i < m }.
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Moreover, for n1, n2 ∈ N we have Bn1B = Bn2B if and only if bn1(M) =
n2(M) for some b ∈ B. If this is the case, then M and n2(M) belong to both
Σ and to b(Σ), where Σ is the apartment of

{〈e1〉, 〈e2〉, . . . , 〈em〉}.

By Theorem 5.4 there is a map f ∈ SL(V ) which fixes M and n2(M) and
takes b(Σ) to Σ. Thus f ∈ B and fb ∈ B ∩ N . But B ∩ N is a normal
subgroup of N and so n−1

1 fbn1 ∈ B. It follows that

n1(M) = n1(n−1
1 fbn1)(M) = fbn1(M) = n2(M).

Therefore n−1
2 n1 ∈ B ∩N and hence n1 and n2 represent the same element

of W .

Panels

In order to complete the proof that B and N form a BN -pair we need to
show that axiom (iv) holds. One way to do this is to introduce for each
hyperplane H and projective point P of H, the root group

XP,H := { tϕ,u | u ∈ P, kerϕ = H }

and to make explicit calculations involving certain root groups. This ap-
proach is outlined in the exercises. The method of proof that we shall use
here involves another application of Theorem 5.4.

In preparation for this proof we introduce another term. A proper flag
consisting of exactly m−2 subspaces is called a panel of ∆(V ). (Suzuki (1982)
calls this a wall.) Recall that a chamber of ∆(V ) is a maximal flag and
consists of m− 1 distinct subspaces.

5.6 Lemma. If A is a panel in the apartment Σ, then A is contained in
exactly two chambers of Σ.

Proof. We may choose a basis f1, f2, . . . , fm for V so that Σ is the apart-
ment of the frame {〈f1〉, 〈f2〉, . . . , 〈fm〉} and A consists of all the subspaces

〈f1〉, 〈f1, f2〉, . . . , 〈f1, f2, . . . , fm−1〉

except 〈f1, f2, . . . , fi〉 for some i. The only way to extend A to a chamber
of Σ is to adjoin either

〈f1, f2, . . . , fi−1, fi〉

or
〈f1, f2, . . . , fi−1, fi+1〉.
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Now let ni be the element of SL(V ) which sends ei to −ei+1, ei+1 to ei and
fixes ej for all j 6= i, i+ 1. Then wi = niH corresponds to the transposition
(i, i+ 1) of Sm and it is easy to see that niBni 6= B.

If M is the chamber { 〈e1, . . . , ej〉 | 1 ≤ j < m }, then A = M ∩ ni(M) is
the panel obtained from M by omitting 〈e1, e2, . . . , ei〉. If b ∈ B and n ∈ N ,
then b fixes A and therefore

n(A) ⊆ nbni(M).

By Theorem 5.2 there is an apartment Σ′ which contains both M and
nbni(M). Then Σ and Σ′ both contain M and n(A) and so by Theorem 5.4
there is a map f ∈ SL(V ) which fixes M and n(A) and takes Σ′ to Σ. Thus
f ∈ B and fnbni(M) is a chamber of Σ which contains n(A). It follows
from Lemma 5.6 that fnbni(M) is n(M) or nni(M). Thus nbni ∈ BnB or
BnniB. On taking inverses and replacing n by n−1 we find that

niBn ⊆ (BnB) ∪ (BninB).

This completes the proof that B and N form a BN -pair for SL(V ).

Split BN-pairs

Recall from Chapter 1 that if x and y are elements of a group G, the com-
mutator of x and y is the element

[x, y] := xyx−1y−1.

If X and Y are subgroups of G, we set

[X, Y ] := 〈 [x, y] | x ∈ X, y ∈ Y 〉.

The lower central series of G consists of the groups Li(G), where L1(G) := G
and Li+1 := [Li(G), G], for i = 1, 2, . . . . The group G is said to be nilpotent
of class c if c is the least positive integer for which Lc+1(G) = 1.

The BN -pair constructed for SL(V ) actually satisfies the following two
conditions in addition to the BN -pair axioms.

(1) B = UH, where U is a normal nilpotent subgroup of B such that
U ∩H = 1.

(2) H =
⋂
n∈N

nBn−1.
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The subgroup U of SL(V ) can be described as follows. Let e1, e2, . . . , em
be a basis for the vector space V and let ω1, ω2, . . . , ωm be its dual basis.
Recall that eij is the linear transformation defined by eij(v) := ωj(v)ei and
that the matrix of eij has 1 in the (i, j)th position and 0 elsewhere. For
i 6= j, let Xij denote the root group X〈ei〉,kerωj

. Then Xij consists of the
transvections 1 + aeij , a ∈ F. We define

U := 〈Xij | i < j 〉.

The elements of U correspond to the upper triangular matrices with 1’s along
the diagonal. If we take B to be the stabilizer of the chamber { 〈 e1, . . . , ej 〉 |
1 ≤ j < m } then B may be identified with the group of all upper triangu-
lar matrices (of determinant 1). Taking N to correspond to the monomial
matrices, H = B ∩ N is the group of all diagonal matrices and (1) is clear.
Note that U is the (normal) subgroup of B which acts as the identity on each
factor space

〈 e1, . . . , ej+1 〉
/
〈 e1, . . . , ej 〉.

If n0 ∈ N corresponds to the permutation (1,m)(2,m−1) · · · which inter-
changes i and m− i+ 1, then n0Bn

−1
0 consists of lower triangular matrices

and thus

H = B ∩ n0Bn
−1
0 ;

a stronger form of (2). We say that SL(V ) has a split BN -pair.

Note that when F is a finite field of characteristic p, U is a Sylow p-
subgroup of SL(V ). In general, U is called the unipotent radical of B. For a
more complete discussion and a precise description of split BN -pairs in the
context of algebraic groups, see Carter (1985) and the references given there.

Commutator Relations

We shall show that U is nilpotent of class m − 1 and to this end we prove
a lemma describing the commutator relations between the Xij (see Carter
(1972), p. 76).

5.7 Lemma. If i < j and k < l, then

[Xij , Xkl] =

{
Xil if j = k,
Xkj if i = l,
1 otherwise

Proof. This is an immediate consequence of the fact that eijekl = δjkeil.
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For i = 1, 2, . . . , n− 1 let X(i) denote the following subset of U .

X1,i+1X2,i+2 . . . Xn−i,n

5.8 Theorem. (i) The group U is nilpotent of class m − 1 and the i-th
term of its lower central series is Li(U) = 〈Xjk | k − j ≥ i 〉.
(ii) Li(U) = X(i)Li+1(U).

(iii) Li(U)/Li+1(U) is isomorphic to the additive group of a vector space of
dimension m− i over F.

Proof. Part (ii) follows directly from Lemma 5.7 by induction. From this
it is easy to deduce the parts (i) and (iii) of the theorem. (Consider the
form of the matrices Li(U).)

The Weyl Group

Now let us investigate the action of the Weyl group of the BN -pair on U .
As before we take N to be the subgroup of SL(V ) whose elements have
monomial matrices with respect to e1, e2, . . . , em. Thus the matrix of g ∈ N
has non-zero entries only in positions (w(j), j) for some permutation w in
the symmetric group Sm. The mapping g 7→ w is a homomorphism from N
onto Sm with kernel B ∩N and so we may identify the Weyl group W of the
BN -pair with the symmetric group Sm.

For w ∈W , let nw be an element of N which maps onto w, set

U+
w := 〈Xjk | j < k and w(j) < w(k) 〉

and set

U−w := 〈Xjk | j < k and w(j) > w(k) 〉.

5.9 Lemma. We have U = U+
wU
−
w , U+

w ∩U−w = 1 and nwU
+
w n
−1
w = U+

w−1 .

Proof. Let X+
(i) be the product of those groups Xj,i+j for which w(j) <

w(i+ j) and let X−(i) be the product of the Xj,i+j for which w(j) > w(i+ j).

These sets are not necessarily groups, but by Lemma 5.7 the sets

L+
i := X+

(i)X
+
(i+1) · · ·X

+
(n−1)

and

L−i := X−(i)X
−
(i+1) · · ·X

−
(n−1)

are groups. Suppose that Li+1(U) = L+
i+1L

−
i+1. It follows from Theorem 5.8

that Li(U) = X+
(i)X

−
(i)Li+1(U) and hence Li(U) = L+

i L
−
i . By induction this

holds for all i. Since U+
w = L+

1 and U−w = L−1 , we have U = U+
wU
−
w .
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It follows from these calculations that Li(U)/Li+1(U) is isomorphic to the
direct product L+

i /L
+
i+1 × L

−
i /L

−
i+1 and hence, by induction, we have L+

i ∩
L−i = 1. In particular, U+

w ∩ U−w = 1.

Finally, observe that nwXijn
−1
w = Xw(i),w(j) and hence nwU

+
w n
−1
w = U+

w−1 .

Whilst reading the above proof it may be helpful to choose a fairly simple
example for w and to contemplate the matrix forms of the various groups
encountered.

The final result is a ‘normal form’ theorem for elements of SL(V ).

5.10 Theorem. Each element g ∈ SL(V ) can be expressed uniquely in
the form g = bnwu, where b ∈ B, w ∈W and u ∈ U−w .

Proof. By (5.1) we have g ∈ BnwB for some w ∈W . Now B = (B ∩N)U
and N normalizes B ∩ N , so BnwB = BnwU . From Lemma 5.9 we have
U = U+

wU
−
w and nwU

+
w n
−1
w ⊆ B. Thus BnwB = BnwU

−
w and this establishes

the required form for g.

To prove uniqueness, suppose bnwu = b′nw′u
′, where b, b′ ∈ B, w, w′ ∈ W

and u, u′ ∈ U . By Theorem 5.5 we have w = w′ and consequently

b−1b′ = nwuu
′−1

n−1
w ∈ nwU−w n−1

w ∩B = 1.

That is, b = b′ and u = u′.

EXERCISES

5.1 If dimV = m, a simplex in P(V ) is a set of m + 1 points with the
property that each m element subset is a frame. Show that PGL(V )
acts regularly on the set of ordered simplexes.

5.2 Show that two flags of P(V ) are in the same orbit of PSL(V ) if and
only if they have the same type.

5.3 Show that the flags of the apartment of { 〈e1〉, . . . , 〈em〉 } may be iden-
tified with the ordered partitions of the set {1, 2, . . . ,m} and that
under this identification the chambers correspond to the m! linear or-
derings of 1, 2, . . . ,m. In particular, show that the Weyl group Sm
acts regularly on the chambers of the apartment.
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5.4 Define two chambers to be adjacent if they have a common panel.
Show that two chambers of an apartment of SL(V ) are adjacent if
and only if they are interchanged by an element of the Weyl group
corresponding to a transposition.

5.5 A gallery from the chamber M to the chamber M ′ is a sequence of
chambers M = M0,M1, . . . ,Mk = M ′ such that Mi−1 is adjacent to
Mi for i = 1, 2, . . . , k. Show that in the building of SL(V ) any two
chambers can be connected by a gallery.

5.6 If n1 and n2 are monomial matrices and b is an upper triangular matrix
such that n−1

1 bn2 is upper triangular, show that n−1
1 n2 is a diagonal

matrix.

5.7 Let X be a root group of SL(V ). Show that for f, g ∈ SL(V ), the
group

L := 〈 fXf−1, gXg−1 〉

is isomorphic to F+, F+ × F+, or SL(2,F) or else L′ = Z(L) ' F+

and L/L′ ' F+ × F+.

5.8 Let e1, e2, . . . , em be a basis for V and let ω1, ω2, . . . , ωm be its dual
basis. Let B be the stabilizer of the flag

{ 〈 e1, e2, . . . , ei 〉 | 1 ≤ i < m },

N the stabilizer of the frame {〈e1〉, . . . , 〈em〉} and set H := B ∩N .

(i) If U is the subgroup consisting of the elements of B whose matri-
ces have 1’s on the diagonal, show that U is a normal subgroup
of B, U ∩H = 1 and B = HU .

(ii) Set Ui := { f ∈ U | ωifei+1 = 0 } and for i 6= j let Xij be the
root group consisting of the transvections tωj ,aei , where a ∈ F.
If Xi := Xi,i+1 and X−i := Xi+1,i, show that U = UiXi, Ui =
niUn

−1
i ∩ U and niXin

−1
i = X−i, where ni is the element of N

which takes ei to −ei+1, ei+1 to ei and fixes every other basis
element.

(iii) Suppose that the matrix of n ∈ N corresponds to the permu-
tation π ∈ Sm; that is, it has its non-zero entries in positions
(π(j), j). Show that nXi,jn

−1 = Xπ(i),π(j) and niB ⊆ BniXi.
If π−1(i) < π−1(i+ 1), show that n−1Xin ⊆ B and deduce that
niBn ⊆ BninB.
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(iv) Show that X−i ⊆ B∪BniB and then apply (iii) to nin in place
of n to deduce that when π−1(i) > π−1(i+ 1) we have

niBn ⊆ (BninB) ∪ (BnB).

(v) If F = Fpa , where p is a prime, show that U is a Sylow p-subgroup
of SL(V ).

5.9 Let Γ be a set of subsets of a set Ω such that every pair of elements
of Ω belongs to at least one subset in Γ. Suppose that G is a group
which acts transitively on Ω and on Γ. Choose α ∈ Ω, ∆ ∈ Γ and
set B = Gα and N = G∆. Show that G = BNB if and only if G is
transitive on the set of pairs (β,Λ), where β ∈ Λ and Λ ∈ Γ.

5.10 Suppose that M1 and M2 are maximal flags of P(V ). Show by induc-
tion on dimV that there is a frame F such that M1 and M2 belong
to Σ(F).

5.11 Suppose that B and N form a BN -pair for a group G and that

W = N/B ∩N = 〈wi | i ∈ I 〉

is its Weyl group. If J ⊆ I, let NJ be the inverse image of 〈wi | i ∈ J 〉
in N . Show that PJ := BNJB is a subgroup of G. The groups PJ
and their conjugates are called the parabolic subgroups of G.

5.12 If B and N form a BN -pair for SL(V ), show that their images in
PSL(V ) form a BN -pair for PSL(V ) with the same Weyl group.

5.13 Show that each panel of the building ∆(V ) is contained in at least
three chambers and show that this result may be regarded as the
‘geometric’ interpretation of BN -pair axiom (iv)(a).

5.14 Show that every parabolic subgroup of SL(V ) is the stabilizer of a
flag and that any subgroup of SL(V ) that contains the stabilizer of
a maximal flag is parabolic. (Use elementary row and column opera-
tions.)
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5.15 Let ei,j denote the m×m matrix which has 1 in the (i, j)-th place and
0 elsewhere, and let ξ be a generator of the multiplicative group of
Fq. Let x be the transvection 1 + e1,2, let w be the monomial matrix

e1,m −
∑m−1
i=1 ei+1,i, and let h be the diagonal matrix with first two

diagonal entries ξ and ξ−1 and the rest equal to 1. Show that when
q > 3,

SL(m, q) = 〈h, xw 〉

and when q = 2 or 3,

SL(m, q) = 〈x,w 〉.

5.16 In the notation of Lemma 5.9, show that U−w = U ∩ n−1
w Unw.

5.17 Use Theorem 5.8 to show that if PSL(n1, q1) ' PSL(n2, q2) and if q1

and q2 are powers of the same prime, then n1 = n2 and q1 = q2.

5.18 Complete Exercise 4.11 as follows. Suppose that q is a power of an
odd prime and that q ≡ 3 (mod 4).

(i) Show that 2a divides

(q2i−1 − 1)(q2i − 1)/(q − 1)(q2 − 1)

if and only if 2a divides i.

(ii) Show that the order of a Sylow 2-subgroup P of PSL(m, q) is
strictly less than (8(q + 1))m/2 and that |P | is less than the
order of a Sylow subgroup corresponding to the characteristic of
Fq except when m = 2 and q = 2s − 1, for some s.

5.19 Use Exercises 4.11, 5.17 and 5.18 to show that the only isomorphisms
between the groups PSL(m, q) are those listed in Theorem 4.6.
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The 7-Point Plane and the Group A7

In this chapter we study the isomorphisms

PSL(3, 2) ' PSL(2, 7)

and

PSL(4, 2) ' A8

mentioned in Theorem 4.6. The purpose is to illustrate the interplay between
group theoretic and geometric methods and to provide hints of further devel-
opments which can be pursued elsewhere (Cameron (1976), Kantor (1981)
and Neumaier (1984)).

The proofs require somewhat more familiarity with finite group theory
than is necessary in the rest of the book. On the other hand, the material
is not a prerequisite for what follows and this chapter could be skipped on a
first reading.

The 7-Point Plane

If V is a vector space of dimension 3 over the field F2, then the projective
plane P(V ) has seven points and seven lines. Each line has 3 points and each
point is on 3 lines. This is the 7-point plane, also known as the Fano plane.
From results of the previous chapters, the collineation group of P(V ) is the
simple group PΓL(3, 2) = PSL(3, 2) of order 168.

We shall show that if Ω is a set of seven elements and if B is a set of
seven 3-element subsets of Ω such that any pair of distinct elements of B
have exactly one element of Ω in common, then Ω and B can be identified
with the points and the lines of the 7-point plane.

First observe that the conditions imply that any two distinct elements P ,
Q of Ω belong to a unique element, say L, of B. We let P + Q denote the
third element of L. Next, set

W := Ω ∪ {0}

and make W into a vector space over F2 by defining P +Q as above, P +0 =
0 + P = P and P + P = 0, for all P ∈W .
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Associativity is easy to check and consequently W is a vector space iso-
morphic to V . The points of P(W ) may be identified with Ω and the lines
with B. We use this construction in the proof of the next theorem.

The Simple Group of Order 168

Recall that if H is a subset of a group G, the normalizer of H in G is the
subgroup

NG(H) := { g ∈ G | gHg−1 = H }

and the centralizer of H in G is the subgroup

CG(H) := { g ∈ G | ghg−1 = h for all h ∈ H }.

If G is finite, the number of conjugates of H in G is |G : NG(H)| and if
H is a Sylow p-subgroup of G, then

|G : NG(H)| ≡ 1 (mod p).

Also, if H is any subgroup of G, then G acts transitively on the set of left
cosets gH of H. The elements of G act by multiplication on the left.

6.1 Theorem. If G is a simple group of order 168, then G is isomorphic
to PSL(3, 2).

Proof. Let P be a Sylow 7-subgroup of G. Then by Sylow’s theorem,
|G : NG(P )| ≡ 1 (mod 7), and as P is not a normal subgroup of G it follows
that |NG(P )| = 21. Now G acts transitively on the 8 cosets of NG(P ) and as
G is simple we may regard it as a subgroup of A8. The Sylow 7-subgroups
of A8 are self-centralizing and therefore CG(P ) = P (see Exercise 1.17). We
have NG(P ) = PQ, where Q is a Sylow 3-subgroup of NG(P ) and of G. Since
CG(P ) = P , 7 cannot divide |NG(Q)| and as |G : NG(Q)| ≡ 1 (mod 3) we
have |G : NG(Q)| = 7 or 28.

If |G : NG(Q)| = 7, then G may be regarded as a subgroup of A7. The
only coset of NG(Q) fixed by Q is NG(Q) itself and therefore, from the
structure of A7, CG(Q) = Q. But |G : NG(Q)| = 7 implies |NG(Q)| = 23.3,
a contradiction. It follows that |G : NG(Q)| = 28 and therefore |NG(Q)| = 6.
This means that NG(Q) = Q〈 t 〉, where t2 = 1.

If CG(Q) = NG(Q), then NG(Q) ⊂ CG(t). From Sylow’s theorem we have
|CG(t) : NG(Q)| ≡ 1 (mod 3) and so |CG(t)| = 24 since 4 divides |CG(t)|.
But then |G : CG(t)| = 7 and again G can be regarded as a subgroup of
A7. In A7 an element of order 3 which normalizes an element of order 7 has
only one fixed point and cannot commute with an element of order 2. This
contradiction forces CG(Q) = Q.
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So far we have found 48 elements of order 7, 56 elements of order 3 and 1
element of order 1. No element of order 2 can commute with any element of
order 3 or 7 and A8 does not contain any elements of order 8. Therefore the
remaining 63 elements have order 2 or 4.

Suppose that S is a Sylow 2-subgroup of G. If S 6= NG(S), it follows that
|G : NG(S)| = 7 and yet again G can be considered as a subgroup of A7.
But the Sylow 2-subgroups of A7 are self-normalizing. Hence S = NG(S).

In order to proceed we need the following lemma of Burnside:

6.2 Lemma. If X and Y are normal subsets of a Sylow p-subgroup P of
G and if gXg−1 = Y for some g ∈ G, then nXn−1 = Y for some n ∈ NG(P ).

Proof. We have P ⊆ NG(X) and therefore both P and gPg−1 are Sylow
p-subgroups of NG(Y ). By Sylow’s theorem there is an element h ∈ NG(Y )
such that hgPg−1h−1 = P . But then n := hg belongs to NG(P ) and
nXn−1 = Y .

We revert to the proof of the theorem. If S were abelian, it would follow
from the lemma that no two elements of S could be conjugate. But for each
element x ∈ S, x 6= 1, we would have CG(x) = S and hence x would have 21
conjugates. Then G would contain more than 63 2-elements, a contradiction.
It follows that S is non-abelian and therefore it contains an element x of order
4. We must have CG(x) = 〈x 〉 and CG(x2) = S. Thus G has one class of
elements of order 2 (containing 21 elements) and one class of elements of
order 4 (containing 42 elements). If y is any element of order 4 in S, both
〈x 〉 and 〈 y 〉 are normal in S and y is conjugate to x in G. It follows from
the lemma that 〈x 〉 = 〈 y 〉. This means that S is the dihedral group D8.

Now S has exactly two subgroups A and B isomorphic to Z2 × Z2. Since S
is not abelian, CG(A) = A and CG(B) = B. Since A and B are normal in
S, the lemma shows that they cannot be conjugate in G. But all elements
of order 2 are conjugate in G and therefore both NG(A) and NG(B) are
isomorphic to the symmetric group S4.

Let Ω be the set of conjugates of A and let B be the set of conjugates of
B. Define X ∈ Ω to be incident with Y ∈ B whenever 〈X,Y 〉 is a Sylow 2-
subgroup of G. As S4 has 3 Sylow 2-subgroups, each element of B is incident
with 3 elements of Ω and each element of Ω is incident with 3 elements of
B. The group G acts by conjugation on Ω and B and preserves the relation
of incidence. In order to show that Ω and B represent points and lines of
the 7-point plane it is enough to show that for each g 6∈ NG(B), there is
a unique element of Ω incident with both B and gBg−1. Every element of
order 3 acts on B as a product of two disjoint 3-cycles and therefore NG(B) is
transitive on B \ {B}. Thus for g 6∈ NG(B), NG(B)∩NG(gBg−1) is a group
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of order 4, namely the unique element of Ω incident with B and gBg−1. This
shows that Ω and B form the points and lines of a 7-point plane and hence
G ' PSL(3, 2).

6.3 Corollary. PSL(2, 7) ' PSL(3, 2).

This provides us with the isomorphism whose existence was asserted in
Theorem 4.6 (iii). The rest of the chapter is devoted to obtaining the iso-
morphism A8 ' PSL(4, 2) by studying the action of A7 on a set of 7-point
planes.

The remaining isomorphisms of Theorem 4.6 will be dealt with in the
exercises at the end of the chapter.

A Geometry of 7-Point Planes

From now on let Ω be a set of seven elements and denote the set of all 3-
element subsets of Ω by L. The 35 elements of L will be called Lines. At this
stage the elements of L are simply the 3-element subsets of Ω. But ultimately
we shall identify them with the lines of a projective geometry. This is why
we call them Lines (with a capital L).

A 7-point plane is a set B of seven Lines such that any two distinct Lines
of B have exactly one element of Ω in common. A fan with vertex α ∈ Ω is a
set of three Lines such that any two of them have only α in common. There
are 105 fans and each fan can be extended to a 7-point plane in exactly two
ways, hence there are 30 7-point planes on Ω.

The group S7 acts on Ω and permutes the 7-point planes. We have seen
that the subgroup of S7 which fixes a 7-point plane is PSL(3, 2) and as
|S7 : PSL(3, 2)| = 30, it follows that S7 is transitive on the set of all 7-point
planes. Since PSL(3, 2) ⊂ A7 and |A7 : PSL(3, 2)| = 15, it follows that A7

has two orbits on the 7-point planes and both orbits have length 15.

Recall from the proof of Theorem 6.2 that PSL(3, 2) has precisely two
conjugacy classes of subgroups of index 7 and that the orbit lengths of a
group of one class acting on the other class are 3 and 4. The orbits of length
3 form the lines of a 7-point plane and it follows that in S7 there is only one
conjugacy class of subgroups isomorphic to PSL(3, 2) whereas in A7 there
are two.

Let P and H denote the two orbits of A7 on 7-point planes. Call the
elements of P Points and the elements of H Planes. (Note the capitals.)
We shall build a ‘geometry’ from P, L and H and prove that these sets are
the points, lines, and planes of the projective geometry of a vector space of
dimension 4 over F2.
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To build a geometry is to define an incidence relation. We declare a
Line λ ∈ L to be incident with B ∈ P ∪ H whenever λ ∈ B. The Point
B1 is incident with the Plane B2 whenever B1 ∩ B2 is a fan. As a first step
towards identifying the ‘geometry’ of P, L andH we investigate the incidence
relations in some detail. Note that A7 acts transitively on each of the sets
P, L and H and preserves the incidence relations. The elements of S7 that
are not in A7 interchange P and H.

6.4 Lemma. (i) Each Line is incident with 3 Points and 3 Planes.

(ii) A Point B1 is incident with a Plane B2 if and only if B1 and B2 are
incident with a common Line.

Proof. Let λ be a Line. If B is a 7-point plane that contains λ, each element
α ∈ λ belongs to two Lines of B other than λ. These two Lines partition Ω\λ
into two sets of size 2. Thus B determines a bijection between the elements
of λ and the three partitions of Ω\λ into two sets of size 2. Conversely, each
such bijection arises from a unique 7-point plane which contains λ. Hence λ
is contained in six 7-point planes.

Let L be the stabilizer of λ in S7. Then L = R × T , where R ' S3 fixes
Ω \ λ pointwise and T ' S4 fixes λ pointwise. The group L acts on the
six 7-point planes containing λ and the transpositions of L interchange the
7-point planes of P with those of H. It follows that λ is incident with three
Points and with three Planes. This proves (i).

Each transposition of L fixes a fan containing λ and, in particular, the action
of the three transpositions of R makes each Point containing λ incident with
the three Planes containing λ. This proves (ii).

If B is a 7-point plane, the stabilizer H ' PSL(3, 2) of B in S7 has two
orbits on L: the 7 Lines of B and the 28 Lines not in B. Thus

H ∩ L '
{
S3 λ ∈ B
S4 λ 6∈ B.

It follows that L has two orbits on 7-point planes: the 6 planes that contain
λ and the 24 that do not.

6.5 Theorem. The Points P, the Lines L and the Planes H can be iden-
tified with the points, lines and planes of the projective geometry of a vector
space of dimension 4 over F2 so that the incidence relations become the usual
containment of subspaces.

Proof. If B is a Point, there are 7 fans in B, hence 7 Planes incident with
B. Also, for each Line of B, there are exactly two points other than B incident
with it. This accounts for all 15 Points and it follows that each pair of distinct
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Points is incident with a unique Line. Dually, each pair of distinct Planes is
incident with a unique Line.

This means that we can make the set V := P ∪ {0} into a vector space of
dimension 4 over F2 by defining B + B = 0, 0 + B = B + 0 = B and (for
B1 6= B2) B1 + B2 to be the third Point incident with the Line determined
by B1 and B2. Associativity follows from the fact that two Lines with a
common Point are incident with a common Plane. By construction, P, L
and H correspond to the 1-, 2- and 3-dimensional subspaces of V.

6.6 Theorem. We have A7 ⊂ PGL(4, 2) and A7 acts doubly transitively
on both the points and planes of the projective geometry of dimension 3 over
F2.

Proof. The group A7 acts transitively on P and on the set of incident
Point-Line pairs. The stabilizer in A7 of a Line acts as S3 on the Line and as
two distinct Points are on a unique Line it follows that A7 is doubly transitive
on P. By symmetry, A7 is doubly transitive on H as well.

6.7 Corollary. PSL(4, 2) = PGL(4, 2) ' A8.

Proof. From the order formula of Chapter 4, the index of A7 in PSL(4, 2)
is 8. But PSL(4, 2) is simple and therefore PSL(4, 2) ' A8.

A Geometry for A8

The isomorphism PSL(4, 2) ' A8 suggests that there should be a connection
between the geometry of Points, Lines and Planes constructed in the previous
section and a set of size eight. Indeed there is.

The set of size eight is the set W := Ω ∪ {0} considered at the beginning
of the chapter. We showed that for each 7-point plane B on Ω, there is a
vector space structure on W such that B = P(W ). Instead of the 7-point
planes on Ω we now look at the 8-point affine spaces on W . We define an
8-point affine space on W to be a set A of 4-element subsets of W such that
every 3-element subset of W is contained in a unique element of A. It is
easy to see that A consists of 14 4-element sets and each point of W is in
7 of them. Moreover, the 7 elements of A that contain 0 correspond to a
7-point plane on Ω. It follows that A consists of the 2-dimensional affine
subspaces of the vector space structure induced by this 7-point plane on W .
In addition, this establishes a one-to-one correspondence between the 8-point
affine spaces and the 7-point planes on Ω. To pass from a 7-point plane B to
the corresponding 8-point affine space A, adjoin 0 to each of the lines of B
and declare the complement of each line of B to be a line of A.

The objects corresponding to the 3-element subsets of Ω (which we called
Lines) are the 35 partitions of W into two sets of size 4. The Line ` ∈ L
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corresponds to the partition {` ∪ {0},Ω \ `}. Thus the Line ` belongs to a
7-point plane if and only if the two blocks of the partition are lines in the
corresponding 8-point affine space.

The fans of Ω correspond to the 105 partitions of W into four sets of size
2. Thus two 8-point spaces A1 and A2 are incident if A1 ∩A2 consists of the
six 4-element sets obtained by taking the union of pairs of blocks of such a
partition.

This completes the description of the geometry in terms of W. It follows
that S8 acts transitively on the 8-point spaces and on the sets of partitions,
preserving incidence. The group A8 has two orbits on the 8-point spaces—
corresponding to the sets P and H of 7-point planes on Ω. Thus A8 is indeed
the collineation group of the projective geometry constructed from P, L and
H.

The stabilizer of an 8-point space (in either A8 or in S8) is the affine group
Aff(W ) = T (W )PSL(3, 2).

The elements of S8 not in A8 preserve incidence but interchange Points
and Planes. In the next chapter we begin a detailed study of maps with this
property.

It has been shown by Cameron and Kantor (1979) that if G ⊆ PΓL(n, q)
acts doubly transitively on the points of the projective geometry, then either
G ' A7 (and n = 4, q = 2) or G contains PSL(n, q). For earlier work,
including a proof that A7 is doubly transitive on the projective geometry, see
Wagner (1961).

EXERCISES

6.1 Let B be a set of seven 3-element subsets of the set Ω of seven elements.
Suppose that any pair of distinct elements of B have at most one
element in common. Show that each 2-element subset of Ω is contained
in a unique element of B. Deduce that Ω and B are the points and
lines of a 7-point plane.

6.2 Describe the two 7-point planes that contain a given fan.

6.3 Using the notation of this chapter, define a graph on the set P ∪ L
as follows. Join B ∈ P to each of the 7 elements of L incident with
it. Join λ ∈ L to the 3 elements of P incident with it and to the 4
elements of L disjoint from it. Show that the graph has no circuits of
length 3 or 4 and that any two vertices which are not joined belong
to 6 circuits of length 5. This is a Moore graph (also known as the
Hoffman-Singleton graph).
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6.4 Let G be either a simple group of order 1
2p(p − 1)(p + 1), where p is

an odd prime and let U be a Sylow p-subgroup, or let G = A6 and let
U be a Sylow 3-subgroup. In all cases set q = |U |. The aim of this
exercise is to show that G ' PSL(2, q).

(i) Show that G acts doubly transitively (by conjugation) on the
set P of conjugates of U and that |P| = q + 1.

(ii) Let B = NG(U) and show that B = UH, where H is a cyclic
group of order 1

2 (q − 1).

(iii) Show that only the identity element of G fixes more than two
elements of P.

(iv) Let N = NG(H) and show that N = HW , where W = 〈 t 〉,
t2 = 1 and tUt ∩ U = 1.
(a) If q ≡ 3 (mod 4), show that t fixes no element of P and
that CH(t) = 1.
(b) If q ≡ 1 (mod 4), show that t fixes two elements of P and
that |CH(t)| = 2.
In both cases show that tht = h−1 for all h ∈ H.

(v) Show that G = BNB and that BtB = UtB.

(vi) Let the elements of U be {ua | a ∈ K }, where u0 = 1. Make K
into an (additive) group by defining a+ b so that uaub = ua+b.
Let U0 be the element of P \ {U} fixed by H and define Ua to
be uaU0u

−1
a . Show that ubUau

−1
b = Ua+b and that tUt = U0.

(vii) Choose the notation so that U1 denotes an element of P\{U,U0}
not fixed by t. If h ∈ H and hU1h

−1 = Ua, write ha in place of
h and define ab by the prescription haubh

−1
a = uab. Show that

h1 is the identity element, haUbh
−1
a = Uab and a(b+c) = ab+ac

whenever ha is defined.

(viii) Let F be the set of group homomorphisms f :K → K such that
f(ab) = af(b) whenever ha is defined. Define f + g and fg by

(f + g)(a) = f(a) + g(a) and (fg)(a) = f(g(a)).

Show that F is a field and that f 7→ f(1) is a group isomorphism
from F+ onto K such that fg 7→ f(1)g(1) whenever the product
is defined in K. From now on identify K with Fq and note that
ha is defined if and only if a is a square.
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(ix ) Show that there are unique functions α, β and γ from K \ {0}
to itself such that for a 6= 0, tuat = uα(a)tuβ(a)hγ(a).

(x ) Show that tUat = Uα(a) and that α(ab) = a−1α(b), whenever ha
is defined.

(xi) Suppose that tU1t = Ud and then show that −d is a square and
that by replacing t by th−d we may assume that d = −1.

(xii) Consider tuat and show that

β(a) = −α(−a)γ(a) and γ(a) = γ(−a).

(xiii)Consider tuα(a)t and deduce that

α2(a) = a, β(α(a)) = −β(a)γ(a)−1 and γ(α(a)) = γ(a)−1.

(xiv) Show that when −1 is not a square in Fq, then

α(a) = −a−1, β(a) = −a and γ(a) = a2.

(xv) Suppose that −1 is a square in Fq and show that β(a) = −a. In
addition, if a and b are squares, apply tuat to Uα(b) and deduce
that α(a + b) = (a + b)−1 provided a + b 6= 0. Now show that
for all a, we have α(a) = −a−1 and γ(a) = a2.

(xvi) Identify P with Fq ∪{∞} by making U correspond to∞ and Ua
correspond to a. Show that with this identification, ua, hb and
t become the transformations z 7→ z+ a, z 7→ bz and z 7→ −z−1,
respectively. Deduce that G is isomorphic to PSL(2, q).

(For further hints and a considerably more general result, consult
Zassenhaus (1936) or Huppert and Blackburn (1982), Chapter XI.)

6.5 Using the previous exercise, deduce that a simple group of order 60
is isomorphic to A5, a simple group of order 168 is isomorphic to
PSL(3, 2) and that A6 is isomorphic to PSL(2, 9).

6.6 Let p be a prime, set q = pr and suppose that |PSL(n, q)| = |Am|.
The aim of this exercise is to show that the only solutions for (n, q,m)
are (2,3,4), (2,4,5), (2,5,5), (2,9,6), (3,4,8) and (4,2,8).

(i) As a preliminary step show that, in general, if U is a Sylow p-
subgroup of PSL(n, q), then the order of PSL(n, q) is less than
|U |2(n+1)/n. Also show that the order of a Sylow p-subgroup of
Am is less than pm/(p−1).
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(ii) Show (by induction on m) that mme−m < 1
2m!, where e =

2.71828 · · · and then deduce that m < ep2(n+1)/n(p−1).

(iii) Show that for x > 1, the function x1/(x−1) is decreasing and
deduce that if p ≥ 5, then m ≤ e.53/4 and hence m ≤ 9 and the
only solution for (n, q,m) is (2,5,5). In this case PSL(2, 5) ' A5.

(iv) Show that is p = 3, then m ≤ 14 and hence rn(n − 1) ≤ 10.
Show that the solutions for (n, q,m) in this case are (2,3,4) and
(2,9,6), corresponding to the isomorphisms PSL(2, 3) ' A4 and
PSL(2, 9) ' A6.

(v) Finally, suppose that p = 2. If n = 2, show that the only solution
is the one corresponding to the isomorphism PSL(2, 4) ' A5.
If n ≥ 3, show that there are just two solutions: (4,2,8) arising
from the isomorphism PSL(4, 2) ' A8 and (3,4,8), which does
not correspond to an isomorphism. (For further information see
Artin (1955b).)

6.7 Let Ω be a set of seven elements and consider the Points and Lines of
Ω as defined in this chapter. For α ∈ Ω show that the 15 Points and
the 15 Lines which contain α form a generalized quadrangle—that is,
show that they satisfy the following axioms with s = t = 2.

(i) Each Point is incident with t + 1 Lines and two distinct Points
are incident with at most one Line.

(ii) Each Line is incident with s + 1 Points and two distinct Lines
are incident with at most one Point.

(iii) If B is a Point and λ is a Line not incident with B, there is a
unique Point B′ and a unique Line λ′ incident with B′ such that
B is incident with λ′ and B′ is incident with λ.

6.8 Show that the Points and Lines of the generalized quadrangle de-
scribed in the previous exercise correspond to the 15 partitions of
Ω \ {α} into three subsets of two elements and the 15 2-element sub-
sets of Ω \ {α}, respectively. Relate this to the geometry for A8.
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Polar Geometry

In addition to the groups studied in Chapter 4 there are essentially three
further types of classical groups: symplectic, unitary and orthogonal. These
groups correspond to three types of bilinear form which can be defined on a
vector space. In preparation for a more detailed study of the groups in the
following pages, this chapter is devoted to the classification of the forms (the
Birkhoff–von Neumann (1936) theorem) and to a proof of a general result
known as Witt’s theorem. For a while we shall return to the assumptions
of Chapter 3. That is, K will denote a division ring that is not necessarily
commutative and V will denote a finite-dimensional left vector space over K.

The Dual Space

The set V ∗ of linear functionals ϕ :V → K is naturally a right vector space
over K. However, we would like V ∗ to be a left vector space. To achieve
this we introduce the ring Kop (called the opposite ring of K) which has the
same elements as K but in which multiplication is defined by

a ◦ b = ba.

Then V ∗ becomes a left vector space over Kop provided we define

(ϕ1 + ϕ2)(v) = ϕ1(v) + ϕ2(v)

and

(aϕ)(v) = ϕ(v)a.

We call this left vector space V ∗ the dual space of V. Of course if K is a
field, then K = Kop and V ∗ is the usual dual space as described in Chapter 4.
In any case, if e1, e2, . . . , en is a basis for V, the dual basis for V ∗ is ω1, ω2,
. . . , ωn, where

ωi(a1e1 + a2e2 + · · ·+ anen) = ai

Therefore dimKop V ∗ = dimK V.

If X is a subset of V, the annihilator of X is the subspace

X◦ := {ϕ ∈ V ∗ | ϕ(x) = 0 for all x ∈ X }.
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Dually, the annihilator of a subset S of V ∗ is

S◦ := { v ∈ V | ϕ(v) = 0 for all ϕ ∈ S }.

If S ⊆ T ⊆ V ∗, then T ◦ ⊆ S◦ and we have S ⊆ S◦◦. Similarly, if X ⊆ V,
then X ⊆ X◦◦.

If X is a subspace of V, restriction of linear functionals to X defines a
linear transformation V ∗ → X∗ with kernel X◦. This map is surjective,
hence V ∗/X◦ ' X∗ and therefore dimV ∗ − dimX◦ = dimX∗. We know
that dimV = dimV ∗ and consequently we have the simple but important
relation:

dimX + dimX◦ = dimV.

Similarly, if S is a subspace of V ∗ and v ∈ S◦, evaluation at v defines
an element of (V ∗/S)∗ and the resulting map from S◦ to (V ∗/S)∗ is an
isomorphism. Consequently,

dimS + dimS◦ = dimV

and we have dimS = dimS◦◦. Since S ⊆ S◦◦, it follows that S = S◦◦ and
similarly X = X◦◦.

Correlations

From now on we shall assume that dimV ≥ 3. Recall that the projective
geometry P(V ) is the set of all subspaces of V, partially ordered by inclusion,
and a collineation of P(V ) is an order-preserving bijection. A correlation of
P(V ) is a bijection from P(V ) to P(V ) which reverses inclusion. Thus a
correlation sends points to hyperplanes and vice versa. The composition of
two correlations is obviously a collineation and therefore the group PΓL(V )
of all collineations is a subgroup of index 2 in the group PΓL∗(V ) of all
collineations and correlations of P(V ).

The map from P(V ) to P(V ∗) which sends X to X◦ is a bijection which
reverses inclusion. Therefore, if π is a correlation of P(V ), the map

P(V )→ P(V ∗) :X 7→ π(X)◦

is a collineation. It follows from Theorem 3.1 (the Fundamental Theorem of
Projective Geometry) that there is a semilinear map f :V → V ∗ with asso-
ciated isomorphism σ :K → Kop such that π(X)◦ = f(X) for all X ∈ P(V ).
In other words,

π(X) = { v ∈ V | f(x)v = 0 for all x ∈ X }.

The isomorphism σ from K to Kop may also be regarded as an anti-
automorphism of K. These considerations lead us to the next topic.
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Sesquilinear Forms

If σ is an anti-automorphism of K, a σ-sesquilinear form on V is a map
β :V × V → K such that

β(u1 + u2, v) = β(u1, v) + β(u2, v),

β(u, v1 + v2) = β(u, v1) + β(u, v2),

and

β(au, bv) = aβ(u, v)σ(b),

for all u, v, u1, u2, v1, v2 ∈ V and all a, b ∈ K. If σ = 1, the form is said to
be bilinear; note that this forces K to be a field.

A semilinear isomorphism f :V → V ∗ induces a σ-sesquilinear form

β(u, v) := f(v)u.

Moreover β is non-degenerate in the sense that β(u, v) = 0 for all u implies
v = 0, or equivalently, β(u, v) = 0 for all v implies u = 0. Conversely, a
non-degenerate σ-sesquilinear form β induces a semilinear map f from V to
V ∗ defined by f(v) := β(−, v).

A pair of vectors (u, v) such that β(u, v) = 0 is said to be orthogonal. For
X ∈ P(V ), the set

X⊥ := {u ∈ V | β(u, v) = 0 for all v ∈ X }

is called the orthogonal complement of X. Note that X⊥ = f(X)◦.

The correlation of P(V ) corresponding to f sends X to X⊥. The inverse
of this correlation corresponds to the semilinear map

u 7→ σ−1β(u,−).

It follows from Theorem 3.1 (ii) that a σ-sesquilinear form β and a σ′-
sesquilinear form β′ induce the same correlation of P(V ) if and only if, for
some b ∈ K, we have

β′(u, v) = β(u, v)b and σ′(a) = b−1σ(a)b.

Note that since X⊥ = f(X)◦, we have

dimX + dimX⊥ = dimV,

X ⊆ Y implies Y ⊥ ⊆ X⊥,
(X + Y )⊥ = X⊥ ∩ Y ⊥ and (X ∩ Y )⊥ = X⊥ + Y ⊥.
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Polarities

A polarity of P(V ) is a correlation π of order 2 and the pair (P(V ), π) is
called a polar geometry. The term polar comes from the example of poles
and polars with respect to a conic in the usual two-dimensional projective
geometry over the real field. This is a special case of the general notion of
polarity.

A correlation π with associated σ-sesquilinear form β is a polarity if and
only if π = π−1. This is equivalent to π being induced both by v 7→ β(−, v)
and by u 7→ σ−1β(u,−).

A sesquilinear form β such that β(u, v) = 0 implies β(v, u) = 0 for all
u, v ∈ V is said to be reflexive. Thus π is a polarity if and only if β is
reflexive. And β is reflexive if and only if X = X⊥⊥ for all X ∈ P(V ).

7.1 Theorem (Birkhoff–von Neumann). If dimV ≥ 3 and if π is a po-
larity of P(V ), then π arises from a non-degenerate reflexive σ-sesquilinear
form β of one of the following types:

(i) Alternating. In this case K is a field, σ = 1 and β(v, v) = 0 for all
v ∈ V.

(ii) Symmetric. In this case K is a field, σ = 1 and β(u, v) = β(v, u) for
all u, v ∈ V.

(iii) Hermitian. In this case σ2 = 1, σ 6= 1 and β(u, v) = σβ(v, u) for all
u, v ∈ V.

Proof. Let β be a σ-sesquilinear form which induces π. Then the semi-
linear maps v 7→ β(−, v) and u 7→ σ−1β(u,−) both induce π. There-
fore, by Theorem 3.1, for some λ ∈ K we have β(u, v) = σ−1β(v, u)λ and
σ(a) = λ−1σ−1(a)λ for all a ∈ K. Thus

β(u, v) = σ−1(σ−1β(u, v)λ)λ = σ−1(λ)σ−2β(u, v)λ

and by choosing u and v so that β(u, v) = 1 we find that σ−1(λ)λ = 1. Hence

σ(λ) = λ−1 and σ2(a) = λ−1aλ.

If for all a ∈ K, we have λ−1a+ σ(a) = 0, then λ = −1 and σ = 1. Then K
is a field and β(u, v) = −β(v, u). If the characteristic of K is not 2, then β is
alternating and (i) holds. If the characteristic of K is 2, then β is symmetric
and (ii) holds.

We may now assume that for some a ∈ K, b = λ−1a + σ(a) 6= 0. Then

σ(b) = σ(a)λ + λ−1aλ = bλ. If we set β̂(u, v) := β(u, v)b and σ̂(x) =

b−1σ(x)b, then β̂ is a σ̂-sesquilinear form which induces π and in addition
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satisfies β̂(u, v) = σ̂β̂(v, u). If σ̂ = 1, then K is a field and (ii) holds. If
σ̂ 6= 1, then σ̂2 = 1 and (iii) holds.

The polar geometry (P(V ), π) is known as a symplectic, orthogonal or
unitary geometry according to whether (i), (ii) or (iii) holds.

Note that if β(v, v) = 0 for all v ∈ V, then on evaluating β(u + v, u + v)
we have β(u, v) = −β(v, u) and hence σ(a) = a for all a ∈ K. It follows that
K is a field and the geometry is symplectic.

Conversely, if the form β satisfies

β(u, v) = −β(v, u) for all u, v ∈ V

and if the characteristic of K is not 2, then β is an alternating form.

In the case of a unitary geometry it is possible to choose d ∈ K so that
d 6= σ(d). Then e := d − σ(d) is skew-symmetric (i.e., σ(e) = −e) and
β′(u, v) := β(u, v)e is a skew σ′-hermitian form, where σ′(a) := e−1σ(a)e.
That is, β′(u, v) = −σ′β′(v, u) for all u, v ∈ V. Of course β′ also induces the
polarity π.

Now that we have shown that it is only in a unitary geometry that the
division ring can be non-commutative we exclude this case and henceforth
assume that the division ring K is actually a field. This is no restriction in
the finite case since a well-known theorem of Wedderburn (1905) asserts that
every finite division ring is a field. An elementary proof of this result can be
found in Taylor (1974). Further information about unitary geometries over
non-commutative division rings can be found in Dieudonné (1971).

Quadratic Forms

When the characteristic of K is 2, our definition of an orthogonal geometry
as a polar geometry corresponding to a symmetric bilinear form is not quite
general enough for our later discussion of orthogonal groups. We rectify this
as follows. A quadratic form on V is a function Q :V → K such that

Q(av) = a2Q(v)

and β(u, v) := Q(u+ v)−Q(u)−Q(v)

is a bilinear form.

We say that β is the polar form of Q or that Q polarizes to β. We
now define an orthogonal geometry to be a vector space V together with a
quadratic form Q which is non-degenerate in the sense that its polar form
β has the property that β(u, v) = Q(u) = 0 for all v ∈ V implies u = 0.
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When the characteristic of K is not 2 this coincides with our first definition
since then Q(v) := 1

2β(v, v) defines a quadratic form which polarizes to β.
However, if the characteristic of K is 2, the polar form of Q is alternating
and does not determine Q. Also, if the characteristic of K is 2, there exist
symmetric forms that are not the polar form of any quadratic form. In
general we exclude this case from our considerations. That is, we stipulate
that when β is symmetric it arises as the polar form of a quadratic form.

Isometries

Suppose that β1 and β2 are (possibly degenerate) reflexive σ1- and σ2-
sesquilinear forms on vector spaces V1 and V2 over the fields K1 and K2,
respectively. A σ-semilinear map f :V1 → V2 is called an isometry if it is a
one-to-one function such that σ2σ = σσ1 and

β2(f(u), f(v)) = σβ1(u, v)

for all u, v ∈ V1.

If π1 and π2 are the correlations of V1 and V2 corresponding to β1 and β2,
then π2ϕ = ϕπ1, where ϕ := P(f) is the collineation induced by f . We leave
it as an exercise to discover to what extent the converse of this observation
remains true.

If V1 and V2 are provided with quadratic forms Q1 and Q2, an isometry is
defined to be a σ-semilinear map f :V1 → V2 such that f is one-to-one and

Q2(f(u)) = σQ1(u)

for all u ∈ V1.

In all cases a linear isometry is an isometry whose associated field auto-
morphism is the identity.

7.2 Lemma. Suppose that V1 = U ⊕W and that f :U → V2 and g :W →
V2 are isometries with the same associated field automorphism σ :K1 → K2.
If im(f) ∩ im(g) = {0} and β2(f(u), g(w)) = σβ1(u,w) for all u ∈ U and
w ∈ W , then the map f + g :V1 → V2 which sends u + w to f(u) + g(w) is
also an isometry.

Proof. Exercise 7.4.

Witt’s Theorem

Suppose that V is a vector space over a field F and let β be a reflexive
σ-sesquilinear form on V . The radical of β is the subspace

radV := V ⊥ = {u ∈ V | β(u, v) = 0 for all v ∈ V }.
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The form β is non-degenerate if and only if radV = {0}. If β is the polar
form of a quadratic form Q, then Q is non-degenerate if and only if 0 is the
only element of radV which Q maps to 0.

Definitions

(i) A non-zero vector u is isotropic if β(u, u) = 0.

(ii) A subspace W is totally isotropic if W ⊆W⊥.

(iii) A non-zero vector u is singular if Q(u) = 0 and a subspace W is totally
singular if Q(u) = 0 for all u ∈W .

(iv) A pair of vectors (u, v) such that u and v are isotropic and β(u, v) = 1
is called a hyperbolic pair . The line 〈u, v 〉 in P(V ) is called a hyperbolic
line.

(v) A subspace W is non-degenerate if W ∩W⊥ = {0}.
(vi) If V = U ⊕W and β(u,w) = 0 for all u ∈ U and w ∈ W , we write

V = U ⊥W and say that V is the orthogonal direct sum of U and W .

7.3 Lemma. Suppose that L is a non-degenerate two-dimensional sub-
space of V which contains an isotropic vector u with respect to the sesqui-
linear form β. Then L = 〈u, v 〉, where (u, v) is a hyperbolic pair. Moreover,
if β is the polar form of a quadratic form Q and Q(u) = 0, then v may be
chosen so that Q(v) = 0.

Proof. We may suppose that V = L and that β is one of the forms listed
in Theorem 7.1. Then L = 〈u,w 〉 for some w such that a := β(u,w) 6= 0. If
β is an alternating form take v := a−1w. If β is the polar form of Q, take
v := −Q(w)a−2u+ a−1w.

This leaves the unitary case to be dealt with. As pointed out in a remark fol-
lowing the proof of Theorem 7.1, we may suppose that β is skew σ-hermitian.
Choose d so that d+ σ(d) 6= 0 and let

c := (d+ σ(d))−1β(w,w)σ(d).

Then β(w,w) = c − σ(c) and we may take v := −(aσ(a))−1cu + σ(a)−1w.
To complete the proof, note that if the lemma holds for β, then it holds for
all multiples of β.

Suppose that β is a possibly degenerate σ-sesquilinear form on V and
that W is a complement to radV . Then V = W ⊥ radV and Theorem 7.1
applies to the restriction of β to W . It is possible to use β to define a
non-degenerate form β on V/ radV so that the natural map from W to
V/ radV is an isometry (Exercise 7.7). However, if β is the polar form of a
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quadratic form Q, it is not always the case that Q induces a quadratic form
on V/ radV . The following theorem applies to isometries of quadratic forms
and this explains why it is not possible to simply factor out radV as the first
step in the proof.

7.4 Theorem (Witt). Suppose that U is a subspace of V and that the
map f :U → V is a linear isometry. Then there is a linear isometry g :V → V
such that g(u) = f(u) for all u ∈ U if and only if f(U∩radV ) = f(U)∩radV .

Proof. If f is the restriction of a linear isometry g :V → V , then it is the
case that f(U ∩ radV ) = f(U) ∩ radV . For the converse we suppose that
f(U ∩ radV ) = f(U) ∩ radV and then construct g.

Choose a subspace W that is a common complement in radV to U ∩ radV
and f(U) ∩ radV (Exercise 2.18). Then

U + radV = U ⊕W and f(U) + radV = f(U)⊕W

and it follows from Lemma 7.2 that f+1W is a linear isometry which extends
f . Thus from now on we may assume that radV ⊆ U and radV ⊆ f(U).
We shall argue by induction on dimU − dim radV . If U = radV and if W
is a complement to U in V , then f + 1W is a linear isometry which extends
f . Thus we may assume that U 6= radV .

Let H be a hyperplane of U which contains radV and let f ′ be the restriction
of f to H. By induction, f ′ has an extension g′ :V → V . Replacing f by
g′
−1
f we may assume that f fixes every element of H. If f fixes every element

of U , we may take g = 1. Therefore, from now on assume that this is not
the case. Then P := im(f − 1) is a one-dimensional subspace of V .

For u, v ∈ U we have

β(f(u), f(v)− v) = β(f(u), f(v))− β(f(u), v)

= β(u, v)− β(f(u), v)

= β(u− f(u), v).

