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DEFINITION

We call an abstract Gradient System a differential equation of the form
u+ VE(uU) =0,

where
@ £ CHU,R), and U C V open subset of a Banach space V

@ VE&(u) denotes a representation of £'(u) w.r.t. some duality pairing
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We call an abstract Gradient System a differential equation of the form

0+ VE(U) =0,

where
e £€CYU,R), and U C V open subset of a Banach space V

e VE&(u) denotes a representation of £'(u) w.r.t. some duality pairing
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Oeu(t, x) — div(a(x)Vu(t, x)) + f(x, u(t,x)) =0 (0, T)xQ

Can be rewritten as an abstract gradient system in X:
U+ VxEW) =0 inXon (0, T)
for the energy € : H3(Q) — R given by
E(u) = %/a(x) |V u(x))? dx + / F(x, u(x)) dx
o) o)

for u € H}(Q). For X = H71(Q) or X = L?(Q)




1. Exawpie: THE Reaction DiFfusion Equation
0ru(t, x) — div(a(x)Vu(t, x)) + f(x, u(t,x)) =0 (0, T)xQ

Can be rewritten as an abstract gradient system in X:
U+ VxEW) =0 inXon (0, T)

for the energy € : H3(Q) — R given by

E(U):%/ ) |V u(x) dx—l—/]:xu

for u € H}(Q). For X = H71(Q) or X = L?(Q)




INTRODUCTION WHAT 15 A GRADIENT SYSTEMS?
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GRADIENT SYSTEMS ARE EVERYWHERE!

1. ExampPLE: THE REAcTION DIFFUSION EQUATION

0ru(t, x) — div(a(x)Vu(t, x)) + f(x, u(t,x)) =0 (0, T) x

Can be rewritten as an abstract gradient system in X:
i+ VxEW) =0 inXon(0,T)
for the energy € : H3(Q) — R given by
E(U)Z%/Q(XHVU( dx+/}"xu
o)

for u € H}(Q). For X = H71(Q) or X = L3(Q)

Q

D. HAuER GRADIENT SYSTEMS AND MAXIMAL REGULARITY

Do.,,

x
S &,
o%
Tros

e‘i érb

“0aNao0"



d.u(t, x) — div(|Vu(t, x)|P> Vu(t, x) + f(x, u(t,x) =0 (0, T) x Q
Can be rewritten as an abstract gradient system in X:
U+ VxEW) =0 inXon (0, T)
for the energy & : Wol'p(Q) — R given by

E(u) = %/O|Vu(x)|p dX+/O.7:(X,U(X))dX

for u e Wol’p(Q). For X = W=1P(Q) or X = L?(Q).
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INTRODUCTION WHAT 15 A GRADIENT SYSTEMS?
LP MaximAL REGULARITY IN X GRADIENT SYSTEMS ARE EVERYWHERE!
REFERENCES How TO DEFINE SUCH A GRADIENT?

GRADIENT SYSTEMS ARE EVERYWHERE!

2. EXAMPLE: THE HEAT EQUATION WITH THE P-LAPLACIAN

Aeu(t, x) — div(|Vu(t, x)[P2 Vu(t, x)) + f(x, u(t,x)) =0 (0, T) x Q
Can be rewritten as an abstract gradient system in X:
i+ VxEW) =0 inXon (0, T)

for the energy & : Wol'p(Q) — R given by

E(u) = %/Q|Vu(x)|p dx+/0.7-'(x, u(x)) dx

for u € Wy P(Q). For X = W=1P/(Q) or X = [2(Q).
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Let V be a Banach space and V' its dual space, £ € C}(V, R), and let
B be a second Banach space such that V C X C V'

DEFINITION OF THE GRADIENT Vx€&
We define Vx& : D(VxE) — X as an operator on X by

D(VxE) = {u e V| & (u) € X}

and Vx&(u) = &'(u) for u € D(VxE).
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INTRODUCTION WHAT 15 A GRADIENT SYSTEMS?
LP MaxivaL REGULARITY IN X GRADIENT SYSTEMS ARE EVERYWHERE!

REFERENCES How To DEFINE SUCH A GRADIENT?

How TO DEFINE SUCH A GRADIENT?

