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INTRODUCTION
Lp MAXIMAL REGULARITY IN XREFERENCES

WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?WHAT IS A GRADIENT SYSTEMS?
DEFINITIONWe call an abstract Gradient System a differential equation of the form

u̇ +∇E (u) = 0,

where
E ∈ C1(U,R), and U ⊆ V open subset of a Banach space V
∇E (u) denotes a representation of E ′(u) w.r.t. some duality pairing
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Lp MAXIMAL REGULARITY IN XREFERENCES

WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?GRADIENT SYSTEMS ARE EVERYWHERE!
1. EXAMPLE: THE REACTION DIFFUSION EQUATION

∂tu(t, x)− div(a(x)∇u(t, x)) + f (x , u(t, x)) = 0 (0, T )×ΩCan be rewritten as an abstract gradient system in X :
u̇ +∇X E (u) = 0 in X on (0, T )

for the energy E : H1
0 (Ω)→ R given by

E (u) = 1
2

∫
Ω a(x) |∇u(x)|2 dx + ∫Ω F (x , u(x)) dx

for u ∈ H1
0 (Ω). For X = H−1(Ω) or X = L2(Ω)

D. HAUER GRADIENT SYSTEMS AND MAXIMAL REGULARITY



INTRODUCTION
Lp MAXIMAL REGULARITY IN XREFERENCES

WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?GRADIENT SYSTEMS ARE EVERYWHERE!
1. EXAMPLE: THE REACTION DIFFUSION EQUATION

∂tu(t, x)− div(a(x)∇u(t, x)) + f (x , u(t, x)) = 0 (0, T )×ΩCan be rewritten as an abstract gradient system in X :
u̇ +∇X E (u) = 0 in X on (0, T )

for the energy E : H1
0 (Ω)→ R given by

E (u) = 1
2

∫
Ω a(x) |∇u(x)|2 dx + ∫Ω F (x , u(x)) dx

for u ∈ H1
0 (Ω). For X = H−1(Ω) or X = L2(Ω)

D. HAUER GRADIENT SYSTEMS AND MAXIMAL REGULARITY



INTRODUCTION
Lp MAXIMAL REGULARITY IN XREFERENCES

WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?GRADIENT SYSTEMS ARE EVERYWHERE!
1. EXAMPLE: THE REACTION DIFFUSION EQUATION

∂tu(t, x)− div(a(x)∇u(t, x)) + f (x , u(t, x)) = 0 (0, T )×ΩCan be rewritten as an abstract gradient system in X :
u̇ +∇X E (u) = 0 in X on (0, T )

for the energy E : H1
0 (Ω)→ R given by

E (u) = 1
2

∫
Ω a(x) |∇u(x)|2 dx + ∫Ω F (x , u(x)) dx

for u ∈ H1
0 (Ω). For X = H−1(Ω) or X = L2(Ω)

D. HAUER GRADIENT SYSTEMS AND MAXIMAL REGULARITY



INTRODUCTION
Lp MAXIMAL REGULARITY IN XREFERENCES

WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?GRADIENT SYSTEMS ARE EVERYWHERE!
2. EXAMPLE: THE HEAT EQUATION WITH THE P-LAPLACIAN

∂tu(t, x)− div(|∇u(t, x)|p−2∇u(t, x)) + f (x , u(t, x)) = 0 (0, T )×Ω
Can be rewritten as an abstract gradient system in X :

u̇ +∇X E (u) = 0 in X on (0, T )
for the energy E : W 1,p

0 (Ω)→ R given by
E (u) = 1

p

∫
Ω |∇u(x)|p dx + ∫Ω F (x , u(x)) dx

for u ∈W 1,p
0 (Ω). For X = W−1,p′(Ω) or X = L2(Ω).
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WHAT IS A GRADIENT SYSTEMS?GRADIENT SYSTEMS ARE EVERYWHERE!HOW TO DEFINE SUCH A GRADIENT?HOW TO DEFINE SUCH A GRADIENT?
Let V be a Banach space and V ′ its dual space, E ∈ C1(V ,R), and let
B be a second Banach space such that V ⊆ X ⊆ V ′.
DEFINITION OF THE GRADIENT ∇X EWe define ∇X E : D(∇X E )→ X as an operator on X by

D(∇X E ) = {u ∈ V
∣∣ E ′(u) ∈ X}

and ∇X E (u) = E ′(u) for u ∈ D(∇X E ).
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NOTION OF SOLUTIONS OF u̇ +∇X E (u) = f
Lp MAXIMAL REGULARITY OF ∇X E IN XMAXIMAL REGULARITY OF THE p-LAPLACIANNOTION OF SOLUTIONS OF u̇ +∇E (u) = f