Hence H ⊆ P⊥ and it follows that U ⊆ P⊥ if and only if f(U) ⊆ P⊥.

If U 6⊆ P⊥, then
U ∩ P⊥ = f(U) ∩ P⊥ = H.

In this case, let W be a complement to H in P⊥. Then V = W ⊕ U
and for w ∈ W and u ∈ U , we have β(w, f(u) − u) = 0 and therefore
β(w, f(u)) = β(w, u). It follows from Lemma 7.2 that 1W + f is a linear
isometry of V which extends f .

So from now on we may suppose that U and f(U) are contained in P⊥. It
follows that P ⊆ P⊥. If U 6= f(U), u ∈ U \ H and v ∈ f(U) \ H, then
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X := 〈u+ v 〉 is a common complement to U and f(U) in U + f(U). Let W
be a complement to U + f(U) in P⊥ and set S := W +X. Then

P⊥ = S ⊕ U = S ⊕ f(U)

and by Lemma 7.2, 1S + f is a linear isometry of P⊥ which extends f . On
the other hand, if U = f(U), let S be any complement to U in P⊥. Then
again 1S + f is a linear isometry of P⊥. In both cases the extension of f to
P⊥ acts as the identity on a hyperplane of P⊥ that contains radV . Thus we
may as well suppose that U = P⊥ = f(U) 6= V .

Let P = 〈u 〉 and choose v ∈ U such that u = f(v)−v. If β is the polar form
of Q, then

Q(u) = Q(f(v)) +Q(v)− β(f(v), v) = 2Q(v)− β(v, v) = 0,

and in any case P ⊆ P⊥, whence u is isotropic. If L is a two-dimensional
subspace such that P ⊆ L but L 6⊆ P⊥, then L is non-degenerate. By
Lemma 7.3 we can write

L = 〈u,w 〉

where (u,w) is a hyperbolic pair (and if β is the polar form of a quadratic
form, w is singular).

Since w /∈ radV , 〈w 〉⊥ is a hyperplane of V and similarly L⊥ is a hyperplane
of U . Thus 〈w 〉⊥ ∩ U = L⊥ and we set Y := f(L⊥). Now 〈w 〉 + Y is a
hyperplane of V which contains radV but not f(u) and therefore 〈w 〉+Y =
〈w′ 〉⊥ for some w′ /∈ U . Thus 〈 f(u), w′ 〉 is non-degenerate and we have
Y = 〈 f(u), w′ 〉⊥.

By Lemma 7.3 there is an isotropic (singular) vector w′′ such that

〈 f(u), w′ 〉 = 〈 f(u), w′′ 〉

and (f(u), w′′) is a hyperbolic pair.

Define an isometry g : 〈w 〉 → V by aw 7→ aw′′. If x ∈ L⊥, then

β(f(x), g(w)) = 0 = β(x,w)

and we also have
β(f(u), g(w)) = 1 = β(u,w).

Since U = 〈u 〉⊕L⊥ and V = 〈w 〉⊕U , it follows from Lemma 7.3 that g+f
is a linear isometry of V . This completes the proof.

This theorem was first proved by Witt (1937) for symmetric and hermitian
forms over fields of characteristic other than 2. However, the proof presented
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here was inspired by the version that appears in the book of Chevalley (1954).
Similar proofs can be found in Higman (1978) and Gross (1979).

It is a consequence of this theorem that any two maximal totally isotropic
subspaces of V have the same dimension. This common dimension is called
the Witt index of the form β. If M is a totally isotropic subspace and β is
non-degenerate, then

M ⊆M⊥

and the Witt index of β is therefore at most 1
2 dimV . In general, the index

is at most 1
2 (dimV + dim radV ).

The Witt index of a quadratic form is the common dimension of the max-
imal totally singular subspaces.

Bases of Orthogonal Hyperbolic Pairs

When working with polarities it is possible to choose the basis of V in ways
which are better adapted to calculations than is the case for a random basis.
The next lemma will help us to make ‘nice’ choices in later chapters. We
assume that V has a non-degenerate reflexive σ-sesquilinear form β (which
in the symmetric case is the polar form of a quadratic form Q).

7.5 Lemma. If U and W are totally isotropic (resp. totally singular) sub-
spaces of V such that U⊥ ∩W = {0}, then there is a totally isotropic (resp.
totally singular) subspace U ′ containing W such that V = U⊥ ⊕ U ′. More-
over, for each basis u1, u2, . . . , uk of U , there is a unique basis u′1, u′2, . . . , u′k
of U ′ such that (u1, u

′
1), (u2, u

′
2), . . . , (uk, u

′
k) are mutually orthogonal hy-

perbolic pairs.

Proof. First we construct the subspace U ′. If U ∩W⊥ = {0}, then V =
U⊥⊕W and we may take U ′ := W . Therefore we may suppose that U∩W⊥ 6=
{0}. In particular,

U ∩W⊥ 6⊆ (W⊥)⊥ = W

and it follows that there are vectors u ∈ U ∩W⊥ and w ∈ W⊥ such that
β(u,w) 6= 0. By Lemma 7.3 the hyperbolic line 〈u,w 〉 is spanned by isotropic
(singular) vectors u and v.

The subspace W ′ := W ⊕ 〈 v 〉 is totally isotropic (totally singular) and
U⊥ ∩W ′ = {0}. By induction there is a totally isotropic (totally singular)
subspace U ′ containing W ′ such that V = U⊥ ⊕ U ′.
Now suppose that u1, u2, . . . , uk is a basis for U and let U1 be the subspace
〈u2, . . . , uk 〉. Then U⊥ is a hyperplane of U⊥1 and therefore dim(U⊥1 ∩U ′) =
1. Since U⊥1 ∩U ′ is not contained in 〈u1 〉⊥, there is a unique vector u′1 ∈ U⊥1 ∩
U ′ such that β(u1, u

′
1) = 1. The subspaces U1 and 〈u1 〉⊥ ∩U ′ are contained
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in the non-degenerate space 〈u1, u
′
1 〉⊥ and satisfy the same conditions as U

and U ′. It follows by induction that u′1 may be extended to a basis of U ′ of
the desired form.

The Group ΓL∗(V )

In this section we shall describe the correlations and collineations of V in a
way which is often more suitable for computations than the abstract defini-
tions given earlier. The detailed verification of the assertions is straightfor-
ward and will be left as an exercise.

We begin with the observation that a finite-dimensional vector space V
may be identified with its second dual V ∗∗ as follows. For v ∈ V , define
v̂ ∈ V ∗∗ by v̂(ϕ) := ϕ(v) for all ϕ ∈ V ∗. Then the map v 7→ v̂ is an
isomorphism from V onto V ∗∗ (Exercise 7.2 (i)).

If V1 and V2 are vector spaces and f :V1 → V2 is a σ-semilinear transfor-
mation, then the map f∗ :V ∗2 → V ∗1 defined by

f∗(ϕ) := σ−1ϕf

is a σ−1-semilinear transformation and we have f∗∗(v̂) = f(v)̂ for all v ∈ V1.
From now on we shall identify each vector space with its second dual and
each map f with f∗∗. Note that if g :V2 → V3, then (gf)∗ = f∗g∗.

Returning to the vector space V, we see that for the map f :V → V ∗ given
by

f(v) = β(−, v),

where β is a σ-sesquilinear form on V , we have

f∗(v) = σ−1β(v,−).

When β is non-degenerate, the correlations of P(V ) induced by f and f∗ are
mutually inverse.

Now let ΓL∗(V ) be the set of all semilinear bijections from V to V together
with all semilinear bijections from V to V ∗. For f ∈ ΓL∗(V ), let f be the
inverse of f∗.

For f, g ∈ ΓL∗(V ) define f ◦ g to be fg when g :V → V and fg when
g :V → V ∗. In particular, if f :V → V ∗, the inverse of f in ΓL∗(V ) is f∗.
It is straightforward, but tedious, to show that this definition of product
turns ΓL∗(V ) into a group which contains ΓL(V ) as a subgroup of index 2
(Exercise 7.2 (vi)).
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If dimV ≥ 3, then the Fundamental Theorem of Projective Geometry
shows that the group PΓL∗(V ) of all collineations and correlations of V is
isomorphic to the quotient group ΓL∗(V )/Z(V ).

If p is the σ-semilinear transformation p(v) := β(−, v) and if f is a τ -
semilinear transformation in ΓL(V ), it is of particular interest (for later
calculations) to compute the matrices of various transformations associated
with p and f .

Begin by choosing a basis e1, e2, . . . , en for V and let ω1, ω2, . . . , ωn be the
dual basis for V ∗. We find that p(ej) =

∑n
i=1 bijωi, where bij := β(ei, ej).

The determinant of the matrix J := (bij) is called the discriminant of β.

If f(ej) =
∑n
i=1 aijei, then f∗(ωj) =

∑n
i=1 τ

−1ajiωi and so the matrix of
f∗ is τ−1(At), where At is the transpose of the matrix A := (aij) of f . The
maps p and f have associated field automorphisms σ and τ and of course these
must be taken into account when composing the corresponding matrices. In
particular, the matrix of p∗ is σ−1(J t) and the matrix of the σ-semilinear
transformation p is J−t, the inverse of J t. Similarly, the matrix of f is A−t

and the matrix of f⊥ := p ◦ f ◦ p−1 (= pfp∗) is J−tσ(A−t)στσ−1(J t).

Thus for f ∈ GL(V ) we have

f⊥ = f if and only if AtJσ(A) = J. (7.6)

Note that f⊥ is the unique στσ−1-semilinear transformation such that

β(f⊥(u), f(v)) = στσ−1β(u, v) (7.7)

for all u, v ∈ V.

Flags and Frames

From now on suppose that β is a non-degenerate reflexive σ-sesquilinear form
corresponding to a polarity π.

The image of the flag F , given by

V1 ⊂ V2 ⊂ · · · ⊂ Vk, (7.8)

under the action of the polarity π :X 7→ X⊥ is the flag

V ⊥k ⊂ V ⊥k−1 ⊂ · · · ⊂ V ⊥1 . (7.9)

Thus π fixes F if and only if V ⊥i = Vk−i+1 for i = 1, 2, . . . , k. If this
is the case, then for i ≤ 1

2 (k + 1) we have Vi ⊆ V ⊥i and consequently Vi is
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totally isotropic. Conversely, if the flag F of (7.8) consists of totally isotropic
subspaces, then the flag

V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊆ V ⊥k ⊂ · · · ⊂ V ⊥1 (7.10)

is fixed by π. This shows that the flags fixed by π may be identified with the
flags of totally isotropic subspaces. We let ∆π(V ) denote the set of proper
flags of totally isotropic subspaces of V. The maximal flags of totally isotropic
subspaces are called the chambers of ∆π(V ). (Not all geometries have flags
fixed by a correlation. For example, ordinary Euclidean space Rn with the
usual inner product has no isotropic vectors and therefore no non-empty fixed
flags.)

Suppose that W is a subspace of V. It follows from (7.7) that

f⊥(W⊥) = f(W )⊥ (7.11)

and therefore, if f fixes the flag F given by (7.8), then f⊥ fixes π(F ).

The map π̂ : f 7→ f⊥ is an automorphism of ΓL(V ) and our calculations
show that if the flag F is fixed by π, then the stabilizer of F in ΓL(V ) is
fixed by π̂.

Now consider a frame F = {P1, P2, . . . , Pn} of P(V ), where Pi = 〈 ei 〉,
and let ω1, ω2, . . . , ωn be the dual basis to e1, e2, . . . , en. For i = 1, 2 . . . , n,
let e∗i := p(ωi). Then for 1 ≤ i, j ≤ n we have

β(e∗i , ej) = δij . (7.12)

We define F∗ to be the frame {P ∗1 , P ∗2 , . . . , P ∗n}, where P ∗i := 〈 e∗i 〉 and we
note that P ∗i = 〈 F \ {Pi} 〉⊥. Thus each point P ∗i of F∗ is not orthogonal
to exactly one point of F , namely Pi. It follows that P ∗∗i = Pi for all i.
From this description it is easy to see that if Φ ⊆ F and W = 〈Φ 〉, then
W⊥ = 〈Φ′ 〉, where Φ′ := {P ∗i | Pi /∈ Φ }. In particular, if F is a flag in the
apartment Σ(F), then π(F ) belongs to Σ(F∗).

Suppose that f fixes F . That is, f(Pi) = Pφ(i), where φ is a permutation
of {1, 2, . . . , n}. Then (7.7) shows that

f⊥(P ∗i ) = P ∗φ(i) (7.13)

and therefore f⊥ fixes F∗.

Polar Frames

Let m be the Witt index of β and let

U := 〈 e1, e2, . . . , em 〉
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be a maximal totally isotropic subspace of V. By Lemma 7.5 there is a totally
isotropic subspace

U ′ := 〈 f1, f2, . . . , fm 〉

such that (e1, f1), . . . , (em, fm) are mutually orthogonal hyperbolic pairs. It
follows that V = (U ⊕ U ′) ⊥ U ′′, where U ′′ contains no isotropic vectors.
Let u1, u2, . . . , uh be a basis for U ′′ such that for i 6= j, β(ui, uj) = 0. If for
1 ≤ i ≤ m, Pi := 〈 ei 〉, then P ∗i = 〈 fi 〉. For 1 ≤ i ≤ h, let Qi := 〈ui 〉. Then
Q∗i = Qi and the set

F := {Pi, P ∗i | 1 ≤ i ≤ m } ∪ {Qi | 1 ≤ i ≤ h } (7.14)

is a frame such that F = F∗.
The points Qi are not isotropic and therefore they never occur in flags of

totally isotropic subspaces. Consequently we restrict our attention to the set
{Pi, P ∗i | 1 ≤ i ≤ m } and call this a polar frame of V (with respect to π).

The Building of a Polarity

Suppose that m 6= 0. If F is a polar frame, the apartment of F in ∆π(V ) is
the set of flags

Σπ(F) := Σ(F) ∩∆π(V ).

The assumption that m 6= 0 ensures that Σπ(F) is not empty. The building
of π is the set ∆π(V ) of all proper flags of totally isotropic subspaces together
with the set Aπ of all apartments obtained from polar frames.

At this point we may prove the polar analogue of Theorem 5.3.

7.15 Theorem. If M1 and M2 are chambers of ∆π(V ), there is an apart-
ment Σπ which contains both M1 and M2.

Proof. Suppose that M1 and M2 are the flags V1 ⊂ V2 ⊂ · · · ⊂ Vm and
W1 ⊂ W2 ⊂ · · · ⊂ Wm, respectively. By Theorem 5.2 there is a frame F
such that Σ(F) contains both

V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊆ V ⊥m ⊂ · · · ⊂ V ⊥1
and

W1 ⊂W2 ⊂ · · · ⊂Wm ⊆W⊥m ⊂ · · · ⊂W⊥1 .

These flags are fixed by π and therefore the results of the previous section
show that they belong to Σ(F∗).
Let Φ be the subset of F which is a frame for P(Vm) and let Ψ be the subset
of F∗ which is a frame for P(Wm). Now set

Γ := Φ ∪ {P ∈ Ψ | P /∈ P(Vm) }.
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By Lemma 5.3, Vm ∩Wi is spanned by a subset of Φ and by a subset of Ψ.
It follows that Wi is spanned by a subset of Γ and that Vi is spanned by a
subset of Φ ⊆ Γ.

We shall show that Γ can be extended to a polar frame. Suppose that P ∈ F
is such that P ∗ ∈ Ψ. If P ∗ /∈ P(Vm), then P ∗ cannot be orthogonal to every
element of Φ otherwise 〈Φ, P ∗ 〉 would be totally isotropic, contrary to the
maximality of Vm. Therefore P ∈ P(Vm). This means that we may choose
the notation so that

Φ = {P1, P2, . . . , Pm}

and so that the remaining points of Γ are P ∗1 , P ∗2 , . . . , P ∗r for some r ≤ m.
Applying Lemma 7.5 with U = 〈Φ 〉 and W = 〈P ∗1 , . . . , P ∗r 〉 we see that Γ
extends to a polar frame whose apartment contains M1 and M2.

We shall use the following lemma in the proof of the polar analogue of
Theorem 5.4.

7.16 Lemma. If g ∈ SL(V ) and if F is a polar frame such that g⊥(P ) =
g(P ) for all P ∈ F , then there is a linear isometry f such that f(P ) = g(P )
for all P ∈ F .

Proof. Put F ′ := { g(P ) | P ∈ F } and recall that for P ∈ F , P ∗ is the
unique element of F not orthogonal to P . It follows from (7.7) that g(P ∗)
is the unique element of F ′ not orthogonal to g⊥(P ) = g(P ). Thus F ′ is a
polar frame. It follows from Theorem 7.4 that there is a linear isometry f
such that f(P ) = g(P ) for all P ∈ F .

7.17 Theorem. Suppose that F and F ′ are polar frames and that F and
G are flags which belong to both apartments Σπ(F) and Σπ(F ′). Then there
is a linear isometry f such that f(F ) = F , f(G) = G and f(F) = F ′.

Proof. Suppose at first that F is a chamber of ∆π(V ). The sets F̂ :=
F ∪ π(F ) and Ĝ := G ∪ π(G) are flags of V fixed by π and it follows from
Theorem 5.4 that for some g ∈ SL(V ) we have

g(F̂ ) = F̂ , g(Ĝ) = Ĝ and g(F) = F ′.

From (7.11) we have g⊥(F̂ ) = F̂ and g⊥(Ĝ) = Ĝ. It also follows from (7.11)
that g⊥(F) = F ′. But now g−1g⊥ fixes F and the flag F̂ . Since F is a
chamber of Σπ(F), it follows that g−1g⊥ fixes every point of F and hence
by Lemma 7.16 there is a linear isometry f which coincides with g on F . In
particular, f(F ) = F , f(G) = G and f(F) = F ′.
Now consider the general case in which F is not necessarily a chamber. Let
F1 be a chamber of Σπ(F) which contains F and let G1 be a chamber of
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Σπ(F ′) which contains G. By Theorem 7.15 there is a polar frame F ′′ such
that F1 and G1 belong to Σπ(F ′′). By the previous paragraph we can find
isometries f1 and f2 such that

f1(F) = F ′′, f2(F ′′) = F ′,
f1(F1) = F1, f1(G) = G, f2(F ) = F and f2(G1) = G1.

Thus f := f2f1 satisfies our requirements.

In Chapter 5 we showed that the stabilizer of a frame and the stabilizer
of a chamber in the apartment of that frame form a BN -pair. A similar
result holds in the polar case. We postpone the proof of the general re-
sult to Chapter 9 but consider the special case of a symplectic geometry in
Chapter 8.

Throughout the exercises assume that all the vector spaces which occur
are finite-dimensional.

EXERCISES

7.1 Let X and Y be subspaces of the vector space V and show that

(X + Y )◦ = X◦ ∩ Y ◦ and (X ∩ Y )◦ = X◦ + Y ◦.

7.2 (i) Show that the map V → V ∗∗ : v 7→ v̂, where v̂(ϕ) := ϕ(v), is an
isomorphism.

(ii) If f :V1 → V2 is a σ-semilinear map and f∗ :V ∗2 → V ∗1 is the
σ−1-semilinear map defined by f∗(ϕ) := σ−1ϕf , show that

(f∗(f(X)◦))◦ = X + ker(f)

for all subspaces X of V.

(iii) If f :V1 → V2 is a σ-semilinear map and if v̂ is defined as in (i),
show that f∗∗(v̂) = f(v)̂ .

Henceforth we identify each vector space with its second dual.

(iv) If β is a σ-sesquilinear form on V and if f :V → V ∗ is the map
f(v) := β(−, v) induced by β, show that f∗(v) = σ−1β(v,−).

(v) If β is non-degenerate, show that the correlations induced by f
and f∗ are mutually inverse.

(vi) Verify that ΓL∗(V ) is a group.
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7.3 For i = 1, 2, let Vi be a vector space with basis e
(i)
1 , e

(i)
2 , . . . , e

(i)
ni and

dual basis ω
(i)
1 , ω

(i)
2 , . . . , ω

(i)
ni . If f :V1 → V2 is a σ-semilinear map

such that

f(e
(1)
j ) =

n∑
i=1

aije
(2)
i ,

show that

f∗(ω
(2)
j ) =

n∑
i=1

σ−1ajiω
(1)
i .

7.4 Prove Lemma 7.2.

7.5 Let e1, e2, . . . , en be a basis for V and let ω1, ω2, . . . , ωn be the dual
basis for V ∗.

(i) If the σ-semilinear map p :V → V ∗ in ΓL∗(V ) has matrix J and
the τ -semilinear map f :V → V has matrix A with respect to
these bases, show that

f−1 ◦ p ◦ f has matrix τ−1(AtJσ(A)).

(ii) If p corresponds to the σ-sesquilinear form β, show that

f−1 ◦ p ◦ f corresponds to τ−1β(f−, f−),

which is a τ−1στ -sesquilinear form.

7.6 Suppose that V is a vector space of dimension at least 3 over a field
F and let ∆(V ) be the building of V .

(i) Show that the group of order preserving bijections of ∆(V ) is
isomorphic to PΓL∗(V ).

(ii) Using Sylow’s theorem and Exercise 5.8, show that, when F is
finite, every automorphism of PSL(V ) induces an automorphism
of the building ∆(V ). Deduce that Aut(PSL(V )) = PΓL∗(V ).

7.7 Let β be a σ-sesquilinear form on V . Show that

β(u+ radV, v + radV ) := β(u, v)

is a well-defined non-degenerate σ-sesquilinear form on V/ radV.
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7.8 Let V and W be vector spaces over a field F. A σ-sesquilinear pairing
is a function

β :V ×W → F
such that β(−, w) ∈ V ∗ and σ−1β(v,−) ∈ W ∗ for all v ∈ V and
w ∈ W , where σ is an automorphism of F. For each subspace H of
V , let

H⊥ := {w ∈W | β(h,w) = 0 for all h ∈ H }
and for each subspace K of W , let

⊥K := { v ∈ V | β(v, k) = 0 for all k ∈ K }.

Show that

(i) the maps W/H⊥ → (H/⊥W ∩H)∗ :w +H⊥ 7→ β(−, w)

and ⊥K/⊥W → (W/K + V ⊥)∗ :u+ ⊥W 7→ σ−1β(u,−)

are isomorphisms,

(ii) ⊥(H⊥) = H + ⊥W,

(iii) dimW + dim(H ∩ ⊥W ) = dimH + dimH⊥,

(iv) dim⊥K + dim(K + V ⊥) = dimW + dim⊥W , and

(v) dimH⊥ + dim(H + ⊥W ) = dimV + dimV ⊥.

7.9 Suppose that β is a symmetric bilinear form on a vector space over a
field of characteristic 2. Show that either β is alternating or else the
set of isotropic vectors together with 0 form a proper subspace. If the
field is finite (or, more generally, perfect) show that the subspace of
isotropic vectors is a hyperplane.

7.10 Define a gallery in ∆π(V ) as in Exercise 5.5 and then show that any
two chambers of ∆π(V ) are connected by a gallery.

7.11 Show that each panel in an apartment Σ of ∆π(V ) is contained in
exactly two chambers of Σ.

7.12 Let Σ be an apartment of ∆π(V ) and let M be a chamber of Σ. By
Theorem 7.15, for each flag F ∈ ∆π(V ) there is an apartment Σ′

containing F and M . By Theorem 7.17 there is a linear isometry
f such that f(Σ′) = Σ and f(M) = M . Define ρ : ∆π(V ) → Σ by
ρ(F ) := f(F ). Show that

(i) ρ is well-defined.

(ii) If F and G are adjacent chambers, then either ρ(F ) = ρ(G) or
ρ(F ) and ρ(G) are adjacent chambers of Σ.

(iii) If ρ(F ) ⊆M , then ρ(F ) = F ⊆M .
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Symplectic Groups

With this chapter we begin the investigation of the groups associated with
polar geometries. The symplectic groups have been chosen first because in
many ways they resemble the groups SL(V ) and consequently it is possible
to organize the material along the same lines as Chapter 4.

Thus, after defining the groups, we compute the orders of the finite ex-
amples and then prove the simplicity of the projective symplectic groups.
Our approach uses Iwasawa’s criterion combined with a study of symplectic
transvections. Next we study embeddings of the symmetric groups in the
symplectic groups and finish the chapter with the construction of symplectic
BN -pairs.

Let V be a finite-dimensional vector space over a field F and suppose that
π is a symplectic polarity induced by the (non-degenerate) alternating form
β. Thus if X is a subspace of V , then π(X) = p(X)◦, where p :V → V ∗ is
the linear transformation p(v) := β(−, v).

The elements of GL(V ) which commute with p form the symplectic group
Sp(V ). It follows from the calculations of the last section of Chapter 7
(equation (7.7)) that f ∈ GL(V ) commutes with p if and only if

β(f(u), f(v)) = β(u, v) for all u, v ∈ V.

More generally, a σ-semilinear transformation f ∈ ΓL(V ) induces a col-
lineation which commutes with π if and only if, for some a ∈ F, we have

β(f(u), f(v)) = aσβ(u, v) for all u, v ∈ V.

(cf. Exercise 7.5 (ii).)

The transformations which satisfy this condition form the group ΓSp(V )
which contains Sp(V ) as a normal subgroup.

Matrices

Let e1, e2, . . . , en be a basis for V and let ω1, ω2, . . . , ωn be the dual basis
for V ∗. Then

J := (β(ei, ej))
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is the matrix of p with respect to these bases and if A is the matrix of
f ∈ GL(V ), it follows from (7.6) that f is in Sp(V ) if and only if

AtJA = J.

Since β(v, v) = 0 for all v ∈ V we find, by expanding β(u+ v, u+ v) = 0,
that β(u, v) = −β(v, u). Thus J t = −J and p ◦ p = −1 (in the notation of
Chapter 7).

We have just shown that Sp(V ) is isomorphic to the group Sp(n,F) of
n× n matrices A such that AtJA = J . If F is the finite field of q elements,
we write Sp(n, q) instead of Sp(n,F).

It is easy to see that the only scalar matrices in Sp(n,F) are I and −I
and therefore the group PSp(V ) of collineations of P(V ) induced by Sp(V )
is isomorphic to Sp(V )/{±1 }.

Symplectic Bases

It is possible to choose a basis of V better adapted to calculations. Choose
e1 6= 0 and f1 so that β(e1, f1) 6= 0. Replacing f1 by β(e1, f1)−1f1 we may
suppose that (e1, f1) is a hyperbolic pair (as defined in Chapter 7). Then

V = 〈 e1, f1 〉 ⊥ 〈 e1, f1 〉⊥.

Continuing in this fashion, choosing a hyperbolic pair (e2, f2) in 〈 e1, f1 〉⊥
and so on, we find that V can be written as an orthogonal direct sum of the
hyperbolic lines 〈 ei, fi 〉. That is,

V = 〈 e1, f1 〉 ⊥ 〈 e2, f2 〉 ⊥ . . . ⊥ 〈 em, fm 〉

where β(ei, ej) = β(fi, fj) = 0 and β(ei, fj) = δij . It follows that dimV =
2m is even and for each m there is only one symplectic geometry of dimension
2m over F (up to isomorphism).

The basis e1, f1, e2, f2, . . . , em, fm is called a symplectic basis of V and
the corresponding frame

{〈 e1 〉, 〈 f1 〉, . . . , 〈 em 〉, 〈 fm 〉}

is called a symplectic frame. When the basis is ordered as e1, e2, . . . , em, f1,
f2, . . . , fm the matrix J of β has the particularly simple form(

0 I
−I 0

)
.

The subspace M := 〈 e1, e2, . . . , em 〉 is totally isotropic and, as dimM =
1
2 dimV , it follows that M is a maximal totally isotropic subspace. Thus the
Witt index of β is m.



70 8. Symplectic Groups

Order Formulae

The group Sp(V ) acts regularly on the set of ordered symplectic bases of V
and hence in order to compute |Sp(V )| when F is finite we simply count the
number of symplectic bases.

If F = Fq, the number of hyperbolic pairs in V is

(q2m − 1)(q2m − q2m−1)/(q − 1) = (q2m − 1)q2m−1.

It follows that the number of ordered symplectic bases is

m∏
i=1

(q2i − 1)q2i−1

and therefore

|Sp(2m, q)| = qm
2
m∏
i=1

(q2i − 1).

Putting m = 1 we see that |Sp(2, q)| = |SL(2, q)|. This is also a conse-
quence of the following more general result.

8.1 Theorem. The groups Sp(2,F) and SL(2,F) are isomorphic.

Proof. Check that a 2× 2 matrix A satisfies

At
(

0 1
−1 0

)
A =

(
0 1
−1 0

)
if and only if detA = 1.

The Action of PSp(V ) on P(V )

Recall from Chapter 1 that the rank of a transitive permutation group is the
number of orbits of the stabilizer of a point.

8.2 Theorem. If dimV ≥ 4, then PSp(V ) acts as a permutation group
of rank 3 on the points of P(V ).

Proof. By Witt’s theorem (Theorem 7.4), PSp(V ) is transitive on the
points of P(V ) and if P is a point, the orbits of PSp(V )P are

{P}, {Q | Q ∈ P⊥, Q 6= P } and {Q | Q /∈ P⊥ }.



Symplectic Transvections 71

8.3 Theorem. The action of PSp(V ) on the points of P(V ) is primitive.

Proof. If dimV = 2, then by Theorem 8.1, PSp(V ) = PSL(V ) and it is a
consequence of Theorem 4.1 that this group is primitive. Therefore we may
assume that dimV ≥ 4.

Suppose that B is a block of imprimitivity such that |B| > 1 and choose
P ∈ B. By the proof of Theorem 8.2, if B ∩ P⊥ contains a point other than
P , then P⊥ ⊆ B. In this case, if R /∈ P⊥, choose Q ∈ (P + R)⊥. Then
Q ∈ B and R ∈ Q⊥, hence R ∈ B. Thus B consists of all the points of P(V )
in this case.

Now suppose that B contains a point not in P⊥. Then B contains all the
points not in P⊥. Suppose that R ∈ P⊥, R 6= P and choose Q /∈ P⊥ ∪ R⊥.
Then Q ∈ B and since R /∈ Q⊥, it follows that R ∈ B. Again B consists of
all the points of P(V ) and this proves that PSp(V ) is primitive.

Symplectic Transvections

Recall from Chapter 4 that if ϕ ∈ V ∗, u ∈ V and ϕ(u) = 0, the transvection
tϕ,u is defined by

tϕ,u(v) := v + ϕ(v)u.

We have tϕ,u ∈ Sp(V ) if and only if β(tϕ,u(v), tϕ,u(w)) = β(v, w) for all
v, w ∈ V . This is the case if and only if ϕ(w)β(v, u) + ϕ(v)β(u,w) = 0.
Choose v so that β(u, v) = 1. Then ϕ(w) = ϕ(v)β(u,w) and it follows that
kerϕ = 〈u 〉⊥. Thus the transvections that belong to Sp(V ) have the form

t(v) = v + aβ(v, u)u (8.4)

for some a ∈ F and u ∈ V . We call these maps symplectic transvections.

The root group XP,P⊥ consists of those symplectic transvections of the
form (8.4) for which P = 〈u 〉. If f ∈ Sp(V ) and W is a subspace of V , then
f(W )⊥ = f(W⊥) and consequently

fXP,P⊥f
−1 = Xf(P ),f(P )⊥ .

Thus XP,P⊥ is a normal subgroup of the stabilizer Sp(V )P . Notice that
XP,P⊥ = XP ∩ Sp(V ), where XP is the group which occurs in Theorem 4.3.

In order to use Iwasawa’s criterion to show that PSp(V ) is simple we need
to prove that Sp(V ) is generated by the conjugates of XP,P⊥ and that it is
equal to its derived group Sp(V )′
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8.5 Theorem. The symplectic transvections generate Sp(V ).

Proof. Let T be the subgroup of Sp(V ) generated by the transvections.
We first show that T is transitive on V \{0}. If u1, u2 ∈ V and β(u1, u2) 6= 0,
define

t(v) := v − β(u1, u2)−1β(u1 − u2, v)(u1 − u2).

Then t ∈ T and t(u1) = u2. If u1 6= u2 and β(u1, u2) = 0, choose w so that
β(u1, w) 6= 0 and β(u2, w) 6= 0. By the previous case we can find t1, t2 ∈ T
such that t1(u1) = w and t2(w) = u2. Thus t2t1(u1) = u2 and this completes
the proof that T is transitive on V \ {0}.

Next we show that T is transitive on hyperbolic pairs. Suppose that (u1, v1)
and (u2, v2) are hyperbolic pairs. Since T is transitive on vectors we may
suppose that u1 = u2 = u. If β(v1, v2) 6= 0, the transvection

t(v) := v − β(v1, v2)−1β(v1 − v2, v)(v1 − v2)

fixes u and takes v1 to v2. If β(v1, v2) = 0, then (u, u + v1) is a hyperbolic
pair such that β(v1, u + v1) 6= 0 and β(u + v1, v2) 6= 0. We have just shown
that this implies that there are elements of T which take (u, v1) to (u, u+v1)
and (u, u+ v1) to (u, v2). Hence T is transitive on hyperbolic pairs.

Now suppose that f ∈ Sp(V ) and that (u, v) is a hyperbolic pair. Then for
some t ∈ T we have tf(u) = u and tf(v) = v. Hence tf acts as the identity
on L := 〈u, v 〉 and fixes L⊥. By induction, the restriction of tf to L⊥ is
the product of transvections t1, t2, . . . , tk of L⊥. Since V = L+L⊥, each ti
extends to a transvection t′i := 1L + ti of V. It follows that f = t−1t′1 . . . t

′
k ∈

T .

8.6 Corollary. Sp(V ) ⊆ SL(V ).

Proof. The determinant of every transvection is 1 and Sp(V ) is generated
by its transvections.

The Simplicity of PSp(V )

8.7 Theorem. Sp(2m,F)′ = Sp(2m,F) except for Sp(2,F2), Sp(2,F3)
and Sp(4,F2).

Proof. We argue by induction on the dimension. So suppose that

Sp(2m,F)′ = Sp(2m,F), t ∈ XP,P⊥ ⊆ Sp(2m+ 2,F)

and let L be a hyperbolic line in P⊥. Then the restriction s of t to L⊥

belongs to Sp(L⊥) and by assumption Sp(L⊥)′ = Sp(L⊥). Since t acts
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as the identity on L, it follows that t = 1L + s and therefore it belongs to
Sp(2m+2,F)′. Thus Sp(2m+2,F)′ contains all the symplectic transvections
and by Theorem 8.5 we have Sp(2m+ 2,F)′ = Sp(2m+ 2,F).

From Theorem 8.1 we have Sp(2,F) = SL(2,F) and from Theorem 4.4 it
follows that Sp(2,F)′ = Sp(2,F) unless F is F2 or F3. Thus to complete the
proof we need only check that Sp(4, 3)′ = Sp(4, 3) and Sp(6, 2)′ = Sp(6, 2).

Let e1, f1, . . . , em, fm be a symplectic basis (m = 2 or 3) and use the
ordering e1, e2, . . . , em, f1, f2, . . . , fm so that a matrix M is in Sp(2m,F)
if and only if M tJM = J , where

J =

(
0 I
−I 0

)
.

In particular, the matrices(
A−1 0

0 At

)
and

(
I B
0 I

)
belong to Sp(2m,F) for all A ∈ GL(m,F) and for all m×m matrices B such
that B = Bt.

By definition, Sp(2m,F)′ contains(
A−1 0

0 At

)−1(
I B
0 I

)−1(
A−1 0

0 At

)(
I B
0 I

)
and a straightforward calculation shows that this commutator is equal to(

I B −ABAt
0 I

)
.

In the case of Sp(4, 3), set A :=

(
1 1
1 0

)
and B :=

(
0 1
1 0

)
to get B −

ABAt =

(
1 0
0 0

)
. Thus Sp(4, 3)′ contains a transvection. It follows that

Sp(4, 3)′ contains all symplectic transvections and hence it equals Sp(4, 3).

For Sp(6, 2), set

A :=

 1 1 0
0 0 1
1 0 0

 and B :=

 1 0 1
0 1 1
1 1 1


to get

B −ABAt =

 1 0 0
0 0 0
0 0 0

 .
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Thus Sp(6, 2)′ contains one, and hence all, of the symplectic transvections
and it follows that Sp(6, 2)′ = Sp(6, 2) as required.

8.8 Theorem. The groups PSp(2m,F) are simple except for PSp(2,F2),
PSp(2,F3) and PSp(4,F2).

Proof. This follows from Theorem 1.2 (Iwasawa’s criterion) together with
Theorems 8.3, 8.5 and 8.7

The Symmetric Groups

We know from Theorem 8.1 and the description of PSL(2, q) in Chapter 4
that PSp(2, 2) ' S3 and that PSp(2, 3) ' A4. It remains for us to show
that PSp(4, 2) is truly an exception to Theorem 8.8. This is a corollary to
the next theorem.

8.9 Theorem. If m ≥ 2, then the symmetric group S2m+2 is a subgroup
of Sp(2m, 2).

Proof. Let Ω be a set of size 2m + 2 and let V be the set of partitions
{Γ,∆}, such that Ω = Γ ∪ ∆, Γ ∩ ∆ = ∅ and |Γ| is even. Make V into a
vector space over F2 by defining

{Γ1,∆1}+ {Γ2,∆2} := {Γ1 + Γ2,Γ1 + ∆2},

where Γ1 + Γ2 := (Γ1 ∪ Γ2) \ (Γ1 ∩ Γ2) denotes the symmetric difference of
Γ1 and Γ2. This is a well-defined vector space (Exercise 8.4) and S2m+2 acts
on it faithfully as a group of linear transformations. Next define

β({Γ1,∆1}, {Γ2,∆2}) := |Γ1 ∩ Γ2| (mod 2)

and note that β is a well-defined non-degenerate alternating form on V pre-
served by S2m+2. Since dimV = 2m, we have

S2m+2 ⊆ Sp(2m,F2).

8.10 Corollary. Sp(4, 2) ' S6.

Proof. We have S6 ⊆ Sp(4, 2) by Theorem 8.9 and both these groups have
order 720.

An alternative approach to this isomorphism is to continue the analysis
of A7 and A8 acting on the projective geometry of Points, Lines and Planes
begun in Chapter 6. A transposition of S8 interchanges Points and Planes
and therefore acts as a polarity of the geometry. Moreover, each Point is
incident with its polar Plane and therefore we have a symplectic polarity.
The elements of A8 that commute with a transposition of S8 form a subgroup
isomorphic to S6. It follows that S6 ' Sp(4, 2).
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Symplectic BN-pairs

There are several ways to construct a BN -pair for Sp(V ). One way is to use
the building ∆π(V ) introduced in Chapter 7, where π is a symplectic polarity.
Then N is defined to be the stabilizer of a polar frame and B is defined to be
the stabilizer of a maximal flag (chamber) which is in the apartment of that
frame. Theorems 7.15 and 7.17 can be used to prove the BN -pair axioms
in the same way that Theorems 5.2 and 5.4 were used in the construction of
the BN -pair for SL(V ). The details of this approach can be found in the
next chapter.

The method we employ here involves a careful study of the action of a
symplectic polarity on a BN -pair for SL(V ). The key result that we use is
Theorem 5.10 which gives a normal form for elements of SL(V ).

Let π be a symplectic polarity of V and let J be the matrix of the associ-
ated alternating form β with respect to the basis e1, e2, . . . , em, fm, fm−1,
. . . , f1, where e1, f1, . . . , em, fm is a symplectic basis for β. Then

J =

(
0 Q
−Q 0

)
, where Q :=


0 1

. .
.

1
1 0

 .

The calculations on p. 61 at the end of Chapter 7 show that the symplectic
group Sp(V ) consists of the elements of SL(V ) fixed by the automorphism
π̂ : f 7→ f⊥ induced by β. Note that if the matrix of f is A, then the matrix
of f⊥ is −JA−tJ (since J t = J−1 = −J in this case).

Let B be the subgroup of SL(V ) corresponding to the upper triangular
matrices and let N be the subgroup corresponding to the monomial matrices.
That is, N is the stabilizer of the symplectic frame obtained from the basis
chosen above and B is the stabilizer of the flag

V1 ⊂ V2 ⊂ . . . ⊂ Vm ⊂ V ⊥m−1 ⊂ . . . ⊂ V ⊥1 (8.11)

where, for 1 ≤ i ≤ m, Vi = 〈 e1, . . . , ei 〉. Note that the subspaces Vi are
totally isotropic and that B and N form a BN -pair for SL(V ). The calcu-
lations in the section ‘Flags and Frames’ at the end of the last chapter show
that B and N are fixed by π̂. It follows that π̂ induces an automorphism of
the Weyl group W := N/B ∩ N . The Weyl group is the symmetric group
S2m, acting on the frame { 〈 ei 〉, 〈 fi 〉 | 1 ≤ i ≤ m } and it follows from
(7.13) that the automorphism induced by π̂ coincides with conjugation by
the permutation that interchanges 〈 ei 〉 and 〈 fi 〉 for all i.

For 1 ≤ i < m, let ni be the element of N that sends ei to −ei+1,
ei+1 to ei and fixes all other basis elements. Then ni corresponds to the



76 8. Symplectic Groups

transposition (〈 ei 〉, 〈 ei+1 〉) of S2m. In addition, let nm ∈ N correspond
to the transposition (〈 em 〉, 〈 fm 〉) and suppose that nm(em) = −fm and
nm(fm) = em.

For i 6= m, it follows from (7.7) that π̂(ni) sends fi to −fi+1 and fi+1 to
fi. Thus π̂(ni) commutes with ni and therefore n̂i := niπ̂(ni) is fixed by π̂.
It is also the case that nm is fixed by π̂. Put n̂m := nm and for 1 ≤ i ≤ m,
let ŵi be the image of n̂i in W .

The subgroup Wπ of elements fixed by π̂ consists of the permutations that
fix the partition

{ {〈 ei 〉, 〈 fi 〉} | 1 ≤ i ≤ m }

of the symplectic frame. The 2m permutations that fix all the blocks of
this partition form a normal subgroup of Wπ whose quotient group is the
symmetric group Sm (acting faithfully on the m blocks). In fact Wπ is the
semidirect product of the normal subgroup of order 2m and Sm. This is
often expressed by saying that Wπ is the wreath product Z2 o Sm. From this
description it is clear that Wπ is generated by ŵ1, ŵ2, . . . , ŵm.

Now let Bπ (resp. Nπ) be the elements of B (resp. N) fixed by π̂.

8.12 Theorem. The groups Bπ and Nπ form a BN -pair for Sp(V ) with
Weyl group Wπ.

Proof. We need to check that the BN -pair axioms given in Chapter 5
hold for Bπ and Nπ. If g ∈ Sp(V ), then g ∈ SL(V ) and therefore, by
Theorem 5.10, g = bnwu, where b ∈ B, w ∈ W and u ∈ U−w . Since π̂ fixes
B it follows from Theorem 5.5 that π̂ fixes w and therefore we may choose
nw ∈ Nπ. But now π̂ fixes U−w (see Exercise 5.16) and as

g = π̂(b)π̂(nw)π̂(u)

it follows from the uniqueness part of Theorem 5.10 that b and u are in Bπ.
In particular, Sp(V ) = BπNπBπ and axiom (i) holds.

We have shown that Wπ is generated by ŵ1, ŵ2, . . . , ŵm and consequently
Wπ = Nπ/Bπ∩Nπ. This leaves axiom (iv) to be proved. Certainly n̂iBπn̂i 6=
Bπ for all i and so we must show that axiom (iv)(b) holds.

From the corresponding result for SL(V ) we have

n̂iBπn ⊆ (Bn̂inB) ∪ (Bπ̂(ni)nB) ∪ (BninB) ∪ (BnB)

where 1 ≤ i < m and n ∈ Nπ. In the first part of this proof we showed that
every element of Sp(V ) has a unique expression of the form bnwu, where
b ∈ Bπ, w ∈Wπ and where u ∈ U−w is fixed by π̂. It follows that

n̂iBπn ⊆ (Bπn̂inBπ) ∪ (BπnBπ).
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Similarly, nmBπn ⊆ (BπnmnBπ) ∪ (BπnBπ), and this completes the proof.

Symplectic Buildings

The symplectic building of V is the building ∆π(V ) (see pp. 61 and 63),
where π is a symplectic polarity. The elements of ∆π(V ) are the proper flags
of totally isotropic subspaces. It follows from (7.11) that Bπ is the stabilizer
in Sp(V ) of the flag

V1 ⊂ V2 ⊂ . . . ⊂ Vm

defined above in (8.11) and Nπ is the stabilizer of the symplectic frame

{ 〈 ei 〉, 〈 fi 〉 | 1 ≤ i ≤ m }.

It follows from Witt’s Theorem (Theorem 7.4) that two elements of ∆π(V )
are in the same orbit of Sp(V ) if and only if they have the same type (as
defined in Chapter 5 for ∆(V )).

Generalized Quadrangles

Consider the special case of a symplectic geometry V of dimension 4. Then
the building ∆π(V ) has just three types of elements. In projective terminol-
ogy these are points P , lines ` and flags (P, `), where P is a point of the line
`. We have already noted that Sp(V ) is transitive on the incident point-line
pairs (P, `). In addition we have:

Q1) Any two distinct points are incident with at most one line.

Q2) Any two distinct lines are incident with at most one point.

Q3) Given a point P and a line ` not incident with P , there is a unique
flag (P ′, `′) such that P ′ is on ` and P is on `′. (Take P ′ := ` ∩ P⊥
and `′ := P + P ′.)

A collection of points and lines satisfying these conditions is called a gen-
eralized quadrangle (cf. Exercise 6.7). See Payne and Thas (1984) for a survey
of the finite case.
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EXERCISES

8.1 Let V be a symplectic geometry of dimension 2m over the finite field
Fq.
(i) Show that the number of hyperbolic pairs in V is (q2m−1)q2m−1.

(ii) Show that the number of totally isotropic subspaces of dimension
k is

k−1∏
i=0

(q2m−2i − 1)/(qi+1 − 1).

(iii) If P is any point of P(V ), show that the stabilizer of P in
PSp(V ) has orbits of lengths

1, (q2m−2 − 1)/(q − 1) and q2m−1

on the points of P(V ).

(iv) Let E be a maximal totally isotropic subspace of V and show
that the number of maximal totally isotropic subspaces F such
that E ∩ F = {0} is q

1
2m(m+1).

(v) Let E be a maximal totally isotropic subspace of V and show
that the number of maximal totally isotropic subspaces F of V
such that dim(E ∩ F ) = k is

m−k∏
i=1

(qm+1 − qi)/(qi − 1).

8.2 Let E be a vector space of dimension m over F.

(i) Set V := E∗ ⊕E, where E∗ is the dual space of E, and define a
bilinear form β on V by

β((ϕ, v), (ψ,w)) := ϕ(w)− ψ(v).

Show that β is a non-degenerate alternating form and that if e1,
e2, . . . , em is a basis of E with dual basis ω1, ω2, . . . , ωm, then

(ω1, 0), (0, e1), (ω2, 0), (0, e2), . . . , (ωm, 0), (0, em)

is a symplectic basis for V .
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(ii) Let S2E be the set of all (possibly degenerate) symmetric bilin-
ear forms on E. For γ1, γ2 ∈ S2E and a1, a2 ∈ F, define

(a1γ1 + a2γ2)(u, v) := a1γ1(u, v) + a2γ2(u, v)

and show that S2E is a vector space of dimension 1
2m(m + 1)

over F.

(iii) Identify E∗ with the subspace { (ϕ, 0) | ϕ ∈ E∗ } of V . For
γ ∈ S2E show that the linear transformation γ̃ defined by

γ̃(ϕ, v) := (ϕ+ γ(v,−), v)

is an element of the subgroup Sp(V )(E∗) of Sp(V ) which fixes
every vector of E∗. Conversely, show that every element of
Sp(V )(E∗) has this form and deduce that Sp(V )(E∗) is isomor-
phic to S2E. (cf. Exercise 2.16.)

(iv) Show that Sp(V )(E∗) acts regularly on the set of maximal to-
tally isotropic subspaces F of V such that E∗ ∩F = {0}. (Hint.
Use Lemma 7.5.)

(v) For f ∈ GL(E) and γ ∈ S2E, define fγ by

(fγ)(u, v) := γ(f−1(u), f−1(v)).

Show that in this way GL(E) may be regarded as a group of
linear transformations of S2E.

(vi) For f ∈ GL(E), let f̄ be the element of GL(E∗) that takes
ϕ ∈ E∗ to ϕf−1. Show that every element of the subgroup
Sp(V )E∗,E fixing both E∗ and E can be written in the form

(ϕ, v) 7→ (f̄(ϕ), f(v)) for some f ∈ GL(E).

Deduce that Sp(V )E∗ is isomorphic to the semidirect product
(S2E).GL(E).

(vii) If V ′ is any symplectic geometry of dimension 2m over F and if
E′ and F ′ are maximal totally isotropic subspaces of V ′ such that
E′ ∩ F ′ = {0}, show that there is a linear isometry g :V ′ → V
such that g(E′) = E and g(F ′) = F .

(viii) If F1 and F2 are maximal totally isotropic subspaces of V such
that dim(E∗∩F1) = dim(E∗∩F2), show that there is an element
of Sp(V )E∗ that takes F1 to F2.
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8.3 Let V be a symplectic geometry defined by a non-degenerate alter-
nating form β and let π be the corresponding polarity.

(i) Suppose that β(u, v) = 0 and set ϕ := β(−, v) and ψ := β(−, u).
Show that t⊥ϕ,u = tψ,v and that tϕ,u and tψ,v commute. (See
Exercise 4.10.)

(ii) Let X be a root group of SL(V ) and let Xπ be the fixed elements
of π̂ in 〈X, π̂(X) 〉. Show that either

(a) Xπ = X = π̂(X) consists of symplectic transvections, or

(b) there are linearly independent vectors u and v such that
β(u, v) = 0 and Xπ consists of the transformations

x 7→ x+ aβ(x, u)v + aβ(x, v)u, a ∈ F.

In case (a) Xπ is called a long root group and in case (b) it is
called a short root group of Sp(V ).

(iii) If P = 〈u 〉, letXP be the long root group of symplectic transvec-
tions x 7→ x + aβ(x, u)u, where a ∈ F. show that 〈XP , XQ 〉 is
isomorphic to F+, F+ ⊕ F+ or SL(2,F) according to whether
P = Q, P + Q is a totally isotropic line or P + Q is a hyper-
bolic line, respectively. If P +Q is a hyperbolic line, show that
〈XP , XQ 〉 acts transitively on the points of P +Q.

8.4 Show that the vector space introduced in the proof of Theorem 8.9 is
well-defined and that β is a non-degenerate alternating form.

8.5 Let V be symplectic geometry over the field F defined by an alternat-
ing form β. Suppose that β(u, v) = 1 and set W := 〈u, v 〉⊥. Make
the set E := F ×W into a group by defining the product of (a1, w1)
and (a2, w2) to be (a1 + a2 + β(w1, w2), w1 +w2). Define an action of
E on V by setting

(a,w)u :=u,

(a,w)v :=au+ v + w,

(a,w)w′ :=β(w,w′)u+ w′ for w′ ∈W

and extending (a,w) to V by linearity. Show that

(i) E may be regarded as a normal subgroup of Sp(V )u which acts
regularly on the set { v′ ∈ V | β(u, v′) = 1 }.

(ii) Sp(V )u is the semidirect product E.Sp(W ).

(iii) (a1, w1)−1(a2, w2)−1(a1, w1)(a2, w2) = (2β(w1, w2), 0).
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(iv) { (a, 0) | a ∈ F } acts on V as the long root group X〈u 〉 of
symplectic transvections x 7→ x− aβ(x, u)u.

(v) For b ∈ F \ {0} let hb be the element of Sp(V ) that takes u to
bu, v to b−1v and fixes every element of W . Show that

hb(a,w)h−1
b = (b2a, bw)

and that hb commutes with every element of Sp(W ). Moreover,
if H := {hb | b ∈ F \ {0} }, then Sp(V )〈u 〉 = E.Sp(W ).H and
this group is the normalizer of X〈u 〉 in Sp(V ).

8.6 By following steps analogous to those of Exercise 6.6, show that for
n ≥ 2, PSp(2n, q) is never isomorphic to an alternating group.

8.7 Suppose that q is a power of a prime and that p is a prime that does
not divide q. Let f be the least positive integer such that p divides
q2f − 1.

(i) Deduce from Exercise 4.11 that if p divides q2i−1, then f divides
i and that pa divides (q2fi−1)/(q2f −1) if and only if pa divides
i.

(ii) Given m, let ` = bm/fc and let D be the direct product of `
copies of Sp(2f, q). As in Exercise 4.11 show that S` acts as a
group of automorphisms of D and that a Sylow p-subgroup of
the semidirect product of D by S` is isomorphic to a Sylow p-
subgroup of Sp(2m, q). Show that if p is odd, a Sylow p-subgroup
of Sp(2f, q) is cyclic.

(iii) Show that the order of a Sylow p-subgroup P of PSp(2m, q) is
strictly less than (

√
3 (q + 1))m, when p is odd, or (4(q + 1))m

when p = 2. Moreover, for m ≥ 2, |P | is always less than qm
2

,
the order of a Sylow subgroup corresponding to the characteristic
of Fq.

8.8 Let F be a symplectic frame of P(V ), where V is a symplectic ge-
ometry of dimension 2m. Show that the apartment of F contains
2mm! chambers and that the Weyl group acts regularly on this set of
chambers.

8.9 Let A be a panel of the apartment Σ of the symplectic building ∆π(V ).
Show that A is in exactly two chambers of Σ.
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8.10 Let V be the symplectic geometry of dimension 2m over F, where the
characteristic of F is not 2 and write

V = L1 ⊥ L2 ⊥ . . . ⊥ Lm,

where L1, L2, . . . , Lm are hyperbolic lines. For k = 1, 2, . . . ,m let tk
be the element of Sp(V ) that acts as multiplication by −1 on W :=
L1 ⊥ . . . ⊥ Lk and as the identity on W⊥. Show that every element
of order 2 in Sp(V ) is conjugate to one of t1, t2, . . . , tm and that the
centralizer of tk in Sp(2m,F) is Sp(2k,F)× Sp(2m− 2k,F).

8.11 Let V be a symplectic geometry of dimension 2m over the field F and
let U be a totally isotropic subspace of dimension k.

(i) If f ∈ Sp(V ), show that ker(1− f)⊥ = im(1− f).