Let V be a Banach space and V' its dual space, £ € C*(V,R), and let
B be a second Banach space such that V C X C V',

DEFINITION OF THE GRADIENT Vx&
We define Vx€ : D(VxE) — X as an operator on X by

D(Vx&) ={ue V|&(u) e X}

and Vx&(u) = &' (u) for u € D(VxE).
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INTRODUCTION NOTION OF SOLUTIONS OF i1 + VXS(u) f
LP MaximaL REGULARITY IN X LP MaxivAL REGULARITY OF V€ IN X
REFERENCES MAXIMAL REGULARITY OF THE p-LAPLACIAN

NoTION OF SoLuTIONS OF i + VE(u) = f

Let J C R be an interval and f : J — X a measurable function.

DEFINITION

We call a function u: J — V a solution of the gradient system
o+ VxE(u) =f in X on J, if
e uc Wt(J; X),

o u(t) € D(VxE) for ae. t € J, and
@ u satisfies the equation (GS) for ae. t € J.

(GS)

D. Hauer GRADIENT SYSTEMS AND MAXIMAL REGULARITY
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For 1 < p < oo we say:

The operator Vx€& : D(VxE) — R has LP maximal reqularity in X if for
every given f € LP(J; X) there is a solution v : J — V of the gradient
system (GS) such that

e ue LP(J;X), and
° i€ LP(J; X).
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INTRODUCTION NoTION OF SOLUTIONS OF i + Vi E(u) = f
LP MaximaL REGULARITY IN X LP MaxivAL REGULARITY OF V€ IN X
REFERENCES MAXIMAL REGULARITY OF THE p-LAPLACIAN

THE ENERGY OF THE p-LAPLACIAN

Let Q C RY be an open subset and 1 < p < oco. If we take
V = Wol'p(Q) N L2(Q) and H = L?(Q) then we have that

vaHS v
The energy £ : V — R defined by
E(u) = l/ [V u(x)|P dx
P Ja
is C! and its derivative £ : V — V' is given by

E(u)h = / |VulP>VuVhdx YuheV.
0
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Forl<p<oo p = p—fl, we take the domain

D(Vw-1r€) ={u eV |E(u) € WP(Q)}.

We call the operator —JA, : D(Vy-12E) — WLP'(Q) defined by

— Aot = Viy-10E(u) Y u € D(Viy-10E)

the negative Dirichlet p-Laplace operator on W~17'(Q).
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LP" MAXIMAL REGULARITY OF THE p-LAPLACIAN IN W~1P/(Q))

Due to J. L. Lions in [4, Thm. 1.2bis] (see also Hauer [3, Thm. 4]) we have the
following LP" maximal reqularity result in W~27'(Q):

1. Theorem (J. L. LioNs, 1968)

If 1< p<ooand T >0, then for every f € LP(0, T; W=1P'(Q)) and
every up € L%(Q) there is a unique solution
ue WP, T; W=LP(Q)) N LP(O, T; Wol'p(Q)) of

i— PAu=f in WTLP(Q) ae. on (0, T), and
u(O) = up.
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Forl<p<oo p' = we take now the domain

_P_
p—1’

D(VizE) ={u e V| E(u) € 2(Q)} .

Then:

We call the operator —/2A, : D(Vi2€) — L(Q) defined by
—Npu = Vi2E(u) Vu € D(Vi:2€)

the negative Dirichlet p-Laplace operator on L2(Q).
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[2 MAXIMAL REGULARITY OF THE p-LAPLACIAN IN [2(Q)

The following L? maximal reqularity result in L2(Q) results from the theory of
maximal monotone operators in Hilbert spaces due to the pioneering work of H

Brezis in [1, Thm. 3.4 and Thm. 3.6]. See also R. Chill and E. Fasangové in [2

Thm. 6.1] using the theory of gradient systems in infinite dimensional spaces
2. Theorem (H. Brezis, 1973)

Let the dimension d > 2, 2+d < p < o0, Q C RY open and bounded,

T > 0. Then, for every up € Wo P(Q) and every f € L2(0, T; L%(Q))
there is a unique solution u € WL2(0, T; [2(Q)) N L(0, T; WyP(Q)) of

i— ,Npu=Ff inL3Q)ae. on (0, T) and
u(0) = up.
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@ Does there exist a realization on L9(Q) for the negative

p-Laplacian —A, and

@ is it possible to obtain L maximal reqularity in L9(Q) for this
realization?
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Thank You for Your Attention!!
Thank You to the organizer of the second Spring School!!!
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