Let J ⊆ R be an interval and f : J → X a measurable function.DEFINITIONWe call a function u : J → V a solution of the gradient system

u̇ +∇X E (u) = f in X on J , if (GS)
u ∈W 1,1(J ; X ),
u(t) ∈ D(∇X E ) for a.e. t ∈ J , and
u satisfies the equation (GS) for a.e. t ∈ J .
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Lp MAXIMAL REGULARITY OF ∇XE IN X

For 1 ≤ p ≤ ∞ we say:DEFINITIONThe operator ∇X E : D(∇X E )→ R has Lp maximal regularity in X if forevery given f ∈ Lp(J ; X ) there is a solution u : J → V of the gradientsystem (GS) such that
u ∈ Lp(J ; X ), and
u̇ ∈ Lp(J ; X ).
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NOTION OF SOLUTIONS OF u̇ +∇X E (u) = f
Lp MAXIMAL REGULARITY OF ∇X E IN XMAXIMAL REGULARITY OF THE p-LAPLACIANTHE ENERGY OF THE p-LAPLACIAN

Let Ω ⊆ Rd be an open subset and 1 < p < ∞. If we take
V = W 1,p

0 (Ω) ∩ L2(Ω) and H = L2(Ω) then we have that
V

d↪→ H
d↪→ V ′ .

The energy E : V → R defined by
E (u) = 1

p

∫
Ω |∇u(x)|p dx

is C1 and its derivative E ′ : V → V ′ is given by
E ′(u)h = ∫Ω |∇u|p−2∇u∇h dx ∀ u, h ∈ V .
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NOTION OF SOLUTIONS OF u̇ +∇X E (u) = f
Lp MAXIMAL REGULARITY OF ∇X E IN XMAXIMAL REGULARITY OF THE p-LAPLACIANTHE p-LAPLACIAN IN W−1,p′(Ω)

For 1 < p < ∞, p′ = p
p−1 , we take the domain

D(∇W−1,p′E ) = {u ∈ V
∣∣ E ′(u) ∈W−1,p′(Ω)} .

DEFINITIONWe call the operator − D
W∆p : D(∇W−1,p′E )→W−1,p′(Ω) defined by

− D
W∆pu :=∇W−1,p′E (u) ∀ u ∈ D(∇W−1,p′E )

the negative Dirichlet p-Laplace operator on W−1,p′(Ω).
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Lp′ MAXIMAL REGULARITY OF THE p-LAPLACIAN IN W−1,p′(Ω)
Due to J. L. Lions in [4, Thm. 1.2bis] (see also Hauer [3, Thm. 4]) we have thefollowing Lp′ maximal regularity result in W −1,p′(Ω):
1. Theorem (J. L. LIONS, 1968)If 1 < p < ∞ and T > 0, then for every f ∈ Lp′(0, T ; W−1,p′(Ω)) andevery u0 ∈ L2(Ω) there is a unique solution
u ∈W 1,p′(0, T ; W−1,p′(Ω)) ∩ Lp(0, T ; W 1,p

0 (Ω)) of{
u̇ − D

W∆pu = f in W−1,p′(Ω) a.e. on (0, T ), and
u(0) = u0.
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For 1 < p < ∞, p′ = p
p−1 , we take now the domain

D(∇L2E ) = {u ∈ V
∣∣ E ′(u) ∈ L2(Ω)} .

Then:DEFINITIONWe call the operator − D
L2∆p : D(∇L2E )→ L2(Ω) defined by

− D
L2∆pu :=∇L2E (u) ∀ u ∈ D(∇L2E )

the negative Dirichlet p-Laplace operator on L2(Ω).
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L2 MAXIMAL REGULARITY OF THE p-LAPLACIAN IN L2(Ω)
The following L2 maximal regularity result in L2(Ω) results from the theory ofmaximal monotone operators in Hilbert spaces due to the pioneering work of H.Brezis in [1, Thm. 3.4 and Thm. 3.6]. See also R. Chill and E. Fašangová in [2,Thm. 6.1] using the theory of gradient systems in infinite dimensional spaces:
2. Theorem (H. BREZIS, 1973)Let the dimension d ≥ 2, 2d

2+d ≤ p < ∞, Ω ⊂ Rd open and bounded,
T > 0. Then, for every u0 ∈W 1,p

0 (Ω) and every f ∈ L2(0, T ; L2(Ω))there is a unique solution u ∈W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ; W 1,p
0 (Ω)) of{

u̇ − D
L2∆pu = f in L2(Ω) a.e. on (0, T ), and

u(0) = u0.
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NOTION OF SOLUTIONS OF u̇ +∇X E (u) = f
Lp MAXIMAL REGULARITY OF ∇X E IN XMAXIMAL REGULARITY OF THE p-LAPLACIANA FIRST OPEN RESEARCH PROBLEM

QUESTIONDoes there exist a realization on Lq(Ω) for the negative
p-Laplacian −∆p andis it possible to obtain Lr maximal regularity in Lq(Ω) for thisrealization?
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Thank You for Your Attention!!Thank You to the organizer of the second Spring School!!!
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