(ii) Let Sp(V )(U⊥) = { f ∈ Sp(V ) | f(v) = v for all v ∈ U⊥ }. If
f ∈ Sp(V )(U⊥), show that

γf (v1 + U⊥, v2 + U⊥) := β(v1, v2)− β(v1, f(v2))

is a well-defined symmetric bilinear form on V/U⊥ and the map
f 7→ γf is an isomorphism from Sp(V )(U⊥) onto the additive
group S2(V/U⊥) of symmetric bilinear forms on V/U⊥. (See
Exercise 8.2.)

(iii) LetH be the subgroup of Sp(V ) consisting of those elements that
fix U and U⊥/U pointwise. For h ∈ H, define h̄ :U⊥/U → U by
h̄(v + U) := v − h(v). Show that h 7→ h̄ is a well-defined homo-
morphism of H onto Hom(U⊥/U,U) whose kernel is Sp(V )(U⊥).

(iv) Show that the group H of (iii) acts regularly on the set of totally
isotropic complements to U⊥.

(v) Show that Sp(V )U is isomorphic to the semidirect product

H.(GL(U)× Sp(U⊥/U))

(cf. Exercise 8.5).

(vi) If F = Fq, show that the number of totally isotropic complements
to U⊥ is

qk(2m−2k)+(k+1
2 ).

8.12 Show that, up to isomorphism, there is only one generalized quad-
rangle with 15 points and 15 lines in which each line has 3 points.
Hence, or otherwise, identify the generalized quadrangle described in
Exercise 6.7 with the generalized quadrangle of Sp(4, 2). Deduce that
S6 ' Sp(4, 2). (cf. J. J. Sylvester (1844))
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BN-pairs, Diagrams and Geometries

In Chapters 5 and 8 we described the buildings associated with the groups
SL(V ) and Sp(V ) and in each case constructed aBN -pair. Here we construct
BN -pairs for a large class of groups associated with polar geometries. Later
in the chapter we indicate connections between our examples and various
abstract notions of geometry.

The first part of the chapter is mainly concerned with those properties that
have a uniform proof based solely on the BN -pair axioms. In particular, we
give a purely algebraic account of the elementary theory of the Weyl group
of a BN -pair. This leads us to consider the somewhat more general notion of
a Coxeter group and its associated simplicial complex—its Coxeter complex.

After this we give the axioms for a building in a form that explicitly states
that the apartments are Coxeter complexes. This is sufficient to cover all our
examples. For the general theory of buildings, consult Tits (1976), Brown
(1989) or Ronan (1989). For the material of this chapter see Bourbaki (1968).
A more detailed study of unitary and orthogonal groups is carried out in the
following chapters.

The BN-pair of a Polar Building

In Chapter 8 the BN -pair for Sp(V ) was obtained as the fixed points of the
automorphism of SL(V ) induced by a symplectic polarity acting on the BN -
pair for SL(V ). In this section the verification of the BN -pair axioms is based
on properties of the flags and frames of the polar building. In particular, we
use Theorems 7.15 and 7.17 of Chapter 7.

Suppose that V is a finite-dimensional vector space over a field F and that
β is a (non-degenerate) alternating, symmetric or σ-hermitian form on V .
Let π be the polarity of P(V ) corresponding to β. The building of the polar
geometry (P(V ), π) consists of the set ∆ := ∆π(V ) of proper flags of totally
isotropic subspaces of V together with the apartments obtained from the
polar frames of V . In order that the building be non-empty we shall assume
that dimV ≥ 2 and that V contains isotropic vectors. We shall also suppose
that if β is symmetric it arises from a quadratic form. These assumptions
exclude certain orthogonal and unitary geometries from our considerations.
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In addition to these buildings we also consider certain buildings con-
structed as follows. Let β be the polar form of a non-degenerate quadratic
form Q :V → F and suppose that the characteristic of F is 2. In this case
we assume that V contains singular vectors. The building ∆ consists of the
proper flags of totally singular subspaces. The apartments are the sets of
flags obtained from the polar frames of singular points. We leave it as an
exercise to show that appropriate analogues of Theorems 7.15 and 7.17 hold
for ∆.

In all cases, let m be the Witt index of the geometry. Let

F := {Pi, P ∗i | 1 ≤ i ≤ m }

be a polar frame and recall from Chapter 7 that Φ ⊆ F spans a totally
isotropic (resp. totally singular) subspace if and only if P ∈ Φ implies P ∗ /∈ Φ
(for all P ). In the case of a quadratic form we define P ∗ to be the unique
element of F not orthogonal to P . Let Σ be the apartment of F .

A group of isometries of the polar geometry is said to be strongly transitive
if it is transitive on the pairs (M ′,F ′), where F ′ is a polar frame and M ′ is
a chamber of the apartment Σ(F ′).

9.1 Theorem. The group of all linear isometries of a polar geometry is
strongly transitive.

Proof. Suppose that M ′ is a chamber of the apartment Σ′ of the polar
frame {Qi, Q∗i | 1 ≤ i ≤ m }. We may choose the notation so that

M ′ := { 〈Q1, . . . , Qi 〉 | 1 ≤ i ≤ m }.

Similarly, we may suppose that

M := { 〈P1, . . . , Pi 〉 | 1 ≤ i ≤ m }.

It is easily seen that there is a linear isometry f from 〈 F ′ 〉 to 〈 F 〉 such
that f(Qi) = Pi and f(Q∗i ) = P ∗i . By Witt’s theorem, f extends to a linear
isometry of V such that f(F ′) = F and f(M ′) = M .

Let G be a strongly transitive group of isometries, let N be the stabilizer
of F and let B be the stabilizer of the chamber

M := { 〈P1, . . . , Pi 〉 | 1 ≤ i ≤ m }.

We shall show that, except for certain orthogonal groups, the subgroups
B and N form a BN -pair for G. And even in the case of the exceptions it is
only Axiom (iv)(a) that fails. Recall that the BN -pair axioms are:
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(i) G = 〈B,N〉
(ii) H := B ∩N is a normal subgroup of N .

(iii) W := N/H is generated by elements {wi | i ∈ I } such that w2
i = 1 for

all i ∈ I.

(iv) If wi = niH and n ∈ N , then

(a) niBni 6= B and

(b) niBn ⊆ (BninB) ∪ (BnB).

Axiom (ii) is consequence of the following lemma.

9.2 Lemma. The kernel of the action of N on F is B ∩N and the group
N/B ∩N acts regularly on the chambers of Σ.

Proof. If n ∈ N fixes every point of F , then n fixesM and hence n ∈ B∩N .
Conversely, suppose that n ∈ B ∩ N . Then n fixes P1, P2, . . . , Pm and by
(7.13), it fixes P ∗1 , P ∗2 , . . . , P ∗m. In particular, B ∩ N is the kernel of the
action of N on F . By assumption G is strongly transitive, and therefore N
is transitive on the chambers of Σ. The stabilizer in N of the chamber M is
B ∩N and therefore N/B ∩N is regular.

9.3 Theorem. G = BNB.

Proof. Given g ∈ G, consider the chamber g(M). By Theorem 7.15 there is
an apartment Σ′ that contains both M and g(M). By the strong transitivity
of G we can find b such that b(M) = M and b(Σ′) = Σ. Then bg(M) ∈ Σ
and by Lemma 9.2 there exists n ∈ N such that nbg(M) = M . We have
b, nbg ∈ B and hence g ∈ BNB, as required.

This establishes the first of the BN -pair axioms. In order to proceed we
need to find a suitable set of generators of order 2 for the group W := N/H,
where H := B ∩N .

The pairs {Pi, P ∗i }, 1 ≤ i ≤ m are blocks of imprimitivity for the action
of W on F . Thus W is a subgroup of the wreath product Z2 o Sm of order
2mm! described in Chapter 8 in the context of symplectic BN -pairs. On the
other hand, the number of chambers of Σ(F) is 2m(2m− 2) · · · 4 · 2 = 2mm!
and so by Lemma 9.2, |W | = 2mm!. It follows that W = Z2 o Sm.

For 1 ≤ i < m we may choose ni ∈ N so that wi := niH is the permuta-
tion (Pi, Pi+1)(P ∗i , P

∗
i+1). These permutations generate the symmetric group

Sm. Choose nm ∈ N so that wm := nmH is the transposition (Pm, P
∗
m).

Then R := {w1, . . . , wm} generates W . By construction, the elements of R
have order 2 and so the BN -pair Axiom (iii) holds. It remains to prove
Axiom (iv).
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As in Chapter 5 we consider panels of chambers. By definition a panel is
a proper flag of m− 1 totally isotropic subspaces.

9.4 Lemma. If A is a panel in the apartment Σ, then A is contained in
exactly two chambers of Σ.

Proof. The proof is similar to that of Lemma 5.6. We may suppose that
A consists of all the subspaces

P1, 〈P1, P2 〉, . . . , 〈P1, . . . , Pm 〉 (9.5)

except 〈P1, . . . , Pi 〉 for some i. If i < m, the only way to extend A to a
chamber is to adjoin either

〈P1, . . . , Pi−1, Pi 〉 or 〈P1, . . . , Pi−1, Pi+1 〉.

If i = m, the only possibility is to adjoin

〈P1, . . . , Pm−1, Pm 〉 or 〈P1, . . . , Pm−1, P
∗
m 〉.

9.6 Theorem. Axiom (iv)(b) holds for B and N .

Proof. Suppose that n ∈ N and that n1, . . . , nm are the generators of
N defined above. We shall show that nBni ⊆ BnniB ∪ BnB. As in the
corresponding proof for SL(V ) in Chapter 5, A = M ∩ ni(M) is the panel
obtained from M by omitting 〈P1, . . . , Pi 〉. If b ∈ B, then b fixes A and
therefore n(A) ⊆ nbni(M). By Theorem 7.15 there is an apartment Σ′ :=
Σ(F ′) that contains both M and nbni(M). Then Σ and Σ′ both contain M
and n(A). By Theorem 7.17 there is an isometry f that fixes M and n(A)
and takes F ′ to F . Also, by the strong transitivity of G, there is an element
g ∈ G that fixes M and takes F ′ to F . Then g−1f fixes M and F ′. By
Lemma 9.2, applied to the group of all isometries, g−1f fixes n(A). Thus
g ∈ B and gnbni(M) is a chamber of Σ which contains n(A). It follows from
Lemma 9.4 that gnbni(M) is n(M) or nni(M). Thus nbni ∈ BnB ∪BnniB.
On taking inverses we have

niBn ⊆ (BnB) ∪ (BninB).

9.7 Lemma. Except for orthogonal geometries of Witt index m and di-
mension 2m, every panel is in at least three chambers of ∆.

Proof. We may suppose the panel A to be given by (9.5) of Lemma 9.4.
If i < m, it is clear that A is in at least three chambers. So suppose that
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i = m. It is now a question of determining the number of totally isotropic
(resp. totally singular) subspaces containing E := 〈P1, . . . , Pm−1 〉. Passing
to E⊥/E, we may suppose that m = 1 and then count the isotropic (resp.
singular) points.

Suppose that P1 = 〈 e1 〉 and P ∗1 = 〈 f1 〉, where β(e1, f1) = 1. If β is
alternating, then 〈 e1 〉, 〈 f1 〉 and 〈 e1 +f1 〉 are three distinct isotropic points.
If β is σ-hermitian, choose a ∈ F such that a 6= σ(a) and set b = a − σ(a).
Then 〈 e1 〉, 〈 f1 〉 and 〈 e1 + bf1 〉 are three distinct isotropic points.

Finally, suppose that the geometry is defined by a quadratic form Q. By
hypothesis there exists u ∈ 〈 e1, f1 〉⊥ such that a = Q(u) 6= 0. Then 〈 e1 〉,
〈 f1 〉 and 〈−ae1 + f1 + u 〉 are distinct singular points.

9.8 Theorem. Except for orthogonal geometries of Witt index m and
dimension 2m, the groups B and N form a BN -pair for G.

Proof. All that remains to be done is to show that Axiom (iv)(a) holds.
Retaining the notation of the previous lemmas we consider the panel A =
M∩ni(M). By Lemma 9.7 there is a chamber M ′ distinct from M and ni(M)
which contains A. Let Σ′ be an apartment containing M and M ′. By the
strong transitivity of G there exists b such that b(M) = M and b(Σ′) = Σ.
Then b fixes A and so A is contained in b(M ′). By Lemma 9.4, we must
have b(M ′) = ni(M) and therefore b−1ni(M) = M ′ 6= M . It follows that
nib
−1ni(M) 6= M and consequently niBni 6= B.

The case of an orthogonal geometry of Witt index m and dimension 2m
is dealt with in Chapter 11.

The Weyl Group

If the Weyl group of a BN -pair is finite, it turns out that N is uniquely
determined by B. In the language of buildings, this means that there is only
one way to define apartments (see Tits (1974), p. 54). We shall not prove
that here but we shall show that the generators {wi | i ∈ I } of the Weyl
group W are uniquely determined by the other axioms. So throughout this
section we suppose that G is a group with a BN -pair and that W is its Weyl
group.

For w ∈ W , let `(w) be the length of the shortest expression of w as
a product of wi’s and call `(w) the length of w. If `(w) = k and w =
wi1wi2 · · ·wik , then the word wi1wi2 · · ·wik is called a reduced expression
for w.

For each subset J ⊆ I, let WJ := 〈wi | i ∈ J 〉 and let NJ be the subgroup
of N such that NJ/H = WJ , where H := B ∩N .
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9.9 Lemma. For all J ⊆ I, BNJB is a subgroup of G.

Proof. If n ∈ NJ , then n = ni1 · · ·nik , where wij := nijH and ij ∈ J . We
shall show by induction on k that nBNJB ⊆ BNJB. This is certainly true
when n = 1 and by induction we may suppose that

ni2 · · ·nik BNJB ⊆ BNJB. (9.10)

By Axiom (iv)(b) we have ni1BNJB ⊆ BNJB and from (9.10) nBNJB ⊆
ni1BNJB ⊆ BNJB. It is clear that (BNJB)−1 = BNJB and therefore
BNJB is a group.

A subgroup of G is said to be parabolic if it contains a conjugate of B.
The subgroups PJ := BNJB are the standard parabolic subgroups of G. The
lemma just proved shows that B and NJ form a BN -pair for PJ with Weyl
group WJ . We shall show that the standard parabolic subgroups are the
only subgroups of G that contain B and that the minimal elements of the
set of subgroups that properly contain B are the P{i}, i ∈ I. But first we
need some results connecting the multiplication of double cosets with the
multiplication in W . Note that throughout the following proofs we make
constant use of the fact that for (B,B) double cosets X, Y and Z it is the
case that X ⊆ Y Z if and only if Y ⊆ XZ.

We know from Theorem 9.3 that every (B,B) double coset has the form
BwB for some w ∈ W . The next result shows that the element of W is
unique.

9.11 Lemma. If w,w′ ∈W and BwB = Bw′B, then w = w′.

Proof. We may suppose that `(w) ≤ `(w′) and prove the result by in-
duction on `(w). If `(w) = 0, then w = 1 and it is clear that w′ = 1 as
well.

Suppose that `(w) > 0 and write w = wiw
′′, where `(w′′) = `(w)− 1. Then

Bw′B ⊆ (BwiB)(Bw′′B) and consequently

Bw′′B ⊆ (BwiB)(Bw′B) ⊆ (Bwiw
′B) ∪ (Bw′B)

by Axiom (iv)(b). If Bw′′B = Bw′B, then by induction w′′ = w′, contrary
to `(w′′) < `(w′). Hence Bw′′B = Bwiw

′B. We have `(w′′) < `(w) and so
w′′ = wiw

′ by induction. Thus w = wiw
′′ = w′.

The next theorem is a strengthened form of Axiom (iv)(b).



The Weyl Group 89

9.12 Theorem. For all i ∈ I and all w ∈ W it is never the case that
`(wiw) = `(w) or `(wwi) = `(w). In addition we have

(i) (BwiB)(BwB) =

{
BwiwB if `(wiw) = `(w) + 1
(BwiwB) ∪ (BwB) if `(wiw) = `(w)− 1

(ii) (BwB)(BwiB) =

{
BwwiB if `(wwi) = `(w) + 1
(BwwiB) ∪ (BwB) if `(wwi) = `(w)− 1

Proof. The theorem is true if w = 1 and so we may suppose that `(w) 6= 0
and write w = w′wj , where `(w′) = `(w) − 1. Suppose that `(wiw) ≥ `(w)
but that (BwiB)(BwB) 6= BwiwB. Then `(w′) ≤ `(wiw) − 1 ≤ `(wiw

′)
and by induction (BwiB)(Bw′B) = Bwiw

′B. We always have BwiwB ⊆
(BwiB)(BwB) and in this case we are assuming that equality does not hold;
therefore (BwiB)(BwB) = (BwiwB) ∪ (BwB). It follows that

BwB ⊆ (BwiB)(BwB)

⊆ (BwiB)(Bw′B)(BwjB)

= (Bwiw
′B)(BwjB)

and hence Bwiw
′B ⊆ (BwB)(BwjB). It follows from Axiom (iv)(b) that

(BwB)(BwjB) ⊆ (Bw′B)∪(BwB) and therefore Bwiw
′B is Bw′B or BwB.

By Lemma 9.11 we cannot have Bwiw
′B = Bw′B and therefore Bwiw

′B =
BwB. But then wiw

′ = w and hence w′ = wiw, contrary to the assumption
that `(wiw) ≥ `(w).

We have shown that `(wiw) ≥ `(w) implies (BwiB)(BwB) = BwiwB. Now
suppose that `(wiw) ≤ `(w). Then (BwiB)(BwiwB) = BwB. By Ax-
iom (iv)(b), (BwiB)(BwB) ⊆ (BwiwB)∪ (BwB). If equality does not hold,
then (BwiB)(BwB) = BwiwB because in any case the product contains
wiw. From Axiom (iv) we have (BwiB)2 = B ∪ (BwiB) and so BwB =
(BwiB)2(BwB) = (BwB) ∪ (BwiB)(BwB). But then BwB = BwiwB,
a contradiction to Lemma 9.11. This shows that `(wiw) ≤ `(w) implies
(BwiB)(BwB) = (BwiwB)∪ (BwB). In particular, it is never the case that
`(wiw) = `(w). This completes the proof of (i).

Part (ii) follows from (i) by taking inverses.

We are now able to obtain a useful description of the standard parabolic
subgroups.

9.13 Theorem. For n ∈ N , let w := nH and suppose that wi1 · · ·wik is
a reduced expression for w. If J := {i1, . . . , ik}, then

PJ = 〈B,n 〉 = 〈B,nBn−1 〉.
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Proof. It is clear that 〈B,nBn−1 〉 ⊆ 〈B,n 〉 ⊆ PJ . For all j, choose nij ∈
N such that wij = nijH. We have `(wi1w) < `(w) and so by Theorem 9.12
we have (Bwi1B)(BwB) = (Bwi1wB) ∪ (BwB). It follows that for some
b ∈ B, ni1bn ∈ BnB and hence ni1 ∈ 〈B,nBn−1 〉. It follows by induction
on `(w) that PJ\{i1} = 〈B,n−1

i1
Bn−1ni1 〉 ⊆ 〈B,nBn−1 〉 and hence PJ =

〈B,nBn−1 〉.

At last we have enough information to prove that the generators of W are
uniquely determined by the subgroup B.

9.14 Theorem. For all w ∈ W \ {1}, we have w ∈ {wi | i ∈ I } if and
only if B ∪ (BwB) is a group.

Proof. Certainly B∪(BwiB) is a group for all i. Conversely, suppose that
B ∪ (BwB) is a group and let w = wi1 · · ·wik be a reduced expression for
w. By Theorem 9.13 B ∪ (BwB) = PJ , where J = {i1, . . . , ik}. But then
Bwi1B ⊆ B ∪ (BwB) whence w = wi1 by Lemma 9.11.

9.15 Theorem. If Q is a subgroup of G and B ⊆ Q, then Q = PJ for
some J ⊆ I.

Proof. Let J := { i ∈ I | BwiB ⊆ Q }. Then PJ ⊆ Q. If h ∈ Q, then
BhB = BwB for some w ∈ W and BwB ⊆ Q. If wi1 · · ·wik is a reduced
expression for w, it follows from Theorem 9.13 that BwijB ⊆ Q for all j.
Hence ij ∈ J and therefore h ∈ PJ . This proves that Q = PJ .

Further properties of the parabolic subgroups can be found in the exercises
at the end of the chapter.

Coxeter Groups

It is customary to describe the Weyl group W of a BN -pair by a graph Γ
called the Coxeter-Dynkin diagram of W . These diagrams arise in many
contexts and are variously associated with the names Coxeter, Dynkin and
Witt (see Hazewinkel et al. (1977)).

The vertices of Γ are the generators {wi | i ∈ I } of W characterized in
Theorem 9.14. For i 6= j the vertex wi is joined to wj by mij − 2 edges,
where mij is the order of wiwj . The matrix M := (mij) is symmetric with
1’s on the diagonal. It is called the Coxeter matrix of Γ.

In Chapter 5 we found that the Weyl group of SL(n,F) is the symmetric
group Sn with generators the n−1 transpositions wi := (i, i+1), (1 ≤ i < n).
Therefore its Coxeter-Dynkin diagram (said to be of type An−1) is simply

An−1

w1

©
w2

©
w3

© · · ·
wn−2

©
wn−1

©
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In the first section of the present chapter we showed that the Weyl group
of the BN -pair associated with a polar geometry of Witt index m is the
wreath product Z2 o Sm. This group acts on a set {1, 1′, 2, 2′, . . . ,m,m′} of
2m elements and is generated by the permutations

wi := (i, i+ 1)(i′, (i+ 1)′) for 1 ≤ i < m, and

wm := (m,m′).

Its Coxeter-Dynkin diagram (said to be of type Cm) is

Cm
w1

©
w2

©
w3

© · · ·
wm−2

©
wm−1

©
wm

©

Given a graph Γ with vertex set R := {x1, x2, . . . , xn}, let mij − 2 be the
number of edges joining xi to xj when i 6= j and let mii = 1 for all i. The
Coxeter group W := W (Γ) corresponding to this graph is the abstract group
with generators R and relations (xixj)

mij = 1. The pair (W,R) is a Coxeter
system and the matrix M := (mij) is its Coxeter matrix.

It turns out that the Weyl group of a BN -pair is the Coxeter group of
its Coxeter-Dynkin diagram. To prove this we shall first show that the Weyl
groups satisfy a certain Exchange Condition and then show that every group
which satisfies the Exchange Condition is a Coxeter group.

The Exchange Condition

In order to state this condition we need to define a length function for any
group W generated by a subset R of elements of order 2. As in the case
of a Weyl group, the length `(w) of w ∈ W is the number of elements in a
shortest expression for w as a product of elements of R.

An expression w := r1r2 · · · rk with r1, r2, . . . , rk ∈ R is said to be
reduced if k = `(w). (Strictly speaking an expression for w is a sequence
(r1, r2, . . . , rk) of elements of R such that w = r1r2 · · · rk.)

We say that (W,R) satisfies the Exchange Condition if:

for each reduced expression r1r2 · · · r` for w ∈ W and for
each r ∈ R such that `(rw) ≤ `(w), there exists i such that

rr1 · · · ri−1 = r1 · · · ri,

(equivalently, rw = r1 · · · ri−1ri+1 · · · r`).
It follows immediately that if (W,R) satisfies the Exchange Condition,

then i is unique and `(rw) = `(w)− 1.
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9.16 Lemma. If W is the Weyl group of a BN -pair and if R is its dis-
tinguished set of generators, then (W,R) satisfies the Exchange Condition.

Proof. Suppose that r1r2 · · · r` is a reduced expression for w ∈ W and
that for some r ∈ R, `(rw) ≤ `(w). Choose i minimal so that rr1 · · · ri is
not reduced. Then u := rr1 · · · ri−1 and v := r1 · · · ri are reduced expressions
and uri = rv. It follows from Theorem 9.12 that

(BuriB) ∪ (BuB) = (BrB)(Br1B) · · · (BriB)

= (BrvB) ∪ (BvB).

Hence BuB = BvB and so u = v, as required.

In order to prove that a pair (W,R) which satisfies the Exchange Condition
is a Coxeter system we first show that any two reduced expressions for an
element of W are related by a sequence of simple transformations.

Suppose that W is a group generated by a subset R of elements of or-
der 2. If r, s ∈ R and if m is the order of rs, then rsr · · · = srs · · ·, where
both expressions have length m. In other words, the sequences (r, s, r, . . . )
and (s, r, s . . . ) of length m represent the same element of W . If r =
(r1, r2, . . . , r`) and s = (s1, s2, . . . , s`) are reduced expressions for w we say
that the sequences are (r, s)-related if s can be obtained from r by replacing
a subsequence (r, s, r, . . . ) of length m by the sequence (s, r, s . . . ), also of
length m. We say that r is homotopic to s if r = s or if there are elements
r = r1, r2, . . . , rk = s such that for 1 ≤ i < k, ri is (r, s)-related to ri+1 for
some r, s ∈ R, (cf. Tits (1969)).

9.17 Theorem. If (W,R) satisfies the Exchange Condition, then for all
w ∈W , every two reduced expressions for w are homotopic.

Proof. We shall prove the theorem by induction on ` = `(w). It is certainly
true when ` = 1 and we may suppose that it is true for all elements w′ such
that `(w′) < `.

Suppose, by way of contradiction, that

r := (r1, r2, . . . , r`) and s := (s1, s2, . . . , s`)

are two reduced expressions for w which are not homotopic. It follows from
the induction hypothesis that r1 6= s1 and r` 6= s`.

Now `(s1w) = `(w) − 1 and from the Exchange Condition it follows that
s1r1 · · · ri−1 = r1 · · · ri, for some i. Let

s′ := (s1, r1, . . . , ri−1, ri+1, . . . , r`).
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Then s′ is also a reduced expression for w and by induction it is homotopic
to s. If i < `, then r and s′ both end with r` and so r is homotopic to s′ by
induction. But then r is homotopic to s, contrary to assumption. Thus i = `
and s′ = (s1, r1, . . . , r`−1).

Applying the same argument to s′ and r instead of r and s we find that there
is a reduced expression r′ := (r1, s1, r1, . . . , r`−2) for w not homotopic to s′.
Continuing in this way we eventually obtain

r◦ := (r1, s1, r1, s1, . . . , ) and s◦ := (s1, r1, s1, r1, . . . , )

such that r◦ and s◦ are reduced expressions for w but r◦ and s◦ are not
homotopic. But then (r1s1)` = 1 and consequently r◦ and s◦ are (r1, s1)-
related, a contradiction.

9.18 Corollary. If (W,R) satisfies the Exchange Condition, then (W,R)
is a Coxeter system. In fact, W is isomorphic to the group with generators
{xi | i ∈ I } and relations (xixj)

mij = 1, where mij is the order of xixj
in W .

Proof. Suppose that R := {xi | i ∈ I } and that mij is the order of xixj .
We must show that all relations satisfied by the elements of W are conse-
quences of the relations (xixj)

mij = 1. We do this by showing that if G is a
group and if f :R→ G satisfies

(f(xi)f(xj))
mij = 1

for all i, j ∈ I, then f extends to a homomorphism from W to G.

If r1r2 · · · r` is a reduced expression for w, then the element f(w) is defined
to be f(r1)f(r2) · · · f(r`). Any two reduced expressions for w are homotopic
and therefore f(w) is well-defined.

If r ∈ R and `(rw) = `(w) + 1, then f(rw) = f(r)f(w). On the other hand,
if `(rw) = `(w) − 1, write w′ := rw and observe that f(rw′) = f(r)f(w′).
That is, f(rw) = f(r)f(w) in both cases. It follows by induction on `(v)
that f(vw) = f(v)f(w) and so f is a homomorphism.

Presently we shall see that the converse of this result is true: namely,
every Coxeter system satisfies the Exchange Condition.

9.19 Corollary. The Weyl group of a BN -pair is a Coxeter group

It is easy to give a direct proof that the particular Weyl groups Sn and
Z2 o Sn are Coxeter groups (see Exercises 9.5 and 9.7.)

The Coxeter systems that occur in Corollary 9.18 have the property that
mij is the order of xixj . In fact, if (W,R) is any Coxeter system with
generators R := {x1, . . . , xn} and relations (xixj)

mij = 1, it is always the
case that mij is the order of xixj (Exercise 9.8).
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Reflections and the Strong Exchange Condition

Suppose that (W,R) is a Coxeter system and consider the set

T := {wrw−1 | w ∈W, r ∈ R }. (9.20)

The elements of T are called the reflections of W . (See Exercise 9.8, Tits
(1966) or Grove and Benson (1985) for a justification of this terminology.)
The group W acts on T by conjugation and hence it also acts on the set
P(T ) of subsets of T .

The set P(T ) becomes an abelian group when addition of subsets E,F ⊆ T
is defined to be their symmetric difference, which in this case we write as
E + F . The action of W preserves this addition and therefore we can form
the semidirect product P(T )W . Multiplication in P(T )W is given by

(E1, w1)(E2, w2) = (E1 + w1E2w
−1
1 , w1w2).

This approach to the study of W is due to Dyer (1987). His fundamental
observation is

9.21 Theorem. If (W,R) is a Coxeter system, there is a homomorphism
δ :W → P(T )W such that δ(r) = ({r}, r) for all r ∈ R.

Proof. First define δ :R→ P(T )W by δ(r) = ({r}, r). Then for all i, j ∈ I
and k > 0 we have

(δ(xi)δ(xj))
k = ({xi}+ {xixjxi}+ · · ·+ {(xixj)2k−1xi}, (xixj)k).

But (xixj)
hxi = (xixj)

mij+hxi and therefore (δ(xi)δ(xj))
mij = (∅, 1), the

identity element of P(T )W . It follows that δ extends to a homomorphism
W → P(T )W .

We can write δ(w) =
(
D(w), w

)
, where D :W → P(T ) satisfies

D(r) = {r}, for all r ∈ R, and

D(w1w2) = D(w1) + w1D(w2)w−1
1 .

(9.22)

Until further notice we assume that W is a group generated by a set R
of elements of order 2 and that there is a function D :W → P(T ) satisfying
(9.22), where T is given by (9.20).

Given a sequence (r1, r2, . . . , rk) of elements of R, define t1, t2, . . . tk ∈ T
by

ti := r1 · · · ri−1riri−1 · · · r1 (9.23)
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From (9.22) we have

D(r1r2 · · · rk) = {t1}+ {t2}+ · · ·+ {tk}
⊆ {t1, t2, . . . , tk}.

(9.24)

9.25 Lemma. The expression w := r1r2 · · · rk is reduced if and only if the
ti are distinct, in which case D(w) = {t1, t2, . . . , tk}.
Proof. It follows from (9.24) that |D(w)| ≤ `(w) and hence if r1r2 · · · rk is
not reduced, the ti are not distinct. On the other hand, if ti = tj for some
i < j, then

w = r1 · · · ri−1ri+1 · · · rj−1rj+1 · · · rk
and so r1r2 · · · rk is not reduced.

9.26 Corollary. `(w) = |D(w)|.

Note that from (9.22) we have |D(w1w2)| ≡ |D(w1)| + |D(w2)| (mod 2)
and so the map

W → {±1} :w 7→ (−1)`(w)

is a homomorphism onto {±1}.

9.27 Lemma. For all t ∈ T , t ∈ D(t).

Proof. For all r ∈ R we have r ∈ D(r) by assumption. If t ∈ T , then
t = wsw−1 for some s ∈ R and by induction on `(w) we may suppose that
t = rt′r, where r ∈ R, t′ ∈ T and t′ ∈ D(t′). Then D(t) = {r} + rD(t′)r +
{rt′rt′r}. As rt′r = r if and only if rt′r = rt′rt′r, it follows that t ∈ D(t).

9.28 Theorem. D(w) = { t ∈ T | `(tw) < `(w) }.
Proof. Suppose that w := r1r2 · · · rk is a reduced expression for w. Then
by Lemma 9.25, D(w) = {t1, t2, . . . , tk}, where the ti are given by (9.23).
Thus t ∈ D(w) implies tw = r1 · · · ri−1ri+1 · · · rk for some i and so `(tw) <
`(w).

Conversely, suppose that t /∈ D(w), for some t ∈ T . Then D(tw) = D(t) +
tD(w)t and therefore t ∈ D(tw) by Lemma 9.27. From the previous para-
graph we have `(w) < `(tw), and this completes the proof.

This result is known as the Strong Exchange Condition. The Exchange
Condition itself can be reworded as:

for all r ∈ R, `(rw) ≤ `(w) implies r ∈ D(w).

However, we know from the remark following Corollary 9.26 that `(rw) ≡
`(w) + 1 (mod 2) and so it is never the case that `(rw) = `(w). Thus
the Strong Exchange Condition implies the Exchange Condition considered
previously.
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9.29 Theorem. If W is a group generated by a set R of elements of order
2, if T is the set of conjugates of the elements of R, and if D :W → P(T )
satisfies (9.22), then (W,R) is a Coxeter system.

Proof. This follows from Corollary 9.18

This brings us full circle and shows that Coxeter groups are precisely those
groups satisfying the Exchange Condition.

Parabolic Subgroups of Coxeter Groups

Let (W,R) be a Coxeter system. For J ⊆ R, let WJ be the subgroup of W
generated by J . The groups WJ are the parabolic subgroups of W .

9.30 Theorem. For all J ⊆ R, (WJ , J) is a Coxeter system. The length
of w ∈WJ in WJ coincides with its length in W .

Proof. The restriction of the map D, considered in the previous section,
to WJ satisfies (9.22) and takes its values in P(TJ), where TJ := {wrw−1 |
r ∈ J, w ∈ WJ }. Thus by Theorem 9.29, (WJ , J) is a Coxeter system. The
length of w in WJ is |D(w)| = `(w).

9.31 Lemma. For all reduced expressions r1r2 · · · rk for w ∈ W , the set
{r1, r2, . . . , rk} depends only on w and not on the sequence (r1, r2, . . . , rk).

Proof. Let J := {r1, r2, . . . , rk}. Then w ∈ WJ . If r′1r
′
2 · · · r′k is another

reduced expression for w, then `(r′w) < `(w) and so by Theorem 9.28, r′1 ∈
D(w) ⊆ TJ . But `(r′1) = 1 and so by Theorem 9.30, r′1 ∈ J . It follows by
induction that {r′1, r′2, . . . , r′k} = J .

9.32 Corollary. If r1r2 · · · rk is a reduced expression for w ∈ WJ , then
ri ∈ J , for all i.

9.33 Corollary. For J,K ⊆ R,

(i) WJ∩K = WJ ∩WK , and

(ii) WJ∪K = 〈WJ ,WK 〉

9.34 Lemma. If w := r1r2 · · · rk with ri ∈ R for all i, then there is a
sequence 1 ≤ i1 < i2 < · · · < i` ≤ k such that w = ri1ri2 · · · ri` is a reduced
expression for w.

Proof. Choose i as small as possible so that ri · · · rk is reduced. If i = 1,
then w is reduced as written. If i > 1, then `(ri−1ri · · · rk) < `(ri · · · rk) and
by the Exchange Condition there exists j such that

ri−1ri · · · rj−1 = ri · · · rj .
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But then w = r1 · · · ri−2ri · · · rj−1rj+1 · · · rk and the result follows by induc-
tion.

9.35 Corollary. For J,K,L ⊆ R,

(i) WJ ∩WKWL = (WJ ∩WK)(WJ ∩WL),

(ii) WJ(WK ∩WL) = WJWK ∩WJWL.

Proof. Exercise 9.11

Complexes

In Chapters 5 and 7 we described the buildings derived from projective and
polar geometries. In both cases the building was defined to be a set of flags
of subspaces together with a collection of apartments; the apartments being
certain distinguished sets of flags. We have seen that this provides a setting
for the BN -pair structure of the group of isometries of the geometry. In all
cases the Weyl group of the BN -pair acts regularly on the set of maximal
flags of an apartment. It is possible to axiomatize this situation in various
ways: see, for example, Tits (1981), Tits (1986) or Shult (1983).

Let I be a finite set. Following Tits (1981) we define a complex over I to
consist of a set V (of vertices), a map τ :V → I, and a set ∆ of subsets of V
(called simplexes), such that

(i) Every singleton {v}, for v ∈ V , is a simplex.

(ii) Every subset of a simplex is a simplex.

(iii) For every simplex A, the restriction of τ to A is one-to-one.

(A set of subsets of a set V satisfying (i) and (ii) is a simplicial complex.)

If A is a simplex, the set τ(A) is called the type of A. The rank of A is
|A| and the corank is |I \ τ(A)|. The rank of ∆ is |I|. The simplexes of type
I are the chambers of ∆ and the simplexes of corank 1 are the panels.

The complex is said to be thin if each panel is in exactly two chambers.
It is thick if each panel is in at least three chambers.

For example, the set ∆ of flags of totally isotropic subspaces of a polar ge-
ometry of Witt indexm is the set of simplexes of a complex over {1, 2, . . . ,m}.
The vertices are the totally isotropic subspaces and the type of a subspace
is its dimension. The complex is thick (Lemma 9.7) unless it comes from an
orthogonal geometry of dimension 2m.

Each apartment of ∆ is a thin complex over I (Lemma 9.4) and the Weyl
group W acts transitively on the flags of a given type. Thus the flags of type
J can be identified with the cosets of WI\J . (Here we identify I with the set
of generators for W given after Theorem 9.3.)
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Coxeter Complexes

We shall construct a thin complex Σ(W,R) over I for every Coxeter group
W with generators R := { ri | i ∈ I }. For J ⊆ I we define WJ to be the
subgroup 〈 ri | i ∈ J 〉. This is consistent with our earlier notation if we
identify I with R. For i ∈ I we let W i := WI\{i} and we define the vertices
of Σ(W,R) to be the cosets wW i, where w ∈ W and i ∈ I. The type map
is defined by τ(wW i) := i. A subset S of V is a simplex if its intersection⋂
α∈S α is non-empty. It is easy to verify that this is a complex over I: the

Coxeter complex of (W,R). Another, possibly more useful, description of
Σ(W,R) can be obtained from the following lemma.

9.36 Lemma. The map S 7→
⋂
α∈S α is an inclusion reversing bijection

between the simplexes of Σ(W,R) and the set of cosets {wWJ | J ⊆ I, w ∈
W }.

Proof. Each simplex S has the form S := {wW i1 , wW i2 , . . . , wW ik} for
some w ∈ W . If K := {i1, i2, . . . , ik}, then it follows from Corollary 9.33⋂
α∈S α = wWI\K . If wWI\K ⊆ w′W i, then by Corollary 9.32, i ∈ K. Thus

S 7→
⋂
α∈S α is a bijection and it is clear that it reverses inclusion.

In particular, the chambers of Σ(W,R) correspond to the elements of W
and the panels correspond to pairs {w,ws}, s ∈ R. Thus Σ(W,R) is thin.
Note that the reflection t := wsw−1 fixes the panel {w,ws} and interchanges
w and ws.

A morphism from a complex ∆′ over I with vertex set V ′ and type map τ ′

to the complex ∆, also over I, is a map ϕ :V ′ → V which takes each simplex
of ∆′ to a simplex of ∆ and which preserves the type, i.e., τ ′ = τϕ.

For example, each element of W acts on Σ(W,R) by multiplication on the
left and this action is an automorphism of Σ(W,R).

In general, if A is a simplex of the complex ∆, the link of A is the set

link(A) := {B ∈ ∆ | A ∩B = ∅ and A ∪B ∈ ∆ }.

The link of A is a complex over I \ τ(A).

In Theorem 9.30 we showed that for each J ⊆ R, (WJ , J) is a Coxeter
system. Thus Σ(WJ , J) is a well-defined Coxeter complex and moreover,

9.37 Theorem. If S ∈ Σ(W,R) and
⋂
α∈S α = wWJ , then link(S) is

isomorphic to Σ(WJ , J).

Proof. Since we are working up to isomorphism we may suppose that⋂
α∈S α = WJ . For T ∈ link(S), T 7→

⋂
α∈S∪T α gives a bijection between
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link(S) and {wWK | w ∈WJ , K ⊆ J } which reverses inclusion. Combining
this with the inverse of the bijection of Lemma 9.34 (applied to Σ(WJ , J))
gives the desired isomorphism.

If J := {r1, r2} and rirj has order mij , then WJ is the dihedral group
〈 ri, rj | r2

i = r2
j = (rirj)

mij = 1 〉 of order 2mij . The complex Σ(WJ , J) has
mij vertices of type i, mij vertices of type j and 2mij edges (i.e., simplexes
of rank 1). Thus Σ(WJ , J) is a 2mij-gon. This means that for any simplex
S ∈ Σ(W,R) of type I \ {i, j}, link(S) is a 2mij-gon. It follows that the
Coxeter matrix of (W,R) is determined by Σ(W,R) and therefore Σ(W,R)
determines (W,R) up to isomorphism.

Buildings

Suppose that M is the Coxeter matrix of the Coxeter system (W,R), where
R := { ri | i ∈ I }. An apartment of type M of a complex ∆ over I is the
image of an injective morphism Σ(W,R)→ ∆.

A building of type M is a complex ∆ over I together with a collection of
apartments of type M such that for all simplexes A,B ∈ ∆,

(i) there is an apartment containing A and B.

(ii) if Σ and Σ′ are apartments containing A and B, there is an isomor-
phism Σ→ Σ′ fixing A and B.

Tits (1976) has determined all buildings of rank at least 3 with finite
apartments.

These axioms correspond to Theorems 5.2 and 5.4 in the case of the build-
ing of a projective geometry and to Theorems 7.15 and 7.17 for polar geome-
tries. Of course it is first necessary to identify the apartments as defined in
Chapters 5 and 7 with the apartments as defined here.

For the buildings associated with projective and polar geometries the iso-
morphisms required in (ii) above can be taken to be automorphisms of the
building (see Theorems 5.4 and 7.17). We shall see below that if Σ and
Σ′ have a common chamber C, there is a unique isomorphism ϕC : Σ → Σ′

fixing C.

Two chambers C and C ′ are said to be i-adjacent if C = C ′ or if C ∩ C ′
is a panel of type I \ {i}.

9.38 Theorem. Aut(Σ(W,R)) 'W .

Proof. As in Lemma 9.36, the chambers of Σ(W,R) correspond to the
elements of W . Moreover, w and w′ are i-adjacent if and only if w′ = wri.
If ϕ is and automorphism of Σ(W,R), then ϕ preserves the type. Hence if w



100 9. BN-pairs, Diagrams and Geometries

and w′ are i-adjacent, then ϕ(w) and ϕ(w′) are i-adjacent. That is, ϕ(wri) =
ϕ(w)ri for all i. It follows by induction on `(w) that ϕ(w) = ϕ(1)w. The
action of ϕ on Σ(W,R) is completely determined by its action on chambers
and therefore ϕ is left multiplication by ϕ(1) ∈ W . Thus ϕ 7→ ϕ(1) is an
isomorphism between Aut(Σ(W,R)) and W .

9.39 Theorem. If the apartments Σ and Σ′ of the building ∆ have a
common chamber C, there is a unique isomorphism ϕΣ,Σ′ : Σ→ Σ′ fixing C.
Moreover, ϕΣ,Σ′ fixes every simplex of Σ ∩ Σ′.

Proof. The existence of ϕΣ,Σ′ comes from axiom (ii). If ψ : Σ → Σ′ is
another isomorphism fixing C, then ψ−1ϕΣ,Σ′ is an automorphism of Σ fixing
C. But from Theorem 9.38 the only automorphism fixing C is the identity.
Hence ψ = ϕΣ,Σ′ . If A is a simplex in Σ ∩ Σ′, then again from axiom (ii)
there is an isomorphism ϕ : Σ→ Σ′ fixing A and C. But then ψ = ϕΣ,Σ′ and
therefore ϕΣ,Σ′ fixes A.

If Σ is an apartment and C is a chamber of Σ, we can now produce a
morphism ρΣ

C : ∆ → Σ which fixes every simplex of Σ. If A ∈ ∆, then by
axiom (i) there is an apartment Σ′ containing A and C. Define ρΣ

C(A) to

be ϕΣ′,Σ(A). If Σ′ is another apartment containing A and C, then ϕΣ′′,Σ′

fixes A and C and we have ϕΣ′′,Σ = ϕΣ′,ΣϕΣ′′,Σ′ , by Theorem 9.39. Thus
ϕΣ′′,Σ(A) = ϕΣ′,Σ(A) and hence ρΣ

C(A) is well-defined. The morphism

ρΣ
C : ∆→ Σ

is called the retraction of ∆ onto Σ centred at C.

To explore these ideas further it is useful to introduce a notion of distance
for ∆. First of all, a gallery is a sequence of chambers C0, C1, . . . , Cm such
that for all i, Ci−1 and Ci are ki-adjacent for some ki. The gallery is said to
stutter if Ci−1 = Ci for some i.

The distance d(C,D) between two chambers C and D is the least integer
m such that there is a gallery C = C0, C1, . . . , Cm = D. The galleries of
length d(C,D) from C to D are said to be minimal (or geodesic).

9.40 Theorem. If C and D are chambers in the apartment Σ of ∆, every
geodesic from C to D lies entirely in Σ.

Proof. Suppose that C = C0, C1, . . . , Cm = D is a gallery of length
m = d(C,D) from C to D and that for some i, Ci ∈ Σ but Ci−1 /∈ Σ. Let
A := Ci−1∩Ci. The complex Σ is thin and therefore A is in exactly one other
chamber of Σ other than Ci, say E. Let ρ := ρΣ

E be the retraction of ∆ onto
Σ centred at E. As ρ is a morphism it preserves i-adjacency and therefore
C = ρ(C0), ρ(C1), . . . , ρ(Cm) = D is also a gallery from C to D. But
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ρ(Ci−1) is a chamber of Σ containing A and therefore ρ(Ci−1) = E because,
by construction, the only chamber mapped onto E by ρ is E itself. Thus
ρ(C0), ρ(C1), . . . , ρ(Cm) stutters, contradicting the minimality of m.

9.41 Corollary. If C and D are chambers in the apartment Σ of ∆, then
the distance from C to D calculated in Σ coincides with the distance from
C to D in ∆.

It turns out that we have already investigated geodesics in Σ, but in an-
other language. Using the correspondence between the chambers of Σ(W,R)
and the elements of W given by Lemma 9.36 and the fact that for w 6= w′,
w is i-adjacent to w′ if and only if w′ = wri we see that the non-stuttering
galleries from w to w′ correspond to the sequences (ri1 , ri2 , . . . , rim) such that
w−1w′ = ri1ri2 · · · rim . The geodesics correspond to the reduced expressions
for w−1w′. In particular, d(w,w′) = `(w−1w′).

Using Theorem 9.40 and the following lemma we transfer these observa-
tions to the building ∆.

9.42 Lemma. If C = C0, C1, . . . , Cm = D is a non-stuttering gallery
in which, for 1 ≤ k ≤ m, Ck−1 is ik-adjacent to Ck, then the expression
w := ri1ri2 · · · rim is reduced if and only if the gallery is minimal. Moreover,
the element w(C,D) := ri1ri2 · · · rim ∈W is the same for all minimal galleries
from C to D.

Proof. If the gallery is minimal, then it lies in an apartment containing
C and D and we have just seen that in this case ri1ri2 · · · rim is reduced.
Conversely, suppose the expression is reduced. By induction, C1, C2, . . . , Cm
is a minimal gallery and hence it lies in the Σ, where Σ is any apartment
containing C1 and Cm. Let ρ be the retraction of ∆ onto Σ centred at
C1. Then ρ(C0), C1, . . . , Cm is a non-stuttering gallery of Σ and it is
minimal because ri1ri2 · · · rim is reduced. But ρ cannot increase distances
and therefore C0, C1, . . . , Cm is minimal also.

The last part of the lemma follows from the fact that the minimal galleries
from C to D lie in every apartment containing C and D and we have already
seen that the assertion is true in an apartment.

Notice that Coxeter complexes and buildings are connected in the sense
that for any two chambers C and D, there is a gallery from C to D.

Chamber Systems

There is another approach to the study of buildings and related geometries
via the chamber systems of Tits (1981). A chamber system over the set I
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is a set C (whose elements are called chambers) together with a collection
{πi | i ∈ I } of partitions of C. Chambers C and D are said to be i-adjacent
if C,D ∈ πi. We shall always assume that |πi| ≥ 2 for all i.

If f := (i1, i2, . . . , i`) is a sequence of elements of I, a gallery of type f is
a sequence of chambers C0,C1, . . . , C` such that for 1 ≤ j ≤ `, the chambers
Cj−1 and Cj are ij-adjacent. Given J ⊆ I, the gallery is said to be of type J
if all ij ∈ J . Being connected by a gallery of type J is an equivalence relation
on the chambers. The equivalence classes are called the J-residues of C.

For example, if (W,R) is a Coxeter system, where R := { ri | i ∈ I }, then
the elements of W are the chambers of a chamber system in which w and w′

are defined to be i-adjacent if w = w′ or w = w′ri. The J-residues are the
cosets wWJ .

If ∆ is a building, its set C of chambers is a chamber system in which
two chambers are i-adjacent if they have a common panel of type I \ {i}.
Moreover, two chambers are connected by a gallery of type I \{i} if and only
if they have a common vertex of type i. (It is enough to check this in an
apartment, in which case it follows from Theorem 9.37.) Consequently the
complex ∆ can be recovered from C. The vertices of type i can be identified
with the I \ {i}-residues of C. A set S of residues corresponds to a simplex
if and only if

⋂
α∈S α 6= ∅. Notice that the notation introduced for chamber

systems is consistent with that for complexes.

If f := (i1, i2, . . . , i`) is a sequence of elements of I, let rf := ri1ri2 · · · ri`
be the corresponding element of W . Call f reduced if ri1ri2 · · · ri` is a reduced
expression for rf .

At the end of the previous section we showed that if ∆ is a building with
apartments isomorphic to Σ(W,R) and if C is its set of chambers, there is
a map w : C × C → W such that w(C,D) = rf with f reduced if and only
if there is a gallery of type f from C to D. It turns out that this property
suffices to characterize those chamber systems which arise from buildings.
See Tits (1981) and Tits (1986) for the details.

It is not hard to reconstruct ∆ from C and the map w : C × C →W . Two
chambers C and D are i-adjacent if and only if C = D or w(C,D) = ri and
the chambers of the simplexes of ∆ of type J are the maximal subsets D ⊆ C
such that w(D ×D) ⊆WJ .

For the building ∆ of flags of proper subspaces of a vector space V , the
map w : C × C → W can be described as follows. The group G := SL(V )
acts transitively on the set C of maximal flags and if B is the stabilizer of
the maximal flag M , then the orbits of G on C × C correspond to the double
cosets of B in G. Theorems 5.2 and 5.5 show that each orbit has a unique
representative of the form (M,w(M)) for some w ∈ W . Thus w = w(C,D),
where (C,D) is any member of the orbit of (M,w(M)). Theorem 9.3 and
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Lemma 9.11 show that the same interpretation holds for the building of flags
of totally isotropic subspaces of a polar geometry.

Diagram Geometries

The examples of buildings we have seen so far are sets of flags of an underlying
geometry. In fact it is possible to describe all buildings in this way.

This approach, which leads to geometries considerably more general than
buildings, has been investigated extensively by Buekenhout (1979, 1981,
1982, . . . ) and others. See Tits (1980) for some of the history.

To each geometry there is an associated diagram generalizing the Coxeter-
Dynkin diagrams introduced earlier in this chapter. This diagram turns out
to be a convenient and succinct way to give the axioms for the geometry. In
the very brief account given here we limit ourselves to geometries associated
with Coxeter-Dynkin diagrams.

Once again we follow Tits (1981) but with some notation taken from
Shult (1983).

Let I be a finite set. A geometry over I is a multipartite graph Γ whose
components are indexed by elements of I. That is, there is a map τ :V → I,
where V is the set of vertices of Γ, such that, for all i ∈ I, no two vertices
of τ−1(i) are joined by an edge. Thus there are no loops in Γ. Two vertices
are said to be adjacent if they are joined by an edge. All that matters is the
adjacency relation and so we may suppose that Γ has no multiple edges.

We call τ the type map and for x ∈ V , τ(x) is called the type of x.
Similarly, for X ⊆ V , τ(X) is the type of X. The elements of τ−1(i) are
sometimes called the varieties of type i.

A flag F of Γ is a complete subgraph; i.e., every pair of distinct vertices
of F are adjacent. The rank of F is |F | and the corank is |I \ τ(F )|. The
rank of the geometry Γ is |I|. A chamber is a flag of type I and a panel is a
flag of corank 1.

The residue of a flag F is the geometry Res(F ) over I\τ(F ) whose vertices
are the elements of V which are adjacent to every element of F . Two elements
of Res(F ) are defined to be adjacent if they are adjacent in Γ. The type map
of Res(F ) is the restriction of τ .

The set of flags of Γ are the simplexes of a complex over I with the same
vertex set and type map as Γ. We call this the flag complex ∆(Γ). If F is a
flag, the flag complex of Res(F ) is the link of F in ∆(Γ).

We want to restrict our attention to geometries which resemble buildings
and to this end we introduce some additional axioms. In order to describe
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these axioms it will be convenient to have available the following standard
definitions from graph theory.

A path of length m from x to y is a sequence of vertices x = x0, x1,
. . . , xm = y such that for 1 ≤ i ≤ m, xi−1 is adjacent to xi. If x and y
are connected by a path, the distance d(x, y) from x to y is the minimum
length of a path from x to y. The relation of being joined by a path is
an equivalence relation on the vertices and the equivalence classes are the
connected components of the graph. The graph is connected if there is only
one connected component. The diameter of a connected graph is the max-
imum value of d(x, y). A circuit is a path x0, x1, . . . , xm = x0 such that
|{x1, . . . , xm}| = m ≥ 3. The girth is the minimum length of a circuit.

A geometry Γ is said to be residually connected if

(i) every panel is contained in a chamber, and

(ii) for every flag F of corank ≥ 2, Res(F ) is non-empty and connected.

Diagram geometries are obtained by imposing additional conditions on the
rank 2 residues. Essentially, we require the rank 2 residues to be of certain
fixed types. Thus to obtain interesting diagram geometries in general we
need a good supply of rank 2 geometries.

Projective planes and the generalized quadrangles defined at the end of
Chapter 8 provide some examples. In both cases we have a set of points
and a set of lines, which we define to be the varieties of type 0 and type 1
respectively; i.e., we take I := {0, 1}. A point is adjacent to a line if it is on
the line. The geometry of a projective plane is thus a graph of diameter 3
and girth 6, whereas the geometry of a generalized quadrangle has diameter
4 and girth 8.

