# The Dirichlet-to-Neumann Map on the Half Space 

Abraham C.S. Ng Supervised by Dr. Daniel Hauer University of Sydney

## Sponsors

Australian Government
Department of Education

## Higher Education

## Motivation (not for me...for the topic!)

Suppose we have

- Some medium $\Omega$ in $\mathbb{R}^{3}$ that conducts electricity.

When we apply

- A voltage $\varphi$ to the boundary/surface of $\Omega$.

This induces

- A potential $u$ that satisfies Ohm's Law in the domain $\Omega$ and
- The gradient $\nabla u$ of $u$ describes an electric field through the medium.
- The normal component $\nabla u \cdot \nu=: \frac{\partial u}{\partial \nu}$ of that electric field $\nabla u$ at the boundary of $\Omega$ describes the current flux density through the surface.
For a specified domain $\Omega$, the Dirichlet-to-Neumann Map is an operator that sends the voltage $\varphi$ to the normal component $\frac{\partial u}{\partial \nu}$ of the induced field $\nabla u$ at the boundary. Comparing abstractly computed expected values with actual measured values at the boundary gives us information about the properties of the medium $\Omega$.


## Higher Education

## Our Classical Friends, Dirichlet...

Suppose $\Omega$ is an open set in $\mathbb{R}^{d}$.
The Dirichlet Problem. Let $\varphi$ be a function on the boundary $\partial \Omega$. Does there exist a unique twice differentiable function $u$ on $\Omega$ such that

$$
\left\{\begin{array}{l}
-\Delta u=0 \text { on } \Omega \text { (Laplace's Equation) } \\
u=\varphi \text { on } \partial \Omega .
\end{array}\right.
$$

Here $\Delta u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}$ and is called the Laplacian.

## Higher Education

## ... and Neumann, Introduce Us to DtN

The Neumann Problem. Let $\psi$ be a function on the boundary $\partial \Omega$. Does there exist a unique twice differentiable function $u$ on $\Omega$ such that

$$
\left\{\begin{array}{l}
-\Delta u=0 \text { on } \Omega \text { (Laplace again! }) \\
\frac{\partial u}{\partial \nu}=\psi \text { on } \partial \Omega .
\end{array}\right.
$$

Here $\frac{\partial u}{\partial \nu}=\nabla u \cdot \nu$ is the normal derivative of $u$ at the boundary with respect to a given normal $\nu$.

The Dirichlet-to-Neumann Map. As the name suggests, the Dirichlet-to-Neumann (DtN) Map sends boundary value data to normal derivative data via a solution.

$$
\Lambda: \varphi \mapsto u \mapsto \frac{\partial u}{\partial \nu}
$$

where $u$ is the solution to the Dirichlet Problem.

## Higher Education

## Is the DtN Map on the Halfspace an Old Friend?

What does the Dirichlet-to-Neumann Map actually look like? In particular, we want to investigate the DtN Map on the Halfspace

$$
\mathbb{R}_{+}^{d}:=\mathbb{R}^{d-1} \times(0, \infty)=\left\{(x, y): x \in \mathbb{R}^{d-1}, y>0\right\}
$$

with boundary and normal vector

$$
\partial \mathbb{R}_{+}^{d}=\mathbb{R}^{d-1} \times\{0\}=\mathbb{R}^{d-1} \text { and } \nu=(0, \ldots, 0,-1) .
$$



## Higher Education

## Is the DtN Map on the Halfspace an Old Friend? (cont.)

Let us consider the DtN Map in the smooth case. Suppose that we have $\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d-1}\right)$, with $u \in \mathcal{C}^{\infty}\left(\overline{\left.\mathbb{R}_{+}^{d}\right)}\right.$ a solution to

$$
\left\{\begin{array}{l}
-\Delta u=0 \text { in } \mathbb{R}_{+}^{d} \\
u(x, 0)=\varphi\left(\text { on } \mathbb{R}^{d-1}\right)
\end{array}\right.
$$

Then the normal derivative of $u$ is given by

$$
\frac{\partial u}{\partial \nu}=\left.\nabla u\right|_{\mathbb{R}^{d-1}} \cdot \nu=\left.\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}}\right)\right|_{\mathbb{R}^{d-1}} \cdot(0, \ldots,-1)=-\frac{\partial u}{\partial x_{d}}(x, 0) .
$$

In terms of the DtN map,

$$
\Lambda \varphi=-\frac{\partial u}{\partial x_{d}}(x, 0) \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d-1}\right)
$$

We can then apply the DtN map once more, to get $\Lambda^{2} \varphi$.