More generally, for m ≥ 2, a geometry of rank 2 is called a generalized
m-gon if it has diameter m, girth 2m and every vertex is adjacent to at least
two other vertices. We obtain a generalized m-gon from an ordinary m-gon
by taking the varieties of type 0 to be the vertices of the m-gon and the
varieties of type 1 to be the edges. It is easy to see that a generalized 3-gon
is either a triangle or a projective plane. A generalized 2-gon is a complete
bipartite graph with at least 2 vertices in each component (see Tits (1976)).

Now let M := (mij) be a Coxeter matrix whose rows and columns are
indexed by I. A diagram geometry of type M is a residually connected
geometry over I such that, for all i, j ∈ I and i 6= j, the residue of any flag
of type I \ {i, j} is a generalized mij-gon. The diagram of the geometry is
the Coxeter-Dynkin diagram of M . That is, it is a graph with vertex set I
such that for all i 6= j there are mij − 2 edges from i to j.

It is easy to see that if Γ is a diagram geometry and F is a flag of type J ,
then Res(F ) is a diagram geometry whose diagram is obtained by removing
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the elements of J (and the edges incident with them) from the diagram for Γ.

To illustrate the type of argument that can be used to study these geome-
tries we prove the following lemmas of Tits (1981) and Buekenhout (1979).

9.43 Lemma. If Γ is a residually connected geometry over I and if J ⊆ I
has at least two elements, any two varieties x, y of Γ can be joined by a path
all of whose vertices, except possibly x and y, have their type in J .

Proof. By assumption Γ is connected and so the lemma is true when J = I.
If J 6= I and k ∈ I \ J , then by induction on |I \ J |, the lemma is true in the
residue of every variety of type k. Again by induction, there is a path x = x0,
x1, . . . , xm = y such that for 0 < i < m, τ(xi) ∈ J ∪ {k}. If τ(xi) = k, then
xi−1 and xi+1 are in the residue of xi and so there is a path from xi−1 to
xi+1 all of whose internal vertices have their type in J . Thus there is a path
from x to y with the same property.

9.44 Lemma. If Γ is a diagram geometry of type M and if i and j belong
to different connected components of the diagram of Γ, then every variety
of type i is adjacent to every variety of type j.

Proof. Suppose that τ(x) = i and τ(y) = j. We argue by induction on
|I|. If |I| = 2, the geometry is a generalized 2-gon; i.e., a complete bipartite
graph, and so the lemma is true in this case. So we may suppose that |I| > 2
and without loss of generality there is an element k 6= j in I not in the
same component as i. By the previous lemma there is a path x = x0, x1,
. . . , xm = y such that the types of x1, x2, . . . , xm−1 belong to {j, k} and
where m is chosen to be as small as possible. If m > 1, then x, x2 ∈ Res(x1)
and τ(x) and τ(x2) are in different components of the diagram of Res(x1).
By induction, x is adjacent to x2, contradicting the minimality of m. Thus
m = 1 and x is adjacent to y.

If (W,R) is a Coxeter system, where R := { ri | i ∈ I }, we have seen
that the cosets of W i := WI\{i} are the varieties of type i in the Coxeter
complex Σ(W,R). The Coxeter geometry Γ(W,R) has the same vertices and
type map as Σ(W,R) and we define wW i and w′W j to be adjacent whenever
they are distinct and wW i ∩ w′W j 6= ∅ (in which case, by Corollary 9.33,
wW i ∩ w′W j is a coset of WI\{i,j}).

9.45 Lemma. A set of vertices is a flag of the geometry Γ(W,R) if and
only if it is a simplex of Σ(W,R).

Proof. From the definition of Σ(W,R), every simplex is a flag of Γ(W,R).
Conversely, suppose that {w1W

i1 , . . . , wmW
im} is a flag. By induction

{w1W
i1 , . . . , wm−1W

im−1} is a simplex and therefore the intersection of its
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vertices is w′WI\{i1,...,im−1
for some w′. Thus we may suppose that we have

vertices W i1 , . . . , W im−1 whose intersection is WI\{i1,...,im−1
and a coset

wW im adjacent to each of W i1 , . . . , W im−1 . For each k, such that 1 ≤ k < m,
W ik ∩ wW im 6= ∅ and so w ∈ W ikW im . It follows from Corollary 9.35 that
w ∈ (∩m−1

k=1 W
ik)W im . Thus w = uv, where u ∈ ∩m−1

k=1 W
ik and v ∈ W im .

Therefore u ∈ W i1 ∩ . . . ∩W im−1 ∩ wW im and it follows that the flag is a
simplex.

Theorem 9.37 implies that the rank 2 residues of type {i, j} of Γ(W,R)
are isomorphic to the Coxeter geometry of 〈 ri, rj 〉. The group 〈 ri, rj 〉 is a
dihedral group of order 2mij and its geometry is the geometry of an ordinary
mij-gon in which we may take the points to be the cosets of 〈 ri 〉 and the
edges to be the cosets of 〈 rj 〉. Thus the diagram of Γ(W,R) is just the
Coxeter-Dynkin diagram of (W,R).

In the case of the symmetric group Sn acting on Ω := {1, 2, . . . , n} we
have seen that the diagram is

1

©
2

©
3

© · · ·
n−2

©
n−1

©

and we may identify the varieties of type i with the subsets of Ω of cardinality
i. Two subsets are adjacent if one is properly contained in the other. If
W := Sn, then W i is the stabilizer of {1, 2, . . . , i}.

It is easy to see that the geometry of subspaces of a projective space of
dimension n has the above diagram. Conversely, it is a theorem of Tits (1981)
that every geometry corresponding to this diagram is a projective geometry
of dimension n.

If ∆ is a building of type M , then we can construct a geometry of type M
whose vertices are the vertices of ∆ and whose type map is that of ∆. Two
vertices v1 and v2 are adjacent if {v1, v2} is a simplex of rank 2. We leave it
as an exercise to check that the rank 2 residues of type {i, j} are generalized
mij-gons and that the flags of the geometry are the simplexes of ∆.

The diagram of the geometry of totally isotropic subspaces of a polar space
of Witt index m is

1

©
2

©
3

© · · ·
m−2

©
m−1

©
m

©

The varieties of type i are the totally isotropic subspaces of dimension i. The
residue corresponding to a totally isotropic subspace U is the geometry of
U × U⊥/U .

Earlier in this chapter we showed that the Coxeter group of the polar
building is the set of all permutations g of Ω := {1, 1′, 2, 2′, . . . ,m,m′} such
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that for all i ∈ Ω, g(i′) = g(i)′, where i′′ = i. The varieties of type i are the
subsets A ⊆ Ω of cardinality i with the property that k ∈ A implies k′ /∈ A.

To conclude this section we describe a diagram geometry with diagram
1

©
2

©
3

© but which is not a building. The varieties of type 1 (points)
are the elements of a set Ω of cardinality 7; the varieties of type 2 (Lines)
are the 35 3-element subsets of Ω; the varieties of type 3 (Planes) are 15
7-point planes forming an orbit for the alternating group A7 as described in
Chapter 6. Each point is adjacent to the 15 Lines which contain it, each
Line is adjacent to the 3 Planes which contain it and every point is adjacent
to every Plane. The residue of a point is the generalized quadrangle of
totally isotropic subspaces of the symplectic geometry of dimension 4 over
F2. The residue of a Plane is a 7-point plane. (See Exercises 6.8 and 8.12
and Neumaier (1984).)

Abstract Polar Spaces

Instead of considering the flags of totally isotropic subspaces of a polar ge-
ometry one may ask for an axiomatic characterization of the set of all totally
isotropic subspaces themselves. This leads to the study of abstract polar
spaces first considered by Veldkamp (1959) and later refined by Tits (1974).
Tits defines an abstract polar space of rank m to be a set S together with a
set of subsets (called subspaces) satisfying.

P1. Any subspace, together with the subspaces it contains, is a projective
space of projective dimension at most m− 1.

P2. The intersection of any two subspaces is a subspace.

P3. Given a subspace L of projective dimension m− 1 and a point P ∈
S\L, there is a unique subspace M containing P such that M∩L has
projective dimension m − 2 and contains every point of L collinear
with P .

P4. There exist two disjoint subspaces of projective dimension m− 1.

(The axioms for projective geometry can be found at the end of Chapter 3.)

It is not difficult to see that if V is a polar geometry of Witt index m, the
set S of isotropic (or singular, in the case of an orthogonal geometry) points
of P(V ) together with the set of totally isotropic (resp. singular) subspaces
of V , is an abstract polar space of rank m. In these examples two points are
collinear if and only if they are orthogonal. Axioms P1 and P2 are immediate
and the subspace M required in axiom P3 is L∩P⊥ +P . Axiom P4 follows
from Lemma 7.5.

The abstract polar spaces of rank at least 3 have been completely deter-
mined by Veldkamp (1959) and Tits (1974). As well as polar spaces arising
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from ‘classical’ polar geometries defined on vector spaces over fields, as in-
dicated in the previous paragraph, there is a class of examples associated
with the pseudo-quadratic forms of Tits (1968) and, when the rank is three,
additional examples whose maximal subspaces are projective planes over non-
commutative division rings or Cayley-Dickson division algebras.

An abstract polar space of rank two is a generalized quadrangle, as defined
in Chapter 8. As well as the examples corresponding to the classical polar
geometries of Witt index 2 there are many ‘non-classical’ examples. For a
survey see Payne and Thas (1984).

A very beautiful characterization of polar spaces solely in terms of points
and lines has been obtained by Buekenhout and Shult (1974). They consid-
ered a set S of points together with a non-empty set of subsets of S called
lines such that the following axioms hold.

BS1. Every line has at least three points.

BS2. No point is collinear with all points of S.

BS3. If x is a point that does not belong to a line L, then either

a) exactly one point of L is collinear with x, or

b) every point of L is collinear with x.

It is a consequence of these axioms that two distinct points belong to at
most one line. A subset X of S is called a (totally isotropic) subspace if
every pair of distinct points is collinear and if whenever a line L contains two
distinct points of X, every point of L belongs to X. If S does not contain
infinite chains of distinct subspaces, it has been shown by Buekenhout and
Shult (1974) that S together with its sets of totally isotropic subspaces sat-
isfies the abstract polar space axioms. For additional information see Shult
(1975) and Buekenhout (1979). An interesting application to finite permu-
tation groups can be found in Kantor (1975). A far reaching generalization
of this type of characterization has been obtained in the combined work of
Cooperstein, Cohen, Shult and others. See Shult (1983) for a survey.

EXERCISES

9.1 Suppose that β is the polar form of a non-degenerate quadratic form
Q :V → F and suppose that the characteristic of F is 2. Assume that
V contains singular vectors. The building ∆ consists of the proper
flags of totally singular subspaces and the apartments are the sets of
flags obtained from the polar frames of singular points. Formulate
and prove analogues of Theorems 7.15 and 7.17 for ∆.
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9.2 Let V be a polar geometry of Witt index m > 0 and let G be the group
of isometries of V . Excluding the case of an orthogonal geometry of
dimension 2m and Witt index m, show that a subgroup of G is the
stabilizer of a flag of totally isotropic subspaces if and only if it is a
parabolic subgroup of G.

9.3 Let G be a group with a BN -pair and suppose that the Weyl group
W has distinguished generators {wi | i ∈ I }.
(i) For w ∈ W let `′(w) be the least non-negative integer k such

that BwB ⊆ (Bwi1B) · · · (BwikB), where i1, . . . , ik ∈ I. Show
that `′(w) = `(w).

(ii) If k = `(w) and BwB ⊆ (Bwi1B) · · · (BwikB), show that

BwB = (Bwi1B) · · · (BwikB) = Bwi1 · · ·wikB.

(iii) If J,K ⊆ I and gPJg
−1 ⊆ PK , show that J ⊆ K and g ∈ PK .

(iv) Show that PJ∩K = PJ ∩ PK and PJ∪K = 〈PJ , PK 〉.
(v) Show that the map PJwPK 7→WJwWK , (w ∈W ) is a bijection.

9.4 Let G be the group of isometries of a polar geometry of Witt index
m ≥ 1, excluding the case of an orthogonal geometry of dimension
2m. let M be a maximal flag of totally isotropic subspaces and let
B be its stabilizer in G. If F is a flag and F ⊆ M , show that the
stabilizer of F in G is a standard parabolic subgroup PJ for some J .
Show that every standard parabolic subgroup is the stabilizer of a flag
contained in M and deduce that there is a one-to-one correspondence
between the flags of the polar building and the cosets of the standard
parabolic subgroups.

9.5 Let W be the Coxeter group corresponding to the diagram

w1

©
w2

©
w3

© · · ·
wn−2

©
wn−1

©

Consider the effect of each generator on the n cosets

H, Hwn−1, Hwn−1wn−2, . . . , Hwn−1wn−2 · · ·w1

of the subgroup H := 〈w1, w2, . . . , wn−2 〉 and show by induction on
n that W is isomorphic to the symmetric group Sn.

9.6 Let A be the group with generators x1, x2, . . . , xn−2 and relations
x3

1 = 1, x2
i = 1 (i 6= 1), (xixi+1)3 = 1 and (xixj)

2 = 1 for |i− j| ≥ 2.
Show that A is isomorphic to the alternating group An.



110 9. BN-pairs, Diagrams and Geometries

9.7 Show directly that the Coxeter group of the diagram

w1

©
w2

©
w3

© · · ·
wm−2

©
wm−1

©
wm

©

is the wreath product Z2 o Sm.

9.8 Let W be the Coxeter group with generating set R and relations
(rs)mrs = 1 for r, s ∈ R. Let V be the real vector space with basis
{ er | r ∈ R }. Define a symmetric bilinear form β on V by

β(er, es) := − cos(π/mrs).

For r ∈ R, let σr(v) = v − 2β(v, er)er.

(i) Show that for r, s ∈ R such that r 6= s, the matrix of the
restriction of (σrσs)

k to the subspace spanned by er and es is

1

sin (π/mrs)

(
sin ((2k + 1)π/mrs) − sin (2kπ/mrs)

sin (2kπ/mrs) − sin ((2k − 1)π/mrs)

)
.

(ii) Deduce from (i) that rs has order mrs and that the map r 7→ σr
extends to a homomorphism from W to the group of transfor-
mations of V preserving β.

9.9 Consider the symmetric group Sn as a Coxeter group with generators
wi := (i, i + 1) for 1 ≤ i < n. For w ∈ Sn show that, in the notation
of Theorem 9.28,

D(w) = { (i, j) | i < j and w−1(i) > w−1(j) }.

(Use (9.22) and induction on `(w).)

9.10 The Weyl group of the group of isometries of a polar geometry is
W := Z2 o Sm.

(i) Show that this group can be identified with the group of all
permutations w of the set Ω := {±1,±2, . . . ,±m} such that, for
all i ∈ Ω, w(−i) = −w(i).

(ii) The distinguished generators of Z2 o Sm are the permutations
(1, 2)(−1,−2), . . . , (m−1,m)(−m+1,−m) and (m,−m). Show
that the set T defined in (9.20) has m2 elements and consists of
two conjugacy classes of W .
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(iii) Let V be the Euclidean vector space with orthonormal basis
{ ei | 1 ≤ i ≤ m } and inner product (u, v). Show that there is
an action of W on V such that for all w ∈W and 1 ≤ i ≤ m,

w.ei =

{
ew(i) if w(i) > 0
−e−w(i) if w(i) < 0.

Let Σ+ := { ei | 1 ≤ i ≤ m } ∪ { ei − ej , ei + ej | 1 ≤ i < j ≤ m }
and put Σ− := {−v | v ∈ Σ+ }. Show that for each t ∈ T there
is a unique vector at ∈ Σ+ such that for all v ∈ V ,

t.v = v − 2(v, at)

(at, at)
at.

(iv) Show that t ∈ D(w) if and only if w−1(at) ∈ Σ−.

9.11 Let (W,R) be a Coxeter system. Using Lemma 9.34, or otherwise,
show that for J,K,L ⊆ R
(i) WJ ∩WKWL = (WJ ∩WK)(WJ ∩WL), and

(ii) WJ(WK ∩WL) = WJWK ∩WJWL.

9.12 Let (W,R) be a Coxeter system and suppose J,K ⊆ R.

(i) Show that each coset WJw contains a unique element d of short-
est length and that for all v ∈WJ , `(vd) = `(v) + `(d).

(ii) Let DJ be the set of representatives of shortest length for the
cosets WJw. Using Theorem 9.28 show that

DJ = { d ∈W | J ∩D(d) = ∅ }.

(iii) Let DJ,K := Dj ∩D−1
K and show that for all w ∈W ,

DJ,K ∩WJwWK = {d},

where d is the unique element of shortest length in WJwWK .
Show that every element of WJwWK can be written in the form
udv, where u ∈WJ , v ∈WK and

`(udv) = `(u) + `(d) + `(v).

(iv) Show that for all d ∈WJ , WJ ∩ (WKdWL) = WJ∩KdWJ∩L.
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9.13 In the notation of the previous exercise show that for d ∈ DJ,K

(i) d−1WJd ∩WK = Wd−1Jd∩K ,

(ii) WJ ∩ dWKd
−1 = WJ∩dKd−1 , and

(iii) If u ∈WJ ∩D−1
J∩dKd−1 , v ∈WJ∩dKd−1 and t ∈WK ∩Dd−1Jd∩K ,

then
`(uvdt) = `(u) + `(v) + `(d) + `(t).

Moreover, every element of WJdWK can be written uniquely in
the form uvdt.

9.14 (The Bruhat Order) Let (W,R) be a Coxeter system and let T be its
set of reflections. For w, w′ ∈W , define w ≤ w′ if w = w′ or if there is
a sequence of elements t1, t2, . . . tk of T such that w′ = tktk−1 · · · t1w
and

`(w) < `(t1w) < `(t1t2w) < · · · < `(w′).

(i) Observe that t ∈ T \ D(w) implies w < tw and prove that if
w ≤ w′ and r ∈ R, then rw ≤ w′ or rw ≤ rw′.

(ii) Deduce that if r1r2 · · · r` is a reduced expression for w′, then
w ≤ w′ if and only if w = ri1 · · · rik for some sequence 1 ≤ i1 <
· · · < ik ≤ `.

(iii) Show that D(w1) ⊆ D(w2) if and only if w2 = w1v for some
element v of length `(w2)− `(w1). Deduce that D(w1) ⊆ D(w2)
implies w1 ≤ w2.

9.15 Suppose that (W,R) is a Coxeter system and that |W | is finite. Let
wR be an element of maximum length in W and let T be the set of
reflections.

(i) Show that D(wR) = T .

(ii) Show that for all w ∈ W , D(wwR) = T \ D(w). Deduce that
wR is the unique element of maximum length in W and that
w2
R = 1.

(iii) If wR = w1w2, show that `(wR) = `(w1) + `(w2). Regarding the
elements of W as the chambers of the Coxeter complex Σ(W,R),
deduce that every element of W is part of a gallery from 1 to wR.

(iv) Show that D(wRwwR) = wRD(w)wR. In particular, wRRwR =
R and so conjugation by wR induces an automorphism of the
Coxeter-Dynkin diagram. Interpret this for the Coxeter groups
Sn and Z2 o Sm by describing wR explicitly.

(v) For J ⊆ R, let wJ be the element of maximal length in WJ .
Show that wRw−1 \D(w) = J if and only if w = wJwR.
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9.16 Let ∆ be a building whose apartments (isomorphic to the Coxeter
complex Σ(W,R)) are finite. Chambers C and D are said to be oppo-
site if d(C,D) = |T |, where T is the set of reflections in W .

(i) Show that every apartment contains a pair of opposite chambers
and that for each pair of opposite chambers of ∆ there is a unique
apartment which contains them.

(ii) Let ∆ be the building of totally isotropic flags of a polar geom-
etry V . Show that the chambers

V1 ⊂ V2 ⊂ . . . ⊂ Vm and V ′1 ⊂ V ′2 ⊂ . . . ⊂ V ′m

are opposite if and only if V ⊥i ⊕ V ′i = V for all i.

(iii) Describe the pairs of opposite chambers in the building of SL(V ).

9.17 Let Σ be an apartment of the building ∆ and let C be a chamber of
Σ. Let ρΣ

C be the retraction onto Σ centred at C. Show that for all
chambers D,

d(C, ρΣ
C(D)) = d(C,D).

9.18 Let ∆ be a building of type M . Show that the rank 2 residues of the
associated diagram geometry are generalized mij-gons and that the
flags of the geometry are the simplexes of ∆.

9.19 Let S := A × B, where A and B are non-empty sets and declare the
sets {a} × B for a ∈ A and A × {b} for b ∈ B to be the lines of S.
Show that S is a generalized quadrangle.

9.20 Consider a generalized n-gon with a finite number of points. Assume
that each point lies on at least three lines and that each line contains
at least three points. Show that there are integers s and t such that
every point is on t+ 1 lines and every line contains s+ 1 points.
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Unitary Groups

Let π be a unitary polarity of the projective geometry P(V ), where V is a
vector space of dimension n over the field F and suppose that π is induced
by a σ-hermitian form β, where σ is an automorphism of F of order 2. The
elements f ∈ GL(V ) such that

β(f(u), f(v)) = β(u, v) for all u, v in V

form the unitary group U(V ). The full unitary group ΓU(V ) consists of
those τ -semilinear transformations f that induce a collineation of P(V ) which
commutes with π. That is, for some a ∈ F such that a = σ(a) we have

β(f(u), f(v)) = aτβ(u, v) for all u, v in V .

The general unitary group is GU(V ) = ΓU(V ) ∩GL(V ).

In contrast to the symplectic groups, these groups depend on the form
as well as on the dimension of V and therefore our notation is ambiguous.
However, from now on we shall be paying increasing attention to groups over
finite fields and in this case we shall see that, up to isomorphism, there is
just one group U(V ) in each dimension.

Our goal is to study the normal subgroups of U(V ), determine their action
on the projective space, and determine whether they can be generated by
transvections. Unlike the symplectic groups of Chapter 8 and the linear
groups of Chapter 4, a unitary group U(V ) need not contain transvections.
We shall see that the existence of transvections in U(V ) is equivalent to the
existence of isotropic points in P(V ) and for most of the chapter we shall
consider only those groups that contain transvections.

Matrices

Let e1, e2, . . . , en be a basis for V and let J := (β(ei, ej)) be the matrix of
β. If A is the matrix of f ∈ GL(V ) with respect to this basis, then by (7.6),
f ∈ U(V ) if and only if

AtJσ(A) = J.
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Taking determinants, we see that detA detσ(A) = 1. The form β is not
alternating and therefore there exists v ∈ V such that β(v, v) 6= 0. The
linear transformation that sends v to av and acts as the identity on 〈 v 〉⊥
has determinant a and belongs to U(V ) if and only if aσ(a) = 1. It follows
that the map

det :U(V )→ { a ∈ F× | aσ(a) = 1 }

is onto. The special unitary group is defined to be the kernel of this map,
namely

SU(V ) := { f ∈ U(V ) | det f = 1 }.

The scalar transformation a1 is in U(V ) if and only if aσ(a) = 1 Thus the
group PU(V ) of collineations of P(V ) induced by U(V ) is isomorphic to

U(V )/{ a1 | aσ(a) = 1 }.

Similarly, the group PSU(V ) of collineations of P(V ) induced by SU(V ) is
isomorphic to

SU(V )/{ a1 | aσ(a) = 1 and an = 1 }.

The Field F

From now on we shall write ā instead of σ(a) whenever convenient and we
let F0 denote the fixed field of σ, i.e.,

F0 := { a ∈ F | a = ā }.

Thus F0 is a subfield of F and dimF0
F = 2. The functions

Tr :F→ F0 : a 7→ a+ ā

and

N :F× → F×0 : a 7→ aā

are called the trace and norm respectively.

10.1 Lemma.

(i) Tr :F→ F0 is an F0-linear map onto F0.

(ii) Tr(a) = 0 if and only if a = b− b̄ for some b ∈ F.

(iii) N :F× → F×0 is a homomorphism.

(iv) N(a) = 1 if and only if a = b/b̄ for some b ∈ F×.

(v) If F is finite, then N is onto.

Proof. (i) Certainly Tr is F0-linear and as Tr does not map every element
of F to 0, it must map F onto F0. Thus F0 = ker(1− σ) = im(1 + σ).
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(ii) We have im(1 − σ) ⊆ ker(1 + σ), whence equality holds; both spaces
being of F0-dimension 1.

(iii) This is clear.

(iv) If a 6= −1 and N(a) = 1, put b = 1 + a. If a = −1, choose b such that
Tr(b) = 0.

(v) If |F0| = q, then |F| = q2 and σ(a) = aq for all a ∈ F. Then

kerN = { a ∈ F× | aq+1 = 1 }.

The multiplicative group of a finite field is cyclic and therefore kerN is a
cyclic group of order q + 1. It follows that imN = F×0 .

Hyperbolic Pairs

10.2 Lemma. If dimV ≥ 2 and the norm map is onto, then V contains
isotropic vectors.

Proof. Suppose that v 6= 0 is not isotropic and let b = β(v, v). Then b = b̄
and for a ∈ F, u ∈ 〈 v 〉⊥ we have

β(u+ av, u+ av) = β(u, u) + aāb.

Since −b−1β(u, u) ∈ F0 and the norm map is onto, either u is isotropic or
there exists a ∈ F× such that u+ av is isotropic.

10.3 Corollary. If dimV ≥ 2 and F is finite, then V contains isotropic
vectors.

If V contains an isotropic vector u, then by Lemma 7.3 V contains a
hyperbolic pair (u, v). The isotropic points of P(〈u, v 〉) are 〈 v 〉 and 〈u+bv 〉,
where b+ b̄ = 0.

If L1 is a hyperbolic line in V, then V = L1 ⊥ L⊥1 and if L⊥1 also contains
an isotropic vector, we can continue this process, splitting off hyperbolic
lines, until we find that

V = L1 ⊥ L2 ⊥ . . . ⊥ Lm ⊥W,

where m is the Witt index of V and W does not contain any isotropic vectors.
By Witt’s Theorem, V is determined up to isomorphism by m and W .

Let (ei, fi) be a hyperbolic pair and a basis for Li. If F is finite, then
dimW = 0 or 1. When dimW = 1, Lemma 10.1 (iv) shows that we may
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suppose that W = 〈w 〉, where β(w,w) = 1. Then V has a basis e1, f1

. . . , em, fm or e1, f1 . . . , em, fm, w and the group U(V ) acts regularly on
the bases of this type.

Instead of working with hyperbolic pairs we can consider bases of non-
isotropic vectors. Given a non-isotropic vector u1 6= 0, we have V = 〈u1 〉 ⊥
〈u1 〉⊥ and by induction we can write

V = 〈u1 〉 ⊥ 〈u2 〉 ⊥ . . . ⊥ 〈un 〉,

where the ui are non-isotropic. A set of n mutually orthogonal non-isotropic
points is called an orthogonal frame of P(V ).

Order Formulae

If F0 is the finite field Fq, we write U(n, q), SU(n, q), etc. instead of U(V ),
SU(V ), etc. The first step in computing the orders of these finite groups is
to determine the number of isotropic vectors and hyperbolic pairs in V .

10.4 Lemma. V contains (qn−1−(−1)n−1)(qn−(−1)n) isotropic vectors.

Proof. Let ιn be the number of isotropic points in P(V ). Then the number
of isotropic vectors in V is (q2−1)ιn. We shall establish a recurrence relation
for ιn. First observe that ι1 = 0 and, from the description of the isotropic
points of a hyperbolic line given above, ι2 = q + 1.

Suppose that n > 2 and that P and Q are isotropic points such that P +Q is
non-degenerate. For each isotropic point R ∈ (P +Q)⊥ there are q2 isotropic
points on P+R other than P . As every line of P⊥ through P meets (P+Q)⊥,
it follows that there are 1 + q2ιn−2 isotropic points in P⊥.

If R /∈ P⊥, then P + R is a hyperbolic line which contains q + 1 isotropic
points. There are q2n−4 lines through P not in P⊥ and hence q2n−3 isotropic
points not in P⊥. It follows that

ιn = q2ιn−2 + q2n−3 + 1 (10.5)

It is easy to check that the solution to this recurrence relation is

ιn = (qn−1 − (−1)n−1)(qn − (−1)n)/(q2 − 1).

10.6 Corollary. The number of hyperbolic pairs in the vector space V is
q2n−3(qn−1 − (−1)n−1)(qn − (−1)n).

Proof. If u is an isotropic vector, it was shown above that the number of
isotropic points not in 〈u 〉⊥ is q2n−3. for each isotropic point Q /∈ 〈u 〉⊥
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there is exactly one choice of v ∈ Q such that β(u, v) = 1. Thus the number
of hyperbolic pairs in V is (q2 − 1)ιnq

2n−3.

It is now an easy matter to calculate the order of U(n, q). We have shown
that V has a basis of the form e1, f1, . . . , em, fm, or e1, f1, . . . , em, fm, w,
where the (ei, fi) are mutually orthogonal hyperbolic pairs and β(w,w) = 1.
The number of ways of choosing e1, f1, . . . , em, fm, is

q2n−3(q2 − 1)ιnq
2n−7(q2 − 1)ιn−2 · · ·

and when n is odd, the number of choices for w is q + 1. The group U(n, q)
acts regularly on these bases and therefore

|U(n, q)| = q
1
2n(n−1)

n∏
i=1

(qi − (−1)i).

The special unitary group has index q+1 in U(n, q) and the scalar matrices
in U(n, q) form a subgroup of order q + 1. Therefore

|PU(n, q)| = |SU(n, q)| = q
1
2n(n−1)

n∏
i=2

(qi − (−1)i).

The scalar matrices in SU(n, q) form a subgroup of order d, where d is
the greatest common divisor of n and q + 1. Therefore

|PSU(n, q)| = d−1q
1
2n(n−1)

n∏
i=2

(qi − (−1)i).

Unitary Transvections

10.7 Lemma. If f ∈ U(V ), then ker(1− f)⊥ = im(1− f).

Proof. Suppose that v ∈ ker(1− f). Then f(v) = v and so for all u ∈ V ,
β(u− f(u), v) = β(u, v)−β(f(u), v) = 0. Thus im(1− f) ⊆ ker(1− f)⊥. On
comparing dimensions we see that equality holds.

If ϕ ∈ V ∗, u ∈ V and ϕ(u) = 0, the transvection tϕ,u is the linear
transformation

tϕ,u(v) = v + ϕ(v)u.
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If tϕ,u 6= 1, then ker(1 − tϕ,u) = kerϕ and im(1 − tϕ,u) = 〈u 〉. If tϕ,u ∈
U(V ), it follows from the lemma that kerϕ = 〈u 〉⊥ and hence u is isotropic.
Furthermore tϕ,u preserves β and therefore, for v, w ∈ V ,

ϕ(v)β(u,w) + ϕ(w)β(v, u) = 0.

(Compare this with similar calculations for symplectic transvections.) It
follows that the unitary transvections have the form

t(v) = v + aβ(v, u)u, (10.8)

where u is isotropic and a ∈ F satisfies a+ ā = 0. Conversely, every transvec-
tion of this form is in U(V ). In particular, V contains isotropic vectors if
and only if SU(V ) contains transvections.

In general, if V is a unitary geometry over an infinite field there is no
guarantee that V will contain any isotropic vectors. For example, let V be a
vector space over the field C of complex numbers and take ā to be the usual
complex conjugate of a. Suppose that e1, e2, . . . , en is a basis for V and let
β be the hermitian form such that β(ei, ej) = δij . It is easy to see that V
does not have any isotropic vectors.

The root group XP,P⊥ consists of those transvections of the form (10.8)
for which P = 〈u 〉. By Witt’s Theorem, U(V ) is transitive on isotropic
points and therefore U(V ) has a single conjugacy class of root groups of the
form XP,P⊥ . In what follows we use T (V ) to denote the subgroup of SU(V )
generated by the transvections.

Hyperbolic Lines

10.9 Theorem. If L is a hyperbolic line, then SU(L) = SL(2,F0).

Proof. We may suppose that L = 〈 e, f 〉, where (e, f) is a hyperbolic pair.

Then the matrix A =

(
a b
c d

)
represents an element of SU(L) if and only

if ad− bc = 1, ac̄+ āc = bd̄+ b̄d = 0 and ad̄+ b̄c = 1. This is the case if and
only if a, d ∈ F0, b + b̄ = c + c̄ = 0 and ad − bc = 1. Choose s ∈ F× so that

s + s̄ = 0 and define A′ =

(
a sb

s−1c d

)
. Then the mapping A 7→ A′ is an

isomorphism of SU(L) onto SL(2,F0).

Notice that e + af is isotropic if and only if a + ā = 0 and that the
action of PSU(L) on the isotropic points of P(L) corresponds to the action
of PSL(2,F0) on the projective line over F0. Moreover, the transvections of
SU(L) correspond to the transvections of SL(2,F0).



120 10. Unitary Groups

10.10 Corollary.

(i) T (L) = SU(L); i.e., SU(L) is generated by transvections.

(ii) T (L) ⊆ SU(L)′ except when F is F4 or F9.

Proof. By the preceding remarks, (i) follows from Theorem 4.3 (ii) and
(ii) follows from Theorem 4.4.

10.11 Lemma. For all a ∈ F0 \ {0}, the action of SU(L) on the set
{ v | β(v, v) = a } is regular.

Proof. Suppose that β(v, v) 6= 0. Then f ∈ SU(L) fixes v if and only if
f = 1. On the other hand, by Witt’s Theorem, U(L) is transitive on the set
{ v | β(v, v) = a }. If g ∈ U(L) sends w to v and d = det(g), let 〈w 〉⊥ = 〈u 〉
and then define f by f(u) = d−1u, f(v) = v. It follows that fg ∈ SU(L)
and fg takes w to v.

Our description of SU(L) shows that even though it is doubly transitive
on the isotropic points (see Theorem 4.1), it cannot be transitive on the
isotropic vectors.

The Action of PSU(V ) on Isotropic Points.

Throughout this section we assume that the Witt index of V is at least 1;
i.e., V contains isotropic vectors.

10.12 Theorem.

(i) If the Witt index of V is 1, then PSU(V ) is a faithful doubly transitive
group on the isotropic points of P(V ).

(ii) If the Witt index of V is at least 2, then PSU(V ) is a primitive rank
3 group on the isotropic points of P(V ).

Proof. We shall use the fact that if L is a hyperbolic line, then PSU(L)
is doubly transitive on the isotropic points. Also, if E is a totally isotropic
subspace of V , then every element of GL(E) extends to an element of SU(V )
(Exercise 10.9). If an element of PSU(V ) fixes every isotropic point, it fixes
every hyperbolic line pointwise and hence fixes every point of P(V ). Thus
PSU(V ) acts faithfully and transitively on the isotropic points.

Suppose that P is isotropic and that Q1 and Q2 are isotropic points not in
P⊥. By Witt’s Theorem there exists g ∈ U(V ) such that g(P ) = P and
g(Q2) = Q1. Let d = det(g). Then dd̄ = 1 and by Lemma 10.1 (iv), we have
d = a/ā for some a. We may suppose that P = 〈 e 〉 and Q1 = 〈 f 〉, where
β(e, f) = 1. Define g′ ∈ U(P +Q1) by g′(e) = āe and g′(f) = a−1f . Extend
g′ to V by defining it to be the identity on (P + Q1)⊥. Then g′g ∈ SU(V )



Three-Dimensional Unitary Geometries 121

and g′g fixes P and takes Q2 to Q1. It follows that PSU(V )P is transitive
on the isotropic points not in P⊥. In particular, if the Witt index of V is 1,
PSU(V ) is doubly transitive.

Next suppose that the Witt index is at least 2 and that Q1 and Q2 are
isotropic points of P⊥. If E := 〈P,Q1, Q2 〉 is totally isotropic, then there
is an element g ∈ SL(E) which fixes P and takes Q2 to Q1. As noted
above, g extends to an element of SU(V ). If E is not totally isotropic, then
L := Q1 +Q2 is hyperbolic and there is an element g ∈ SU(L) that takes Q2

to Q1. But then g extends to an element of SU(V ) that fixes P . It follows
that PSU(V )P is transitive on the isotropic points of P⊥ \ P . This proves
that PSU(V ) is a permutation group of rank 3. The proof of Theorem 8.3
carries over without change to show that PSU(V ) is primitive.

Three-Dimensional Unitary Geometries

Throughout this section suppose that V is a unitary geometry of dimension
3 and Witt index 1. Let Ω be the set of isotropic points of P(V ). By
Theorem 10.12, PSU(V ) is doubly transitive on Ω.

Let (e, f) be a hyperbolic pair in V and let w be a non-zero element of
〈 e, f 〉⊥. Replace the form β by β(w,w)−1β. This does not change the group
U(V ) but it does allow us to suppose that β(w,w) = 1. (If the field is
finite, or (more generally) if the norm map is onto, we may choose w so that
β(w,w) = 1 without changing the form.)

The vectors e, w, f form a basis for V such that the matrix of the form β
is

J =

 0 0 1
0 1 0
1 0 0

 .

If g ∈ U(V ) fixes 〈 e 〉, then g fixes 〈 e 〉⊥ = 〈 e, w 〉 and g is represented by
an upper triangular matrix. If g fixes 〈 f 〉 as well, it must be diagonal and
of the form

H(k, l) :=

 k 0 0
0 l 0
0 0 k̄−1


where ll̄ = 1. A straightforward calculation shows that every element of
U(V )〈 e 〉 can be written as a product of a diagonal matrix H(k, l) and a
matrix of the form

Q(a, b) :=

 1 −ā b
0 1 a
0 0 1
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where aā + b + b̄ = 0. The isotropic points of P(V ), apart from 〈 e 〉, are of
the form 〈 be+ aw + f 〉, where aā+ b+ b̄ = 0 and therefore the group

Q := {Q(a, b) | aā+ b+ b̄ = 0 }

acts regularly on them. The group H := {H(k, l) | ll̄ = 1 } is a complement
to Q in U(V )〈 e 〉. If F = Fq2 , then Q is a Sylow subgroup of U(3, q) (of order
q3).

10.13 Lemma. Q′ is the group X〈 e 〉,〈 e 〉⊥ and we have T (V ) ⊆ SU(V )′.

Proof. Multiplication in Q is given by

Q(a1, b1)Q(a2, b2) = Q(a1 + a2, b1 + b2 − ā1a2)

and the commutator of Q(a1, b1) and Q(a2, b2) is Q(0, a1ā2−ā1a2). It follows
from Lemma 10.1 (ii) that

Q′ = {Q(0, b) | b+ b̄ = 0 }.

This is the root group X〈 e 〉,〈 e 〉⊥ and it follows that all transvections belong
to SU(V )′.

10.14 Lemma. If F is finite, T (V ) is transitive on { v | β(v, v) = 1 }
except when F = F4.

Proof. Suppose that β(v, v) = β(w,w) = 1. If 〈 v, w 〉 is non-degenerate,
then by Corollary 10.3, 〈 v, w 〉 is a hyperbolic line and by Lemma 10.11 there
is an element of T (V ) that takes v to w. So suppose that 〈 v, w 〉⊥ = 〈 e 〉 ⊂
〈 v, w 〉, where e is chosen so that v = e + aw. Choose f ∈ 〈w 〉⊥ so that
β(e, f) = 1. Then e, w, f is a basis for V and 〈 v 〉⊥ = 〈 e, w − āf 〉.
Now choose u ∈ 〈 v 〉⊥ so that 〈u, v 〉 and 〈u,w 〉 are non-degenerate. This
amounts to putting u = be + w − āf , where b is chosen so that β(u, u) 6= 0
and β(be − āf, be − āf) 6= 0. That is, we require ab + āb̄ /∈ {0, 1}. This can
always be achieved provided |F| > 4. It is now the case that the subspaces
〈u, v 〉 and 〈u,w 〉 are hyperbolic lines and so by Lemma 10.11 there is an
element of T (V ) that takes v to w.

10.15 Theorem. The groups PSU(3, q) are simple except for PSU(3, 2).

Proof. Suppose that q 6= 2 and let v be a vector such that β(v, v) =
1. We have SU(3, q)v = SU(2, q) and by Corollary 10.10(i) this group is
generated by transvections. But we have just shown that when q 6= 2, T (V ) is
transitive on vectors v such that β(v, v) = 1. Hence T (V ) = SU(3, q). It now
follows from Lemma 10.13 that SU(3, q)′ = SU(3, q). By Theorem 10.12 (i),
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SU(3, q) is primitive in its action on the isotropic points. If P is an isotropic
point, the root group XP,P⊥ is an abelian normal subgroup of SU(3, q)P and
so by Iwasawa’s criterion, PSU(3, q) is simple.

In the next section we study the exceptional case PSU(3, 2). To pre-
pare for this and for its own interest we now introduce a new combinatorial
structure.

Block Designs

By definition a block design consists of a set X of v points and a set B of
k-element subsets of X (called blocks) such that every 2-element subset of X
belongs to exactly λ blocks. We also refer to X as a 2-(v, k, λ) design.

If F = Fq2 , every pair of distinct isotropic points belongs to a unique
hyperbolic line and every hyperbolic line contains q + 1 isotropic points.
Thus the set Ω of isotropic points together with the intersections of Ω with
the hyperbolic lines of P(V ) is a 2-(q3+1, q+1, 1) design. The automorphism
group of this design is PΓU(3, q). (See O’Nan (1973) and Taylor (1974).)

Each point is in q2 blocks and there are q2(q2−q+1) blocks. In U(3, q) the
stabilizer of a block is isomorphic to U(2, q) and in SU(3, q) it is SU(2, q).

The Group PSU(3, 2)

One of the goals of this chapter is to show that if the Witt index is at
least 1, then except for PSU(3, 2), the groups PSU(V ) are generated by
transvections. In this section we deal with the exceptional case. For reference
we list the order of PSU(3, 2) and related groups.

group order

PΓU(3, 2) 24.33

PU(3, 2) 23.33

PSU(3, 2) 23.32

group order

ΓU(3, 2) 24.34

U(3, 2) 23.34

SU(3, 2) 23.33

In the case we are now considering, the block design described at the end
of the last section has 9 points, 12 blocks, and each block has 3 points.

10.16 Lemma. Every 2-(9, 3, 1) design can be identified with the points
and lines of the affine plane over F3.

Proof. Choose a point and label it 0. For any other point P , let −P be
the third point of the block containing 0 and P . If 0, P and Q are distinct
points, define P + Q to be the third point of the block containing −P and



124 10. Unitary Groups

−Q. We leave it as an exercise to check that this addition is associative. By
construction, the set of points becomes a vector space of dimension 2 over
F3. The blocks correspond to the affine lines.

Let E9 denote the additive group of the vector space of dimension 2 over
F3. In other words, E9 = F3 ⊕ F3. The affine group of E9 is the semidirect
product E9.GL(2, 3)—of order 24.33. On comparing orders we find that

PΓU(3, 2) ' E9.GL(2, 3),

PU(3, 2) ' E9.SL(2, 3), and

PSU(3, 2) ' E9.Q8,

where Q8 is the quaternion group of order 8. If S is the Sylow 3-subgroup
of SU(3, 2), then SU(3, 2) = S.Q8. We know that T (V ) ⊆ SU(3, 2)′ and
therefore T (V ) 6= SU(3, 2). Each transvection fixes a unique isotropic point
and consequently SU(3, 2) contains 9 transvections. It follows that T (V ) =
SU(3, 2)′ = S.Z2.

Let us look at the geometry in somewhat more detail. The projective plane
P(V ) has 9 isotropic points and 12 non-isotropic points. Each hyperbolic line
has 3 isotropic points and a pair of orthogonal non-isotropic points. Every
other line is of the form P⊥ for some isotropic point P . The 4 points of P⊥

other than P are non-isotropic and no two are orthogonal.

If A is non-isotropic, then A⊥ is a hyperbolic line which contains just
two (orthogonal) non-isotropic points. Each non-isotropic point belongs to a
unique orthogonal frame and so the 12 non-isotropic points form 4 disjoint
orthogonal frames. Moreover, the transvection that fixes the isotropic point
P fixes exactly one point in each of the 4 frames (namely, the points of
P⊥ \ P ) and interchanges the other two. It follows that the 4 orthogonal
frames are the orbits of T (V ) on non-isotropic points. The 9 isotropic points
form a single orbit for T (V ). Note that ΓU(3, 2) acts as S4 on the orthogonal
frames and that T (V ) is the kernel of this action; i.e., ΓU(3, 2)/T (V ) ' S4.

If v 6= 0 is a non-isotropic vector, then β(v, v) = 1 and it follows that for
every hyperbolic line L, T (L) is transitive on the 6 non-zero non-isotropic
vectors of L. Thus if {A,B,C} is an orthogonal frame, then T (V ) is transitive
on the 9 vectors representing A, B and C.

We conclude this section with a description of the Sylow 3-subgroup S of
SU(3, 2). Suppose that F4 = F2[θ], where θ2 +θ+1 = 0. With respect to the
basis e, w, f introduced at the beginning of this section it is easy to check
that S contains  θ2 1 1

θ 0 1
θ θ θ2

 and

 1 0 1
0 1 0
1 0 0

 .
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These elements have order 3 and their commutator is θI. Thus S′ = Z(S) '
Z3 and S/Z(S) ' E9. Every element of S has order 3 (Exercise 10.8).

The Group SU(4, 2)

In this section V denotes a four-dimensional unitary geometry over the field
F4 = F2[θ]. It follows from Lemma 10.4 that P(V ) contains

45 isotropic points,
40 non-isotropic points,
27 totally isotropic lines, and

240 hyperbolic lines.

Each totally isotropic line contains 5 points. Each isotropic point is on 16
hyperbolic lines and on 3 totally isotropic lines.

The polar geometry of isotropic points and totally isotropic lines is a
generalized quadrangle. (The definition is at the end of Chapter 8.) It is
the purpose of this section to construct a generalized quadrangle from the 40
non-isotropic points and then identify this with the generalized quadrangle
of the symplectic geometry of dimension 4 over F3.

From the order formula given earlier in this chapter we have |U(4, 2)| =
26.35.5. The only scalar transformation in SU(4, 2) is the identity and there-
fore PU(4, 2) = SU(4, 2) = PSU(4, 2)—a group of order 26.34.5.

Let Ω be the set of non-isotropic points of P(V ) and let L be the set of
orthogonal frames.

10.17 Lemma. The sets Ω and L are the points and lines of a generalized
quadrangle. The group PSU(4, 2) acts as a primitive rank 3 group on both
Ω and L. The stabilizer of a point is isomorphic to U(3, 2) and the stabilizer
of a line is isomorphic to the semidirect product E27.S4, where E27 is the
group Z3 × Z3 × Z3.

Proof. If P1 and P2 are orthogonal points of Ω, then (P1 + P2)⊥ is a
hyperbolic line. We know that every hyperbolic line contains two points of
Ω and that these points are orthogonal. Thus each pair of distinct points is
in at most one orthogonal frame.

If P ∈ Ω, then PSU(V )P ' U(3, 2) and (by Witt’s Theorem) the orbits of
PSU(V )P on Ω are

{P}, {Q ∈ Ω | Q ∈ P⊥ } and {Q ∈ Ω | Q 6= P, Q /∈ P⊥ }.

The lengths of these orbits are 1, 12 and 27 respectively. It follows that the
action of PSU(V ) on Ω is primitive. (See Exercise 1.16.)
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The number of orthogonal frames in P(V ) is 40.12.2.1/4.3.2.1 = 40 and
each point of Ω belongs to 4 frames. If ∆ = {P1, P2, P3, P4} ∈ L, there are
precisely 12 elements of L with just one point in common with ∆. Three
points of Ω are pairwise orthogonal if and only if they belong to an element
of L. Hence the 12 elements of L that have one point in common with ∆
contain all the points of Ω. Therefore if Q ∈ Ω is not in ∆, there is a unique
point of ∆ that is in an orthogonal frame containing Q. This proves that Ω
and L form the points and lines of a generalized quadrangle.

Suppose that Pi = 〈 ei 〉 (1 ≤ i ≤ 4). It is clear that PSU(V ) is transitive on
L and that the stabilizer of ∆ in PSU(V ) is (F×4 )3.S4, where S4 corresponds
to the group of 4× 4 permutation matrices with respect to the basis e1, e2,
e3, e4 and the group (F×4 )3 consists of the diagonal matrices of determinant 1.

In the previous section we saw that for P ∈ Ω, PSU(V )P ' U(3, 2) acts
as A4 on the orthogonal frames containing P . Thus PSU(V )∆ is transitive
on the 12 frames that meet ∆ in one point. The only diagonal matrix of
determinant 1 that fixes an orthogonal frame disjoint from ∆ is the identity.
Thus the group (F×4 )3 of diagonal matrices in PSU(V )∆ acts regularly on
the frames disjoint from ∆. In particular, PSU(V ) is a rank 3 group on L
and, by Exercise 1.16, it is primitive.

Even though Ω and L both contain 40 points, the stabilizer in PSU(4, 2) of
a point of Ω is not isomorphic to the stabilizer of a point of L and therefore the
permutation representations of PSU(4, 2) on these sets are not equivalent.

10.18 Theorem. The generalized quadrangle (Ω,L) is isomorphic to the
generalized quadrangle of points and totally isotropic lines of a 4-dimensional
symplectic geometry over F3.

Proof. We make the set Ω into a projective geometry by defining ‘lines’
and ‘planes’ as follows. If P and Q are orthogonal points of Ω, the line PQ
containing P and Q is defined to be the unique orthogonal frame containing
P and Q. If P and Q are distinct but not orthogonal, the line PQ is defined
to be (P +Q) ∩ Ω. In both cases PQ contains 4 points.

For each R ∈ Ω, define π(R) := ({R} ∪ R⊥) ∩ Ω and declare the sets π(R)
to be the ‘planes’ of Ω. If P and Q are distinct points of π(R), then PQ is
contained in π(R). Thus the plane π(R) has 13 points, 13 lines and each line
has 4 points. The points not on a given line of π(R) form a 2-(9, 3, 1) design
and by Lemma 10.13 this can be identified with the affine plane over F3. It
follows that π(R) can be identified with the projective plane over F3.

Any 3 non-collinear points of Ω are in at most one ‘plane’. Counting 4-tuples
(A,B,C,R) such that A, B, C are non-collinear points of π(R) shows that
every triple of non-collinear points is in exactly one ‘plane’. Another simple
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counting argument shows that the lines of π(R) together with the lines that
meet π(R) in one point account for all the lines of the geometry. That is,
every line meets every plane. Similarly, every pair of distinct planes have a
common line.

The method of Lemma 10.13 can now be used to show that the set Γ =
Ω\π(R) of the 27 points not on a given plane π(R) form a three-dimensional
geometry over F3. That is, choose a point 0 /∈ π(R) and for every point
P /∈ π(R) ∪ {0} define −P to be the third point of Γ on the line through 0
and P . If 0, P and Q are distinct points of Γ, define P +Q to be the third
point of Γ on the line through −P and −Q. It follows from Lemma 10.13 that
addition is associative and that Γ is a vector space over F3. The geometry of
Ω is uniquely determined by Γ (the points of π(R) correspond to the parallel
classes of lines of Γ) and therefore it is the projective geometry of a vector
space of dimension 4 over F3.

The correlation R 7→ π(R) is a symplectic polarity and the elements of L
correspond to the isotropic lines.

10.19 Corollary. PSU(4, 2) is isomorphic to PSp(4, 3) and it is a simple
group generated by unitary transvections.

Proof. It follows from the proof of the theorem that every element of
PΓU(4, 2) induces a collineation of the projective geometry which commutes
with the symplectic polarity. The groups PΓU(4, 2) and PΓSp(4, 3) both
have order 51840 and therefore they are isomorphic. It follows from Theo-
rem 8.8 that the simple group PSp(4, 3) is the unique subgroup of index 2
in PΓSp(4, 3). Thus PSU(4, 2) is isomorphic to PSp(4, 3).

This isomorphism provides an example of a group with two different BN -
pair structures. In the BN -pair arising from the action on the unitary ge-
ometry, the group B is the normalizer of a Sylow 2-subgroup whereas in the
BN -pair arising from the symplectic geometry the group B is the normalizer
of a Sylow 3-subgroup.

The Simplicity of PSU(V )

10.20 Theorem. For n ≥ 2, the groups PSU(n, q) are simple except for
PSU(2, 2), PSU(2, 3) and PSU(3, 2).

Proof. Theorems 10.9, 4.5 and 10.15 show that the result holds for n = 2
and n = 3. To prove the general case we first show that except for PSU(3, 2),
the groups PSU(n, q) are generated by transvections.

Suppose that v and w are vectors such that β(v, v) = β(w,w) = 1. If n > 3,
choose a non-isotropic vector u ∈ 〈 v, w 〉⊥ \ 〈 v, w 〉. Then 〈u, v 〉 and 〈u,w 〉
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are hyperbolic lines and by Lemma 10.11 there is a product of transvections
that takes v to w. Thus the subgroup T generated by the transvections is
transitive on the vectors v such that β(v, v) = 1. (When n = 2 or 3 this
result was proved as Lemmas 10.11 and 10.14 respectively.)

Suppose that n > 3. Then we have SU(n, q)v ' SU(n − 1, q) and so by
induction or by Theorem 10.15 or by Corollary 10.19, SU(n, q)v ⊆ T . It
follows from the transitivity of T that SU(n, q) = T . In particular, if P
is an isotropic point, then SU(n, q) is generated by the conjugates of the
root group XP,P⊥ . Also, from Lemma 10.13 we have SU(n, q)′ = SU(n, q)
and from Theorem 10.12 (ii), the action of SU(n, q) on isotropic points is
primitive. The root group XP,P⊥ is an abelian normal subgroup of SU(n, q)P
and so by Iwasawa’s criterion, PSU(n, q) is simple.

This proof also holds for infinite fields provided the Witt index is at least 1
and provided that we can show that the subgroup T (V ) generated by the
transvections is transitive on vectors v such that β(v, v) = a for some a ∈ F×0 .
In general, a more elaborate proof is needed.

In preparation for the general proof suppose from now on that V is a
unitary geometry of dimension n ≥ 2 over F and that V contains isotropic
vectors.

It follows from Lemma 10.1 (i) that if L is a hyperbolic line, then for all
a ∈ F0 there exists v ∈ L such that β(v, v) = a.

10.21 Lemma. Except when n = 3 and F = F4, the subgroup T (V )
generated by the transvections is transitive on the set { v | β(v, v) = e },
where e ∈ F×0 .

Proof. If dimV = 2 or if the field is finite we have already proved this
result. So suppose that dimV > 2 and that |F| > 4. Let x and x′ be distinct
vectors such that β(x, x) = β(x′, x′) = e.

Suppose at first that x′ − x is not isotropic. By Witt’s Theorem there is a
hyperbolic line L which contains x′ − x and we may write x = y + z and
x′ = y′ + z′, where y, y′ ∈ L and z, z′ ∈ L⊥. Then

z − z′ = x− x′ − y + y′ ∈ L ∩ L⊥ = {0}

and so z = z′ and β(y, y) = β(y′, y′). If y is not isotropic, then we know that
there is a product of transvections h in SU(L) that takes y′ to y. But then
h extends to an element of T (V ) that takes x′ to x. Thus we may suppose
that y is isotropic for all choices of hyperbolic line L containing x′ − x. We
shall show that this leads to a contradiction.

Write x = u + v, where u ∈ 〈x′ − x 〉 and v ∈ 〈x′ − x 〉⊥. Then u 6= 0,
otherwise x′ − x would be isotropic, contrary to assumption. Now β(u, y) =
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β(u, x) = β(u, u) and therefore β(u, y − u) = 0. Put w = y − u. Then
〈u 〉 6= 〈w 〉 and v = w + z. Thus β(v, w) = β(w,w) = −β(u, u).

If we can choose λ, µ ∈ F so that u+λv+µw is isotropic, then the line L1 :=
〈u, u+λv+µw 〉 will be hyperbolic, because β(u, u+λv+µw) = β(u, u) 6= 0.
The vector u+ λv + µw is isotropic if and only if

b = λλ̄+ (λ̄µ+ λµ̄)b+ µµ̄b, (10.22)

where a = β(v, v) and b = −β(u, u).

We can find values of λ and µ satisfying (10.22) as follows. Set c = b−1(b−a)
and choose η ∈ F such that Tr(η) = 1 + c but η 6= 0, c. (This is possible
because F0 6= F2.) Next, since there are at most two elements of F with a
given norm and trace, we can choose ξ so that N(ξ) = N(η) but Tr(ξ) 6= 1+c.
Then (10.22) is satisfied by λ = (η − c)−1 and µ = (ξ − 1)(η − c)−1 and in
addition we have µµ̄ 6= 1.

Now that we know that L1 exists we can write x = y1+(x−y1), where y1 ∈ L1

is isotropic and x− y1 ∈ L⊥1 . Since y1 ∈ L1, we have γy1 = u+ d(λv + µw)
for some d and some γ 6= 0. It follows that dd̄ = 1 and

0 = β(x− y1, γy1) = β(u+ v, u+ d(λv + µw)) = −b+ d(λa+ µb).

Thus b2 = (λa+µb)(λ̄a+ µ̄b) and from (10.22) we obtain (µ̄µ−1)(a−b) = 0,
whence a = b. But now we have β(v, v) = −β(u, u) and hence β(x, x) = 0
—a contradiction.

From now on we may suppose that x′ − x is isotropic. Set a = β(x, x′) so
that a + ā = 2β(x, x). If a 6= 0 and λ is an element of F such that λλ̄ = 1,
then

β(x′ − λx, x′ − λx) = a+ ā− λa− λ̄ā.

If x′− λx were isotropic for all λ then we would have λ2a− (a+ ā)λ+ ā = 0
for all such λ. But this is not possible because |F0| > 2. Therefore x′ − λx
is not isotropic for some λ of norm 1. Since β(λx, λx) = β(x, x), the first
part of the proof shows that there exists h1 ∈ T (V ) such that h1(x′) = λx.
But we also have β(x− λx, x− λx) = (1− λ)(1− λ̄)β(x, x) 6= 0 so the same
argument shows that h2(x) = λx for some h2 ∈ T (V ). Thus h−1

2 h1(x′) = x
and this finishes the case a 6= 0.

Now suppose that a = 0. It follows that F has characteristic 2. We are
assuming that |F0| > 2 and therefore there exists η ∈ F such that Tr(η) = 0
but 1 + η 6= 0. Let λ = η(1 + η)−1 and µ = (1 + η)−1. Then λλ̄ + µµ̄ = 1
and if y = λx + µx′, then β(y, y) = β(x, x) = β(x′, x′). Since β(y, x) 6= 0
and β(y, x′) 6= 0, there are elements h1, h2 ∈ T (V ) such that h1(x′) = y and
h2(y) = x. Then h2h1(x′) = x and this completes the proof.
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10.23 Theorem. If dimV ≥ 2 and if the Witt index of V is at least 1,
then except for PSU(2, 2), PSU(2, 3) and PSU(3, 2), the group PSU(V ) is
simple.

Proof. Let x be a non-isotropic vector such that 〈x 〉⊥ contains an isotropic
vector. By Lemma 10.21, T (V ) is transitive on { v | β(v, v) = β(x, x) }, ex-
cept when n = 3 and F = F4. As in Theorem 10.20 we can show by induc-
tion that SU(V ) = T (V ) and hence SU(V ) = SU(V )′ except for SU(2, 2),
SU(2, 3) and SU(3, 2). It follows from Iwasawa’s criterion and Theorem 10.12
that PSU(V ) is simple except for PSU(2, 2), PSU(2, 3) and PSU(3, 2).

An Example

So far we have left the unitary geometries of Witt index 0 out of our delibera-
tions. These geometries generally behave quite differently to those of positive
index and we shall give an example (due to J. Dieudonné) to illustrate this.
Let F be the field of formal power series ξ =

∑∞
k=t akx

k, where ak ∈ C for
all k and t ∈ Z. Define ξ̄ =

∑∞
k=t ākx

k. Let V be a vector space with basis
e1, e2, . . . , en over F and define

β(ξ1e1 + · · ·+ ξnen, η1e1 + · · ·+ ηnen) = ξ1η̄1 + · · ·+ ξnη̄n.

Then β is a non-degenerate hermitian form and V has no isotropic vectors.
The order of ξ =

∑∞
k=t akx

k is the least integer h such that ah 6= 0. If
A = (ξij) is an element of U(V ), then

∑n
i=1 ξij ξ̄ij = 1 for all j and it follows

that the order of ξij is ≥ 0 for all i and j. Let Gm be the set of unitary
matrices of the form I + xmB, where every entry of B has order ≥ 0. Then
Gm is a normal subgroup of U(V ) and⋂

m≥0

Gm = {I}.

It turns out that the factor groups Gm/Gm+1 are abelian.

Unitary BN-pairs

The construction of a BN -pair for a strongly transitive group acting on the
building of a polar geometry has been given in Chapter 9. This construction
applies to any unitary geometry V that contains isotropic vectors—the group
N is the stabilizer of a polar frame

F := {Pi, P ∗i | 1 ≤ i ≤ m },
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and the group B is the stabilizer of the chamber

M := {〈P1, . . . , Pi 〉 | 1 ≤ i ≤ m }.

It follows by induction from Theorem 10.12 that SU(V ) is strongly tran-
sitive and therefore, by Theorem 9.8, the stabilizers of M and F in SU(V )
form a BN -pair for SU(V ). This is also a consequence of the proof Theo-
rem 8.9, which depends only on the existence of the polarity π and not on
the precise nature of the underlying geometry.

It was shown on p. 85 that the Weyl group N/B∩N is isomorphic to Z2oSm
and generated by elements niB ∩N . In the case of a unitary geometry the
elements ni can be chosen in SU(V ). In fact, for i < m, the definition of n̂i
in the section ‘Symplectic BN -pairs’ of Chapter 8 carries over to the unitary
case and produces an element of the required type. The remaining generator

nm is defined by putting nm(em) := λfm and nm(fm) := − 1

λ
em, where

λ+ λ̄ = 0, and requiring nm to be the identity on 〈 em, fm 〉⊥.

EXERCISES

10.1 Show that Sp(2m, q) is contained in SU(2m, q).

10.2 If a unitary geometry has isotropic vectors, show that it has a basis
of isotropic vectors.

10.3 Suppose that dimV ≥ 2 and that V contains isotropic vectors. Show
that the centralizer of SU(V ) in GL(V ) is the group of scalar trans-
formations.

10.4 If V is the unitary geometry of dimension n over Fq2 , show that the
number of totally isotropic subspaces of dimension k in V is

n∏
i=n+1−2k

(qi − (−1)i)
/ k∏
j=1

(q2j − 1).

10.5 Find all the normal subgroups of U(2, q).

10.6 Construct a three-dimensional unitary geometry of Witt index 1 that
contains a two-dimensional subspace without any isotropic points.

10.7 If n ≥ 4, show that PSU(n, 2) is a rank 3 group on the non-isotropic
points. Show that the stabilizer of a point has orbits of length 1,
1
32n−2(2n−1 − (−1)n−1) and 22n−3 − (−1)n2n−2 − 1.
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10.8 Let S be the Sylow 3-subgroup of SU(3, 2). Show that x3 = 1 for all
x ∈ S.

10.9 Let E be a totally isotropic subspace of the unitary geometry V .
Show that every element of SL(E) extends to an element of SU(V ).
Then show that SU(V ) is transitive on the flags of totally isotropic
subspaces of a given type.

10.10 (i) Let G := 〈x, y | x2 = y5 = (xy)3 = 1 〉. Set x1 = x−1y−2xy2,
x2 = y2xy−2 and x3 = x. Show that x1, x2 and x3 satisfy the
relations of Exercise 9.6. Deduce that G ' A5.

(ii) Suppose that 5 divides q − 1 and let a be an element of order 5
in Fq. Let b = (a− a−1)−1 and set

A =

(
a 0
0 a−1

)
and

(
b c
d −b

)
,

where c and d are chosen so that detB = 1. Show that the
image of 〈A,B 〉 in PSL(2, q) is isomorphic to A5.

(iii) Suppose that 5 divides q + 1 and let a be an element of order 5
in Fq2 . Let b = (a− ā)−1 and choose c so that bb̄+ cc̄ = 1. If

A =

(
a 0
0 ā

)
and

(
b c
−c̄ b̄

)
,

show that 〈A,B 〉 ⊆ SU(2, q) and that the image of 〈A,B 〉 in
PSU(2, q) is isomorphic to A5. (Take the matrix of the hermi-
tian form to be the identity.)

(iv) Show that A5 is contained in PSL(2, q) if and only if 5 divides
|PSL(2, q)|.

(v) Deduce from (iv) that PSL(2, 9) ' A6 and then show that
PGL(2, 9) is not isomorphic to S6.

10.11 (Cayley’s parametrization) Suppose that A is an n×n matrix over F
such that I + A ∈ GL(n,F). Let S = 2(I + A)−1 − I and then show
that

S = (I −A)(I +A)−1 and

A = (I − S)(I + S)−1.

If J is any n× n matrix and a 7→ ā is an automorphism of F of order
2, show that AtJĀ = J if and only if StJ + JS̄ = 0.
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10.12 Let V be the unitary geometry over the field of formal power series
with complex entries introduced at the end of this chapter. Let Gm
be the subgroup consisting of the matrices of the form I+xmB, where
every element of B has order ≥ 0. If A ∈ Gm, show that I + A is
non-singular and A = (I −xmT )(I +xmT )−1, where every element of
T has order ≥ 0 and T̄ + T t = 0. Show that Gm/Gm+1 is isomorphic
to the additive group of matrices T such that T̄ + T t = 0.

10.13 Let V be a unitary geometry of dimension n over the field Fq2 de-
fined by the non-degenerate hermitian form β and let W be a totally
isotropic subspace of dimension k.

(i) Show that β̄(u + W, v + W ) = β(u, v) defines a non-degenerate
hermitian form on W⊥/W .

(ii) Let UW denote the subgroup of unitary transformations that
fixes W and W⊥/W pointwise. If e1, e2, . . . , ek is a basis
for W , show that UW acts regularly on the set Ω of k-tuples
(f1, f2, . . . , fk) such that (e1, f1), . . . , (ek, fk) are mutually or-
thogonal hyperbolic pairs. Deduce that UW is a normal sub-
group of U(V )W of order q2kn−3k2 and that U(V )W is the semi-
direct product UW .U(V )W,W ′ , where W ′ := 〈 f1, f2, . . . , fk 〉 and
(f1, f2, . . . , fk) ∈ Ω.

(iii) Show that U(V )W,W ′ ' GL(k, q2)× U(n− 2k, q).

(iv) For i 6= j, let X̂ij be the group of transformations

v 7→ v + aβ(v, fj)ei − āβ(v, ei)fj .

Show that 〈 X̂ij | i 6= j 〉 ⊂ U(n, q) is isomorphic to SL(W ).

(v) Show that U ′W = Z(UW ) is the subgroup of U(V ) that fixes W⊥

pointwise and that its order is qk
2

.

(vi) Show that UW /U
′
W is isomorphic to the direct sum of k(n− 2k)

copies of the additive group of Fq2 .

10.14 Let β be a skew hermitian form on the vector space V of dimension
m over Fq2 . Show that Tr β is an alternating form on V considered
as a vector space of dimension 2m over Fq. Deduce that U(m, q) ⊆
Sp(2m, q).
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10.15 Let V be a unitary geometry over Fq2 . For each isotropic point P =
〈u 〉, let XP,P⊥ be the root group of transvections

v 7→ v + aβ(v, u)u,

where a + ā = 0. Show that 〈XP,P⊥ , XQ,Q⊥ 〉 is isomorphic to Fq,
F+
q ⊕ F+

q or SL(2, q) according to whether P = Q, or P + Q is a
totally isotropic or a hyperbolic line, respectively.

10.16 Let V be the symplectic geometry of dimension 2m over Fq, where q
is odd. Let g be an element of Sp(V ) such that g2 = −1 and let C be
the centralizer of g in Sp(V ).

(i) If 4 divides q − 1, show that the eigenspaces of g are maximal
totally isotropic subspaces and that C ' GL(m, q).

(ii) If 4 divides q + 1, show that it is possible to write V in the
form L1 ⊥ L2 ⊥ . . . ⊥ Lm, where each Li is a hyperbolic line
spanned by a hyperbolic pair (ei, fi) such that g(ei) = fi and
g(fi) = −ei. Regard V as a vector space of dimension m over
Fq2 = Fq[ω], where ω2 = −1 and where multiplication by a+ b ω
is defined by

(a+ b ω)v := av + bg(v).

Show that the elements of C act as linear transformations on
this space and that they preserve the hermitian form β̂ defined
by β̂(ei, ej) := δij . Deduce that C ' U(m, q).

(iii) If g′ ∈ Sp(V ) and g′2 = −1, show that g′ is conjugate to g.

10.17 Let V be a unitary geometry defined by a non-degenerate hermitian
form β and let π be the corresponding polarity. Then π induces an
automorphism π̂ : f 7→ f⊥ of SL(V ), where f⊥ is defined by (7.7).

(i) Show that every transvection t ∈ SL(V ) can be written in the
form t(x) = x+β(x, v)u for some u, v ∈ V such that β(u, v) = 0
and show that t⊥ = x− β(x, u)v.
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(ii) Let X be a root group of SL(V ) and let Xπ be the subgroup of
fixed elements of π̂ in 〈X, π̂(X) 〉. Show that one of the following
occurs.

(a) X = π̂(X) and Xπ consists of unitary transvections.

(b) There is a totally isotropic line L = 〈u, v 〉 such that Xπ

consists of the transformations

x 7→ x+ aβ(x, v)u− āβ(x, u)v, a ∈ F.

(c) There is an isotropic point P = 〈u 〉 and a non-isotropic
vector v ∈ P⊥ such that Xπ consists of the transformations

x 7→ x+ aβ(x, v)u− āβ(x, u)v + bβ(x, u)u,

where a, b ∈ F and aā+b+ b̄ = 0. Show that these are essentially
the transformations Q(a, b) of p. 121.

(d) There is a non-degenerate subspace L of dimension 2 such
that X and π̂(X) fix L⊥ pointwise and Xπ = SU(L).
Note that in cases (a), (b) and (c) there is an isotropic point
P = 〈u 〉 such that the restrictions of the elements of Xπ to P⊥

have the form x 7→ x+ aβ(x, v)u, for some v ∈ P⊥.

10.18 Suppose that q is a power of a prime and that p is an odd prime that
does not divide q. Let f be the least positive integer such that p
divides (−q)f − 1.

(i) Show that the Sylow p-subgroup of U(f, q) is cyclic.

(ii) Given n, let ` = bn/fc and let D be the direct product of ` copies
of U(f, q). As in Exercises 4.11 and 8.7, show that S` acts as
a group of automorphisms of D and that a Sylow p-subgroup
of the semidirect product of D by S` is isomorphic to a Sylow
p-subgroup of U(n, q).

(iii) Show that the order of a Sylow p-subgroup of PSU(n, q) is less
than (

√
3 (q + 1))n.

(iv) State and prove the result corresponding to (ii) when p = 2;
then show that the order of a Sylow 2-subgroup of PSU(n, q) is
at most (2(q + 1))n. (For help, see Carter and Fong (1964).)

(v) Show that, except for PSU(3, 2), PSU(3, 3) and PSU(4, 2), the
largest order of a Sylow subgroup of PSU(n, q), where n > 2, is
qn(n−1)/2.
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Orthogonal Groups

In Chapters 8 and 10 we considered the groups associated with symplectic
and unitary polarities of a projective geometry P(V ), where V is a finite-
dimensional vector space over a field F. It follows from Theorem 7.1 that if π
is a polarity of P(V ) which is neither of symplectic nor of unitary type, then
π is of orthogonal type; i.e., it is induced by a symmetric bilinear form β. In
this chapter we deal with the groups which preserve such a form. However,
in order to include the orthogonal groups over fields of characteristic 2 we
shall assume that the orthogonal geometry is defined by a non-degenerate
quadratic form (see p. 54)

Q :V → F

whose polar form is β(u, v) := Q(u+ v)−Q(u)−Q(v).

In general we have β(v, v) = 2Q(v) and therefore β is an alternating form
when the characteristic of F is 2, and Q is completely determined by β when
the characteristic of F is not 2.

By definition, Q is non-degenerate if V ⊥ has no singular vectors (see
p. 56). When the characteristic of F is not 2 this corresponds to β being
non-degenerate.

The orthogonal group associated with V and Q is

O(V,Q) := { f ∈ GL(V ) | Q(f(v)) = Q(v) for all v ∈ V }.

The full orthogonal group ΓO(V,Q) consists of the σ-semilinear transfor-
mations f of V such that for some a ∈ F

Q(f(v)) = aσQ(v) for all v ∈ V ,

the general orthogonal group is GO(V,Q) := ΓO(V,Q)∩GL(V ) and, except
for fields of characteristic 2, the special orthogonal group is SO(V,Q) :=
O(V,Q) ∩ SL(V ). The derived subgroup O(V,Q)′ of O(V,Q) is denoted by
Ω(V,Q).

In general it is possible to have several types of orthogonal geometries with
the same underlying vector space and therefore we make the form explicit in



Matrices 137

the notation for the group. If it is clear from the context which geometry is
intended, we shall abbreviate O(V,Q), Ω(V,Q), etc. to O(V ), Ω(V ), etc.

As in the previous chapters our goal is to study the action of O(V ) on
the projective space P(V ) and ultimately to determine its normal subgroups.
If the orthogonal groups behaved analogously to the symplectic and unitary
groups we could expect the group PSO(V ) induced by SO(V ) on P(V ) to be
simple whenever P(V ) contained singular points except perhaps for spaces
of small dimension. But this is not the case, and in general Ω(V ) is a proper
normal subgroup of SO(V ). Moreover, except for fields of characteristic
2, there are no orthogonal transvections. Thus to elucidate the structure
of these groups we need a substitute for the transvections used in previous
chapters. We shall use certain transformations first defined by C. L. Siegel
(1938) and later used by M. Eichler (1952) and T. Tamagawa (1958) in their
study of orthogonal groups.

The structure of orthogonal geometries is influenced to a large extent by
the arithmetic of the underlying field, particularly when the geometry has
no singular points. But if there are singular points and the dimension of
V is not 4 we can give a uniform proof of the simplicity of PΩ(V ) and we
can construct a BN -pair and the associated polar building along the lines
indicated in Chapter 9. For these reasons we generally restrict our attention
to the geometries with singular points.

Throughout this chapter a hyperbolic pair will mean a pair (e, f) of vectors
such that Q(e) = Q(f) = 0 and β(e, f) = 1.

Matrices

Suppose that F is not of characteristic 2. Let e1, e2, . . . , en be a basis for V
and let J := (β(ei, ej)) be the matrix of β. If A is the matrix of f ∈ GL(V )
with respect to this basis, then by (7.6), f ∈ O(V ) if and only if

AtJA = J.

Taking determinants, we see that (detA)2 = 1. If v is a non-singular
vector, the transformation that sends v to −v and acts as the identity on
〈 v 〉⊥ belongs to O(V ) and has determinant −1. It follows that SO(V ) is a
subgroup of index 2 in O(V ).

If the field has characteristic 2, then the elements of O(V ) preserve the
alternating form β (and act as the identity on V ⊥). Hence by Corollary 8.6
every element of O(V ) has determinant 1.

The scalar transformation a1 belongs to O(V ) if and only if a2 = 1 Thus
the group PO(V ) of collineations of P(V ) induced by O(V ) is isomorphic to

O(V )/{±1}.
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As usual, if X is the symbol for a group of transformations of V , we use PX
to denote the corresponding projective group.

Finite Fields

11.1 Lemma. If F is a finite field and a, b ∈ F×, then for all c ∈ F, there
exist x, y ∈ F such that ax2 + by2 = c.

Proof. If the characteristic of F is 2, every element of F is a square and
the result is obvious.

If q = |F| is odd, then the sets { ax2 | x ∈ F } and { c − by2 | y ∈ F } both
contain 1

2 (q+ 1) elements and hence they have an element in common.

11.2 Theorem. If F is finite and dimV ≥ 3, then V contains a singular
vector.

Proof. Suppose at first that the characteristic of F is 2 and that 0 6= u ∈ V .
By hypothesis, dimV ≥ 3 and so dim〈u 〉⊥ ≥ 2. Therefore we can choose
v ∈ 〈u 〉⊥ \ 〈u 〉 and consequently

Q(xu+ yv) = x2Q(u) + y2Q(v).

Every element of F is a square and so there exist x, y ∈ F such that xu+yv 6= 0
and Q(xu+ yv) = 0.

Next suppose that the characteristic of F is odd. Choose non-zero vectors u,
v and w such that v ∈ 〈u 〉⊥ and w ∈ 〈u, v 〉⊥. We may suppose that u, v
and w are non-singular, and then by Lemma 11.1 we can find x and y such
that x2Q(u) + y2Q(v) = −Q(w). Then Q(xu+ yv + w) = 0.

Suppose that V is an orthogonal geometry over Fq. If V contains a singular
vector u, then by Lemma 7.3 P(V ) contains a hyperbolic line L1 := 〈u, v 〉
and we have V = L1 ⊥ L⊥1 . It follows that we can write

V = L1 ⊥ L2 ⊥ . . . ⊥ Lm ⊥W, (11.3)

where L1, L2, . . . , Lm are hyperbolic lines and W does not contain any
singular vectors. Then m is the Witt index of V and by Theorem 11.2 the
dimension of W is 0, 1 or 2. By Witt’s Theorem, V is determined up to
isomorphism by m and W .

For each i we may suppose that Li := 〈 ei, fi 〉, where (ei, fi) is a hyperbolic
pair. We have Q(xei + yfi) = xy and therefore 〈 ei 〉 and 〈 fi 〉 are the only
singular points of Li.

We have several cases to consider, depending on the dimension of W .
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I. If W = 0, then dimV = 2m and we write O+(2m, q), Ω+(2m, q), etc. to
denote O(V ), Ω(V ), etc. In this case the quadratic form is

Q
( m∑
i=1

(xiei + yifi)
)

=

m∑
i=1

xiyi.

II. If W = 〈w 〉, the geometry depends on the value of Q(w) (mod F2
q), where

F2
q := { a2 | a ∈ F×q }. This is because Q(aw) = a2Q(w).

If q is even, there is just one type of geometry. If q is odd there are
two types of geometry: those for which Q(w) is a square and those for
which it is a non-square. This distinction is important when V occurs as
a subgeometry of some larger geometry but it does not affect the group of
isometries because the quadratic forms can be interchanged by multiplying
by a non-square. Thus we may unambiguously write O(2m+1, q) to denote
the group. The quadratic form is

Q
( m∑
i=1

(xiei + yifi) + zw
)

=

m∑
i=1

xiyi +Q(w)z2.

III. In this case dimW = 2 and it follows from Lemma 11.1 that it is possible
to write W = 〈 e, f 〉, where Q(e) = 1 and β(e, f) = 1.

Then Q(xe + yf) = x2 + xy + ay2, where a = Q(f). The polynomial
X2 + X + a is irreducible over Fq, otherwise W would contain singular
vectors.

Thus Fq2 = Fq[ω], where ω2 + ω + a = 0 and we identify W with Fq2
by mapping xe + yf to x − yω. The field automorphism σ of Fq2 whose
fixed field is Fq sends ω to −1 − ω, and therefore the quadratic form Q
corresponds to the norm map

N :Fq2 → Fq : a 7→ aσ(a).

This shows that up to isomorphism there is just one orthogonal geometry
of dimension 2m+2 and Witt index m. In this case we write O−(2m+2, q),
Ω−(2m+ 2, q), etc. to denote O(V ), Ω(V ), etc. The quadratic form is

Q
( m∑
i=1

(xiei + yifi) + xe+ yf
)

=

m∑
i=1

xiyi + x2 + xy + ay2.

11.4 Theorem. For ε = ±1, Oε(2, q) is a dihedral group of order 2(q−ε).

Proof. For O+(2, q) we may choose a hyperbolic pair (e, f) and use matri-

ces with respect to the basis e, f . Then

(
a b
c d

)
is in O+(2, q) if and only
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if ac = bd = 0 and ad + bc = 1. There are two possibilities: either d = a−1

and b = c = 0, or c = b−1 and a = d = 0. Thus O+(2, q) is the group{(
a 0
0 a−1

) ∣∣ a ∈ F×q
}

extended by the element

(
0 1
1 0

)
of order 2; i.e., a dihedral group of order

2(q − 1).

For O−(2, q) we may identify the orthogonal geometry with Fq2 = Fq[ω],
where ω2 +ω+ a = 0 for some a ∈ Fq and take the quadratic form to be the
norm map N :Fq2 → Fq.
The field automorphism σ whose fixed field is Fq is an element of O−(2, q).
Similarly, for all b ∈ Fq2 such that N(b) = 1, the transformation obtained by
multiplying by b is also in O−(2, q). We shall show that O−(2, q) is the cyclic
group { b ∈ Fq2 | N(b) = 1 } extended by 〈σ 〉. Since σ(b) = b−1 whenever
N(b) = 1, this is a dihedral group of order 2(q + 1).

If g ∈ O−(2, q), then b := g(1) has norm 1 and so by replacing g with b−1g we
may suppose that g(1) = 1. We must show that g ∈ 〈σ 〉. It suffices to show
that d := g(ω) is either ω or σ(ω). We have g(1+ω) = 1+d and so both d and
1 + d are elements of norm a. That is, dσ(d) = a and (1 + d)(1 + σ(d)) = a,
whence d2 + d+ a = 0. Therefore d is either ω or σ(ω), as required.

Order Formulae, I

Let V be an orthogonal geometry of dimension n and Witt index m over
Fq. Put ε = 2m − n + 1 so that ε is 1, 0 or −1 according to whether O(V )
is O+(2m, q), O(2m + 1, q) or O−(2m + 2, q), respectively. Let σεm be the
number of singular vectors in V .

11.5 Theorem. σεm = (qm−ε + 1)(qm − 1).

Proof. Suppose that P and Q are singular points such that P + Q is a
hyperbolic line. For each singular point R ∈ (P + Q)⊥ there are q singular
points on P +R other than P . Every line of P⊥ through P meets (P +Q)⊥,
and as the geometry of (P +Q)⊥ is the same type as V , it follows that there
are 1 + q(q − 1)−1σεm−1 singular points in P⊥.

If R /∈ P⊥, then P +R is a hyperbolic line and therefore has just one singular
point other than P . There are qn−2 lines through P not in P⊥ and hence
qn−2 singular points of P not in P⊥. It follows that

σεm = qσεm−1 + qn−1 − qn−2 + q − 1.
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For all ε we have σε0 = 0, and therefore

σεm = (qm−ε + 1)(qm − 1).

The number of hyperbolic pairs in V is qn−2σεm, and therefore the number
of ordered choices of m mutually orthogonal hyperbolic pairs is

q2m−1−εσεmq
2m−3−εσεm−1 · · · q1−εσε1.

From (11.3) we see that the order of O(V ) is the product of the above
expression with |O(W )|. We have O(1, q) = {±1} and |O−(2, q)| = 2(q+ 1),
therefore

|O+(2m, q)| = 2qm(m−1)(qm − 1)

m−1∏
i=1

(q2i − 1)

|O−(2m+ 2, q)| = 2qm(m+1)(qm+1 + 1)

m∏
i=1

(q2i − 1)

|O(2m+ 1, q)| =


qm

2
m∏
i=1

(q2i − 1) q even

2qm
2
m∏
i=1

(q2i − 1) q odd

As a curiosity, notice that except when q is even and n is odd,

|O(V )| = 2qb
n
2 c(b

n
2 c−1)(qb

n
2 c − ε)

bn−1
2 c∏
i=1

(q2i − 1).

Notice too that for odd q, |SO(2m+ 1, q)| = |Sp(2m, q)|. When q is even we
define SO(2m+ 1, q) to be O(2m+ 1, q). We shall see below that when q is
even the groups SO(2m + 1, q) and Sp(2m, q) are isomorphic but that this
is not the case when q is odd.

Order formulae for the finite groups Ω(V ) will be given in a later section
after we have a better hold on the structure of these groups.
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Three-Dimensional Orthogonal Groups

11.6 Theorem. If V is an orthogonal geometry of dimension 3 and Witt
index 1 over F, then O(V ) ' {±1} × SO(V ), SO(V ) ' PGL(2,F) and
SO(V ) acts triply transitively on the set of singular points of P(V ).

Proof. Let (e, f) be a hyperbolic pair in V and let w be a non-zero element
of 〈 e, f 〉⊥. By replacing Q by a scalar multiple we may suppose that Q(w) =
−1.

If g ∈ SO(V ) fixes 〈 e 〉, then g fixes 〈 e 〉⊥ = 〈 e, w 〉 and the matrix of g with
respect to the basis e, w, f is upper triangular. If g fixes 〈w 〉 as well, its
matrix has the form

H(a) :=

 a 0 0
0 1 0
0 0 a−1

 .

A straightforward calculation (Exercise 11.5) shows that every element of
SO(V )〈 e 〉 can be written as a product of a diagonal matrix H(a) and a
matrix of the form

S(b) :=

 1 2b b2

0 1 b
0 0 1

 . (11.7)

The singular points of P(V ) have the form 〈xe+ yf + zw 〉, where xy = z2.
Thus the set of singular points is

Ω := {〈 e 〉} ∪ { 〈 b2e+ bw + f 〉 | b ∈ F }.

The group S := {S(b) | b ∈ F } fixes 〈 e 〉 and acts regularly on the remaining
points of Ω. Similarly H := {H(a) | a ∈ F+ } fixes 〈 e 〉 and 〈 f 〉 and acts
regularly on the remaining points.

The linear transformation t such that t(e) = f , t(f) = e, and t(w) = −w
belongs to SO(V ) and interchanges 〈 e 〉 and 〈 f 〉. Thus SO(V ) acts triply
transitively on Ω.

We may identify Ω with the projective line F∪ {∞} (see p. 23) by assigning
〈 e 〉 to ∞ and 〈 z2e+ zw + f 〉 to z ∈ F.

The element with matrix S(b) induces the transformation z 7→ z + b, H(a)
induces z 7→ az and t induces z 7→ −z−1. These transformations generate
PGL(2,F) and therefore SO(V ) ' PGL(2,F).

11.8 Corollary. If dimV = 3 and the Witt index is 1, then Ω(V ) '
PSL(2,F), except that Ω(3, 2) ' Z3.
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With this theorem we see hints of things to come. For example, when q is
odd, SO(3, q) ' PGL(2, q) has a simple subgroup PSL(2, q) of index 2 and
when q is even, O(3, q) = SO(3, q) ' PGL(2, q) = Sp(2, q). Moreover, the
elements of SO(V ) with matrices of the form S(b) correspond to transvections
in PSL(2,F).

Degenerate Polar Forms and the Group O(2m+ 1, 2k)

Throughout this section we suppose that the map σ :x 7→ x2 is an automor-
phism of F; for example this is true when F is a finite field of characteristic 2.
Such fields are said to be perfect.

Let V be an orthogonal geometry over F defined by the quadratic form Q
whose polar form is β. Let V ⊥ be the radical of V with respect to β. For u,
v ∈ V ⊥ and a ∈ F we have Q(u + v) = Q(u) + Q(v) and Q(au) = a2Q(u).
Thus Q :V ⊥ → F is a σ-semilinear transformation onto F. We shall suppose
that β is degenerate but that Q is non-degenerate. That is, V ⊥ 6= {0} and
Q does not vanish on the non-zero vectors of V ⊥. These assumptions force
dimV ⊥ to be 1 and so we may write V ⊥ = 〈w 〉, where Q(w) = 1. See
Dieudonné (1971), §16 for information about what happens when the field is
not perfect.

For u ∈ V , let u := u + V ⊥ be the image of u in V := V/V ⊥. Then
β(u, v) := β(u, v) defines a non-degenerate alternating form on V . In partic-
ular, dimV = 2m is even and dimV = 2m+ 1.

Let S be the set of singular vectors of V together with 0. Then for all
v ∈ V , Q(v + λw) = Q(v) + λ2 and so there is a unique element of S in v.
Thus S → V : v 7→ v is a bijection. Moreover, W 7→W := { v | v ∈W } is an
isomorphism from the partially ordered set of totally singular subspaces of V
to the partially ordered set of totally isotropic subspaces of V . (See Exercise
11.6.)

Similarly, the map S → V induces a bijection between the set of polar
frames of P(V ) and the symplectic frames of P(V ) (see pp. 84 and 69). In
other words, the polar building of P(V ) is isomorphic to the polar building
of P(V ).

11.9 Theorem. O(V ) ' Sp(V ) and in particular, O(2m + 1, 2k) is iso-
morphic to Sp(2m, 2k).

Proof. For f ∈ O(V ), let f ′ be the restriction of f to S and let f be the
transformation of V defined by f(v) := f(v). Then f is well-defined and
belongs to Sp(V ). Moreover, f ′ corresponds to f via the bijection S → V .

We have f(V ⊥) = V ⊥ and therefore f(w) = λw for some λ. Applying Q
we find that λ2 = 1 and hence λ = 1. Now every element of V can be
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written uniquely in the form v + aw, where v ∈ S and we have f(v + aw) =
f ′(v) + aw. Thus f is completely determined by its restriction to S and
therefore O(V )→ Sp(V ) : f 7→ f is one-to-one.

Conversely, if we are given f ∈ Sp(V ), then for v ∈ S define f(v) to be the
unique element of S in f(v) and then for a ∈ F define

f(v + aw) := f(v) + aw.

For all u ∈ V we have f(u) = f(u), Q(f(u)) = Q(u) and f(au) = af(u). It
remains to show that f(v1 + v2) = f(v1) + f(v2) for all v1, v2 ∈ S. We have

f(v1 + v2) = f(v1) + f(v2) + λw

for some λ ∈ F. Applying Q we find that β(v1, v2) = β(f(v1), f(v2)) + λ2

and hence β(v1, v2) = β(f(v1), f(v2)) + λ2. But f preserves β and therefore
λ = 0, as required.

To complete this section we describe the elements of O(V ) that correspond
to the transvections of Sp(V ). So suppose that t ∈ O(V ) and that t is a
transvection. Then for some u ∈ V and a ∈ F we have

t(v) = v + aβ(v, u)u.

We may suppose that u ∈ S and then for all v ∈ S we have

t(v) = v + aβ(v, u)u+ λw,

where λ is chosen so that Q(t(v)) = 0. That is aβ(v, u)2 + λ2 = 0. We may
write a = b2 so that λ = bβ(v, u). Putting u′ := bu + w we find that for all
v ∈ V ,

t(v) = v + β(v, u′)u′

and Q(u′) = 1. Thus t is a transvection in O(V ). By definition a transvec-
tion of O(V ) fixes every element of a hyperplane of V and this hyperplane
contains V ⊥. Thus every transvection in O(V ) corresponds to a transvection
in Sp(V ).

Reflections

From now on let V be an orthogonal geometry over F defined by a quadratic
form Q and suppose that the polar form β of Q is non-degenerate. In this
section we determine the orthogonal transformations of V which fix every
element of some hyperplane of V . It turns out that, except when the charac-
teristic of F is 2, these transformations are never transvections. In the next
section we shall define the transformations that play the rôle of transvections
in orthogonal groups.
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11.10 Lemma. For all f ∈ O(V ) and all integers k ≥ 1,

ker(1− f)k =
(
im(1− f)k

)⊥
.

Proof. For all u, v ∈ V we have β((1 − f)u, v) = β(f(u), (f − 1)v) and
by induction β((1 − f)ku, v) = β(fk(u), (f − 1)kv). If v ∈ ker(1 − f)k,

then β((1− f)ku, v) = 0 and therefore ker(1− f)k ⊆
(
im(1− f)k

)⊥
. These

subspaces have the same dimension and consequently they coincide.

11.11 Theorem. If t ∈ O(V ) fixes every vector in a hyperplane of V ,
then t is either the identity or there is a non-singular vector v such that for
all w ∈ V ,

t(w) = w −Q(v)−1β(w, v)v.

Proof. If t ∈ GL(V ) and ker(1 − t) is a hyperplane, then we know (from
p. 20) that t has the form t(w) = w + ϕ(w)v, for some v ∈ V , ϕ ∈ V ∗. As β
is non-degenerate, the map V → V ∗ :u 7→ β(−, u) is an isomorphism and we
may suppose that ϕ := β(−, u). Then t can be written

t(w) = w + β(w, u)v (11.12)

for some u, v ∈ V . Thus ker(1−t) = 〈u 〉⊥ and im(1−t) = 〈 v 〉. If t ∈ O(V ),
then from the lemma, 〈u 〉 = 〈 v 〉, and so u = av for some a. Moreover t
preserves Q and therefore

aβ(w, v)2 + a2β(w, v)2Q(v) = 0

for all w ∈ V . Thus v is non-singular and a = −Q(v)−1. Hence

t(w) = w −Q(v)−1β(w, v)v.

We call tP := t the reflection in the hyperplane P⊥, where P := 〈 v 〉 and
we note that it depends only on P , not v.

The determinant of tP is −1 and t2P = 1. If f ∈ O(V ), then ftP f
−1 =

tf(P ). The reflection tP is a transvection if and only if β(v, v) = 0 and this is
the case if and only if the characteristic of F is 2. Thus in general orthogonal
groups do not contain transvections.

The calculations of this section show that f ∈ O(V ) is a reflection if and
only if dim(im(1− f)) = 1. More generally, we have
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11.13 Theorem. If t is the reflection in 〈 v 〉⊥ and f ∈ O(V ), then

(i) v ∈ im(1−f) implies im(1−tf) = im(1−f)∩〈u 〉⊥, where v = (1−f)u.

(ii) v /∈ im(1− f) implies im(1− tf) = im(1− f)⊕ 〈 v 〉.

Proof. (i) Suppose that v = u−f(u). Then Q(v) = β(u, v) and therefore
t(u) = u− v = f(u). Thus u ∈ ker(1− tf) and it follows from Lemma 11.10
that im(1− tf) ⊆ 〈u 〉⊥.

Writing 1− tf = (1− t)f + (1− f) we see that im(1− tf) ⊆ im(1− f). As
u /∈ ker(1− f) it follows that im(1− f) 6⊆ 〈u 〉⊥ and therefore im(1− tf) =
im(1− f) ∩ 〈u 〉⊥.

(ii) We have w ∈ ker(1− tf) if and only if t(w) = f(w) and this is the case
if and only if (1− f)w = Q(v)−1β(w, v)v. But v /∈ im(1− f) and therefore
this last condition is equivalent to w ∈ ker(1− f) ∩ 〈 v 〉⊥. Thus

ker(1− tf) = ker(1− f) ∩ 〈 v 〉⊥

and by Lemma 11.10 we have im(1− tf) = im(1− f)⊕ 〈 v 〉.

11.14 Corollary. (i) dim(im(1− tf)) = dim(im(1− f))± 1.

(ii) If f is a product of k reflections then, dim(im(1− f)) ≡ k (mod 2).

In the semidirect product V.O(V ) we have CV (f) = ker(1−f) and [V, f ] =
im(1− f). This is the notation used by Aschbacher (1986) and we shall use
it too from time to time.

Root Groups

In order to apply Iwasawa’s criterion to PΩ(V ) later in this chapter we need,
for each singular point P , an abelian normal subgroup of PΩ(V )P whose
conjugates generate PΩ(V ). In the case of the symplectic and unitary groups,
root groups of transvections played this rôle. But we have just seen that,
except in characteristic 2, the orthogonal groups do not contain transvections.
The goal of this section is to describe the root groups of O(V ). We assume
that the Witt index of V is at least 1.

Suppose at first that the characteristic of F is not 2. From the symmet-
ric form β we obtain an automorphism π̂ of GL(V ), where f⊥ := π̂(f) is
determined by (7.7), i.e.,

β(f⊥(u), f(v)) = β(u, v) (11.15)

for all u, v ∈ V . In particular, f ∈ O(V ) if and only if f = f⊥.
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The transformation t defined by equation (11.12) is a transvection when-
ever β(u, v) = 0. Using (11.15) it can be verified that

t⊥(x) = x− β(x, v)u

and therefore, for the root group

Xu,v := {x 7→ x+ aβ(x, u)v | a ∈ F } (11.16)

of SL(V ), we have π̂(Xu,v) = Xv,u. We shall examine the possibilities for
〈Xu,v, Xv,u 〉 ∩O(V ). (See Exercises 8.3 and 10.17 for the analogous results
for Sp(V ) and U(V ).)

The root group Xu,v of (11.16) is well-defined and consists of transvections
even for fields of characteristic 2, and so from now on we allow F to be an
arbitrary field. We put X̂u,v := 〈Xu,v, Xv,u 〉 ∩O(V ), where β(u, v) = 0.

I. u = v. In this case the elements of X̂u,u are transvections and therefore

X̂u,u = 1 except when the characteristic of F is 2.

II. 〈u, v 〉 is totally isotropic with respect to β.
Suppose that t1(x) := x+ aβ(x, v)u and t2(x) := x+ bβ(x, u)v. Then

t1t2(x) = t2t1(x) = x+ aβ(x, v)u+ bβ(x, u)v

and this transformation belongs to O(V ) if and only if

a2β(x, v)2Q(u) + b2β(x, u)2Q(v) + (a+ b)β(x, u)β(x, v) = 0

for all u, v ∈ V . Choosing x in 〈u 〉⊥ \ 〈u, v 〉⊥, 〈 v 〉⊥ \ 〈u, v 〉⊥, and
V \(〈u 〉⊥∪〈 v 〉⊥) in succession, we find that b2Q(v) = a2Q(u) = a+b = 0.

Thus in order that X̂u,v be non-trivial, u and v must be singular and
b = −a. That is,

X̂u,v = {x 7→ x+ aβ(x, v)u− aβ(x, u)v | a ∈ F }.

It is easily checked (Exercise 11.7) that X̂u,v depends only on the totally
singular subspace 〈u, v 〉 and not on the particular choice of basis u, v.

III. u is singular, v ∈ 〈u 〉⊥ and β(v, v) 6= 0. Note that this implies that the
characteristic of F is not 2. By Lemma 7.3 we may choose w ∈ 〈 v 〉⊥ such
that β(u,w) = 1 and Q(w) = 0. Then 〈u, v, w 〉 is non-degenerate and the
elements of Xu,v and Xv,u leave 〈u, v, w 〉 invariant and fix every vector
of 〈u, v, w 〉⊥. Moreover, with respect to the basis u, v, w, the matrices
of 〈Xu,v, Xv,u 〉 (acting on 〈u, v, w 〉) are upper triangular with 1’s on the
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diagonal. A short calculation, similar to the one leading to (11.7), shows
that the matrices have the form 1 2aQ(v) −a2Q(v)

0 1 −a
0 0 1

 .

In other words,

X̂u,v = {x 7→ x+ aβ(x, v)u− aβ(x, u)v − a2Q(v)β(x, u)u | a ∈ F }.

IV. β(u, u) 6= 0, β(v, v) 6= 0, and β(u, v) = 0. Again F cannot be of charac-

teristic 2, and in this case X̂u,v is isomorphic to O(〈u, v 〉).

The transformations given in II and III above are the appropriate general-
izations of transvections to orthogonal groups and in these cases we say that
the groups X̂u,v are root groups for O(V ).

Siegel Transformations

If u is singular and v ∈ 〈u 〉⊥, we put

ρu,v(x) := x+ β(x, v)u− β(x, u)v −Q(v)β(x, u)u (11.17)

and note that ρu,v is a well-defined element of SO(V ) for fields of all char-
acteristics. Moreover, if v is singular, we obtain the transformations of case
II whereas if v is non-singular, we obtain those of case III of the previous
section. Following Tamagawa (1958) and Higman (1978) we call ρu,v a Siegel
transformation. (In Hahn (1979) it is called an Eichler transformation.)

11.18 Theorem. If u is singular and v ∈ 〈u 〉⊥, then ρu,v is the unique
element of O(V ) whose restriction to 〈u 〉⊥ has the form x 7→ x+ β(x, v)u.

Proof. Certainly the restriction of ρu,v to 〈u 〉⊥ has this form. If f is an-
other element of O(V ) with the same restriction to 〈u 〉⊥, then f−1ρu,v fixes
every element of 〈u 〉⊥. In Theorem 11.11 we showed that such a transfor-
mation is either the identity or the reflection in 〈u 〉⊥. But u is singular and
there is no reflection in 〈u 〉⊥. Thus f−1ρu,v = 1, as required.

The following is the analogue of Theorem 4.2 for Siegel transformations.
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11.19 Theorem. If u is singular, v, v1 and v2 ∈ 〈u 〉⊥ and f ∈ O(V ),
then

(i) ρau,v = ρu,av for all a ∈ F×.

(ii) ρu,v1+v2 = ρu,v1ρu,v2 .

(iii) fρu,vf
−1 = ρf(u),f(v).

Proof. In all cases it suffices to consider the restriction to 〈u 〉⊥ where the
calculations are straightforward (and follow from Theorem 4.2).

Now let P := 〈u 〉 be a singular point of P(V ), and put

XP := { ρu,v | v ∈ 〈u 〉⊥ }.

11.20 Theorem. If P := 〈u 〉 is singular, then XP is an abelian normal
subgroup of O(V )P and isomorphic to the additive group of P⊥/P .

Proof. We use Theorem 11.19. It follows from (i) and (iii) that XP is a
normal subgroup of O(V )P . And it follows from (ii) that the map P⊥ →
XP : v 7→ ρu,v is a homomorphism onto XP . If ρu,v = 1, then for all x ∈ P⊥
we have β(x, v) = 0 and therefore v ∈ P⊥⊥ = P . Thus P⊥/P ' XP .

11.21 Lemma. The orthogonal geometry V is spanned by its non-singular
vectors, except in the case of the hyperbolic line over F2.

Proof. Suppose that u is singular. If dimV > 2, then 〈u 〉⊥ contains a
non-singular vector v. Then u = (u + v) − v, and both u + v and v are
non-singular. Thus if V is not spanned by its non-singular vectors, it is a
hyperbolic line. But a hyperbolic line has only two singular points and it is
clear that it is spanned by its non-singular vectors except when the field is
F2 (in which case there is just one non-singular vector).

11.22 Corollary. For all singular points P := 〈u 〉, the group XP is gener-
ated by the Siegel transformations ρu,v, where v is non-singular, except when
V is the orthogonal geometry of dimension 4 and Witt index 2 over F2.

It is clear from (11.17) that im(1− ρu,v) = 〈u, v 〉 and by Theorem 11.13,
if v is non-singular, then ρu,v is the product of two reflections. The next
theorem gives an explicit description of these reflections. Recall that tP
denotes the reflection in P⊥.

11.23 Theorem. If u is singular and v ∈ 〈u 〉⊥ is non-singular, then

ρu,v = t〈 v 〉t〈Q(v)u−v 〉.
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Proof. Choose w so that v = (1 − ρu,v)w. Then from (11.17) we have
β(w, u) = 1 and β(w,Q(v)u− v) = 0. From Theorem 11.13,

im(1− t〈 v 〉ρu,v) = 〈u, v 〉 ∩ 〈w 〉⊥ = 〈Q(v)u− v 〉.

Thus t〈 v 〉ρu,v = t〈Q(v)u−v 〉, as required.

11.24 Theorem. Except in the case of Ω+(4, 2), all Siegel transforma-
tions belong to Ω(V ).

Proof. If ρu,v is a Siegel transformation with v non-singular, then by the
previous theorem, ρu,v = t〈 v 〉t〈 v′ 〉, where v′ := Q(v)u− v. As Q(v′) = Q(v)
it follows from Witt’s theorem that f(v) = v′ for some f ∈ O(V ). Then
ft〈 v 〉f

−1 = t〈 v′ 〉 and so

ρu,v = t〈 v 〉ft〈 v 〉f
−1 ∈ O(V )′ = Ω(V ).

It now follows from Corollary 11.22 that, except for Ω+(4, 2), every Siegel
transformation belongs to Ω(V ).

To conclude this section we shall show that Ω+(4, 2) is indeed an excep-
tion to Theorem 11.24. So suppose that V is the orthogonal geometry of
dimension 4 and Witt index 2 over F2. We may write V = L1 ⊥ L2, where
L1 := 〈u1, v1 〉 and L2 := 〈u2, v2 〉 are hyperbolic lines. There are 6 non-
singular vectors in V , namely the non-zero elements of the subspaces

V1 := {0, u1 + v1, u1 + u2 + v2, u2 + v1 + v2}, and

V2 := {0, u2 + v2, u1 + u2 + v1, u1 + v1 + v2}

We have V = V1 ⊥ V2 and so the elements of O(V ) either interchange
V1 and V2, or fix them. From Theorem 11.4 (or directly), O(V1) ' O(V2) '
S3 and therefore O(V ) ' (S3 × S3)〈 ρ 〉, where ρ is a transformation that
interchanges V1 and V2. In fact we may take ρ to be ρu1,u2

and this shows
that ρu1,u2

/∈ Ω+(4, 2).

The reflections of O+(4, 2) are the elements of order 2 in O(V1) and O(V2)
and thus the group they generate is O(V1) × O(V2). The group Ω+(4, 2) =
O+(4, 2)′ is a subgroup of index 2 in O(V1)×O(V2) (Exercise 11.8).

The Action of PΩ(V ) on Singular Points

In this section we assume, in addition to the polar form β being non-degen-
erate, that the Witt index of V is at least 1 and the dimension of V is at
least 3.



The Action of PΩ(V ) on Singular Points 151

11.25 Lemma. The group PO(V ) acts faithfully on the set of singular
points of P(V ).

Proof. Suppose that f ∈ O(V ) fixes every singular point of P(V ). If u is
non-singular, then u ∈ L for some hyperbolic line L. As dimV ≥ 3 there is
a non-singular vector w ∈ L⊥. Then W := 〈L,w 〉 is non-degenerate and the
calculations in the proof of Theorem 11.6 show that f fixes every point of
P(W ). Thus f fixes every point of P(V ) and so f = ±1. This proves that
PO(V ) := O(V )/{±1} acts faithfully on the set of singular points.

11.26 Lemma. For each singular point P , the group XP acts regularly
on the set of singular points not orthogonal to P .

Proof. Suppose that P := 〈u 〉, and that Q := 〈 v 〉 and R := 〈w 〉 are
singular points not orthogonal to P . We may choose v and w so that β(u, v) =
β(u,w) = 1. Now V = (P + Q) ⊥ (P + Q)⊥ and writing w = au + bv + x
for some x ∈ (P + Q)⊥ we see that b = 1 and a = −Q(x). Thus w =
−Q(x)u+ v + x and ρu,−x(v) = w.

If for some y ∈ P⊥, ρu,y(Q) = Q, then from (11.17) we see that y ∈ P +Q.
In fact y ∈ P , otherwise we would have v ∈ P⊥, contrary to our assumption.
Thus ρu,y = 1.

Eventually we shall prove that, except for Ω+(4, 2), Ω(V ) is generated by
the Siegel transformations. But for the moment we don’t assume this.

11.27 Lemma. For all orthogonal geometries V of dimension at least 3
the subgroup of O(V ) generated by the Siegel transformations is transitive
on the singular points of P(V ).

Proof. Given singular points P := 〈u 〉 and Q := 〈 v) we shall produce a
Siegel transformation that takes P to Q.

If β(u, v) = 0, choose a singular vector w such that β(u,w) = β(v, w) = 1.
(By Lemma 7.5 there are vectors u′ and v′ such that (u, u′) and (v, v′) are
orthogonal hyperbolic pairs. Put w := u′+ v′.) Now use the previous lemma
to obtain an element of X〈w 〉 that takes P to Q.

If β(u, v) 6= 0, then P + Q is a hyperbolic line and we may suppose that
β(u, v) = 1. Taking our cue from the previous lemma, let w be a non-
singular vector in (P + Q)⊥ (which is non-zero because dimV ≥ 3) and let
x := u−Q(w)v + w. Then x is singular, β(u, x) = −Q(w), and β(v, x) = 1.
By the previous lemma there is an element of X〈 x 〉 that takes P to Q.

11.28 Theorem. If the Witt index is 1 and dimV ≥ 3, then PΩ(V ) acts
doubly transitively on the singular points of P(V ).
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Proof. By Theorem 11.24, PΩ(V ) contains all the Siegel transformations
and so the result follows from the lemmas just proved.

In an earlier section we showed that when dimV = 3 and the Witt index
is 1, then Ω(V ) ' PSL(2,F), and so this corollary should come as no surprise.
The exceptional case of Ω(3, 2) does not arise here because we have excluded
odd dimensional geometries over fields of characteristic 2.

11.29 Lemma. Suppose the dimension of V is at least 5 and the Witt
index of V is at least 2. Then for all singular points P , Q and R such that
Q, R ∈ P⊥ \ {P} there is a product of Siegel transformations which fixes P
and takes Q to R.

Proof. (We follow Higman (1978), p. 50.) If Q is not orthogonal to R, then
Q+R is a hyperbolic line and P ∈ (Q+R)⊥. Let L be a hyperbolic line of
(Q+R)⊥ that contains P . Then Q+R ⊆ L⊥ and dimL⊥ ≥ 3, therefore by
Lemma 11.27 the group generated by the Siegel transformations of L⊥ acts
transitively on the singular points of P(L⊥). A Siegel transformation of L⊥

extends to a Siegel transformation of V which fixes L pointwise, and hence
there is a product of Siegel transformations in Ω(V )P which takes Q to R.