## Higher Education

## Is the DtN Map on the Halfspace an Old Friend? (cont.)

We want the solution to the Dirichlet problem for the boundary function $-\frac{\partial u}{\partial x_{d}}(x, 0)$, that is, $v$ such that

$$
\left\{\begin{array}{l}
-\Delta v=0 \text { in } \mathbb{R}_{+}^{d} \\
v(x, 0)=-\frac{\partial u}{\partial x_{d}}(x, 0)\left(\text { on } \mathbb{R}^{d-1}\right)
\end{array}\right.
$$

However, by Schwarz' Theorem, we have that

$$
-\Delta \frac{\partial u}{\partial x_{d}}=-\frac{\partial}{\partial x_{d}} \Delta u=0 \text { in } \mathbb{R}_{+}^{d}
$$

And trivially,

$$
-\frac{\partial u}{\partial x_{d}}(x, 0)=-\frac{\partial u}{\partial x_{d}}(x, 0) \text { on } \mathbb{R}^{d-1}
$$

It follows that $v=-\frac{\partial u}{\partial x_{d}}$ is the solution of the particular Dirichlet problem.

## Higher Education

## Is the DtN Map on the Halfspace an Old Friend? (cont.)

Using the same normal, we have

$$
\frac{\partial}{\partial \nu}\left(-\frac{\partial u}{\partial x_{d}}\right)=-\frac{\partial}{\partial x_{d}}\left(-\left.\frac{\partial u}{\partial x_{d}}\right|_{\mathbb{R}^{d-1}}\right)=\frac{\partial^{2} u}{\partial x_{d}^{2}}(x, 0) .
$$

Hence,

$$
\Lambda^{2} \varphi=\Lambda(\Lambda \varphi)=\Lambda\left(-\frac{\partial u}{\partial x_{d}}(x, 0)\right)=\frac{\partial^{2} u}{\partial x_{d}^{2}}(x, 0) .
$$

But we know that

$$
\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\Delta u=0
$$

so it follows that

$$
\Lambda^{2} \varphi=\frac{\partial^{2} u}{\partial x_{d}^{2}}(x, 0)=-\sum_{i=1}^{d-1} \frac{\partial^{2} u}{\partial x_{i}^{2}}(x, 0)=-\Delta_{d-1} \varphi .
$$

## Higher Education

## The $d-1$ Laplacian! The Project.

We get the identity for smooth functions,

$$
\Lambda^{2}=-\Delta_{d-1} .
$$

This identity is the main focus of the research project. We sought to:

- Generalise the classical Dirichlet/Neumann Problems to weaker nonclassical conditions - Sobolev spaces, weak derivatives, Lebesgue spaces etc - and investigate the Well-Posedness of these problems.
- Generalise the Dirichlet-to-Neumann Map with respect to the above weaker conditions.
- Investigate how, on appropriately constructed generalised spaces, as operators,

$$
\Lambda=\left(-\Delta_{d-1}\right)^{1 / 2}
$$

- Prove the above well-known identity using new and previously undiscovered methods.


## Higher Education

## Australian Mathematical Sciences Institute

## Acknowledgements

Acknowledgement and appreciation should and must be bestowed upon

- Peter Dirichlet and Carl Neumann for giving us classical problems.
- Sobolev for pioneering for us appropriate weaker conditions.
- The many authors of papers and texts such as Haim Brezis and Vladimir Maz'ja.
- The other students in my project team, Ben Szczesny and David Wu.
- My supervisor for the project, Dr. Daniel Hauer.
- The Australian Mathematical Sciences Institute and the School of Mathematics at the University of Sydney for this opportunity.