If Q is orthogonal to R, then by Lemma 7.5 there is a singular point S ∈ P⊥
not orthogonal to Q or to R. Now we can use Siegel transformations in
Ω(V )P to move Q to S, and then S to R.

11.30 Theorem. If the Witt index of V is at least 2 and the dimension
of V is at least 5, then PΩ(V ) is a primitive rank 3 group on the singular
points of P(V ).

Proof. Lemmas 11.26, 11.27 and 11.29 show that PΩ(V ) is a rank 3 group
on the singular points. To show that it is primitive we repeat the argument
of Theorem 8.3:

Suppose that B is a block of imprimitivity such that |B| > 1 and choose
P ∈ B. If B ∩ P⊥ contains a point other than P , then by the theorem
P⊥ ⊆ B. In this case, if R is a singular point not in P⊥, choose a singular
point Q ∈ (P + R)⊥. Then Q ∈ B and R ∈ Q⊥, hence R ∈ B. Thus B
consists of all the singular points.

Now suppose that B contains a singular point not in P⊥. Then by Lemma
11.26, B contains all the singular points not in P⊥. Suppose that R is a
singular point of P⊥, R 6= P and (using Lemma 7.5) choose a singular point
Q /∈ P⊥∪R⊥. Then Q ∈ B, and since R /∈ Q⊥, it follows that R ∈ B. Again
B consists of all the singular points of P(V ), and this proves that PΩ(V ) is
primitive.
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Wall’s Parametrization of O(V )

Ultimately we shall show that every orthogonal group except O+(4, 2) is
generated by its reflections. This is a relatively straightforward matter except
for fields of characteristic 2, particularly F2. But it turns out that there is a
uniform approach to this question using a description of the elements of O(V )
due to G. E. Wall (1959 and 1963). Using this method, for each f ∈ O(V ),
we can completely determine the shortest length of any expression for f as
a product of reflections. In fact this parametrization of O(V ) is interesting
in its own right and later we shall use it to obtain a particularly elegant
criterion to determine which elements of O(V ) belong to Ω(V ).

From now on, for f ∈ O(V ), we use [V, f ] to denote im(1− f). As usual
we assume that the orthogonal geometry is defined by a quadratic form Q
with non-degenerate polar form β. We make no assumptions about the Witt
index at this stage.

For f ∈ O(V ) and u, v ∈ [V, f ] we define the Wall form of f to be

χf (u, v) := β(w, v), (11.31)

where w is some vector such that u = w − f(w).

11.32 Theorem. χf is a well-defined non-degenerate bilinear form on
[V, f ] such that χf (u, u) = Q(u) for all u ∈ [V, f ].

Proof. If u = w − f(w) = w′ − f(w′), then w − w′ ∈ ker(1− f) = [V, f ]⊥

(from Lemma 11.10). Thus for v ∈ [V, f ], β(w, v) = β(w′, v) and therefore
χf (u, v) is well-defined.

If χf (u, v) = 0 for all u ∈ [V, f ], then β(w, v) = 0 for all w ∈ V , and so v = 0.
Thus χf is non-degenerate. On putting f ′ := 1− f , the equation Q(f(w)) =
Q(w) becomes Q(f ′(w)) = β(w, f ′(w)) and therefore χf (u, u) = Q(u) for all
u ∈ [V, f ].

Note that χf is not necessarily a reflexive form.

11.33 Theorem. The assignment f 7→ ([V, f ], χf ) is a one-to-one corre-
spondence between O(V ) and the set of pairs (I, χ), where I is a subspace
of V and χ is a non-degenerate bilinear form on I such that χ(u, u) = Q(u)
for all u ∈ I.

Proof. Suppose that [V, f ] = [V, g] and χf = χg. Then for w ∈ V and
v ∈ [V, f ], (11.31) implies χf ((1− f)w, v) = β(w, v) = χg((1− g)w, v). Since
χf = χg is non-degenerate, (1 − f)w = (1 − g)w for all w ∈ V , and hence
f = g.
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Conversely, suppose that I is a subspace of V and that χ is a non-degenerate
bilinear form on I such that χ(u, u) = Q(u) for all u ∈ I. As χ is non-
degenerate there is a unique linear transformation f ′ :V → V such that

χ(f ′(u), v) = β(u, v)

for all u ∈ V and v ∈ I. Putting f := 1 − f ′ we find that, for all u ∈ V ,
Q(f(u)) = Q(u), and therefore f ∈ O(V ). From the definition of f ′, f ′(u) =
0 if and only if β(u, v) = 0 for all v ∈ I. Thus I = (ker f ′)⊥ = [V, f ] and
χf = χ.

The bijection f ↔ ([V, f ], χf ) is Wall’s parametrization of O(V ). There
are similar parametrizations of the symplectic and unitary groups. (See Wall
(1963) for applications.)

11.34 Lemma. For all f , g ∈ O(V ) and all u, v ∈ [V, f ]

(i) β(u, v) = χf (u, v) + χf (v, u).

(ii) χf (f(u), v) = −χf (v, u).

(iii) [V, f ] = [V, f−1] and χf−1(u, v) = χf (v, u).

(iv) [V, gfg−1] = g([V, f ]) and χgfg−1(g(u), g(v)) = χf (u, v).

Proof. (i) is obtained from the equation Q(u) = χf (u, u) by replacing u
by u+ v and (ii) follows from (i) and the definition of χf . In (iii) it is clear
that [V, f ] = [V, f−1] and then the rest of (iii) as well as (iv) follows directly
from (11.31).

Because χf is not necessarily reflexive we must be more careful than usual
when dealing with orthogonal complements. We continue to use X⊥ to de-
note the orthogonal complement ofX with respect to β and ifW is a subspace
of [V, f ] we define its left and right orthogonal complements (with respect to
the form χf ) to be

/W := { v ∈ [V, f ] | χf (v, w) = 0 for all w ∈W }, and

W . := { v ∈ [V, f ] | χf (w, v) = 0 for all w ∈W },

respectively.

11.35 Lemma. (i) /(W .) = W = (/W )..

(ii) dim /W = dimW . = dim[V, f ]− dimW .

(iii) /W = f(W ). = f(W .).

(iv) If f(W ) = W , then /W = W . = W⊥ ∩ [V, f ].

Proof. (i) and (ii) are immediate consequences of the non-degeneracy of
χf . Parts (ii) and (i) of Lemma 11.34 imply (iii) and (iv) respectively.



Factorization Theorems 155

Factorization Theorems

We shall use Wall’s parametrization to obtain factorizations of the elements
of O(V ). It is always the case that [V, f1f2] ⊆ [V, f1]+[V, f2] but the following
theorems show that under certain circumstances much more can be said.

11.36 Theorem. For f ∈ O(V ), suppose that the restriction χ1 of χf to
a subspace I1 of [V, f ] is non-degenerate, and let χ2 be the restriction of χf
to I2 := I.1 . If f1 and f2 are the elements of O(V ) corresponding to (I1, χ1)
and (I2, χ2), then

(i) [V, f ] = I1 ⊕ I2,

(ii) f = f1f2, and

(iii) f1f2 = f2f1 if and only if [V, f ] = I1 ⊥ I2. In this case f1 coincides
with f on I⊥2 , and f2 coincides with f on I⊥1 .

Proof. (i) The form χf is non-degenerate, and therefore [V, f ] = I1 ⊕ I.1 .

(ii) If u1 ∈ I1 u2 ∈ I2, then χf (u1, u2) = 0 and from Lemma 11.34 (i),
χf (u2, u1) = β(u2, u1). From (11.31) we have χf ((1 − f1)w, u1) = β(w, u1)
and χf ((1− f2)w, u2) = β(w, u2). Writing 1− f1f2 as (1− f1)f2 + (1− f2)
we see that

χf ((1− f1f2)w, u1 + u2) = β(f2(w), u1) + β((1− f2)w, u1) + β(w, u2)

= β(w, u1 + u2)

= χf ((1− f)w, u1 + u2)

This holds for all u1 ∈ I1, u2 ∈ I2, and therefore f = f1f2.

(iii) If f1f2 = f2f1, then from Lemma 11.34 (iv) f fixes I1. Consequently
/I1 = I.1 and [V, f ] = I1 ⊥ I2. Conversely, if I = I1 ⊥ I2, then reversing
the rôles of f1 and f2 in (ii) leads to the conclusion f = f2f1. Finally, if
x ∈ I⊥2 , then f2(x) = x and therefore f(x) = f1(x). Similarly, if x ∈ I⊥1 ,
then f(x) = f2(x).

It follows from Lemma 11.10 that the restriction of 1 − f to [V, f ] is
invertible if and only if [V, f ] is non-degenerate (with respect to β). In this
case we say that f is regular ; and we define f to be unipotent if 1 − f is
nilpotent; i.e., if (1− f)k = 0 for some k.

For example, the Siegel transformation ρu,v satisfies (1 − ρu,v)3 = 0 and
therefore it is unipotent. (If the characteristic is 2, then (1− ρu,v)2 = 0.)
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11.37 Theorem. Every f ∈ O(V ) has a factorization of the form f =
frfu = fufr, where fr is regular and fu is unipotent. Moreover, [V, f ] =
[V, fr] + [V, fu] and g ∈ O(V ) commutes with f if and only if it commutes
with fr and fu.

Proof. The chain of subspaces im(1 − f) ⊇ im(1 − f)2 ⊇ . . . cannot
decrease indefinitely and therefore there exists k such that im(1 − f)k =
im(1 − f)k+1. We put Ir := im(1 − f)k and we note that by Lemma 11.10
I⊥r = ker(1− f)k.

If v ∈ Ir ∩ I⊥r , then v = (1 − f)kw for some w ∈ V and so (1 − f)2kw = 0.
Thus w ∈ ker(1 − f)2k = ker(1 − f)k, whence v = 0. This shows that
Ir ∩ I⊥r = {0} and therefore V = Ir ⊥ I⊥r .

Put Iu := [V, f ] ∩ I⊥r and observe that, as f fixes Ir, Lemma 11.35 implies
Iu = I.r . It follows from the previous theorem that f = frfu = fufr, where
[V, fr] = Ir, [V, fu] = Iu and χfr and χfu are restrictions of χf . By the
theorem, fu coincides with f on I⊥r = ker(1−f)k and as Ir ⊆ I⊥u = ker(1−fu)
it follows that fu is nilpotent.

Finally, if g commutes with f , then g fixes Ir and Iu and by Lemma 11.34 (iv)
χf (g(u), g(v)) = χf (u, v). But χfr and χfu are obtained by restricting χf
and thus another application of Lemma 11.34 shows that g commutes with
fr and fu.

We call fr and fu the regular and unipotent parts of f . But note that it is
possible to have f = f1f2 = f2f1 with f1 regular, f2 unipotent, and f1 6= fr
(cf. Exercise 11.9).

The Generation of O(V ) by Reflections

Cartan showed that when V is an orthogonal geometry of dimension n over
the real or complex field, every element of O(V ) is a product of at most n
reflections. This was subsequently proved by Dieudonné (1948) for arbitrary
fields of characteristic 6= 2. Then Scherk (1950) for fields of characteristic 6= 2,
and Dieudonné (1955) for fields of characteristic 2, proved that with certain
exceptions every element f ∈ O(V ) is a product of dim[V, f ] reflections.
An error in the paper of Dieudonné (1955) led to several exceptions being
overlooked. This was pointed out, and the error corrected, by Callan (1976).

We shall obtain these results using Theorem 11.13 and Wall’s parametriza-
tion of O(V ).

First observe that if u1, u2, . . . , uh are non-singular vectors of V and
if f := t〈u1 〉t〈u2 〉 · · · t〈uh 〉, where t〈ui 〉 is the reflection in 〈ui 〉⊥, then by
Theorem 11.13, dim[V, f ] ≤ h. Moreover, if equality holds, then u1, u2,
. . . , uh is a basis for [V, f ]. Therefore, if f ∈ O(V ) and r := dim[V, f ], it is
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not possible to write f as a product of fewer than r reflections. If [V, f ] is
totally singular, even r reflections will not suffice.

11.38 Lemma. Suppose that χ is a non-degenerate bilinear form on a
finite-dimensional vector space W over F. If F 6= F2 and if χ is not alter-
nating, then W has a basis e1, e2, . . . , em such that χ(ei, ei) 6= 0 for i = 1, 2,
. . . , m and χ(ei, ej) = 0 for i < j.

Proof. Since χ is not alternating, there is a vector u ∈ W such that
χ(u, u) 6= 0. Thus the result is true when dimW = 1, and henceforth we may
suppose that dimW ≥ 2. In this case W = 〈u 〉 ⊕ 〈u 〉. and the restriction
of χ to 〈u 〉. is non-degenerate.

By induction we may suppose that χ restricts to an alternating form on
〈u 〉.. This forces dim〈u 〉. to be even. Choose a non-zero vector v ∈ 〈u 〉.
and consider χ(u+ av, u+ av) = χ(u, u) + aχ(v, u). This cannot be 0 for all
choices of a 6= 0, otherwise χ(u, u) would be 0. (It is here that we use the
assumption that F 6= F2.) Thus we may suppose v has been chosen so that
c := χ(u + v, u + v) 6= 0. Now choose w ∈ 〈u 〉. so that χ(v, w) = 1. Then
for all b, χ(u+ v, u+ bv − cw) = 0 and

χ(u+ bv − cw, u+ bv − cw) = χ(u, u) + bχ(v, u)− cχ(w, u).

If for some b this quantity does not vanish, the restriction of χ to 〈u+ v 〉. is
non-degenerate and not alternating. Thus we may set e1 := u+v and obtain
a basis of the desired form by induction.

If the above quantity vanishes for all b, then χ(v, u) = 0 and χ(w, u) = 1. We
repeat the argument of the previous paragraphs with w in place of v. That is,
replacing w by a suitable multiple we may suppose that c′ := χ(u+w, u+w) 6=
0. Next we choose w′ ∈ 〈u 〉. so that χ(w,w′) = 1. Since χ(w, u) 6= 0,
the previous argument shows that the restriction of χ to 〈u + w 〉. is non-
degenerate and not alternating. We put e1 := u+w and once again we obtain
a suitable basis by induction.

11.39 Theorem. Suppose that V is an orthogonal geometry over a field
F, where F 6= F2. Then every element f ∈ O(V ) is a product of dim[V, f ]
reflections except when [V, f ] is totally singular in which case f is a product
of dim[V, f ] + 2 reflections. In particular, f is a product of at most dimV
reflections.

Proof. Let χ be the Wall form of f . If [V, f ] is not totally singular, then
by Theorem 11.33, χ is not alternating and by Lemma 11.38 [V, f ] has a basis
e1, e2, . . . , er of non-singular vectors such that χ(ei, ej) = 0 for i < j. By
Theorem 11.36 we have f = t1t2 · · · tr, where [V, ti] = 〈 ei 〉. Thus for all i, ti
is the reflection in 〈 ei 〉⊥.



158 11. Orthogonal Groups

If [V, f ] is totally singular and u is any non-singular vector not in [V, f ],
then by Theorem 11.13 (ii), [V, t〈u 〉f ] = [V, f ] ⊕ 〈u 〉. But now [V, t〈u 〉f ]
is not totally singular and by the previous paragraph, t〈u 〉f is a product of
dim[V, f ]+1 reflections. Thus f is a product of dim[V, f ]+2 reflections.

In order to deal with orthogonal groups over F2 we first prove a somewhat
weaker version of Lemma 11.38.

11.40 Lemma. Suppose that W is a vector space over F2 and that χ
is a non-degenerate symmetric bilinear form on W . If there is a vector
w ∈ W such that χ(w,w) = 1 and such that the restriction of χ to 〈w 〉. is
alternating, then W has a basis e1, e2, . . . , em such that χ(ei, ej) = 0 for
i < j and χ(ei, ei) = 1 for all i.

Proof. Choose a symplectic basis u1, v1, u2, v2, . . . , uk, vk for 〈w 〉⊥, then
set e1 := w + u1 and e2 := w + u1 + v1. Then χ(e1, e1) = χ(e2, e2) = 1 and
χ(e1, e2) = 0. The subspace

〈 e1, e2 〉⊥ = 〈w + v1, u2, v2, . . . , uk, vk 〉

satisfies the same conditions as W and so the result follows by induction.

11.41 Theorem. Suppose that V is an orthogonal geometry over F2 and
for f ∈ O(V ) let r := dim[V, f ].

(i) If O(V ) 6= O+(4, 2), then f is a product of r, r+ 2 or r+ 4 reflections.
Moreover, f is a product of r+ 4 reflections (and no fewer) if and only
if [V, f ] is totally singular and dimV = 2r.

(ii) If O(V ) = O+(4, 2) and if f is a product of reflections, then f is a
product of r reflections.

Proof. (i) We first show that f is a product of r, r+2 or r+4 reflections.
If u ∈ [V, f ] is non-singular, then by Theorem 11.13 (i), dim[V, t〈u 〉f ] = r−1.
Thus, by induction on r, we may assume that U := [V, f ] is totally singular.
In this case the Wall form χ of f is alternating and by Lemma 7.5 we may
write V = U⊥ ⊕ U ′, where U ′ is totally singular.

Suppose at first that dimV > 2r and choose w ∈ (U ⊕ U ′)⊥ such that
Q(w) = 1. Then [V, t〈w 〉f ] = U ⊥ 〈w 〉 and by Theorem 11.36 (ii) the Wall
form χ′ of t〈w 〉f restricts to χ on U . Thus χ′ satisfies the conditions of
Lemma 11.40. It follows that U ⊥ 〈w 〉 has a basis e1, e2, . . . , er+1 of non-
singular vectors such that χ′(ei, ej) = 0 for i 6= j. By Theorem 11.36 we
have t〈w 〉f = t〈 e1 〉 · · · t〈 er+1 〉 and so f is a product of r + 2 reflections.
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Now suppose that dimV = 2r. By assumption r 6= 2 and, since the alter-
nating form χ is non-degenerate, r must be even. If L ⊆ U is a hyperbolic
line for χ, then U = L⊕L. and by Theorem 11.36 we have f = f1f2, where
[V, f1] = L and [V, f2] = L.. It follows from the previous paragraph that f1

is the product of 4 reflections and f2 is the product of r reflections. Thus
f is the product of r + 4 reflections and this completes the proof that every
element of O(V ) is a product of r, r+2 or r+4 reflections. At the same time
we have shown that, except when [V, f ] is totally singular and dimV = 2r,
f is the product of r or r + 2 reflections.

We still must show that when [V, f ] is totally singular and dimV = 2r,
f is not the product of fewer than r + 4 reflections. If f = t〈w 〉f

′, then
w /∈ [V, f ] and by Theorem 11.13, [V, f ′] = [V, f ] ⊕ 〈w 〉. As before we may
write V = U ⊕ U ′, where U := [V, f ] and U ′ is totally singular. Write
w = u1 + u′1, where u1 ∈ U and u′1 ∈ U ′, and put v1 := (1 − f)u′1. Then
χ(v1, u1) = β(u′1, u1) = 1 and therefore L := 〈u1, v1 〉 is a hyperbolic line with
respect to χ. Let L′ be the orthogonal complement of L in U with respect to
χ. Then for v′ ∈ L′, β(u′1, v

′) = χ(v1, v
′) = 0 and β(u′1, v1) = β(v1, v1) = 0.

Consequently

Q(aw + bu1 + cv1 + v′) = a+ ab,

and therefore the non-singular elements of U ⊕ 〈w 〉 are all of the form w +
cv1 + v′. The subspace generated by the non-singular elements of U ⊕〈w 〉 is
therefore 〈w, v1 〉⊕L′ 6= U ⊕〈w 〉. On the other hand, if f ′ were the product
of r + 1 reflections t〈 e1 〉 · · · t〈 er+1 〉, then e1, e2, . . . , er+1 would generate
U ⊕ 〈w 〉. This contradiction combined with Corollary 11.14 shows that f
cannot be written as the product of fewer than r + 4 reflections.

(ii) Suppose that f ∈ O+(4, 2) and that U := [V, f ] is totally singular.
Then dimU = 2 and there is a unique non-degenerate alternating form on
U . That is, there is only one possibility for the Wall form of f and therefore
f is uniquely determined by U . Thus f is a Siegel transformation ρu1,u2

,
where 〈u1, u2 〉 = U and we have seen in the last part of the section ‘Siegel
Transformations’ that these elements are not in the subgroup R generated
by reflections. Therefore, if f ∈ R, then [V, f ] is not totally singular and it
follows as in the first part of (i) that f is a product of r reflections.

If [V, f ] is totally singular, then this theorem shows that f is a product of
no fewer than [V, f ] + 2 reflections. Examples show (Exercise 11.11) that the
converse is not true.

11.42 Corollary. Every orthogonal group except O+(4, 2) is generated by
reflections.
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Dickson’s Invariant

For f ∈ O(V ) define the Dickson invariant of f to be

D(f) := dim[V, f ] (mod 2)

and regard D(f) as an element of the (additive) group Z2 of order 2. The
following theorem can be found in Dye (1977).

11.43 Theorem. The map D :O(V )→ Z2 is a homomorphism.

Proof. If O(V ) 6= O+(4, 2), then O(V ) is generated by its reflections. If
t1, t2, . . . , ts are reflections, then from Corollary 11.14 (ii), D(t1t2 · · · ds) ≡ s
(mod 2). In particular, D is a homomorphism.

We may regard O+(4, 2) as a subgroup of O+(4, 4) and then D :O+(4, 2)→
Z2 is the restriction of D :O+(4, 4)→ Z2, which we have just shown to be a
homomorphism.

If the characteristic of F is not 2 and t is a reflection, then det(t) = −1
and D(t) = 1. Hence for all f ∈ O(V ), D(f) = 0 if and only if det(f) = 1.
Therefore SO(V ) = kerD in this case.

If the characteristic of F is 2, we define SO(V ) to be kerD. Thus whenever
the polar form of the orthogonal geometry is non-degenerate it is the case
that |O(V ) : SO(V )| = 2.

11.44 Theorem. If O(V ) 6= O+(4, 2), then f ∈ O(V ) belongs to SO(V )
if and only if it is a product of an even number of reflections.

The Simplicity of PΩ(V )

We continue to assume that V is an orthogonal geometry defined by a
quadratic form whose polar form is non-degenerate, and that the Witt index
of V is at least 1. We shall use Iwasawa’s criterion to prove that in this case
most of the groups PΩ(V ) are simple. In order to do this we need to show
that Ω(V ) is generated by Siegel transformations and that Ω(V )′ = Ω(V ).

11.45 Theorem. If dimV ≥ 3 and O(V ) 6= O+(4, 2), then Ω(V ) =
SO(V )′ and Ω(V ) is generated by the commutators [t1, t2], where t1 and
t2 are reflections.

Proof. If H is the subgroup of O(V ) generated by all [t1, t2] = (t1t2)2,
where t1 and t2 are reflections, then H ⊆ Ω(V ) := O(V )′ and O(V )/H is
abelian. Thus Ω(V ) ⊆ H; whence H = Ω(V ).
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Suppose that u and v are non-singular. If U = 〈u, v 〉 and w ∈ U⊥ is non-
singular, then t〈w 〉 commutes with t〈u 〉 and t〈 v 〉. Hence

[t〈u 〉, t〈 v 〉] = [t〈u 〉t〈w 〉, t〈 v 〉t〈w 〉] ∈ SO(V )′.

If U⊥ is totally singular, then U⊥ ⊆ U . Since U contains non-singular
vectors we cannot have U⊥ = U and so dimV = 3 and the Witt index
of V is 1. It follows from Theorem 11.6 that [t〈u 〉, t〈 v 〉] ∈ SO(V )′. Since
O(V ) is generated by reflections, Ω(V ) ⊆ SO(V )′. On the other hand,
SO(V )′ ⊆ O(V )′ = Ω(V ) and therefore Ω(V ) = SO(V )′.

11.46 Theorem. If dimV ≥ 3, the Witt index of V is at least 1, and
Ω(V ) 6= Ω+(4, 2), then Ω(V ) is generated by the Siegel transformations of V .

Proof. If H is the subgroup of O(V ) generated by the Siegel transforma-
tions, then from Theorem 11.24, H ⊆ Ω(V ).

Let L be a hyperbolic line. If u ∈ V is non-singular, then there exists u′ ∈ L
such that Q(u′) = Q(u) and hence there exists f ∈ O(V ) such that f(u′) = u.
By Lemmas 11.26 and 11.27, there exists g ∈ H such that f(L) = g(L) and
therefore t〈u 〉 = gt〈w 〉g

−1, where w := g−1(u) ∈ L. As H is a normal
subgroup of O(V ) it follows that

t〈u 〉 = t〈w 〉[t〈w 〉, g] ∈ O(L)H,

where we regard O(L) as a subgroup of O(V ) (acting trivially on L⊥). Now
O(V ) is generated by reflections and therefore O(V ) = O(L)H. Moreover,
H ⊆ SO(V ) and hence SO(V ) = SO(L)H. Therefore

SO(V )/H ' SO(L)/H ∩ SO(L),

and as SO(L) is abelian (Exercise 11.2), Ω(V ) = SO(V )′ ⊆ H. It follows
that Ω(V ) = H.

11.47 Theorem. If dimV ≥ 3 and V contains singular vectors, then
Ω(V )′ = Ω(V ) except for Ω(3, 3), Ω+(4, 2) and Ω+(4, 3).

Proof. We shall show that, except in the excluded cases, every Siegel
transformation ρu,v belongs to Ω(V )′, for all singular points 〈u 〉 and all
v ∈ 〈u 〉⊥ \ 〈u 〉. So suppose that Ω(V ) is not Ω(3, 3), Ω+(4, 2) or Ω+(4, 3)
and let (u,w) be a hyperbolic pair in 〈 v 〉⊥ through u. Put L := 〈u,w 〉.
For a ∈ F× there exists g ∈ O(L) such that g(u) = au and g(w) = a−1w.
Extend g to V by making it act as the identity on L⊥. By Theorem 11.45,
g2 ∈ Ω(V ). If |F| > 3, we may choose a so that a2 6= 1, and then (by
Theorem 11.19)

ρu,v = [g2, ρu,(a2−1)−1v] ∈ Ω(V )′.
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Thus Ω(V ) = Ω(V )′ except possibly when F is F2 or F3. Corollary 11.22
shows that to prove Ω(V ) = Ω(V )′ it suffices to show that ρu,v ∈ Ω(V )′

whenever v is non-singular. Thus from now on we suppose that Q(v) 6= 0.

Suppose that F = F2. By Lemma 11.21 not every non-singular vector of L⊥

belongs to 〈 v 〉⊥ and therefore there exists x ∈ L⊥ such that 〈x, v 〉 has Witt
index 0. Define g ∈ O(V ) by putting g(x) := x+ v, g(v) := x, and g(z) := z
for all z ∈ 〈x, v 〉⊥. Then g3 = 1, and so (by Theorem 11.45) g ∈ Ω(V ). It
follows that

ρu,v = [g, ρu,x] ∈ Ω(V )′.

Suppose that F = F3. We shall show that there exists x ∈ L⊥ ∩ 〈 v 〉⊥ such
that Q(x) = Q(v). If dimV = 4, then L⊥ = 〈 v 〉 ⊥ 〈x 〉 for some x. In
this case, Q(x) = Q(v), otherwise Q(x) = −Q(v) and then x + v would be
singular, contrary to assumption. If dimV > 4, we may write L⊥ = 〈 v 〉 ⊥
〈x 〉 ⊥ 〈 y 〉 ⊥ L1. If Q(x) = Q(y) = −Q(v), then Q(x + y) = Q(v), and so
we can always choose the notation so that Q(x) = Q(v).

Now choose g ∈ O(V ) so that g(u) = u, g(x) = −v, and g(v) = x. Then
g2 ∈ Ω(V ) and

ρu,v = [g2, ρu,v] ∈ Ω(V )′.

In all cases, Ω(V ) = Ω(V )′.

11.48 Theorem. Let V be an orthogonal geometry defined by a quadratic
form of Witt index at least 1 whose polar form is non-degenerate. If dimV ≥
3, then PΩ(V ) is a simple group except for PΩ(3, 3), and except when
dimV = 4 and the Witt index is 2.

Proof. By Theorem 11.20, for each singular point P , the group XP of
Siegel transformations fixing P is an abelian normal subgroup of Ω(V )P .
Moreover, by Theorem 11.46, the groups XP generate Ω(V ). By Theo-
rems 11.28 and 11.30 the action of Ω(V ) on the singular points of P(V ) is
primitive and, by Theorem 11.47, Ω(V ) = Ω(V )′. The simplicity of PΩ(V )
now follows from Iwasawa’s criterion (Theorem 1.2).

It is a consequence of Theorem 11.6 that PΩ(3, q) ' PSL(2, q). In par-
ticular, PΩ(3, 3) ' A4, which is not simple. When dimV = 4 and the Witt
index is 2, it turns out that the action of PΩ(V ) on the singular points of
P(V ) is imprimitive; thus Iwasawa’s criterion does not apply in this case.
On the other hand, the action of O(V ) on the singular points is primitive
(Exercise 11.15). We shall see later that the groups PΩ+(4,F) are not simple.
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The Spinor Norm

Even though we now know that PΩ(V ) is simple when V contains singular
vectors and the dimension of V is large enough, we have not yet determined
the index of Ω(V ) in O(V ), nor do we know when −1 belongs to Ω(V ).
The usual approach to these questions is via Clifford algebras and the spinor
norm: see, for example, Artin (1957), Aschbacher (1986), Dieudonné (1971),
or Higman (1978). We shall use the spinor norm, but instead of Clifford
algebras we use Wall’s parametrization of O(V ). For further details and the
connection between this approach and Clifford algebras see the articles by
‘Lipschitz’ (1959), Zassenhaus (1962) and Hahn (1979).

We begin by reviewing the definition of the discriminant of a bilinear form.
If χ is a bilinear form defined on a vector space W with basis e1, e2, . . . , em,
then χ is non-degenerate if and only if the determinant of X :=

(
χ(ei, ej)

)
is non-zero. Suppose that χ is non-degenerate. If e′1, e′2, . . . , e′m is another
basis of W , then e′j =

∑m
i=1 aijei for some non-singular matrix A :=

(
aij
)
,

and if X ′ :=
(
χ(e′i, e

′
j)
)
, then X ′ = AtXA. Thus detX ′ = (detA)2 detX,

and

disc(χ) := (detX)F2

is a well-defined element of F×/F2, where F2 := { a2 | a ∈ F× }. We call
disc(χ) the discriminant of χ.

Now suppose that V is an orthogonal geometry defined by a quadratic
form Q whose polar form β is non-degenerate. For f ∈ O(V ), the Wall form
χf is a non-degenerate bilinear form on [V, f ] and we define the spinor norm
of f to be

θ(f) := disc(χf ).

The spinor norm of a reflection is easy to calculate. Indeed, if u is non-
singular and if t is the reflection in 〈u 〉⊥, then [V, t] = 〈u 〉 and, from Theo-
rem 11.32, θ(t) = Q(u)F2.

Next, consider the Siegel transformation ρu,v. Then [V, ρu,v] = 〈u, v 〉 and
from Theorem 11.32 χρu,v

(u, u) = 0. Thus from Lemma 11.34 (i) and the
fact that β(u, v) = 0, the discriminant of χρu,v

is χρu,v
(u, v)2F2. Therefore

θ(ρu,v) = F2.

We have noted before that non-zero scalar multiples of Q define the same
orthogonal group O(V ). On the other hand, the spinor norm depends on Q
and we have

11.49 Lemma. If θ′ is the spinor norm corresponding to Q′ := aQ, then
for all f ∈ O(V ),

θ′(f) = aD(f)θ(f),
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where D(f) is the Dickson invariant of f .

Proof. This is immediate from the definition of the spinor norm.

It follows from this lemma that the restriction of the spinor norm to SO(V )
depends only on SO(V ) and not on Q.

11.50 Theorem. The spinor norm θ :O(V ) → F×/F2 is a homomor-
phism.

Proof. Let t be the reflection in 〈u 〉⊥ and let f be an element of O(V ). If
u ∈ [V, f ], then by Theorem 11.36 f = tf ′, where [V, f ′] = 〈u 〉. and the Wall
form of f ′ is the restriction of χf to [V, f ′]. It follows that θ(f) = θ(t)θ(f ′)
and hence θ(tf) = θ(t)θ(f).

If u /∈ [V, f ], then by Theorem 11.13 (ii), [V, tf ] = [V, f ] ⊕ 〈u 〉 and we may
apply the previous argument to tf to conclude that θ(tf) = θ(t)θ(f).

If t1, t2, . . . , tk are reflections, it follows by induction on k that θ(t1t2 · · · tk) =
θ(t1)θ(t2) · · · θ(tk). If O(V ) is generated by reflections, this proves that θ is
a homomorphism. The only orthogonal group not generated by reflections is
O+(4, 2). But in this case F× = F2 and so θ is the trivial homomorphism.

It is an easy exercise to check that, except for SO+(4, 2), the group SO(V )
is generated by products t1t2, where t1 and t2 are reflections. Similarly, for
all V , Ω(V ) = 〈 f2 | f ∈ O(V ) 〉.

11.51 Theorem. If dimV ≥ 2 and V contains singular vectors, then
except for Ω+(4, 2), we have

Ω(V ) = { f ∈ SO(V ) | θ(f) = F2 }

and SO(V )/Ω(V ) ' F×/F2.

Proof. The group Ω(V ) is generated by the elements g2, where g ∈ O(V ).
Thus θ(f) = F2 for all f ∈ Ω(V ). Let (u, v) be a hyperbolic pair in V and
put L := 〈u, v 〉. For a ∈ F×, let t1 and t2 be the reflections in 〈u− v 〉 and
〈u − av 〉. Then f := t1t2 ∈ SO(V ), f(u) = au, and f(v) = a−1v. We have
θ(f) = θ(t1)θ(t2) = aF2 and therefore θ :SO(V )→ F×/F2 is surjective.

If V = L, then the isometry f just described is a typical element of SO(L).
If θ(f) = F2, then a = b2 for some b, and f = g2, where g(u) = bu and
g(v) = b−1v. It follows that f ∈ Ω(L) and hence that Ω(L) = SO(L)∩ ker θ.

From now on suppose that V 6= L and consider f := t1t2 · · · tk, where ti
is the reflection in 〈ui 〉⊥. For i = 1, 2, . . . , k, choose vi ∈ L such that
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Q(vi) = Q(ui). In general, if Q(x) = Q(y) 6= 0, then by Witt’s theorem
there exists h ∈ O(V ) such that h(x) = y and hence ht〈 x 〉h

−1 = t〈 y 〉.
By definition, Ω(V ) = O(V )′ and therefore t〈 x 〉 ≡ t〈 y 〉 (mod Ω(V )). In
particular, f ≡ g (mod Ω(V )), where g := t〈 v1 〉t〈 v2 〉 · · · t〈 vk 〉. If f ∈ SO(V )
and θ(f) = F2, then k is even, g ∈ SO(V ), and θ(g) = θ(f) = F2. In order to
show that f ∈ Ω(V ) it suffices to show that g ∈ Ω(V ), and as g acts trivially
on L⊥ this follows from the first part of the proof.

Order Formulae, II

If V is a non-degenerate orthogonal geometry of dimension n over Fq, then
|O(V ) : SO(V )| = 2, except when n is odd and q is even, in which case
O(V ) = SO(V ) = Ω(V ). If dimV = 2m, let ε be +1 or −1 according to
whether the Witt index is m or m− 1. Then from our earlier formulae

|SOε(2m, q)| = qm(m−1)(qm − ε)
m−1∏
i=1

(q2i − 1),

|SO(2m+ 1, q)| = qm
2
m∏
i=1

(q2i − 1).

Theorem 11.51 shows that if q is odd, |SO(V ) : Ω(V )| = 2, and if q is even,
Ω(V ) = SO(V ), except for Ω+(4, 2). Moreover, if q is odd, −1 ∈ SO(V ) if
and only if n is even. Thus PΩ(V ) = Ω(V ), except possibly when n is even
and q is odd. To settle this case we need the value of θ(−1).

Assume that q is odd and suppose at first that V := 〈 e, f 〉, where (e, f)
is a hyperbolic pair. Then the matrix of the Wall form of −1 with respect

to the basis e, f is

(
0 1

2
1
2 0

)
and therefore θ(−1) = (−1)F2. If dimV = 2m

and the Witt index of V is m, then V is the orthogonal sum of m hyperbolic
lines. In this case θ(−1) = (−1)mF2 and therefore −1 ∈ Ω+(2m, q) if and
only if qm ≡ 1 (mod 4).

If dimV = 2 and V has no singular vectors, then case III of the section
‘Finite Fields’ shows that we may suppose that V := 〈 e, f 〉, where Q(e) =
β(e, f) = 1, Q(f) = a, and the polynomial X2 + X + a is irreducible. The

matrix of the Wall form of −1 with respect to e, f is

(
1 1

2
1
2 a

)
and thus

θ(−1) = (a − 1
4 )F2 = (−s)F2, where s /∈ F2. If dimV = 2m and the Witt

index of V is m−1, it follows that θ(−1) = (−1)msF2. Thus −1 ∈ Ω−(2m, q)
if and only if qm ≡ −1 (mod 4).
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Thus, except for PΩ+(4, 2),

|PΩε(2m, q)| = 1

d
qm(m−1)(qm − ε)

m−1∏
i=1

(q2i − 1),

|PΩ(2m+ 1, q)| =


qm

2
m∏
i=1

(q2i − 1) q even

1

2
qm

2
m∏
i=1

(q2i − 1) q odd

where d is the greatest common divisor of 4 and qm − ε.

From these formulae we see that the orders of the low dimensional orthog-
onal groups coincide with the orders of groups introduced in earlier chapters.
Indeed,

|PΩ(3, q)| = |PSL(2, q)|,
|PΩ+(4, q)| = |PSL(2, q)|2,
|PΩ−(4, q)| = |PSL(2, q2)|,
|PΩ(5, q)| = |PSp(4, q)|,
|PΩ+(6, q)| = |PSL(4, q)|, and

|PΩ−(6, q)| = |PSU(4, q)|.

These coincidences of order all arise from isomorphisms of the corresponding
groups. The first is familiar to us (Theorem 11.6) and the others will be
dealt with in a uniform way in Chapter 12.

It is also true that |PΩ(2m + 1, q)| = |PSp(2m, q)| for all q. In the next
section we prove the remarkable result that when q is odd and m > 2, these
groups are not isomorphic.

The Groups PSp(2m, q) and Ω(2m+ 1, q), q odd

In the section ‘Degenerate Polar Forms and the Groups O(2m + 1, 2k)’, we
showed that, when q is even, the groups PSp(2m, q) and Ω(2m + 1, q) are
isomorphic. However, in this section we shall show that when m > 2 and q is
odd, these groups are not isomorphic. We do this by counting the conjugacy
classes of elements of order 2.

When m = 2, it follows from Theorem 11.6 that Ω(3, q) ' PSp(2, q),
and in the next chapter we complete the picture by showing that Ω(5, q) '
PSp(4, q).
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11.52 Lemma. If q is odd, PSp(2m, q) has bm2 c+ 1 conjugacy classes of
elements of order 2.

Proof. (cf. Exercises 8.10 and 10.16.) If t ∈ Sp(2m, q) represents an ele-
ment of order 2 in PSp(2m, q), then either t2 = 1 or t2 = −1.

Suppose at first that t2 = 1 and let V be the underlying symplectic geometry
with alternating form β. If v ∈ V , then v = 1

2 (v + t(v)) + 1
2 (v − t(v)) and

therefore V = V+ ⊕ V−, where

Vε := { v ∈ V | t(v) = εv }, ε = ±1.

If u ∈ V+ and v ∈ V−, then β(u, v) = β(t(u), t(v)) = −β(u, v) and so
β(u, v) = 0. Thus V = V+ ⊥ V− and consequently V+ and V− are non-
degenerate. In particular, dimV+ and dimV− are even. As t and −t represent
the same element of PSp(2m, q), we may suppose that 2 ≤ dimV− ≤ m.

Suppose that t′ is another element of order 2 in Sp(2m, q) and that V =
V ′+ ⊥ V ′− is the associated decomposition of V , where we have replaced t′

by −t′, if necessary, to ensure dimV ′− ≤ m. If dimV− = dimV ′−, there is an
element g ∈ Sp(2m, q) such that g(V+) = V ′+ and g(V−) = V ′−. In this case,
gtg−1 = t′. Conversely, if t and t′ are conjugate, then dimV− = dimV ′−.
There are bm2 c choices for dimV− and therefore bm2 c conjugacy classes of the
type being considered.

Next we deal with t ∈ Sp(2m, q) such that t2 = −1. If 4 divides q − 1, then
there exists ω ∈ Fq such that ω2 = −1. This time, writing v = 1

2 (v−ωt(v))+
1
2 (v + ωt(v)) we see that V = M+ ⊕M−, where

Mε := { v ∈ V | t(v) = εωv }, ε = ±1.

For u, v ∈M+ we have β(u, v) = β(t(u), t(v)) = −β(u, v) and so β(u, v) = 0.
Thus in this case, M+ and M− are maximal totally isotropic subspaces of
V . If t′2 = −1 and V = M ′+⊕M ′− is the corresponding decomposition of V ,
then (by Lemma 7.5) there exists g ∈ Sp(2m, q) such that g(M+) = M ′+ and
g(M−) = M ′−; hence gtg−1 = t′.

Finally, suppose that 4 does not divide q − 1. If for some u 6= 0, t(u) = λu,
then, on applying t again, we see that λ2 = −1; a contradiction. Thus for all
u 6= 0, dim〈u, t(u) 〉 = 2. If 〈u, t(u) 〉 is totally isotropic, then (by Lemma 7.5)
there exists v such that β(u, v) = 1 and β(t(u), v) = 0. Put w := u+t(v) and
observe that β(w, t(w)) = −2. Thus it is always the case that for some w ∈ V ,
L1 := 〈w, t(w) 〉 is a hyperbolic line. If d := β(w, t(w)) and e1 := aw+bt(w),
then β(e1, t(e1)) = a2d + b2d. By Lemma 11.1 we may choose e1 so that
β(e1, t(e1)) = 1. By induction we may write L⊥1 = L2 ⊥ . . . ⊥ Lm, where
Li := 〈 ei, t(ei) 〉 and β(ei, t(ei)) = 1. Once again we see that there is just
one conjugacy class of elements t such that t2 = −1.
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In all cases we have shown that PSp(2m, q) has bm2 c + 1 conjugacy classes
of elements of order 2.

11.53 Lemma. If q is odd, Ω(2m + 1, q) has m conjugacy classes of ele-
ments of order 2.

Proof. Suppose that t ∈ Ω(2m + 1, q) and that t2 = 1. Let V be the
underlying orthogonal geometry. As in the previous lemma, V = V+ ⊥ V−,
where t(v) = v for all v ∈ V+ and t(v) = −v for all v ∈ V−. The subspaces
V+ and V− are non-degenerate and as t ∈ SO(V ) and V− = [V, t], it follows
that dimV− = 2k is even.

The restriction of t to V− is −1 and therefore −1 ∈ Ω(V−). The calculation of
the spinor norm of −1 in the previous section shows that Ω(V−) = Ωε(2k, q),
where ε is determined by the congruence qk ≡ ε (mod 4). Thus the Witt
index of V− is uniquely determined. The argument of the previous lemma
shows that if t′2 = 1 and V := V ′+ ⊥ V ′− is the corresponding decomposition
of V , then t is conjugate to t′ if and only if dimV− = dimV ′−. Conversely, for
each integer k with 1 ≤ k ≤ m there exists t ∈ Ω(V ) such that dim[V, t] = 2k.
Thus Ω(2m+ 1, q) has m conjugacy classes of elements of order 2.

11.54 Theorem. If q is odd and m > 2, then PSp(2m, q) and Ω(2m+1, q)
are non-isomorphic simple groups of the same order.

Orthogonal BN-pairs

Suppose that V is an orthogonal geometry of Witt index m > 0 defined by
a quadratic form Q whose polar form is non-degenerate. Theorems 9.1 and
9.8 show that, except when dimV = 2m, the group O(V ) has a BN -pair.
We also have

11.55 Lemma. If dimV > 2m, then Ω(V ) is strongly transitive.

Proof. Suppose that F and F ′ are polar frames and that M and M ′ are
chambers of Σ(F) and Σ(F ′), respectively. By Lemmas 11.26 and 11.27,
Ω(V ) is transitive on the ordered pairs (P,Q) such that P and Q are singular
and Q /∈ P⊥. Thus we may suppose that M and M ′ have a point P in
common and that F and F ′ contain P and Q, where Q /∈ P⊥. If m = 1, the
result is proved, otherwise we apply induction to (P +Q)⊥.

It is a consequence of this lemma and Theorem 9.8 that, for dimV > 2m,
the BN -pair for O(V ) restricts to a BN -pair for Ω(V ). As in the case of
the symplectic and unitary geometries, the group B is the stabilizer of a
maximal flag of totally singular subspaces, the group N is the stabilizer of
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a polar frame, and the Weyl group N/B ∩N is Z2 o Sm. The group SO(V )
contains Ω(V ) and therefore it is strongly transitive, provided dimV > 2m.
In this case SO(V ) also inherits a BN -pair from O(V ).

If V is a hyperbolic line, then P(V ) has just one polar frame. Thus
the argument of the lemma just proved shows that the subgroup of O(V )
generated by the Siegel transformations is transitive on the polar frames of
P(V ), even when dimV = 2m. In the case of Ω+(4, 2) there are 9 polar
frames and a direct calculation shows that Ω+(4, 2) is transitive on them.
Thus in all cases Ω(V ) is transitive on the polar frames. However, in the
next section, we show that when dimV = 2m, the group Ω(V ) has two
orbits on the chambers of the polar building.

As in the case of the symplectic and unitary groups, it is possible to give
explicit transformations n1, n2, . . . , nm such that the cosets n1H, n2H, . . . ,
nmH, generate the Weyl group N/H, where H := B∩N . Suppose the polar
frame is

F := { 〈 ei 〉, 〈 fi 〉 | 1 ≤ i ≤ m }, (11.56)

where (e1, f1), . . . , (em, fm) are mutually orthogonal hyperbolic pairs. We
define ni (for 1 ≤ i < m) to be the linear transformation such that

ni(ei) := ei+1, ni(ei+1) := −ei,
ni(fi) := fi+1, ni(fi+1) := −fi, and

ni(v) := v for all v ∈ 〈 ei, ei+1, fi, fi+1 〉⊥.

Then dim[V, ni] = 4 (or 2, if the characteristic of the field is 2), and so
ni ∈ SO(V ). A straightforward calculation using (11.31) shows that the
spinor norm of ni is trivial; hence ni ∈ Ω(V ). It remains to define nm.

If dimV > 2m, we may choose w ∈ 〈 ei, fi | 1 ≤ i ≤ m 〉⊥ such that
Q(w) 6= 0, and then we may replace Q by a scalar multiple to ensure that
Q(w) = −1. (This does not change the group.) Put nm := t〈w 〉t〈 em−fm 〉.
Then nm ∈ SO(V ) and the spinor norm of nm is trivial; i.e., nm ∈ Ω(V ).

Note that if Q is non-degenerate but the polar form is degenerate and the
field is perfect, then dimV = 2m+ 1 and it is still the case that the elements
n1H, n2H,. . . , nmH defined above generate the Weyl group. But in this
case we have t〈w 〉 = 1.

Suppose that dimV = 2m. In this case the polar building is not thick:
each panel of type {1, 2, . . . ,m − 1} is contained in exactly two chambers.
On the other hand, every panel not of type {1, 2, . . . ,m− 1} is contained in
at least three chambers. As described on p. 85, the Weyl group of O(V ) is
generated by elements n1H, n2H, . . . , nmH, and the proof of Theorem 9.8
shows that niBni 6= B except for i = m, in which case nmBnm = B.
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If Ω(V ) were strongly transitive, then the stabilizer of the frame F would
contain an element nm inducing the transposition (〈 em 〉, 〈 fm 〉). But for any
such element, dim[V, nm] = 1 and so nm /∈ SO(V ). Thus neither Ω+(2m,F)
nor SO+(2m,F) can be strongly transitive.

On the other hand, it is clear that n′m := nmnm−1n
−1
m ∈ Ω(V ) and the

cosets n1H, . . . , nm−1H, n′mH generate the subgroup (Z2 o Sm)+ of even
permutations in Z2 oSm. We know from Lemma 9.1 that Z2 oSm acts regularly
on the 2mm! chambers of Σ(F). But (Z2 o Sm)+ has index 2 in Z2 o Sm and
therefore (Z2 oSm)+ has two orbits on these chambers. As Ω(V ) is transitive
on polar frames, it follows that for k < m, Ω(V ) is transitive on the totally
singular subspaces of dimension k.

Even though the groups SO+(2m,F) and Ω+(2m,F) do not act strongly
transitively on the polar building, it is still the case that the stabilizer of
a chamber and of an apartment (containing the chamber) form a BN -pair
for these groups. The Weyl group is (Z2 o Sm)+. Before proving this we
look more closely at the action of orthogonal groups on the maximal totally
singular subspaces.

Maximal Totally Singular Subspaces

As in the previous section, suppose that V is an orthogonal geometry of
dimension n and Witt index m > 0 defined by a quadratic form Q whose
polar form β is non-degenerate. Let Φ be the set of all maximal totally
singular subspaces of V . Make Φ into a graph by joining E to F by an edge
whenever dim(E ∩ F ) = m − 1. The distance d(E,F ) from E to F is the
length of a shortest path from E to F .

11.57 Lemma. (i) For all E, F ∈ Φ, if E is adjacent to F , then t(E) = F
for some reflection t := t〈u 〉, where Q(u) = 1.

(ii) If E ∈ Φ and if t is a reflection, then t(E) = E, or E is adjacent
to t(E).

Proof. (i) Choose e ∈ E \E ∩F and f ∈ F \E ∩F such that β(e, f) = 1.
Then Q(e+ f) = β(e, f) = 1 and t〈 e+f 〉(E) = F .

(ii) The reflection t fixes every vector in a hyperplane of V and therefore
dim(E ∩ t(E)) ≥ m− 1.

11.58 Lemma. For all E, F ∈ Φ, d(E,F ) = m− dim(E ∩ F ).

Proof. Suppose that E 6= F and choose e ∈ F \E ∩ F . Then E′ := 〈 e 〉+
E∩〈 e 〉⊥ ∈ Φ and E′ is adjacent to E. Since dim(E′∩F ) = dim(E∩F )+1, we
can continue in this fashion and construct a path of length m− dim(E ∩ F )
from E to F . Hence d(E,F ) ≤ m − dim(E ∩ F ), and in particular, Φ is
connected.
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Now suppose that E, F and E′ ∈ Φ, where E′ is adjacent to E. Then E∩E′
is a hyperplane of E′, and therefore

dim(E ∩ F ) ≥ dim(E ∩ E′ ∩ F ) ≥ dim(E′ ∩ F )− 1.

It follows by induction that dim(E ∩F ) ≥ m− d(E,F ), and by the previous
paragraph, d(E,F ) = m− dim(E ∩ F ).

11.59 Theorem. The group O(V ) is transitive on Φ and its orbits on
Φ× Φ are the sets

∆k := { (E,F ) ∈ Φ× Φ | d(E,F ) = k } (0 ≤ k ≤ m).

Proof. Suppose that (E1, F1) and (E2, F2) belong to ∆k. By Witt’s the-
orem we may assume that E1 ∩ F1 = E2 ∩ F2 = W , say. Now write
E1 = E′1 ⊕ W , E2 = E′2 ⊕ W , F1 = F ′1 ⊕ W , and F2 = F ′2 ⊕ W . By
Lemma 7.5 there is a basis e1, e2, . . . , ek for E′1 and a basis f1, f2, . . . , fk for
F ′1 such that (e1, f1), (e2, f2), . . . , (ek, fk) are mutually orthogonal hyper-
bolic pairs. The same is true of E′2 and F ′2, hence by Witt’s theorem there
exists g ∈ O(V ) that fixes every vector of W , takes E′1 to E1, and takes F ′1
to F2. Then g(E1, F1) = (E2, F2).

A graph is said to be bipartite if it can be written as the disjoint union
of two non-empty subsets (called the parts of the bipartition) such that the
edges of the graph only join vertices in distinct subsets; equivalently, the
graph has no circuits of odd length.

11.60 Theorem. Suppose that V is an orthogonal geometry of dimension
n and Witt index m > 0. Let Φ be the graph of maximal totally singular
subspaces.

(i) If n 6= 2m, then the action of O(V ) on Φ is primitive.

(ii) If n = 2m, then Φ is bipartite; hence if m > 1, the action of O(V ) on
Φ is imprimitive.

Proof. Suppose that Γ ⊆ Φ× Φ is an O(V )-invariant equivalence relation
such that Γ 6= ∆0. If ∆k ∩ Γ 6= ∅, then ∆k ⊆ Γ, and if ∆1 ⊆ Γ, then
Γ = Φ × Φ. So suppose that, for some k > 1, ∆k ⊆ Γ, but ∆k−1 6⊆ Γ.
Choose (E,F ) ∈ ∆k−1 and let H be a hyperplane of E ∩ F . Let H1 be a
hyperplane of F containing H and choose F1 ∈ Φ so that F1 ∩ F = H1. If
e ∈ E ∩ F⊥1 , then e ∈ F⊥ and as F is a maximal totally singular subspace,
e ∈ F . Thus E ∩ F1 = H and so (E,F1) ∈ ∆k. If H2 6= H1 is another
hyperplane of F such that E∩H2 = H and if F2 6= F is an element of Φ that
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contains H2, then (E,F2) ∈ ∆k and (F1, F2) ∈ ∆2. It follows that ∆2 ⊆ Γ
and therefore ⋃

i≥0

∆2i ⊆ Γ.

If ∆` ⊆ Γ for some odd `, then ∆1 ⊂ Γ and hence Γ = Φ×Φ. If n 6= 2m and
H is a totally isotropic subspace of dimension m−1, then H⊥/H contains at
least three singular points and hence the graph Φ contains circuits of length
three. Thus in this case we have Γ = Φ×Φ and therefore O(V ) is primitive.

Now suppose that n = 2m. We shall show that Φ does not have circuits
of odd length. Suppose, on the contrary, that E, F1, F2 ∈ Φ and that
(E,F1), (E,F2) ∈ ∆k and (F1, F2) ∈ ∆1. Then E ∩ F1 = E ∩ F2, and if
H := F1 ∩F2, the subspaces E ∩H⊥, F1 and F2 correspond to three distinct
singular points of H⊥/H. This is a contradiction as H⊥/H is a hyperbolic
line and has only two singular points. Thus Φ has no circuits of odd length
and hence it is bipartite.

11.61 Theorem. If V is an orthogonal geometry of Witt index m and
dimension 2m, then both SO(V ) and Ω(V ) have two orbits on the set Φ of
maximal totally singular subspaces: two subspaces E and F are in the same
orbit if and only if d(E,F ) is even. Furthermore, both SO(V ) and Ω(V )
have two orbits on the chambers of the polar building.

Proof. If t is a reflection and E ∈ Φ, then t(E) 6= E. By Lemma 11.57 (ii),
E is adjacent to t(E). Thus t interchanges the two parts of the bipartite graph
Φ. Except for SO+(4, 2), every element of SO(V ) is a product of an even
number of reflections; hence SO(V ) fixes the two parts of the bipartition of
Φ. It follows from Lemma 11.57 (i) that Ω(V ) (and hence SO(V )) has two
orbits on Φ. The corresponding statements for Ω+(4, 2) and SO+(4, 2) are
easy exercises.

It is now clear that SO(V ) and Ω(V ) have at least two orbits on the chambers
of the polar building. On the other hand, any two chambers belong to a
common apartment and we saw in the previous section that the stabilizer of
an apartment has two orbits on its chambers. This completes the proof.

A detailed description of the stabilizer of a maximal totally singular sub-
space is given in Exercise 11.19.

The Oriflamme Geometry

In this section V is an orthogonal geometry of Witt index m and dimension
2m. For each chamber M of the polar building of V , there is a unique
chamber M ′ such that M ∩M ′ is the panel obtained from M by omitting
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the subspace of dimension m. The subspaces of dimension m in M and
M ′ are adjacent in the graph of maximal totally singular subspaces and the
theorems of the previous section show that M and M ′ are in different orbits
of Ω(V ), but Ω(V ) is transitive on the set of pairs {M,M ′}.

Let F be the polar frame (11.56) and let M be the chamber

{ 〈 e1, e2, . . . , ei 〉 | 1 ≤ i ≤ m }

in the apartment Σ of F . Then M ′ is also in Σ and the stabilizer B of M fixes
M ′. In the section ‘Orthogonal BN -pairs’ we showed that the stabilizer N of
F has two orbits on the chambers of Σ and it follows that B is transitive on
the apartments which contain M . This is all that is required for the proofs
of Theorems 9.3 and 9.6 to hold, where for the generators of the Weyl group
we use the elements wi := niB ∩N , for 1 ≤ i ≤ m− 1, and wm := n′mB ∩N ,
described on pages 169 and 170.

The proof of Theorem 9.8 also depends on knowing that each panel of
the form M ∩ ni(M) is in at least three chambers. This has been proved
in Lemma 9.4 for n1, n2, . . . , nm−1. The panel M ′ ∩ n′m(M ′) is the same
as M ∩ nm−1(M) and therefore the proof of Theorem 9.8 goes through for
n′m with M replaced by M ′. Thus the groups B and N form a BN -pair for
Ω(V ) and the Weyl group is (Z2 o Sm)+. Its Coxeter-Dynkin diagram (said
to be of type Dm) is

Dm

w1

©
w2

©
w3

© · · ·
wm−3

© ©%
© wm−1

e© wm

where the vertex at the fork corresponds to wm−2. The same construction
provides a BN -pair for SO(V ).

In Chapter 9, in the section ‘Diagram Geometries’, we indicated that the
Coxeter-Dynkin diagrams of type An and Cn describe the incidence relations
between the varieties of projective geometry and polar geometry, respectively.

The geometry corresponding to the Coxeter-Dynkin diagram of type Dn is
known as the oriflamme geometry. The varieties of type i (for 1 ≤ i ≤ m−2)
are the totally isotropic subspaces of dimension i. In the bipartite graph Φ,
introduced in the previous section, let Φ1 and Φ2 be the two parts of the
bipartition. The elements of Φ1 are the varieties of type m − 1 and the
elements of Φ2 are the varieties of type m. Two varieties are adjacent if one
is contained in the other or if they are both of dimension m and adjacent in
the graph Φ (i.e., their intersection has dimension m − 1). The oriflamme
building is the set of oriflammes of this geometry, where an oriflamme is a
set of mutually adjacent varieties. A chamber is a maximal oriflamme.
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If M and M ′ are chambers of the polar building that differ only in their
subspaces E and E′ of dimension m, then their subspaces of dimensions
1, 2, . . . , m − 2 together with E and E′ form a chamber of the oriflamme
building. Conversely, every chamber of the oriflamme building arises from a
unique pair of polar chambers of this form.

For each polar frame F , there is an apartment in the oriflamme building.
It consists of the oriflammes whose subspaces are spanned by subsets of F .

EXERCISES

11.1 Let V be a vector space over a field F of characteristic 2 and suppose
that β is a non-degenerate symmetric bilinear form on V . Let G be
the group of linear transformations of V that preserve β.

(i) If W := { v ∈ V | β(v, v) = 0 }, show that G stabilizes the flag
radW ⊂W , and that G acts as the identity on radW and V/W .

(ii) Show that the map G → Sp(W/ radW ), which assigns f ∈ G
to the transformation of W/ radW induced by f , is a homomor-
phism onto Sp(W/ radW ) whose kernel is a nilpotent group of
class at most 2.

(iii) If F is perfect, show that W is a hyperplane of V , and dim radW
is 0 or 1 according to whether dimV is odd or even.

11.2 Following Theorem 11.4 describe O(L), where L is an orthogonal hy-
perbolic line over an arbitrary field F. Show that SO(L) is isomorphic
to the multiplicative group of the field.

11.3 Let V be an orthogonal geometry of dimension n over Fq and let
m > 0 be the Witt index of V . Show that the number of totally
singular subspaces of dimension k in V is

[m
k

]
q

k−1∏
i=0

(qm−ε−i + 1)

where ε = 2m− n+ 1 and

[m
k

]
q

=

k−1∏
i=0

(qm − qi)/(qk − qi).

Observe that the same expression gives the number of totally isotropic
subspaces of dimension k for the geometries associated with the groups
Sp(2m, q), U(2m+ 1, q1/2) and U(2m, q1/2) provided we take ε to be
0, − 1

2 and 1
2 , respectively.
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11.4 Let E be a maximal totally singular subspace of an orthogonal geom-
etry of Witt index m > 0. Defining ε as in the previous exercise, show
that the number of maximal totally singular subspaces F such that
E ∩ F = {0} is q

1
2m(m+1)−mε.

11.5 In the proof Theorem 11.6 show that every element of SO(V )〈 e 〉 can
be written as a product H(a)S(b) for suitable a and b.

11.6 Let V be an orthogonal geometry over a perfect field F defined by
a non-degenerate quadratic form Q whose polar form is degenerate.
Show that the orthogonal building of P(V ) is isomorphic to the sym-
plectic building of P(V/V ⊥).

11.7 In case II in the section on root groups check that X̂u,v depends only
on the totally singular subspace 〈u, v 〉 and not on the particular choice
of basis u, v.

11.8 Write out the elements of Ω+(4, 2) as permutations on the six non-
singular vectors of the geometry and identify the Siegel transforma-
tions.

11.9 Find two regular elements in O+(4, 3) which commute but whose prod-
uct is not regular.

11.10 Let Ω be a set of size 2m+2 and let V be the vector space of partitions
{Γ,∆} of Ω into pairs of even subsets; addition for V is symmetric dif-
ference. This is the vector space introduced in Theorem 8.9. Suppose
that m is odd, and define a quadratic form Q :V → F2 by

Q({Γ,∆}) :=
1

2
|Γ| (mod 2).

(i) Show that the polar form of Q is the alternating form β defined
in the proof of Theorem 8.9.

(ii) If m ≡ 1 (mod 4), show that S2m+2 ⊆ O−(2m, 2).

(iii) If m ≡ 3 (mod 4), show that S2m+2 ⊆ O+(2m, 2).

(iv) Deduce that O+(6, 2) ' S8 and that Ω+(6, 2) ' PSL(4, 2).

(v) Use a similar argument to show that O−(4, 2) ' S5
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11.11 Show that under the isomorphism O+(6, 2) ' S8, the reflections of
O+(6, 2) correspond to the transpositions of S8 and the elements f
such that [V, f ] is totally singular correspond to the products of 4
commuting transpositions. Deduce that if f corresponds to a con-
jugate of (1 2 3 4 5 6 7 8), (1 2 3 4 5 6)(7 8), (1 2 3 4)(5 6 7 8) or
(1 2 3 4)(5 6)(7 8), then [V, f ] is not totally singular and f is a product
of dim[V, f ] + 2 reflections but no fewer.

11.12 Let (W,R) be a Coxeter system and let V be the orthogonal geometry
defined in Exercise 9.8. For w ∈W , put

A(w) := { d ∈W | [V, d] ⊆ [V,w] }.

Show that

(i) A(w) is a subgroup of W .

(ii) If w′ ∈ A(w), then A(w′) ⊆ A(w).

(iii) If x ∈W , then xA(w)x−1 = A(xwx−1).

(iv) For all w ∈ W , dim[V,w] is the shortest length of any expres-
sion for w as a product of reflections. (See Steinberg (1967) or
Steinberg (1968).)

(v) If J ⊆ R and cJ is obtained by taking the product of the elements
of J in some order, then [V, cJ ] = 〈 er | r ∈ J 〉 and A(cJ) = WJ .

11.13 (i) Show that except for SO+(4, 2), the group SO(V ) is generated
by the products t1t2, where t1 and t2 are reflections.

(ii) Show that for all V , Ω(V ) is generated by the elements f2, where
f ∈ O(V ).

11.14 Let P be a non-singular point of an orthogonal geometry V of dimen-
sion at least 3 over the field Fq, defined by a quadratic form whose
polar form is non-degenerate. If t is the reflection in P⊥, show that,
when q is even, CO(V )(t) is transitive on the non-singular points of

P⊥ \ {P} and that CO(V )(t)/〈 t 〉 is isomorphic to Sp(P⊥/P ). When

q is odd, show that CO(V )(t) = 〈 t 〉 × O(P⊥). If dimV is odd, show

that the Witt index of P⊥ depends on the choice of P .

11.15 Let V be a vector space of dimension 4 and Witt index 2 over a
field F. Show that the action of O+(4,F) on the singular points of V
is primitive.

11.16 Show that SU(2m, q) is contained in Ω+(4m, q) and that SU(2m+1, q)
is contained in Ω−(4m+ 2, q).
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11.17 Let β be a non-degenerate alternating form on the vector space V of
dimension 2m over the field F2. Let Q be the set of all quadratic
forms that polarize to β.

(i) Define an action of V on Q as follows. For v ∈ V and Q ∈ Q,
put

v ·Q := Q+ β(v,−).

Show that V acts regularly on Q.

(ii) For f ∈ Sp(V ) and Q ∈ Q, define f ·Q by

(f ·Q)(v) := Q(f−1v).

Show that the actions of V and Sp(V ) on Q extend to an action
of the semidirect product V Sp(V ) on Q and that V Sp(V ) acts
doubly transitively on V and Q.

(iii) Show that Sp(V ) has two orbits on Q: the forms of Witt index
m and the forms of Witt index m− 1.

(iii) Show that the orbits of Sp(V ) on Q have lengths 22m−1 + 2m−1

and 22m−1 − 2m−1, and that Sp(V ) acts doubly transitively on
both of them. (Hint. Show that Sp(V ) has 6 orbits on Q×Q:
use the fact that a group acting on a block design with the same
number of points as blocks has the same number of orbits on
points as on blocks. See also Jordan (1870) and Taylor (1977).)

11.18 Let V be an orthogonal geometry of Witt index m > 0 and dimension
at least 2m+1. Show that Ω(V ) acts primitively on the set of maximal
totally singular subspaces.

11.19 Let E be a vector space of dimension m over F.

(i) Set V := E∗ ⊕E, where E∗ is the dual space of E, and define a
quadratic form Q on E by

Q((ϕ, v)) := ϕ(v).

Show that Q is non-degenerate and that its polar form β is given
by

β((ϕ, v), (ψ,w)) := ϕ(w) + ψ(v).

(ii) Show that every orthogonal geometry of Witt index m and di-
mension 2m over F is isometrically isomorphic to V .
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(iii) Let Λ2(E) be the set of all (possibly degenerate) alternating
forms on E. For γ1, γ2 ∈ Λ2E and a1, a2 ∈ F, define

(a1γ1 + a2γ2)(u, v) := a1γ1(u, v) + a2γ2(u, v)

and show that Λ2E is a vector space of dimension 1
2m(m − 1)

over F.

(iv) Identify E∗ with the subspace { (ϕ, 0) | ϕ ∈ E∗ } and identify E
with the subspace { (0, v) | v ∈ E } of V . If f ∈ O(V ) fixes every
element of E∗, show that for all v ∈ E, (1−f)(v) ∈ E∗ and that

(1− f)(v) = γ(−, v),

for some γ ∈ Λ2E. Conversely, for γ ∈ Λ2E show that the linear
transformation γ̃ defined by

γ̃(ϕ, v) := (ϕ+ γ(v,−), v)

preserves Q and fixes every vector of E∗. Deduce that the sub-
group O(V )(E∗) of O(V ) which fixes every element of E∗ is
isomorphic to Λ2E. (cf. Exercise 8.2.)

(v) For γ ∈ Λ2E, show that [V, γ̃] is isomorphic to E/ radE, where
radE denotes the radical of E with respect to γ. Using the fact
that the dimension of a symplectic geometry is even, show that
the Dickson invariant of γ̃ is 0 and hence γ̃ ∈ SO(V ).

(vi) Let χ be the Wall form of γ̃ and show that

χ(γ(−, u), γ(−, v)) = γ(u, v).

By calculating determinants with respect to a symplectic basis,
show that the discriminant of χ is a square and hence γ̃ ∈ Ω(V ).

(vii) Show that O(V )(E∗) acts regularly on the set of maximal totally
singular subspaces F of V such that E∗ ∩ F = {0}.

(viii) For f ∈ GL(E) and γ ∈ Λ2E, define fγ by

(fγ)(u, v) := γ(f−1(u), f−1(v)).

Show that in this way GL(E) may be regarded as a group of
linear transformations of Λ2E.

(ix ) For f ∈ GL(E), let f̄ be the element of GL(E∗) that takes
ϕ ∈ E∗ to ϕf−1. Show that every element of the subgroup
O(V )E∗,E fixing both E∗ and E can be written in the form

(ϕ, v) 7→ (f̄(ϕ), f(v)) for some f ∈ GL(E),

and hence O(V )E∗,E ⊆ SO(V ). Deduce that the stabilizer
O(V )E∗ of E∗ in O(V ) is a subgroup of SO(V ) and that it
is isomorphic to the semidirect product (Λ2E)GL(E).
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The Klein Correspondence

An inspection of the Coxeter-Dynkin diagrams associated with the orthogo-
nal groups and geometries defined on vector spaces of dimension at most 6
shows that in every case the diagram has occurred before in connection with
a projective, symplectic, or unitary geometry. For example, at the end of
the previous chapter it was shown that when V is an orthogonal geometry
of dimension 6 and Witt index 3 over a field F, the Coxeter-Dynkin diagram
for the oriflamme geometry of V is

1

©
2

©
3

©

The end nodes represent the two classes of totally singular planes of P(V )
and the middle node represents the singular points. This is also the diagram
of type A3 and suggests that the oriflamme geometry is none other than a
projective geometry of (projective) dimension 3. Indeed this is the case. The
varieties of types 1, 2 and 3 correspond to points, lines and planes, and it
is easy to check directly that the axioms for projective geometry (given in
Chapter 3) are satisfied. For example, given a variety M of type 3 (i.e., a
totally singular plane), the varieties of type 1 adjacent to M in the oriflamme
geometry are the totally singular planes M ′ such that M ∩M ′ is a line, and
the varieties of type 2 adjacent to M are the points of M . Thus the residue
of M is the dual of the projective plane P(M).

This correspondence between the orthogonal geometry of a 5-dimensional
projective space and the geometry of a 3-dimensional projective space was
first studied (over the complex numbers) by Felix Klein in his dissertation of
1868 (reprinted in his collected works: Klein (1921)). In its general form it is
the basis for various isomorphisms (hinted at on p. 166) between orthogonal
groups in dimensions 4, 5 and 6, and other linear groups. (See van der
Waerden (1935), I, §7 and Dieudonné (1971), Chap. III, §8.)

The isomorphism between the geometries of type A3 andD3 can be derived
from a more general correspondence between the geometry of a vector space
and its exterior square. Essentially, this is the approach taken by Klein in his
dissertation and subsequent papers on line geometry. It is also the approach
that we take in this chapter, and therefore we devote the next few sections
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to a review of the fundamentals of exterior algebra. A more detailed account
can be found in Bourbaki (1970), Chap. III, §§7 and 11.

The Exterior Algebra of a Vector Space

Given a vector space V of dimension n over the field F, the exterior square
of V is a vector space Λ2V (also over F) together with a bilinear map

α2 :V × V → Λ2V

such that α2(v, v) = 0 for all v ∈ V , and such that for every alternating form
γ :V × V → F, there is a unique linear functional γ̂ : Λ2V → F satisfying
γ̂α2 = γ; or, as is often said, such that the following diagram commutes:

V × V Λ2V

F

-

Z
Z~ ��

α2

γ γ̂

The correspondence between γ and γ̂ is one-to-one and thus the dual
of Λ2V may be identified with the space Λ2V of all alternating forms on V
(introduced in Exercise 11.19). However, it is easy to construct Λ2V directly.

If e1, e2, . . . , en is a basis for V , then Λ2V can be defined to be the vector
space over F with the

(
n
2

)
symbols ei ∧ ej (1 ≤ i < j ≤ n) as a basis. For

1 ≤ i < j ≤ n, we define

ei ∧ ei := 0, and

ej ∧ ei := −ei ∧ ej .

Then for u :=
∑n
i=1 aiei and v :=

∑n
i=1 biei, we put

u ∧ v :=

n∑
i=1

n∑
j=1

aibjei ∧ ej .

The transformation α2 :V ×V → Λ2V defined by α2(u, v) := u∧v is bilinear
and satisfies α2(v, v) = 0 for all v ∈ V .

If γ is an alternating form on V , the linear functional γ̂ : Λ2V → F is
defined on the basis element ei ∧ ej by

γ̂(ei ∧ ej) := γ(ei, ej).

It then follows that γ̂(u ∧ v) = γ(u, v) for all u, v ∈ V . By construction,
dim Λ2V = 1

2n(n− 1), and in particular, dim Λ2V = 6, when dimV = 4.
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The notation u ∧ v is meant to suggest that V and Λ2V are subspaces of
a larger algebra in which ∧ is the multiplication: this is the exterior algebra
Λ•V of V . The construction of Λ•V found in Bourbaki (1970), Chap. III,
§7 is typical of modern treatments and makes use of the tensor algebra of
V . However, just as for Λ2V , a direct construction is possible in terms of
an explicit basis. This approach is a special case of the construction of a
Clifford algebra given by Artin (1957), p. 186.

For each subset S of I := {1, 2, . . . , n} we introduce a symbol eS and we
let Λ•V be the vector space of dimension 2n over F with basis { eS | S ⊆ I }.
If S and T are subsets of I, we define

ε(S, T ) :=

{
(−1)k(S,T ) S ∩ T = ∅,

0 S ∩ T 6= ∅,

where k(S, T ) := |{ (i, j) | i ∈ S, j ∈ T and i > j }|. Then we put

eS ∧ eT := ε(S, T )eS∪T (12.1)

and extend this product to all of Λ•V by requiring it to be distributive. That
is, if ξ :=

∑
S⊆I aSeS and η :=

∑
S⊆I bSeS, the exterior product of ξ and η is

ξ ∧ η :=
∑
S⊆I

∑
T⊆I

aSbTeS ∧ eT . (12.2)

There is a linear transformation α :V → Λ•V such that α(ei) := e{i} for
all i ∈ I, and we have α(v)∧α(v) = 0 for all v ∈ V . This allows us to identify
V with its image in Λ•V and from now on we write ei instead of e{i}. The
basis element e∅ is the identity element of Λ•V and we denote it by 1.

12.3 Theorem. The vector space Λ•V is an associative algebra over F and
for every associative algebra A and every linear transformation h :V → A
such that h(v)2 = 0 for all v ∈ V , there exists a unique algebra homomor-

phism ĥ : Λ•V → A such that the following diagram commutes.

V Λ•V

A

-

Z
Z~

�
�

α

h ĥ

Moreover (up to isomorphism) Λ•V is the unique associative algebra with
this property.

Proof. The distributive law for Λ•V follows immediately from (12.2) and
so, in order to show that Λ•V is an associative algebra, all that really needs
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proving is the associative law. For the basis elements we have

(eR ∧ eS) ∧ eT = ε(R,S)ε(R ∪ S, T )eR∪S∪T

= ε(R,S)ε(R, T )ε(S, T )eR∪S∪T

= eR ∧ (eS ∧ eT ).

The associative law for Λ•V now follows from (12.2).

If h :V → A is a linear transformation such that h(v)2 = 0 for all v ∈ V ,
then replacing v by u+ v shows that

h(u)h(v) = −h(v)h(u).

For S := {i1, i2, . . . , ik}, where 1 ≤ i1 < i2 < · · · < ik ≤ n, define

ĥ(eS) := h(ei1)h(ei2) · · ·h(eik)

and extend ĥ to Λ•V by linearity. It follows from (12.1) that ĥ(eSeT ) =

ĥ(eS)ĥ(eT ) and therefore ĥ is a homomorphism.

The uniqueness of Λ•V is Exercise 12.2.

If we put S := {i1, i2, . . . , ik}, where 1 ≤ i1 < i2 < · · · < ik ≤ n, then
eS = ei1∧ei2∧· · ·∧eik . Thus we may identify Λ2V with the subspace spanned
by the basis vectors eS, where |S| = 2. More generally, we define the k-th
exterior power of V to be the subspace ΛkV spanned by the vectors eS, where
|S| = k. The elements of ΛkV are called k-vectors and, in particular, the
elements of Λ2V are called bivectors.

It follows directly from the definitions that dim ΛkV =
(
n
k

)
. Thus both

Λ0V and ΛnV are 1-dimensional. We identify Λ0V with the field F.

The multiplication defined by (12.1) and (12.2) is anticommutative in the
sense that for all ξ ∈ ΛkV and all η ∈ Λ`V we have

ξ ∧ η = (−1)k`η ∧ ξ.

If V and W are vector spaces, and if f :V →W is a linear transformation,
then by Theorem 12.3 there is a unique algebra homomorphism Λ•f : Λ•V →
Λ•W such that (Λ•f)(v) = f(v) for all v ∈ V (where we have identified v
with its image in Λ•V and f(v) with its image in Λ•W ). Furthermore, if
g :W → X is another linear transformation, then Λ•(gf) = Λ•(g)Λ•(f). In
particular, taking V = X and taking f to be invertible, it follows that Λ•f
is invertible and its inverse is Λ•f

−1.

For 0 ≤ k ≤ n, the algebra homomorphism Λ•f restricts to a linear
transformation Λkf : ΛkV → ΛkW . The map Λ0f is the identity and Λ1f
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coincides with f . The space ΛnV is spanned by eI = e1 ∧ e2 ∧ · · · ∧ en and if
f :V → V , it follows readily from the definitions that

(Λnf)eI = det(f) eI . (12.4)

More generally, if f :V →W is σ-semilinear, then for each k, f induces a
σ-semilinear transformation Λkf : ΛkV → ΛkW such that for all vectors v1,
v2, . . . , vk ∈ V ,

(Λkf)(v1 ∧ v2 ∧ · · · ∧ vk) = f(v1) ∧ f(v2) ∧ · · · ∧ f(vk).

The map Λ0f is the field automorphism σ and when W = V , we have
(Λnf)eI = d eI , where d is the determinant of the matrix of f with respect
to the basis e1, e2, . . . , en of V . But if σ 6= 1, then Λnf does not act on
ΛnV as multiplication by d. In fact, if a 6= 0 and e′I := aeI , then (Λnf)e′I =
a−1σ(a)d e′I .

The Dual Space

Let ω1, ω2, . . . , ωn be the basis of V ∗ dual to the basis e1, e2, . . . , en of V
considered in the previous section. We shall show that for all k, ΛkV

∗ may
be identified with the dual space ΛkV of ΛkV .

First of all, for S := {i1, i2, . . . , ik}, where 1 ≤ i1 < i2 < · · · < ik ≤ n,
we may regard ωS := ωi1 ∧ ωi2 ∧ · · · ∧ ωik as a linear functional on ΛkV by
putting

ωS(ej1 ∧ · · · ∧ ejk) := det
(
ωis(ejt)

)
and extending to ΛkV by linearity. Then for Φ :=

∑
aSωS, and ξ ∈ ΛkV , we

define Φ(ξ) :=
∑

S
aSωS(ξ). It follows that for all ϕ1, ϕ2, . . . , ϕk ∈ V ∗ and

for all v1, v2, . . . , vk ∈ V , we have

(ϕ1 ∧ · · · ∧ ϕk)(v1 ∧ · · · ∧ vk) = det
(
ϕi(vj)

)
. (12.5)

Therefore the definition of the action of Φ ∈ ΛkV
∗ on ΛkV does not depend

on the choice of basis for V .

This identification of ΛkV
∗ with (ΛkV )∗ extends to an identification of

Λ•V
∗ with the dual space Λ•V of Λ•V . The basis {ωS | S ⊆ I } is dual to

the basis { eS | S ⊆ I }.

Decomposable k-vectors

If V is a vector space with basis e1, e2, . . . , en, then from (12.1) the exterior
product ei1 ∧ ei2 ∧ · · · ∧ eik vanishes whenever any two of its terms coincide.
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From this it follows that the vectors v1, v2, . . . , vk of V are linearly dependent
if and only if v1 ∧ v2 ∧ · · · ∧ vk = 0.

A non-zero k-vector is said to be decomposable (or pure) if it can be written
in the form v1 ∧ v2 ∧ · · · ∧ vk for some v1, v2, . . . , vk ∈ V .

If W is a subspace of V , the inclusion of W in V extends to an inclusion of
Λ•W in Λ•V and we may identify Λ•W with its image in Λ•V . In particular,
if dimW = k, then ΛkW is a 1-dimensional subspace of ΛkV spanned by
the decomposable k-vector w1 ∧ w2 ∧ · · · ∧ wk, where w1, w2, . . . , wk is a
basis for W . Thus there is a mapping W 7→ ΛkW from the set Gk(V ) of
k-dimensional subspaces of V to the set G1(ΛkV ) of points of P(ΛkV ). The
next lemma shows that this mapping is one-to-one.

12.6 Lemma. If w1, w2, . . . , wk and w′1, w′2, . . . , w′k are two sets of
linearly independent vectors of V , then

〈w1, w2, . . . , wk 〉 = 〈w′1, w′2, . . . , w′k 〉

if and only if w1 ∧ w2 ∧ · · · ∧ wk = aw′1 ∧ w′2 ∧ · · · ∧ w′k for some a ∈ F.

Proof. If 〈w1, w2, . . . , wk 〉 = 〈w′1, w′2, . . . , w′k 〉, and if W denotes this sub-
space, then both w1 ∧w2 ∧ · · · ∧wk and w′1 ∧w′2 ∧ · · · ∧w′k span ΛkW ; hence
each is a scalar multiple of the other.

Conversely, if w1 ∧ w2 ∧ · · · ∧ wk = aw′1 ∧ w′2 ∧ · · · ∧ w′k, then for all i,
w′i ∧ w1 ∧ · · · ∧ wk = 0, and therefore w′i is a linear combination of w1,
w2, . . . , wk. It follows that w′1, w′2, . . . , w′k ∈ 〈w1, w2, . . . , wk 〉 and hence
〈w1, w2, . . . , wk 〉 = 〈w′1, w′2, . . . , w′k 〉.

It turns out that not every element of ΛkV is decomposable, and there-
fore the map Gk(V ) → G1(ΛkV ) is not onto. In general, the decomposable
k-vectors can be described succinctly by means of the interior product be-
tween Λ•V and its dual Λ•V (see Bourbaki (1970), Chap. III, §11, Propo-
sition 16). However, for the elements of Λ2V the situation is somewhat
simpler and the equations characterizing the decomposable bivectors can be
expressed in terms of annihilation operators—a special case of the interior
product.

Creation and Annihilation Operators

For v ∈ V , the linear transformation

α+
v : Λ•V → Λ•V

defined by α+
v (ξ) := v ∧ ξ is called a creation operator. It is clear from this

definition that α+
v (ΛkV ) ⊆ Λk+1V for all k.
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12.7 Lemma. For all ϕ ∈ V ∗ there is a unique linear transformation
α−ϕ : Λ•V → Λ•V such that α−ϕ (1) = 0 and, for all v ∈ V ,

α−ϕα
+
v + α+

v α
−
ϕ = ϕ(v)1. (12.8)

Furthermore,

(i) α−aϕ+bψ = aα−ϕ + bα−ψ for all a, b ∈ F and all ϕ, ψ ∈ V ∗,
(ii) (α−ϕ )2 = 0,

(iii) α−ϕα
−
ψ + α−ψα

−
ϕ = 0, for all ϕ, ψ ∈ V ∗, and

(iv) α−ϕ (ξ∧η) = α−ϕ (ξ)∧η+(−1)kξ∧α−ϕ (η), for all ξ ∈ ΛkV and all η ∈ Λ•V .

(v) If α−ϕ (ξ) = 0 for all ϕ ∈ V ∗, then ξ = 0.

Proof. For ξ ∈ ΛkV , equation (12.8) can be written in the form

α−ϕ (v ∧ ξ) = ϕ(v)ξ − v ∧ α−ϕ (ξ).

In particular, if e1, e2, . . . , en is a basis for V , it is equivalent to

α−ϕ (ei1 ∧ · · · ∧ eik) = ϕ(ei1)ei2 ∧ · · · ∧ eik − ei1 ∧ α−ϕ (ei2 ∧ · · · ∧ eik) (12.9)

and the existence and uniqueness of α−ϕ follow by induction on k.

Equation (12.8) is linear in ϕ and therefore (i) holds by the uniqueness result
just proved. On applying α−ϕ to (12.9) we see that (α−ϕ )2 vanishes on the
basis elements of Λ•V and therefore (α−ϕ )2 = 0, proving (ii). We obtain (iii)
by replacing ϕ by ϕ+ ψ in (ii).

Suppose that (iv) holds for ξ ∈ ΛkV . (This is certainly true when k = 0 or
k = 1.) Then for v ∈ V , ξ ∈ ΛkV and η ∈ Λ•V ,

α−ϕ (v ∧ ξ ∧ η) = ϕ(v)ξ ∧ η − v ∧ α−ϕ (ξ ∧ η)

= ϕ(v)ξ ∧ η − v ∧ α−ϕ (ξ) ∧ η − (−1)kv ∧ ξ ∧ α−ϕ (η)

= α−ϕ (v ∧ ξ) ∧ η + (−1)k+1(v ∧ ξ) ∧ α−ϕ (η).

The elements v∧ξ span Λk+1V and therefore (iv) holds for all k by induction.

Finally, suppose that α−ϕ (ξ) = 0 for all ϕ ∈ V ∗. If ξ = ξ0 +ξ1 +· · ·+ξn, where
ξk ∈ ΛkV , then it follows from (12.9), by induction, that α−ϕ (ξk) ∈ Λk−1V .
Therefore α−ϕ (ξk) = 0 for all k. Choose a basis e1, e2, . . . , en for V and let
ω1, ω2, . . . , ωn be the dual basis. If H := 〈 e2, . . . , en 〉, we may choose η1

and η in Λ•H such that ξk = e1 ∧ η1 + η. From (12.9), by induction, we
have α−ω1

(η1) = α−ω1
(η) = 0, and therefore η1 = α−ω1

(ξk) = 0. Consequently,
ξk ∈ Λ•H and by induction on dimV we have ξk = 0 for all k.

The linear transformation α−ϕ is called an annihilation operator and for
all k we have α−ϕ (ΛkV ) ⊆ Λk−1V .
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12.10 Theorem. A non-zero element ξ of Λ2V is decomposable if and
only if α−ϕ (ξ) ∧ ξ = 0 for all ϕ ∈ V ∗.

Proof. If ξ = u∧v, then α−ϕ (ξ) = ϕ(u)v−ϕ(v)u and therefore α−ϕ (ξ)∧ξ = 0.

Conversely, suppose that α−ϕ (ξ) ∧ ξ = 0 for all ϕ ∈ V ∗. By Lemma 12.7 (v)
we may choose ϕ ∈ V ∗ so that e1 := α−ϕ (ξ) 6= 0. Extend e1 to a basis e1, e2,
. . . , en for V and write ξ =

∑
i<j pijei ∧ ej . Then the condition e1 ∧ ξ = 0

implies ξ = e1 ∧
(∑

1<j p1jej
)
.

There is a duality between the annihilation operators of Λ•V and the cre-
ation operators of Λ•V . The precise connection is given in the next theorem.
Recall (from Chapter 7) that the transpose of a σ-semilinear transformation
f :V1 → V2 is the map f∗ :V ∗2 → V ∗1 defined by f∗(ϕ) := σ−1ϕf .

12.11 Theorem. For all ϕ ∈ V ∗ we have α+
ϕ = (α−ϕ )∗.

Proof. We must show that for all ξ ∈ ΛkV and all Φ ∈ Λk−1V , we have

(ϕ ∧ Φ)ξ = Φ(α−ϕ (ξ)).

To this end it suffices to take ξ := v1 ∧ · · · ∧ vk, Φ := ϕ2 ∧ · · · ∧ ϕk, and to
put ϕ1 := ϕ. Then from (12.5) we have (ϕ ∧ Φ)ξ = det

(
ϕi(vj)

)
, and from

the formula given in Exercise 12.4 (an immediate consequence of (12.8) and
induction), it follows that Φ(α−ϕ (ξ)) is simply the expansion of the determi-

nant of
(
ϕi(vj)

)
according to its first row. Thus (ϕ ∧ Φ)ξ = Φ(α−ϕ (ξ)) and

the theorem is proved.

We conclude this section by describing the interaction between semilinear
transformations and the annihilation operators.

12.12 Theorem. If f :V →W is a σ-semilinear transformation, then for
all ϕ ∈W ∗, and for all ξ ∈ ΛkV we have

(Λk−1f)α−f∗(ϕ)(ξ) = α−ϕ
(
(Λkf)ξ

)
.

Proof. We argue by induction on k. If k = 1, then ξ ∈ V and it follows
that (Λ0f)α−f∗(ϕ)(ξ) = ϕf(ξ), as required. If k > 1 and (Λk−1f)α−f∗(ϕ)(ξ) =

α−ϕ
(
(Λkf)ξ

)
, then for all v ∈ V ,

(Λkf)α−f∗(ϕ)(v ∧ ξ) = ϕf(v)(Λkf)ξ − f(v) ∧ (Λk−1f)α−f∗(ϕ)(ξ)

= ϕf(v)(Λkf)ξ − f(v) ∧ α−ϕ
(
(Λkf)ξ

)
= α−ϕ

(
(Λk+1f)(v ∧ ξ)

)
.
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The elements v ∧ ξ span Λk+1V and so the result holds for k + 1. This
completes the induction.

The Klein Quadric

From now on suppose that dimV = 4. Let e1, e2, e3, e4 be a basis for V and
put

ẽ := e1 ∧ e2 ∧ e3 ∧ e4.

We shall show that the decomposable elements of Λ2V are the singular
vectors for a quadratic form Q of Witt index 3. To define Q, first write
ξ :=

∑
i<j pijei ∧ ej and then put

Q(ξ) := p12p34 − p13p24 + p14p23. (12.13)

It is immediate from this description that (e1 ∧ e2, e3 ∧ e4), (e2 ∧ e4, e1 ∧ e3)
and (e1 ∧ e4, e2 ∧ e3) are mutually orthogonal hyperbolic pairs for Q; hence
Q is non-degenerate and its Witt index is 3. We let β denote the polar form
of Q.

At first sight it might appear that Q depends on the basis chosen for V ,
but the next theorem shows that it depends only on ẽ; i.e., it is uniquely
determined up to a non-zero scalar multiple.

12.14 Theorem. For all ξ, η ∈ Λ2V and all ϕ ∈ V ∗ we have

(i) α−ϕ (ξ) ∧ ξ = Q(ξ)α−ϕ (ẽ), and

(ii) ξ ∧ η = β(ξ, η)ẽ.

Proof. Equation (i) is linear in ϕ and therefore it suffices to check it for
the linear functionals ω1, ω2, ω3, ω4 which form the basis dual to e1, e2,
e3, e4. In this case (i) is a short and easy calculation.

Replacing ξ by ξ + η in (i), and simplifying, we obtain

α−ϕ (ξ) ∧ η + α−ϕ (η) ∧ ξ = β(ξ, η)α−ϕ (ẽ).

By Lemma 12.7 (iv), the left hand side is α−ϕ (ξ∧η) and then (ii) follows from
Lemma 12.7 (v).

It follows from (i) that the conditions given in Theorem 12.10 for the non-
zero bivector ξ to be decomposable reduce to the single equation Q(ξ) = 0.
This means that the map L 7→ Λ2L is a bijection between the lines of P(V )
and the singular points of P(Λ2V ). The set of singular points of P(Λ2V ) is
called the Klein quadric.
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12.15 Lemma. The lines L1 and L2 of P(V ) have a common point if and
only if Λ2L1 and Λ2L2 are orthogonal (with respect to β).

Proof. Suppose that L1 := 〈u1, v1 〉 and L2 := 〈u2, v2 〉. Then L1 and L2

have a common point if and only if u1, v1, u2 and v2 are linearly dependent.
This is the case if and only if u1 ∧ v1 ∧ u2 ∧ v2 = 0 and so the result now
follows from Theorem 12.14 (ii).

We know from the last two sections of Chapter 11 that the maximal totally
singular subspaces of Λ2V (which have dimension 3) form two classes: two
maximal totally singular subspaces are adjacent if the dimension of their
intersection is 2; and this adjacency relation defines a bipartite graph such
that distinct subspaces are in the same class if and only if the dimension of
their intersection is 1.

We can see all this directly, using the geometry of P(V ). If P := 〈u 〉 is a
point of P(V ), then the lines through P have the form 〈u, v 〉, v ∈ V , and it
is clear from Lemma 12.15 that

κ(P ) := {Λ2L | P ∈ L, dimL = 2 }

is a totally singular subspace of dimension 3. Similarly, if H is a plane of
P(V ), then every pair of lines of H have a common point and, again from
Lemma 12.15,

κ(H) := {Λ2L | L ⊆ H, dimL = 2 }

is a maximal totally singular subspace.

12.16 Theorem. The two classes of maximal totally singular subspaces
of Λ2V are

{κ(P ) | P is a point of P(V ) }, and

{κ(H) | H is a plane of P(V ) }.

Moreover, if P is a point and H is a plane of P(V ), then κ(P ) is adjacent to
κ(H) if and only if P ∈ H.

Proof. Suppose that E is a maximal totally singular subspace of Λ2V and
let ξ1, ξ2, ξ3 be a basis for E. If L1, L2 and L3 are the lines of P(V )
corresponding to ξ1, ξ2, and ξ3 respectively, then either L1, L2 and L3 have
a point P in common, or else H := 〈L1, L2, L3 〉 is a plane. In the first case
E is κ(P ); in the second case it is κ(H).

If κ(P ) is adjacent to κ(H), then κ(P ) ∩ κ(H) = 〈 ξ, η 〉, where 〈 ξ 〉 = Λ2L
and 〈 η 〉 = Λ2M . Then P ∈ L ∩M ⊆ H. Conversely, if P ∈ H, the lines
of H through P correspond to a 2-dimensional subspace of Λ2V and hence
κ(P ) is adjacent to κ(H).
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For each line L of P(V ), put κ(L) := Λ2L. Then κ defines an incidence
preserving bijection between the projective geometry P(V ) and the oriflamme
geometry of P(Λ2V ). This is the Klein correspondence.

Each totally singular line of P(Λ2V ) has the form κ(P ) ∩ κ(H) for a
unique point P and a unique plane H which contains P . Thus, under the
Klein correspondence, the totally singular lines of P(Λ2V ) correspond to the
incident point-plane pairs of P(V ). An interpretation of the non-singular
points of P(Λ2V ) will be given later in the section ‘Alternating Forms and
Reflections’.

The collineations of P(V ) induce automorphisms of the oriflamme geome-
try whereas the correlations of P(V ) interchange the two classes of maximal
totally singular subspaces. As a first step towards understanding this corre-
spondence we have the following result.

12.17 Theorem. For all f ∈ GL(V ) and for all ξ ∈ Λ2V we have

Q
(
(Λ2f)ξ

)
= det(f)Q(ξ).

Proof. Using Theorems 12.12 and 12.14, and equation (12.4) we have, for
all ϕ ∈ V ∗,

Q
(
(Λ2f)ξ

)
α−ϕ (ẽ) = α−ϕ

(
(Λ2f)ξ

)
∧ (Λ2f)ξ

= (Λ3f)(α−ϕf (ξ) ∧ ξ)
= Q(ξ) (Λ3f)α−ϕf (ẽ)

= Q(ξ)α−ϕ
(
(Λ4f)ẽ

)
= det(f)Q(ξ)α−ϕ (ẽ).

Thus Q
(
(Λ2f)ξ

)
= det(f)Q(ξ), as required.

For ξ ∈ Λ2V , we have ξ ∧ ξ = 2Q(ξ) ẽ and therefore, if the characteristic
of F is not 2, the above calculations can be simplified considerably.

If σ is an automorphism of F, and if f is the σ-semilinear transformation
of V such that f(ei) = ei, for 1 ≤ i ≤ 4, then for all bivectors ξ, we have
Q
(
(Λ2f)ξ

)
= σQ(ξ). Combining this observation with the theorem just

proved, we see that the map f 7→ Λ2f is a homomorphism from ΓL(V ) to
the full orthogonal group ΓO(Λ2V ). Every element of ΓO(Λ2V ) either fixes
or interchanges the two classes of maximal totally isotropic subspaces of Λ2V
and thus induces either a collineation or a correlation of P(V ). From what
we have just seen, every collineation and correlation of P(V ) must arise in
this way. Furthermore, as Λ2V is spanned by its singular points, an element
of ΓO(Λ2V ) that fixes every singular point is a scalar multiple of 1. The
group of all collineations and correlations of P(V ) is the group PΓL∗(V ),
introduced in Chapter 7, and we have established that
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12.18 Theorem. PΓL∗(V ) ' PΓO(Λ2V ).

This theorem is another expression of the Klein correspondence and from
it we can derive further isomorphisms between linear groups defined on V
and Λ2V . For example, if h ∈ SO(Λ2V ), then h induces a collineation of
P(V ) and therefore h = aΛ2f , for some a ∈ F× and some f ∈ ΓL(V ). In
fact f ∈ GL(V ) and from Theorem 12.17 we have a2 det(f) = 1. If we put

K(V ) := { (a, f) ∈ F× ×GL(V ) | det(f) = a−2 },

then the map
κ :K(V )→ SO(Λ2V ), (12.19)

defined by κ(a, f) := aΛ2f , is a homomorphism onto SO(Λ2V ), and the
kernel of κ is { (a−2, a1) | a ∈ F× } ' F×.

Note that K(V )/〈 (−1,1) 〉 ' { f ∈ GL(V ) | det(f) ∈ F2 } and if F is a
finite field, then |K(V )| = |GL(V )| and |SO(Λ2V )| = |SL(V )|.

The Groups SL(V ) and Ω(Λ2(V ))

By Theorem 4.3 (ii) we have SL(V )′ = SL(V ) and therefore Λ2f ∈ Ω(Λ2V )
for all f ∈ SL(V ). We identify the subgroup { (1, f) | f ∈ SL(V ) } of K(V )
with SL(V ) and consider the restriction of κ to this subgroup.

12.20 Theorem. The map κ :SL(V )→ Ω(Λ2V ) is a homomorphism onto
Ω(Λ2V ) whose kernel is {±1}.

Proof. We have K(V )′ = SL(V ), and by Theorem 11.45, SO(Λ2V )′ =
Ω(Λ2V ). The result now follows from (12.19).

The centre of SL(V ) consists of the scalar transformations a1 such that
a4 = 1 and it is mapped by κ to the centre of Ω(Λ2V ). Thus −1 ∈ Ω(Λ2V ) if
and only if −1 ∈ F2, a result which was obtained in Chapter 11 by calculating
the spinor norm of −1. We also see that one of the order coincidences of
p. 166 comes from an isomorphism of groups, namely

12.21 Corollary. PSL(4, q) ' PΩ+(6, q), for all prime powers q.

The group SL(V ) is generated by transvections and therefore it is of some
interest to determine the image of a transvection under the map κ. Not
surprisingly, the image is a Siegel transformation.

If ϕ ∈ V ∗, u ∈ V and ϕ(u) = 0, the transvection t := tϕ,u is defined by

t(v) := v + ϕ(v)u.
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Extend u to a basis u1 := u, u2, u3, u4 such that u1, u2, u3 is a basis for
kerϕ, ϕ(u4) = 1, and u1∧u2∧u3∧u4 = ẽ. Then for ξ ∈ 〈u1∧u2 〉⊥ we have

(Λ2t)ξ = ξ + β(ξ, u1 ∧ u3)u1 ∧ u2 (12.22)

and it follows from Theorem 11.18 (or directly from (11.17)) that κ(t) = Λ2t
is the Siegel transformation ρu1∧u2,u1∧u3

. Note that im(1−Λ2t) is the totally
singular subspace 〈u1 ∧ u2, u1 ∧ u3 〉 corresponding to the pair (〈u 〉, kerϕ),
via the Klein correspondence.

Correlations

It is time to study the elements of O(Λ2V ) that interchange the two classes
of maximal totally singular subspaces. We have already observed that these
transformations induce correlations of P(V ) and we know from Chapter 7
that every correlation is also induced by a semilinear map g : v 7→ γ(−, v),
where γ is a non-degenerate sesquilinear form.

Therefore, we begin with a non-degenerate σ-sesquilinear form γ and note
that Λ2g : Λ2V → Λ2V is a σ-semilinear isomorphism which sends u ∧ v to
γ(−, u) ∧ γ(−, v).

The symmetric form β is non-degenerate and it too defines an isomorphism
β̃ : Λ2V → Λ2V : ξ 7→ β(−, ξ). Combining these isomorphisms we obtain a
σ-semilinear transformation κ(g) := β̃−1Λ2g of Λ2V . In order to study the
properties of κ(g) we need an explicit formula for β̃−1, namely

12.23 Lemma. For all ϕ, ψ ∈ V ∗ we have β̃−1(ϕ ∧ ψ) = α−ψα
−
ϕ (ẽ).

Proof. Given u, v ∈ V , choose u′, v′ ∈ V such that ẽ = u ∧ v ∧ u′ ∧ v′.
Then from Theorem 12.14 (ii) and equations (12.9) and (12.5),

β(u ∧ v, α−ψα
−
ϕ (ẽ))ẽ = u ∧ v ∧ α−ψα

−
ϕ (ẽ)

= (ϕ(u)ψ(v)− ϕ(v)ψ(u))ẽ

= (ϕ ∧ ψ)(u ∧ v)ẽ.

Thus β(−, α−ψα−ϕ (ẽ)) = ϕ ∧ ψ and therefore β̃−1(ϕ ∧ ψ) = α−ψα
−
ϕ (ẽ).

(The quantity α−ψα
−
ϕ (ẽ) is the interior product ẽ (ϕ ∧ ψ) defined in

Chap. III, §11 of Bourbaki (1970). Thus β̃−1Φ = ẽ Φ for all Φ ∈ Λ2V .)

Let ω̃ be the element of Λ4V dual to ẽ, i.e., ω̃(ẽ) = 1. On applying
Theorem 12.14 (ii) to Λ2V we see that there is a symmetric bilinear form B
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defined on Λ2V such that for all Φ, Ψ ∈ Λ2V , we have Φ ∧ Ψ = B(Φ,Ψ) ω̃.

There is a corresponding isomorphism B̃ : Λ2V → Λ2V given by

B̃(Φ) := B(Φ,−).

12.24 Lemma. B̃ = β̃−1.

Proof. Suppose that ϕ, ψ ∈ V ∗ and Ψ ∈ Λ2V . Then from the previous
lemma and Theorem 12.11,

Ψβ̃−1(ϕ ∧ ψ) = Ψα−ϕα
−
ψ (ẽ)

= (ϕ ∧ ψ ∧Ψ)(ẽ)

= B(ϕ ∧ ψ,Ψ)ω̃(ẽ).

It follows that β̃−1(ϕ∧ψ) = B(ϕ∧ψ,−). The elements ϕ∧ψ span Λ2V and
thus the lemma is proved.

If W is a subspace of V , let W⊥ denote the orthogonal complement of W
with respect to γ (defined on p. 52).

12.25 Theorem. For all lines L of P(V ), we have κ(g)(Λ2L) = Λ2L
⊥.

Proof. Suppose that L := 〈u1, u2 〉 and extend u1, u2 to a basis u1, u2,
u3, u4 for V . For 1 ≤ i ≤ 4, put ϕi := γ(−, ui). Then ϕ1, ϕ2, ϕ3, ϕ4 is a
basis for V ∗ and we may choose u3 and u4 so that the dual basis v1, v2, v3,
v4 for V satisfies v1 ∧ v2 ∧ v3 ∧ v4 = ẽ. It follows from Theorem 12.11 that

(ϕi ∧ ϕj)(α−ϕ2
α−ϕ1

(ẽ)) = (ϕ1 ∧ ϕ2 ∧ ϕi ∧ ϕj)(ẽ)

=

{
1 if (i, j) = (3, 4)

0 otherwise,

and therefore
α−ϕ2

α−ϕ1
(ẽ) = v3 ∧ v4.

That is, from Lemma 12.23 and the definition of κ(g), we have

κ(g)(Λ2L) = 〈κ(g)(u1 ∧ u2) 〉 = 〈 v3 ∧ v4 〉 = Λ2L
⊥.

It is a consequence of this theorem that the collineation of P(Λ2V ) in-
duced by κ(g) coincides with the collineation obtained, via the Klein corre-
spondence, from the correlation of P(V ) induced by g. (We leave it as an
exercise to check the details.)

If f ∈ ΓL(V ) is σ-semilinear, the proof of Theorem 12.17 shows that for
all ξ ∈ Λ2V , Q(κ(f)ξ) = d(f)σQ(ξ), where d(f) ∈ F and (Λ4f)ẽ = d(f) ẽ.
Our next task is to establish an analogue of this result for κ(g).
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12.26 Theorem. For all σ-semilinear transformations g :V → V ∗ and all
ξ ∈ Λ2V we have

Q(κ(g)ξ) = d(g)σQ(ξ),

where d(g) := (Λ4g)(ẽ)ẽ.

Proof. From what we have just seen, this is true when ξ is decomposable,
for then both sides vanish. The decomposable bivectors span Λ2V and so
the theorem will be proved provided

β(κ(g)ξ, κ(g)η) = d(g)σβ(ξ, η)

for all decomposable ξ, η ∈ Λ2V .

Taking ξ := u ∧ v, it follows from Lemma 12.23, the definition of κ, and
Theorem 12.11 that

β(κ(g)ξ, κ(g)η) =
(
(Λ2g)η

)
(α−g(v)α

−
g(u)(ẽ))

= (g(u) ∧ g(v) ∧ (Λ2g)η)(ẽ)

= (Λ4g)(ξ ∧ η)(ẽ)

= d(g)σβ(ξ, η),

where in the last step we have used Theorem 12.14 (ii).

(If γ is a bilinear form, then d(g) = det
(
γ(ei, ej)

)
is the discriminant of γ.)

For all f ∈ ΓL∗(V ) we have an element κ(f) of ΓO(Λ2V ), but the map
κ :ΓL∗(V )→ ΓO(Λ2V ) is not quite a homomorphism. The extent to which
it differs from a homomorphism is governed by the next lemma. The scalar
factor d(f) appearing there is ω̃(Λ4f)ẽ if f is an element of GL(V ), or
(Λ4f)(ẽ)ẽ if f :V → V ∗. For f ∈ ΓL∗(V ), f denotes the inverse of the
transpose f∗ of f .

12.27 Lemma. For all f ∈ ΓL∗(V ),

(Λ2f)β̃−1 =

{
d(f) β̃−1Λ2f if f :V → V ,

d(f) β̃Λ2f if f :V → V ∗.

Proof. If f ∈ ΓL(V ), then from Lemma 12.23 and Theorem 12.12, and
for all ϕ, ψ ∈ V ∗, we have

(Λ2f)β̃−1(ϕ ∧ ψ) = (Λ2f)α−ψα
−
ϕ (ẽ)

= α−
f̄(ψ)

α−
f̄(ϕ)

(ẽ)

= d(f) β̃−1(Λ2f)(ϕ ∧ ψ),
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and hence (Λ2f)β̃−1 = d(f) β̃−1(Λ2f).

Similarly, if f :V → V ∗, then for all u, v ∈ V ,

(Λ2f)β̃−1(Λ2f
∗)(u ∧ v) = (Λ2f)α−f∗(v)α

−
f∗(u)(ẽ)

= α−v α
−
u (Λ4f)(ẽ)

= d(f)α−v α
−
u (ω̃)

= d(f) B̃−1(u ∧ v)

= d(f) β̃(u ∧ v)

Thus (Λ2f)β̃−1(Λ2f
∗) = d(f) β̃ and this completes the proof.

12.28 Theorem. If f, g ∈ ΓL∗(V ), then

κ(f)κ(g) =

{
κ(f ◦ g) if g :V → V ,

d(f)κ(f ◦ g) if g :V → V ∗.

Proof. This follows directly from the previous lemma and the definition of
the product in ΓL∗(V ) (given in Chapter 7).

For f ∈ ΓL∗(V )\ΓL(V ), the definition of κ(f) depends on ẽ. Changing ẽ
to aẽ replaces β by a−1β and κ by aκ (Exercise 12.9). Even though the map
κ :ΓL∗(V )→ ΓO(Λ2V ) is not a homomorphism, it induces the isomorphism
of Theorem 12.18. On the other hand it is possible to obtain a homomorphism
from κ as follows.

Let GL∗(V ) denote the group of linear transformations in ΓL∗(V ), and
put

K∗(V ) := { (a, f) ∈ F× ×GL∗(V ) | d(f) = a−2 }.

Make K∗(V ) into a group by defining the product of (a, f) and (b, g) to be

(a, f) ◦ (b, g) :=

{
(ab, fg) if g :V → V

(a−1b, fg) if g :V → V ∗.

According to Exercise 12.10 (i), for f, g ∈ GL∗(V ) we have

d(f ◦ g) =

{
d(f)d(g) if g :V → V

d(f)−1d(g) if g :V → V ∗

and therefore K∗(V ) is closed with respect to this product.
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12.29 Theorem. The map κ :K∗(V ) → O(Λ2V ) defined by κ(a, f) :=
aκ(f) is a homomorphism onto O(Λ2V ) whose kernel is

{ (a−2, a1) | a ∈ F× }.

Proof. Exercise 12.10 (iii).

Alternating Forms and Reflections

Suppose that γ is a non-degenerate alternating form on V and let u1, v1,
u2, v2 be a symplectic basis for V with respect to γ. The discriminant of
γ with respect to this basis is 1 and therefore, if u1 ∧ v1 ∧ u2 ∧ v2 = aẽ,
then d(g) = a−2, where g is the map v 7→ γ(−, v). Thus (a, g) ∈ K∗(V ) and
(a, g)2 = (1,−1).

The map β̃ : Λ2V → Λ2V is a bijection and therefore there is a unique
bivector γ0 such that, for all u, v ∈ V ,

γ(u, v) = β(u ∧ v, γ0). (12.30)

From Theorem 12.14 (ii) this is equivalent to

γ(u, v)ẽ = u ∧ v ∧ γ0.

A direct calculation shows that γ0 = a−1(u1 ∧ v1 + u2 ∧ v2) and therefore
Q(γ0) = β(u1 ∧ v1, u2 ∧ v2)−1 = a−1 6= 0. (We call Q(γ0) the Pfaffian of γ.)

Conversely, if Q(ξ) 6= 0, then any hyperbolic line through 〈 ξ 〉 has just two
singular points and therefore we may write ξ = e1 ∧ f1 + e2 ∧ f2, where e1,
f1, e2, f2 is a symplectic basis for the alternating form (u, v) 7→ β(u ∧ v, ξ).
It follows that β̃ restricts to a bijection between the non-singular bivectors
and the non-degenerate alternating forms on V .

12.31 Theorem. Let g be the map v 7→ γ(−, v), where γ is the alternating
form β(−, γ0) corresponding to the non-singular bivector γ0, and let a :=
Q(γ0)−1. Then (−a, g) ∈ K∗(V ) and κ(−a, g) is the reflection in 〈 γ0 〉⊥.
Moreover, the map κ :K∗(V )→ O(Λ2V ) restricts to a homomorphism from
Sp(V ) onto Ω(〈 γ0 〉⊥) whose kernel is {±1}.

Proof. We have d(g) = (−a)−2 and therefore (−a, g) ∈ K∗(V ). If u1,
v1, u2, v2 is a symplectic basis for V with respect to γ, then (as above)
u1∧v1∧u2∧v2 = aẽ. A direct calculation, similar to the one of Theorem 12.25,
shows that κ(−a, g) interchanges u1 ∧ v1 and −u2 ∧ v2, and fixes u1 ∧ u2,
u1 ∧ v2, v1 ∧ u2 and v1 ∧ v2. Thus

κ(−a, g)ξ = ξ − aβ(ξ, γ0)γ0
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and therefore κ(−a, g) is the reflection in 〈 γ0 〉⊥.

The symplectic group Sp(V ) defined by γ consists of the elements of GL(V )
that commute with g. If f ∈ Sp(V ), it follows from (12.30) that Λ2f =
κ(1, f) fixes γ0 and preserves Q, hence κ(1, f) ∈ O(W ), where W := 〈 γ0 〉⊥.
In fact, κ(1, f) ∈ Ω(W ), because Sp(V )′ = Sp(V ).

Conversely, suppose that h ∈ Ω(W ). Then by Witt’s theorem and the fact
that Ω(W ) = O(W )′, h can be extended to an element of Ω(Λ2V ) that fixes
γ0. From Theorem 12.20, h = κ(1, f) for some f ∈ SL(V ). Then the com-
mutator [g, f ] belongs to SL(V ) and κ[(−a, g), (1, f)] ∈ Ω(Λ2V ) fixes every
vector of W ; hence it must be the identity. It follows that g◦f = ±f ◦g. That
is, for all u, v ∈ V , either γ(f(u), f(v)) = γ(u, v) or γ(f(u), f(v)) = −γ(u, v).
But if γ(f(u), f(v)) = −γ(u, v), it follows from (12.30) that (Λ2f)γ0 = −γ0.
Hence we must have f ∈ Sp(V ).

As a corollary we lift another of the order coincidences of p. 166 to an
isomorphism of groups.

12.32 Corollary. PSp(4, q) ' PΩ(5, q), for all prime powers q.

Under the Klein correspondence, the totally isotropic lines of P(V ) (with
respect to γ) correspond to the singular points of P(〈 γ0 〉⊥). If P is a point
of P(V ), then κ(P ) ∩ κ(P⊥) is the totally singular line of P(〈 γ0 〉⊥) whose
points represent the totally isotropic lines of P(V ) through P . The con-
figuration of points and totally isotropic lines of P(V ) is a (symplectic)
generalized quadrangle. Under the Klein correspondence it is dual to the
(orthogonal) generalized quadrangle of singular points and totally singular
lines of P(〈 γ0 〉⊥).

Hermitian Forms of Witt Index 2

Let γ be a non-degenerate σ-hermitian form on V and let g :V → V ∗ be the
associated σ-semilinear map v 7→ γ(−, v). As in Chapter 10, let F0 be the
fixed field of σ, and for x ∈ F, write x̄ as an abbreviation for σ(x).

We shall suppose that the Witt index of γ is 2. If F is finite, this is
the only possibility. But if F is infinite, γ could have Witt index 0 or 1. See
Dieudonné (1952) and Ohara (1958) for the details concerning forms of index
0 and 1.

As σ2 = 1, we may write F = F0[θ], where θ satisfies the irreducible
quadratic equation x2 − ax+ b = 0, with coefficients a := θ + θ̄ and b := θθ̄
in F0. For future use we let δ be an element of F× such that δ̄ = −δ. If the
characteristic of F is not 2, we may take θ to be δ.
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Choose a basis u1, v1, u2, v2 for V such that 〈u1, v1 〉 = 〈u2, v2 〉⊥, and
(u1, v1) and (u2, v2) are hyperbolic pairs for γ. The form γ will remain fixed
throughout this section and therefore we may as well set ẽ := u1∧v1∧u2∧v2.
Then d(g) = 1 and Q(κ(g)ξ) = σQ(ξ), for all ξ ∈ Λ2V .

For u, v ∈ V , it follows from Lemma 12.23 that

κ(g)(u ∧ v) = α−γ(−,v)α
−
γ(−,u)(ẽ),

and hence the action of κ(g) on Λ2V is given by:

κ(g)(u1 ∧ v1) = −u2 ∧ v2,

κ(g)(u1 ∧ u2) = −u1 ∧ u2,

κ(g)(u1 ∧ v2) = u1 ∧ v2,

κ(g)(u2 ∧ v2) = −u1 ∧ v1,

κ(g)(v1 ∧ v2) = −v1 ∧ v2,

κ(g)(v1 ∧ u2) = v1 ∧ u2.

The map κ(g) is σ-semilinear and therefore its set of fixed points is the
vector space W0 over F0 with basis

ξ1 := u1 ∧ v1 − u2 ∧ v2,

ξ3 := δu1 ∧ u2,

ξ5 := u1 ∧ v2,

ξ2 := −θu1 ∧ v1 + θ̄u2 ∧ v2,

ξ4 := δv1 ∧ v2,

ξ6 := v1 ∧ u2.

For ξ :=
∑6
i=1 xiξi, we have

Q(ξ) = −x2
1 + ax1x2 − bx2

2 − δ2x3x4 + x5x6

and so the restriction of Q to W0 is a quadratic form of Witt index 2.

12.33 Lemma. If κ(g)ξ = λξ, for some λ ∈ F and some non-zero ξ ∈ Λ2V ,
then µξ ∈W0, for some µ ∈ F.

Proof. We have κ(g)2 = 1, and therefore ξ = κ(g)2ξ = λλ̄ξ. Thus λλ̄ = 1
and from Lemma 10.1 (iv), λ = µ/µ̄ for some µ ∈ F. Then κ(g)(µξ) = µξ,
as required.

From Theorem 12.25, a line L of P(V ) is totally isotropic if and only if
Λ2L is fixed by κ(g). From the lemma just proved, this is the case if and only
if (Λ2L) ∩W0 6= ∅. Thus the Klein correspondence restricts to a bijection
between the totally isotropic lines of P(V ) and the singular points of P(W0).
Moreover, if P is an isotropic point of P(V ), then κ(P )∩W0 = κ(P⊥)∩W0 is
the totally singular line of P(W0) whose points represent the totally isotropic
lines of P(V ) through P . Two isotropic points of P(V ) span a totally
isotropic line of P(V ) if and only if the corresponding totally singular lines of



198 12. The Klein Correspondence

P(W0) have a unique common point. Thus, under the Klein correspondence,
the (unitary) generalized quadrangle of totally isotropic points and lines of
P(V ) is dual to the (orthogonal) generalized quadrangle of totally singular
points and lines of P(W0).

Let SU(V ) be the special unitary group defined by γ. If f ∈ SU(V ),
then κ(f) preserves Q and from Theorem 12.28 (and because d(g) = 1),
κ(f) commutes with κ(g). Hence κ(f) acts on W0. As SU(V )′ = SU(V ),
it follows that κ(f) ∈ Ω(W0). We shall show that every element of Ω(W0)
arises in this way, but first we need an analogue of (12.19).

For f ∈ GL(V ) and a ∈ F×, the condition [g, f ] = a1 is equivalent to
g−1f∗−1gf−1 = a1, which in turn is equivalent to aγ(f(u), f(v)) = γ(u, v)
for all u, v ∈ V . From this last condition it is easy to see that a ∈ F0. The
appropriate analogue of the group K(V ) appearing in (12.19) is the subgroup

Kγ(V ) := { (a, f) ∈ F×0 ×GL(V ) | [g, f ] = ±a1, det(f) = a−2 }.

For (a, f) ∈ Kγ(V ), we have κ(a, f) ∈ SO(Λ2V ) and as κ(a, f) commutes
with κ(1, g), it follows that κ(a, f) ∈ SO(W0).

12.34 Theorem. The map κ :Kγ(V ) → SO(W0) is a homomorphism
onto SO(W0) whose kernel is {(a−2, a1) | a ∈ F×0 or a+ ā = 0 }.

Proof. Every element of O(W0) extends uniquely to an element of O(Λ2V )
and so we may identify O(W0) with a subgroup of O(Λ2V ). The Dickson
invariant D :O(W0) → Z2 restricts to the Dickson invariant of O(W0) and
therefore we may regard h ∈ SO(W0) as an element of SO(Λ2V ). Then by
(12.19) we may write h = κ(a, f), where (a, f) ∈ K(V ). The commutator
[(1, g), (a, f)] belongs to K(V ) and is mapped to 1 by κ, therefore [g, f ] = b1
for some b ∈ F×0 such that a2 = b2. Thus a = ±b and therefore (a, f) ∈
Kγ(V ). It follows that κ :Kγ(V )→ SO(W0) is onto.

For a ∈ F, we have [g, a1] = (aā)−11 and therefore (a−2, a1) ∈ Kγ(V ) if
and only if a ∈ F×0 or a+ ā = 0.

If we identify SU(V ) with the subgroup { (1, f) | f ∈ SU(V ) } of Kγ(V ),
then

12.35 Corollary. The map κ restricts to a homomorphism from SU(V )
onto Ω(W0) whose kernel is {±1}.

Proof. If (a1, f1), (a2, f2) ∈ Kγ(V ), then [g, [f1, f2]] = 1 and therefore
Kγ(V )′ = SU(V ). From Theorem 11.45, SO(W0)′ = Ω(W0), thus κ maps
SU(V ) onto Ω(W0). It is clear that the kernel is {±1}.

12.36 Corollary. PSU(4, q) ' PΩ−(6, q) for all prime powers q.
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Four-Dimensional Orthogonal Groups

It remains to describe the connections between the four-dimensional orthog-
onal groups and other linear groups. Rather than continue with the methods
of the previous two sections we prefer to obtain the necessary homomor-
phisms by restricting κ to the stabilizers of various hyperbolic pairs. Other
approaches are outlined in the exercises.

Suppose that (ξ, η) is a hyperbolic pair (with respect to Q) in Λ2V . Then
there is a basis e1, e2, e3, e4 for V such that ξ := e1 ∧ e2, η := e3 ∧ e4 and
e1∧e2∧e3∧e4 = ẽ. The restriction of Q to W := 〈 ξ, η 〉⊥ is a non-degenerate
quadratic form of Witt index 2 and we identify O(W ) with the subgroup of
O(Λ2V ) that fixes ξ and η. Let E := 〈 e1, e2 〉 and F := 〈 e3, e4 〉, and identify
GL(E) (resp. GL(F )) with the subgroup of GL(V ) fixing E (resp. F ) and
acting on F (resp. E) as the identity. Then the stabilizer in GL(V ) of the
pair (E,F ) is GL(E)×GL(F ). If we put

K(E,F ) := { (f, f ′) ∈ GL(E)×GL(F ) | det(f) = det(f ′) },

then the map (f, f ′) 7→ (det(f)−1, ff ′) identifies K(E,F ) with a subgroup
of K(V ) and we have

12.37 Theorem. The map (f, f ′) 7→ det(f)−1Λ2(ff ′) is a homomor-
phism from K(E,F ) onto SO(W ) whose kernel is { (a1E , a1F ) | a ∈ F× }.
Proof. If (f, f ′) ∈ K(E,F ), then the transformation det(f)−1Λ2(ff ′) ∈
SO(Λ2V ) fixes ξ and η, and thus belongs to SO(W ).

Conversely, if h ∈ SO(W ), then hmay be regarded as an element of SO(Λ2V )
that fixes ξ and η. From (12.19), h = κ(a, ff ′), where f ∈ GL(E) and
f ′ ∈ GL(F ). Then κ(a, ff ′)ξ = adet(f)ξ, whence det(f) = a−1. Similarly,
det(f ′) = a−1 and it follows that h = det(f)−1Λ2(ff ′).

It is clear that the kernel is { (a1E , a1F ) | a ∈ F× }.

12.38 Corollary. Except when F = F2, the map SL(E)×SL(F )→ Ω(W )
defined by (f, f ′) 7→ Λ2(ff ′) is a homomorphism onto Ω(W ) whose kernel is
〈 (−1E ,−1F ) 〉.
Proof. From Theorem 11.45 SO(W )′ = Ω(W ) and, except when F = F2,
it follows from Theorem 4.4 that K(E,F )′ = SL(E)× SL(F ).

12.39 Corollary. Except for q = 2, PΩ+(4, q) ' PSL(2, q) × PSL(2, q)
for all prime powers q.

Let g be the linear transformation v 7→ γ(−, v), where γ is the alternating
form for which (e1, e3) and (e2, e4) are orthogonal hyperbolic pairs. Then E
and F are totally isotropic with respect to γ and κ(g) fixes ξ and η. From
Theorem 12.31, κ(g) is the reflection in 〈 γ0 〉⊥, where γ0 := −e1∧e3−e2∧e4.
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12.40 Lemma. If f ∈ GL(E), then g ◦ f ◦ g−1 ∈ GL(F ).

Proof. Put f ′ := g ◦ f ◦ g−1 (= g−1f∗−1g). Then γ(f(u), f ′(v)) = γ(u, v)
for all u, v ∈ V . As E⊥ = E and F⊥ = F , it is clear that f ′ fixes both E
and F . Moreover, for u, u1 ∈ E and v1 ∈ F ,

γ(f(u1 + v1), f ′(u)) = γ(f(v1), f ′(u))

= γ(v1, u)

= γ(f(v1), u),

whence f ′(u) = u for all u ∈ E. Thus f ′ ∈ GL(F ).

It follows from this lemma that g normalizes K(E,F ) and therefore we
can form the semidirect product K(E,F )〈 g 〉. The map of Theorem 12.37
extends to a surjective homomorphism

K(E,F )〈 g 〉 → O(W ).

The restriction of Q to the three-dimensional subspace W ∩ 〈 γ0 〉⊥ is a
non-degenerate quadratic form of Witt index 1 and the methods of Theo-
rems 12.31 and 12.34 lead to a new proof of Theorem 11.6 (Exercise 12.16).

For the remainder of this section let γ be a non-degenerate σ-hermitian
form of Witt index 2 on V and let F0 be the fixed field of σ. We shall
use the notation introduced at the beginning of the previous section. Thus
g := γ(−, v) and W0 is the vector space (over F0) of the fixed points of κ(g).
As before, ẽ := u1 ∧ v1 ∧ u2 ∧ v2, where (u1, v1) and (u2, v2) are orthogonal
hyperbolic pairs for γ. Then E0 := 〈u1, v2 〉 and F0 := 〈u2, v1 〉 are totally
isotropic with respect to γ, ξ := u1 ∧ v2 and η := v1 ∧ u2 belong to W0, and
(ξ, η) is a hyperbolic pair for the restriction of Q to W0. (In the previous
section ξ and η were labelled ξ5 and ξ6, respectively.)

In this case the restriction of Q to W1 := W0∩〈 ξ, η 〉⊥ is a non-degenerate
quadratic form of Witt index 1.

12.41 Theorem. The map (ε, f) 7→ det(f)Λ2

(
(εf)g−1f∗−1g

)
is a homo-

morphism from the group {±1}×{ f ∈ GL(E0) | det(f) ∈ F0 } onto SO(W1)
whose kernel is { (1, a1) | a ∈ F×0 }.

Proof. Suppose that h ∈ SO(W1). As usual we may regard h as an element
of SO(W0) that fixes ξ and η. Then from Theorem 12.34 we may write
h := κ(a, ff ′), where a ∈ F×0 , f ∈ GL(E0), f ′ ∈ GL(F0), and (a, ff ′) ∈
Kγ(V ). Thus [g, ff ′] = εa1, where ε = ±1, and as in Theorem 12.37 we
have det(f) = det(f ′) = a−1. The condition [g, ff ′] = εa1 is equivalent to
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f ′(v) := εdet(f)g−1f∗−1g(v), for all v ∈ F0, and thus h has the required
form. Conversely, every element of this form is in SO(W1).

If the characteristic of F is not 2, then (−1,1) is mapped to −1W1
and

thus −1W1 /∈ Ω(W1)—a result that can also be obtained by calculating the
spinor norm.

12.42 Corollary. The map f 7→ Λ2(fg−1f∗−1g) is a homomorphism from
SL(E0) onto Ω(W1). Its kernel is {±1}.

Proof. This follows immediately from the theorem by passing to the de-
rived groups.

Finally, we have the last of the isomorphisms corresponding to the order
coincidences of p. 166.

12.43 Corollary. PΩ−(4, q) ' PSL(2, q2) for all prime powers q.

Generalized Quadrangles and Duality

As pointed out by Todd (1970), one can obtain an isomorphism between
Sp(4, 2k) and O(5, 2k) either by taking m = 2 in Theorem 11.9 or by taking
q = 2k in Corollary 12.32, but the geometric reasons for these isomorphisms
are quite different. We shall see that this situation yields simple construc-
tions for an outer automorphism of Sp(4, 2k) (see also Duncan (1968)), and,
when k is odd, a new family of finite simple groups, first discovered by
Suzuki (1960). We follow the exposition of Tits (1960) and make extensive
use of Lüneburg (1965).

Suppose that V is a four-dimensional vector space over a perfect field F
of characteristic 2 and let γ be a non-degenerate alternating form on V . Let
u1, v1, u2, v2 be a symplectic basis for V and put ẽ := u1 ∧ v1 ∧ u2 ∧ v2. Let
Q be the quadratic form defining the Klein quadric on Λ2V and let β be its
polar form. Then γ0 := u1 ∧ v1 + u2 ∧ v2 is the bivector corresponding to γ
and the restriction of Q to W := 〈 γ0 〉⊥ is non-degenerate. In this case, β is
an alternating form and the radical of W with respect to β is 〈 γ0 〉.

The alternating form β̄ induced by β on W := W/〈 γ0 〉 is non-degenerate
and therefore W is isometrically isomorphic to V . We need an explicit iso-
morphism and to this end we use the linear transformation p :W → V such
that

p(u1 ∧ u2) := u1,

p(u1 ∧ v2) := u2,

p(v1 ∧ v2) := v1,

p(v1 ∧ u2) := v2,
and p(γ0) := 0.

The map p̄ :W → V induced by p is the required isomorphism.
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Let Q be the generalized quadrangle of points and totally isotropic lines of
P(V ). If L := 〈u, v 〉 is a totally isotropic line, then δ(L) := 〈 p(u ∧ v) 〉 ∈ Q
and the discussion preceding Theorem 11.9 shows that δ is a bijection between
the lines and points of Q. Moreover, if P is a point of Q, then κ(P ) ∩W =
κ(P⊥)∩W is a totally singular line of P(W ) and hence δ(P ) := p(κ(P )∩W )
is a line of Q. By construction, the point P is on the line L if and only if δ(L)
is on δ(P ). Thus δ is a bijection between the points and lines of Q which
reverses the incidence relation.

If f ∈ Sp(V ), then Λ2f ∈ O(W ) and, as shown in Theorem 11.9, there is
an induced map Λ2f ∈ Sp(W ). Let f ′ := p̄(Λ2f)p̄−1 be the corresponding
element of Sp(V ). If t ∈ Sp(V ) is a transvection, then Λ2t is a Siegel trans-
formation and im(1−Λ2t) is a totally singular line of P(W ). Thus im(1− t′)
is a totally isotropic line of P(V ) and therefore t′ is not a transvection. It
follows that the automorphism f 7→ f ′ of Sp(V ) is not inner.

Given P := 〈u 〉 ∈ P(V ), we have κ(P ) ∩ W = 〈u ∧ v, u ∧ w 〉, where
P⊥ = 〈u, v, w 〉. Thus δ(P ) = 〈 p(u ∧ v), p(u ∧ w) 〉 and so

δ2(P ) = 〈 p
(
p(u ∧ v) ∧ p(u ∧ w)

)
〉.

For u := x1u1 +y1v1 +x2u2 +y2v2, a tedious but straightforward calculation
shows that

p(u ∧ v) ∧ p(u ∧ w) =

γ(v, w)((x1y1 + x2y2)γ0 + x2
1u1 ∧ u2 + y2

1v1 ∧ v2 + x2
2u1 ∧ v2 + y2

2v1 ∧ u2).
(12.44)

and hence

δ2(x1u1 + y1v1 + x2u2 + y2v2) = γ(u, v)(x2
1u1 + y2

1v1 + x2
2u2 + y2

2v2).

Thus δ2(P ) = τ(P ), where τ is the field automorphism x 7→ x2.

If F has an automorphism σ such that τ = σ2, then the map ρ := σ−1δ
satisfies ρ2 = 1 and plays the rôle of a polarity for the symplectic generalized
quadrangle Q.

The Suzuki Groups

We retain the notation of the previous section and from now on suppose that
F has an automorphism σ such that σ2(x) = x2 for all x ∈ F. If F is finite,
this is the case if and only if F = F2k , where k is odd: if k = 2` + 1, take

σ(x) := x2`+1

; if k is even, then F2k contains F4 and in this case it is easy to
see that σ does not exist.)
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The points P ∈ Q such that P ∈ ρ(P ) can be thought of as the “isotropic
points” for the “polarity” ρ and we put

O := {P ∈ Q | P ∈ ρ(P ) }.

This is the Suzuki ovoid introduced by Tits (1960). The group Sp(V ) acts
faithfully on Q and we define the Suzuki group Sz(F) to be the subgroup of
Sp(V ) that leaves O invariant. The Coxeter-Dynkin diagram for Sp(V ) is of
type B2 and therefore the groups Sz(F) are sometimes said to be of “twisted
type” B2 and denoted by 2B2(F).

We shall see that Sz(F) acts doubly transitively on O and that our treat-
ment of Sz(F) bears a certain resemblance to the treatment of the three-
dimensional unitary and orthogonal groups given in Chapters 10 and 11—the
ovoid O playing the rôle of the isotropic (resp. singular) points of P(V ).

If P := 〈u 〉 and if u, v, w is a basis for P⊥, then P ∈ O if and only if
σ(u)∧ p(u∧ v)∧ p(u∧w) = 0. When u := x1u1 + y1v1 + x2u2 + y2v2, we see
from (12.44) that P ∈ O if and only if

y2
1σ(x1) + x2

2σ(y1) + x1y1σ(y2) + x2y2σ(y2) = 0,

x2
1σ(y1) + y2

2σ(x1) + x1y1σ(x2) + x2y2σ(x2) = 0,

x2
1σ(y2) + x2

2σ(x2) + x1y1σ(x1) + x2y2σ(x1) = 0, and

y2
1σ(x2) + y2

2σ(y2) + x1y1σ(y1) + x2y2σ(y1) = 0.

(12.45)

If y1 = 0, these equations show that x2 = y2 = 0 and consequently
〈u1 〉⊥ ∩ O = 〈u1 〉. If y1 6= 0, put x := y2/y1, y := x2/y1, and z := x1/y1.
Then the equations of (12.45) reduce to the single condition

z + xy + σ(y) + x2σ(x) = 0. (12.46)

Thus

O = 〈u1 〉 ∪ { 〈 zu1 + yu2 + xv2 + v1 〉 | z + xy + σ(y) + x2σ(x) = 0 }.

In particular, if F = Fq, then |O| = q2 + 1.

The matrix of the form γ with respect to the basis u1, u2, v2, v1, is

J :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


and we shall represent the elements of Sz(F) by matrices with respect to this
same basis. Our immediate aim is determine the stabilizer of 〈u1 〉 in Sz(F).
In order to achieve this we need the following lemma of Artin.
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12.47 Lemma. Distinct functions χ1, χ2, . . . , χk from F to itself such that
χi(xy) = χi(x)χi(y) for all i and for all x, y ∈ F are linearly independent.

Proof. Suppose that i is minimal subject to a1χ1 + a2χ2 + · · ·+ aiχi = 0,
where a1, a2, . . . ai ∈ F and ai 6= 0. For every x ∈ F we have

a1χ1(x)χ1 + a2χ2(x)χ2 + · · ·+ aiχi(x)χi = 0

and therefore

a1(χi(x)− χ1(x))χ1 + · · ·+ ai−1(χi(x)− χi−1(x))χi−1 = 0.

If j is the largest integer less than i such that aj 6= 0, choose x so that
χi(x) 6= χj(x). This contradicts the minimality of i.

12.48 Lemma. Except when F = F2, an element of Sz(F) fixes 〈u1 〉 and
〈 v1 〉 if and only if it is represented by a matrix of the form

H(k) :=


kσ(k) 0 0 0

0 k 0 0
0 0 k−1 0
0 0 0 k−1σ(k)−1

 ,

where k ∈ F×.

Proof. An element f ∈ Sp(V ) that fixes both 〈u1 〉 and 〈 v1 〉 is represented
by a matrix of the form 

e 0 0 0
0 a b 0
0 c d 0
0 0 0 e−1

 ,

where ad+ bc = 1. The image of 〈σ(y)u1 + yu2 + v1 〉 ∈ O under f is

〈 eσ(y)u1 + ayu2 + cyv2 + e−1v1 〉

and therefore, from (12.46), if f fixes O, we have

(e2 + σ(ae))σ(y) + (ace2)y2 + (c2σ(c)e2σ(e))y2σ(y) = 0

for all y ∈ F. If F 6= F2, the multiplicative functions σ, y 7→ y2 and y 7→
y2σ(y) are distinct and therefore the previous lemma shows that c = 0 and
e2 = σ(ae).

Similarly, the image of 〈x2σ(x)u1 + xv2 + v1 〉 under f is

〈 ex2σ(x)u1 + bxu2 + dxv2 + e−1v1 〉,
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and hence

σ(be)σ(x) + (bde2)x2 + (e2 + d2σ(d)e2σ(e))x2σ(x) = 0

for all x ∈ F. Therefore b = 0, d2σ(de) = 1 and then d = a−1 and σ(e) =
a2σ(a). Applying σ and using the fact that x 7→ x2 is an automorphism of
F yields e = aσ(a) and thus f is represented by H(a).

Conversely, it is a simple matter to check that every element of Sp(V ) rep-
resented by a matrix of the form H(k) is in Sz(F) and fixes 〈u1 〉 and 〈 v1 〉.

The next step is to determine the stabilizer of 〈u1 〉. For a, b ∈ F we put

T (a, b) :=


1 a aσ(a) + b ab+ σ(b) + a2σ(a)
0 1 σ(a) b
0 0 1 a
0 0 0 1


and note that

T (a, b)T (c, d) = T (a+ c, b+ d+ cσ(a)). (12.49)

It is easily checked that T (a, b)tJT (a, b) = J and therefore T (a, b) repre-
sents an element of Sp(V ). Let T be the subgroup of Sp(V ) whose elements
are represented by the matrices T (a, b).

12.50 Lemma. The group T fixes 〈u1 〉 and acts regularly on O\{〈u1 〉}.

Proof. If P := 〈 zu1 + yu2 + xv2 + v1 〉 is a point of O, then from (12.46)
the image of P under T (a, b) is also a point of O. Moreover, T (a, b) maps
〈 v1 〉 to 〈 cu1 + bu2 + av2 + v1 〉, where c := ab + σ(b) + a2σ(a), and thus T
acts regularly on O \ {〈u1 〉}.

Let H be the subgroup of Sp(V ) whose elements are represented by the
matrices H(k). Another simple matrix calculation shows that

H(k)T (a, b)H(k)−1 = T (σ(k)a, k2σ(k)b). (12.51)

and therefore H normalizes T .

From (12.49) we have T (a, b)−1 = T (a, aσ(a) + b) and therefore

[H(k), T (a, b)] = T ((1 + σ(k))a, (1 + k2σ(k))b+ (1 + k2)aσ(a)).

If F 6= F2, it follows that every element of T is a commutator and therefore
(TH)′ = T .
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12.52 Corollary. Sz(F)〈u1 〉 = TH.

Proof. If f ∈ Sz(F) fixes 〈u1 〉, then for some t ∈ T we have f(v1) =
t(v1). Thus t−1f fixes 〈u1 〉 and 〈 v1 〉 and by Lemma 12.48, it belongs to H.
Therefore, f ∈ TH.

In order to complete the picture we need an element of Sz(F) that moves
〈u1 〉. We let w be the element of Sp(V ) represented by the matrix J . Then
w maps x1u1 +x2u2 +y1v1 +y2v2 to y1u1 +y2u2 +x1v1 +x2v2. Interchanging
the symbols x and y in (12.45) swaps the first and second and also the third
and fourth equations. Thus w preserves O; i.e., w ∈ Sz(F). By construction
w interchanges 〈u1 〉 and 〈 v1 〉 and for all k ∈ F× we have

wH(k)w−1 = H(k)−1. (12.53)

12.54 Theorem. If F 6= F2, the group Sz(F) acts doubly transitively on
the points of O and only the identity element fixes more than 2 points.

Proof. From what we have proved so far it is clear that Sz(F) = 〈w, T,H 〉
acts doubly transitively on O. Thus if f ∈ Sz(F) fixes two points, we may
suppose the points to be 〈u1 〉 and 〈 v1 〉. Then Lemma 12.48 shows that
f = H(k) for some k. Now a matrix calculation shows that f fixes a further
point if and only if k = 1.

Suppose that q := 2k, where k > 1 is odd. Then |T | = q2, |H| = q − 1,
and therefore

|Sz(q)| = q2(q − 1)(q2 + 1).

12.55 Lemma. If F 6= F2, then Sz(F) has a single conjugacy class of
elements of order 2, and these elements generate Sz(F).

Proof. It follows from (12.53) that (H(k)w)2 = 1 and thus H(k) is the
product of two elements of order 2. We noted above that every element of
T is a commutator [H(k), T (a, b)] for some k, a, b ∈ F and therefore T is
contained in the subgroup generated by the elements of order 2. We also
have w2 = 1 and therefore Sz(F) is generated by the elements of order 2.

It remains to show that Sz(F) has a single conjugacy class of elements of
order 2. So suppose that 1 6= f ∈ Sz(F) and f2 = 1. Then f interchanges
two points, which by double transitivity we may take to be 〈u1 〉 and 〈 v1 〉.
Thus f ∈ H〈w 〉 and we may suppose that f := H(k)w for some k ∈ F. The
map x 7→ x2 is an automorphism of F and therefore there exists ` ∈ F such
that k = `2 and then f = H(`)wH(`)−1. Thus all elements of order 2 in
Sz(F ) are conjugate.
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12.56 Theorem. Except when F = F2, the groups Sz(F) are simple.

Proof. The group Sz(F) is doubly transitive on O and a fortiori it is
primitive.

The product formula (12.49) shows that

[T (a, b), T (c, d)] = T (0, aσ(c) + cσ(a))

and thus T ′ is an abelian normal subgroup of Sz(F)〈u1 〉 which contains an
element of order 2. It follows from lemma 12.55 that the conjugates of T ′

generate Sz(F) and that Sz(F)′ = Sz(F). The simplicity of Sz(F) is thus a
consequence of Iwasawa’s criterion.

If F 6= F2, then T ′ = {T (0, b) | b ∈ F }. Thus every element of T ′ \ {1}
has order 2 and every element of T of order 2 belongs to T ′.

For F 6= F2, the subgroup Sz(F) of Sp(V ) that fixes O coincides with the
subgroup that commutes with the action of the “polarity” ρ. We showed in
Chapter 8 that Sp(4, 2) ' S6 and it is not difficult to check that the subgroup
of Sp(4, 2) fixing O is S5. But in this case, it is more usual to define Sz(2)
to be the subgroup of order 20 in S5 that commutes with ρ.

EXERCISES

12.1 Show directly that the varieties of the oriflamme geometry of an or-
thogonal geometry of dimension 6 and Witt index 3 satisfy the axioms
for projective geometry given in Chapter 3.

12.2 Let V be a vector space over a field F and suppose that there is
a linear transformation β :V → B, where B is an associative algebra
and β(v)2 = 0 for all v ∈ V . Suppose that for every associative algebra
A and every linear transformation h :V → A such that h(v)2 = 0 for

all v ∈ V , there is a unique algebra homomorphism ĥ :B → A such
that the diagram

V B

A

-

Z
Z~ ��

β

h ĥ

commutes. Show that B is isomorphic to Λ•V .
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12.3 (i) Show that for every k-vector ξ ∈ ΛkV , there is a smallest sub-
space Mξ such that ξ ∈ ΛkMξ. Then show that ξ is decompos-
able if and only if dimMξ = k.

(ii) Let Nξ be the set of vectors v such that v ∧ ξ = 0. Show that
Nξ ⊆Mξ and that equality holds if and only if ξ is decomposable.

(iii) If dimV = n, show that every element of Λn−1V is decompos-
able.

12.4 If V is a vector space and ϕ ∈ V ∗, show that for all v1, v2, . . . , vk ∈ V ,

α−ϕ (v1 ∧ · · · ∧ vk) =

k∑
i=1

(−1)i+1ϕ(vi)v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vk.

12.5 Suppose that V is a vector space of dimension 2m over F and that Q
is a non-degenerate quadratic form of Witt index m on V . Let E and
F be maximal totally singular subspaces such that V = E⊕F and let
A be the algebra of all linear transformations of Λ•V . If x := e + f ,
where e ∈ E and f ∈ F , define

α(x) := α+
e + α−β(−,f),

where β is the polar form of Q. Show that α :V → A is one-to-one
and that α(x)2 = Q(x) 1 for all x ∈ V .

12.6 Suppose that dimV = 4. Show that

κ−1(Ω(Λ2V )) = 〈 g2 | g ∈ K(V ) 〉,

where κ :K(V )→ SO(Λ2V ) is the homomorphism defined at the end
of the section ‘The Klein Quadric’.

12.7 Let γ be a non-degenerate σ-sesquilinear form on V and let π denote
the corresponding correlation of P(V ). Show that the collineation of
P(Λ2V ) induced by π via the Klein correspondence coincides with
the collineation induced by the σ-semilinear map κ(g) defined in the
section ‘Correlations’.

12.8 (Pfaffians) Suppose that e1, e2, e3, e4 is a basis for the vector space
V and let ξ :=

∑
i<j pijei ∧ ej . For 1 ≤ i ≤ 4, define pii := 0, and for

1 ≤ i < j ≤ 4, define pji := −pij . Show that Q(ξ)2 = det(pij).
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12.9 Suppose that dimV = 4 and let ẽ be a non-zero element of Λ4V . For
a ∈ F×, let ẽ′ := aẽ and let Q′, β′, d′ and κ′ be the functions, defined
via ẽ′, corresponding to the functions Q, β, d and κ, defined using ẽ.
Show that Q′ = a−1Q, β′ = a−1β and for every σ-semilinear bijection
f :V → V ∗ we have d′(f) = aσ(a) d(f) and κ′(f) = a κ(f).

12.10 (i) Show that for all f, g ∈ GL∗(V ),

d(f ◦ g) =

{
d(f)d(g) if g :V → V

d(f)−1d(g) if g :V → V ∗.

(ii) Check that the multiplication defined on K∗(V ) is associative
and that the inverse of (a, f) ∈ K∗(V ) is (a−1, f−1) or (a, f∗),
according to whether f :V → V or f :V → V ∗.

(iii) Check that κ :K∗(V )→ O(Λ2V ) is a homomorphism.

12.11 Suppose that V is a vector space of dimension 3 over F and that σ is
an automorphism of F satisfying σ2 = 1. Let β be non-degenerate σ-
sesquilinear form such that β(u, v) = σβ(v, u) for all u, v ∈ V . That
is, β is either σ-hermitian or symmetric. Let ẽ be a fixed non-zero
element of Λ3V . If e1, e2, e3 is a basis for V such that e1∧e2∧e3 = ẽ,
show that d := det

(
β(ei, ej)

)
depends only on β and ẽ, not on the

basis. Note that σ(d) = d.

Show that for v, w ∈ V , there is a unique vector v×w ∈ V such that

u ∧ v ∧ w = β(u, v × w) ẽ

for all u ∈ V . Then show that the product v × w has the following
properties:

(i) (u+ v)× w = u× w + v × w and u× (v + w) = u× v + u× w.

(ii) (au)× v = u× (av) = σ(a)(u× v).

(iii) u× u = 0.

(iv) β(u, u× v) = β(v, u× v) = 0.

(v) α−β(−,v)α
−
β(−,u)(ẽ) = d u× v.

(vi) d β(x× u, v × w) = β(v, x)β(w, u)− β(v, u)β(w, x).

(vii) d (u× v)× w = β(u,w) v − β(v, w)u.

(viii) If σ = 1, then(u× v)× w + (v × w)× u+ (w × u)× v = 0.

(ix ) If f ∈ GL(V ) and f⊥ is defined by β(f⊥(u), f(v)) = β(u, v) for
all u, v ∈ V , then f(u)× f(v) = σ(det(f)) f⊥(u× v).

(x ) If σ 6= 1, then SU(V ) = { f ∈ GL(V ) | f(u× v) = f(u)× f(v) }.
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(xi) If σ = 1 and the characteristic of f is not 2, then

SO(V ) = { f ∈ GL(V ) | f(u× v) = f(u)× f(v) }.

(xii) If σ = 1 and F is a perfect field of characteristic 2, then W :=
{ v ∈ V | β(v, v) = 0 } is a non-degenerate subspace of dimension
2, and

Sp(W ) = { f ∈ GL(V ) | f(u× v) = f(u)× f(v) }.

12.12 Let V be a vector space of dimension 4 over the field F and let γ be
a non-degenerate alternating form on V . Let γ0 be the non-singular
bivector corresponding to γ. Show that, under the Klein correspon-
dence, the symplectic transvections (with respect to γ) correspond to
Siegel transformations ρξ,η, where 〈 ξ, η 〉 is a totally singular subspace
of 〈 γ0 〉⊥.

12.13 State and prove the result corresponding to Theorem 12.34 for non-
degenerate alternating forms.

12.14 Let V be a vector space of dimension 4 over the field F and let γ
be a non-degenerate σ-hermitian form on V . Let F0 be the fixed
field of σ and let W0 be the F0-space of fixed points of κ(g) in Λ2V ,
where g : v 7→ γ(−, v). Show that, under the Klein correspondence,
the unitary transvections (with respect to γ) correspond to the Siegel
transformations ρξ,η, where 〈 ξ, η 〉 is a totally singular subspace of W0.

12.15 Let V be a vector space over C with basis e1, e2, e3, e4 and define an
hermitian form γ on V by γ(

∑
xiei,

∑
yiei) :=

∑
xiȳi. For v ∈ V ,

let g(v) := γ(−, v) and let W0 be the (real) subspace of Λ2V of fixed
points of κ(g). Show that there is a basis ξ1, ξ2, . . . , ξ6 for W0 such
that Q(

∑
xiξi) =

∑
x2
i .

12.16 Use the Klein correspondence to prove Theorem 11.6.

12.17 Verify equation (12.44).

12.18 Using the notation of Theorem 12.37, define p ∈ SL(V ) by p(e1) := e3,
p(e2) := e4, p(e3) := −e1, and p(e4) := −e2. Show that

(i) p interchanges E and F , and Λ2p interchanges ξ and η.

(ii) The restriction of Λ2p to W is a reflection.

(iii) O(W ) is a homomorphic image of the group K(E,F )〈 p 〉.
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12.19 Suppose that V is four-dimensional vector space over a field F and that
the characteristic of F is not 2. Let γ be a non-degenerate symmetric
bilinear form of Witt index 2 on V and for v ∈ V define g(v) :=
γ(−, v). Choose a basis u1, v1, u2, v2 for V such that 〈u1, v1 〉 =
〈u2, v2 〉⊥, and (u1, v1) and (u2, v2) are hyperbolic pairs for γ and set
ẽ := u1 ∧ v1 ∧ u2 ∧ v2.

(i) Show that κ(g) is an element of order 2 and that Λ2V is the
orthogonal sum W+ ⊥W−, where κ(g) acts as 1 on W+ and as
−1 on W−. Furthermore, dimW+ = dimW− = 3.

(ii) Show that the restriction of Q to W+ (and to W−) is a non-
degenerate quadratic form of Witt index 1.

(iii) State and prove the result corresponding to Theorem 12.34.

(iv) Show that, under the Klein correspondence, the dual of the gen-
eralized quadrangle of isotropic points and totally isotropic lines
of P(V ) is the complete bipartite graph whose two classes of ver-
tices are the singular points of P(W+) and P(W−), respectively.

12.20 (Quaternion algebras) Let V be a three-dimensional vector space over
the field F. Suppose that the characteristic of F is not 2 and let β be
a non-degenerate symmetric bilinear form on V . Put ẽ := e1∧ e2∧ e3,
where e1, e2, e3 is a basis for V , and let d := det

(
β(ei, ej)

)
. For a ∈ F

and u ∈ V , let a + u denote the pair (a, u) ∈ H := F × V . Define a
multiplication on H by

(a+ u)(b+ v) := ab− d−1β(u, v) + av + bu+ u× v,

where u× v is defined in Exercise 12.11.

(i) For a ∈ F, u ∈ V and q := a + u, define q̄ := a − u. Show that
qr = r̄q̄ for all q, r ∈ H.

(ii) Show that Q(q) := qq̄ (= q̄q) defines a non-degenerate quadratic
form on H such that Q(qr) = Q(q)Q(r) for all q, r ∈ H. Show
also that q2 − aq +Q(q) = 0, where a := q + q̄ ∈ F.

(iii) For q ∈ H, let L(q) be the map h 7→ qh, and let R(q) be the map
h 7→ hq, where h ∈ H. Show that detL(q) = detR(q) = Q(q)2.

(iv) Show that Ω̂ := {h ∈ H | Q(h) 6= 0 } is a group and that for

h ∈ Ω̂, the map B(h) := L(h)R(h−1) leaves V invariant and
belongs to SO(V ).

(v) If v ∈ V and Q(v) 6= 0, show that −B(v) is the reflection in

〈 v 〉⊥. Deduce that B : Ω̂ → SO(V ) is a homomorphism onto
SO(V ) whose kernel is F×.
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(vi) If θ is the spinor norm, show that θ(B(h)) ≡ Q(h) (mod F2).
Then show that B maps Ω := {h ∈ H | Q(h) = 1 } onto Ω(V )
and that its kernel is {±1}.

(vii) Show that the map (q, r) 7→ L(q)R(r−1) is a homomorphism

from the group { (q, r) ∈ Ω̂ × Ω̂ | Q(q) = Q(r) } onto SO(H)
whose kernel is { (a, a) | a ∈ F× }.

(viii) Suppose that for some ω ∈ V , −Q(ω) does not have a square
root in F and show that K := F⊕ Fω is a field. Let H denote H
considered as a two-dimensional vector space over K. Define

γ(q, r) := qr̄ −Q(ω)−1ωqr̄ω

and show that γ is an hermitian form on H such that γ(q, q) =
2Q(q). Then show that the map Ω→ SU(H) :h 7→ R(h−1) is an
isomorphism.

(ix ) If H contains singular vectors, show that it is isomorphic to the
algebra of 2× 2 matrices over F.

12.21 Let W be a vector space of dimension 2 over F and let V be the vector
space of linear transformations h :W →W .

(i) Show that Q(h) := det(h) defines a non-degenerate quadratic
form of Witt index 2 on V and let β be its polar form.

(ii) For f1, f2 ∈ GL(W ), let λ(f1, f2) be the linear transformation
h 7→ f1hf

−1
2 . Show that λ defines a homomorphism from the

group K(W,W ) of Theorem 12.37 onto SO(V ).

12.22 Suppose that V is a four-dimensional vector space over a perfect field
F of characteristic 2 and that F has an automorphism σ such that
σ2(x) = x2 for all x. Let ρ be the “polarity” of the symplectic gener-
alized quadrangle derived from V . If F 6= F2, show that the subgroup
of Sp(V ) that commutes with ρ coincides with the subgroup that
leaves the Suzuki ovoid invariant.

12.23 Show that the subgroup of Sp(4, 2) that fixes the Suzuki ovoid is iso-
morphic to the symmetric group S5 and that the subgroup commuting
with the “polarity” ρ has order 20.

12.24 Show that if F 6= F2, the subgroups B := TH and N := H〈w 〉 form
a BN -pair for the Suzuki group Sz(F) with Weyl group 〈w 〉.

12.25 Show that, except for the Suzuki groups, the order of every finite
simple group introduced in this book is divisible by 3.
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Algèbre. Chapitre 9. Formes sesquilinéaires et formes quadratiques, Actualités
Sci. et Ind. No 1272, Hermann 1959.
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of a graph, 104

Dickson’s invariant, 160
Dimension,

affine, 6
projective, 13

Dilatation, 20
Direction (in affine space), 6

Discriminant, 61, 163, 193
Distance,

between chambers, 100
in a graph, 104

Doubly transitive groups, 5, 17, 20,
23, 45, 120, 151, 206

Dual space, 18, 22, 50, 60, 78, 183

Elation, 20
Elementary row operations, 20, 22,

29
Exchange condition, 91

strong exchange condition, 93–96
Exterior algebra, 181

exterior power, 182
exterior product, 181
exterior square, 178, 180

Faithful action, 1, 151
Fan, 43
Field,

finite, 115, 138
perfect, 67, 143, 201
trace and norm, 115

Flag, 28–32
in a diagram geometry, 103
in polar geometry, 61–63
in projective geometry, 16
in symplectic geometry, 75

Form,
alternating, 53, 68, 195
bilinear, 52
hermitian, 53, 114, 196
quadratic, 54, 136
polar, 54
reflexive, 53
sesquilinear, 52
skew-hermitian, 54
skew-symmetric, 54
symmetric, 53, 174

Frame, 28–32
affine, 6
in a vector space, 28, 61
polar, 84, 62, 130, 172

Fundamental Theorem,
of affine geometry, 8
of projective geometry, 14, 51, 60
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Gallery, 37, 100
Generalized n-gon, 104

quadrangle, 49, 77, 82, 125–127,
196–197

Generators,
for orthogonal groups, 158
for SL(V ), 39
for Weyl groups, 76, 85, 131, 169

Geodesic, 100
Geometry,

affine, 6–10, 14
for A7 and A8, 43–46
for the Suzuki groups, 203
orthogonal, 54
over I, 103
polar, 53
projective, 13–16
symplectic, 54, 68
type A3 and D3, 179
unitary, 54

Graph, 2, 104
bipartite, 104, 170
diameter of, 104
girth of, 104

Grassmann, 13
Grassmann’s relation, 13

Group,
abelian, 3
affine, 9
alternating, 23
Coxeter, 90–97
derived, 3
dihedral, 139
general linear, 18, 60
nilpotent, 33
orthogonal, 136–178
parabolic, 38, 88, 96
permutation, 1
simple, 3
soluble, 5
special linear, 19–22
Suzuki, 203
symmetric, 23, 35, 74, 90, 175
symplectic, 68–77
unitary, 114–131
Weyl, 28, 35, 76, 87, 131, 169, 173

Hermitian form, 53, 114, 196
Hoffman-Singleton graph, 46
Homotopy, 92
Hyperbolic line, 56, 69, 116, 136
Hyperbolic pair, 56, 59

orthogonal, 137
symplectic, 69, 70
unitary, 116, 119

Hyperplane, 13, 20

Interior product, 191
Isometry, 55
Isomorphism,

between O(2m + 1, 2k) and
Sp(2m, 2k), 143

between the groups PSL(n, q), 25,
26, 39

between PSL(n, q) and Am, 25,
49, 132

between PSL(2, q)× PSL(2, q) and
PΩ+(4, q), 199, 211

between PSL(2, q2) and PΩ−(4, q),
201

between PSL(3, 2) and PSL(2, 7),
41–43, 48

between PSL(4, 2) and A8, 43–45
between PSL(4, q) and PΩ+(6, q),

190
between PSp(4, q) and PΩ(5, q),

196
between PSU(4, 2) and PSp(4, 3),

127
between PSU(4, q) and PΩ−(6, q),

198
between SO(3, q) and PGL(2, q),

142, 200
between Sp(4, 2) and S6, 74

Isotropic vectors, 56
in unitary geometry, 117

Iwasawa’s criterion, 3, 5,
for linear groups, 23
for orthogonal groups, 162
for symplectic groups, 71
for the Suzuki groups, 207
for unitary groups, 130

Klein correspondence, 189
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Klein quadric, 187

Length,
in Weyl groups, 87
in Coxeter groups, 91

Line,
affine, 7
hyperbolic, 56, 69, 116, 136
parallel, 8
projective, 13, 16, 23

Link, 98

Matrices,
monomial, 29
orthogonal, 137
permutation, 29
semilinear, 61
symplectic, 68
transposed inverse, 18, 61
unitary, 114

Nilpotent,
element, 155
group, 33

Norm, 115
Normal form for SL(V ), 36
Normalizer, 41

Opposite ring, 50
Orbit, 2

of S7 on 7-point planes, 43
Order,

of a set, 2
of linear groups, 19
of orthogonal groups, 140, 165
of small simple groups, 24
of Suzuki group, 206
of symplectic groups, 70
of unitary groups, 118

Oriflamme geometry, 172
Orthogonal,

complement, 52, 56, 154
frame, 117
group, 136–178, 190–201
sum (of subspaces), 56

Panel, 32, 86, 97, 103

Parabolic subgroups, 38, 88, 96
Pfaffian, 195, 208
Plane,

7-point (Fano), 40, 43
in affine geometry, 7
in projective geometry, 13

Plücker coordinates, 181, 187
Point,

in affine geometry, 6
in projective geometry, 13

Polar,
building, 84
form of quadratic form, 54
frame, 62, 84, 130, 172
space, 107–108

Polarity, 53
Projective line, 23, 119, 142
Pure k-vector, 184

Quadratic form, 54, 136
over finite fields, 139
with degenerate polar form, 143

Radical, 56
Rank,

of a BN-pair, 28
of a diagram geometry, 103
of an orthogonal group, 151, 152
of a permutation group, 2
of a symplectic group, 70
of a unitary group, 120

Reduced expression, 87, 91, 102
Reflections, 94, 144, 195

generation of O(V ) by, 156–159
Regular,

action, 2, 6, 19
element, 155

Residually connected, 104
Residue, 102–104
Retraction, 100
Root group,

in general linear groups, 32, 34, 37
in orthogonal groups, 146–148
in symplectic groups, 71, 80
in unitary groups, 119, 135

Semidirect product, 10
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Semilinear transformation, 7
Sesquilinear form, 52
Siegel transformation, 148
Simplex, 36, 97
Simplicity,

Iwasawa’s criterion, 3
of the alternating groups, 26
of PSL(V ), 22-23
of PSp(V ), 72–74
of PSU(V ), 122, 127–130
of PΩ(V ), 160–162
of Sz(F), 207

Singular vectors, 56, 138
Soluble group, 5
Space,

affine, 6
dual, 18
projective, 13
vector, 6

Spinor norm, 163–165
Split BN-pair, 33
Stabilizer, 1
Subgroup,

Borel, 27,
commutator, 3
Sylow, 4

Subspace,
affine, 6
projective, 13, 16
totally isotropic, 56

Suzuki,
group, 203
ovoid, 203

Sylow subgroup, 4
in linear groups, 23, 24, 26, 39
in symplectic groups, 81
in unitary groups, 135

Symmetric,
difference (of sets), 74, 94
form, 53, 135
group, 23, 35, 74, 90

Symplectic,
bases, 69
BN-pair, 75–77
building, 77
frame, 69, 77
group, 68–77

Thick complex, 97
Thin complex, 97
Totally isotropic subspace, 56, 82,

133
Totally singular subspace, 56, 170
Trace, 115
Transformation,

affine, 7
linear fractional, 23
projective, 13
σ-semilinear, 7

Translation,
affine, 10

Transpose, 60
Transposition, 23
Transvection, 20

symplectic, 71
unitary, 118

Type,
of a flag, 28
of a simplex, 97
of a symplectic flag, 77
of a variety, 103

Unitary group, 114–131
Unipotent,

element, 155
radical, 34

Variety, 103, 173
Vector,

bivector, 182
isotropic, 56
k-vector, 182
singular, 56
vector space, 6, 50

Wall’s,
form, 153
parametrization, 153

Weyl group, 27, 35, 76, 87, 131, 169,
173

Witt’s theorem, 57
Witt index, 59
Wreath product, 76, 85, 168, 170


