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Motivation (not for me...for the topic!)

Suppose we have
» Some medium  in R? that conducts electricity.

When we apply
» A voltage ¢ to the boundary/surface of €.

This induces
» A potential u that satisfies Ohm’s Law in the domain Q and
> The gradient Vu of u describes an electric field through the medium.
» The normal component Vu-v =: 3—5 of that electric field Vu at the
boundary of Q describes the current flux density through the surface.

For a specified domain €, the Dirichlet-to-Neumann Map is an operator
that sends the voltage ¢ to the normal component % of the induced
field Vu at the boundary. Comparing abstractly computed expected
values with actual measured values at the boundary gives us information

about the properties of the medium Q.
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Our Classical Friends, Dirichlet...

Suppose Q is an open set in RY.
The Dirichlet Problem. Let ¢ be a function on the boundary 02. Does
there exist a unique twice differentiable function u on Q such that

—Au =0 on Q (Laplace’'s Equation)
u = ¢ on 0.

d o2

Here Au = E % and is called the Laplacian.
) X 4
i=1
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..and Neumann, Introduce Us to DtN

The Neumann Problem. Let ¢ be a function on the boundary 992.
Does there exist a unique twice differentiable function u on € such that

—Au =0 on Q (Laplace again!)
gu = 1) on 9.

Here % = Vu - v is the normal derivative of u at the boundary with

respect to a given normal v.

The Dirichlet-to-Neumann Map. As the name suggests, the
Dirichlet-to-Neumann (DtN) Map sends boundary value data to normal
derivative data via a solution.
Aipsurs 28
2 o

where u is the solution to the Dirichlet Problem.
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Is the DtN Map on the Halfspace an Old Friend?

What does the Dirichlet-to-Neumann Map actually look like? In
particular, we want to investigate the DtN Map on the Halfspace

RY =R x (0,00) = {(x,y) : x e Ry > 0}
with boundary and normal vector

OR{ =R x {0} =R ! and v = (0,...,0,-1).

Rd
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Is the DtN Map on the Halfspace an Old Friend? (cont.)

Let us consider the DtN Map in the smooth case. Suppose that we have

p € C(RY71), with u € C*°(RY) a solution to

—Au=0inRY
u(x,0) = ¢ (on RY71).

Then the normal derivative of u is given by

ou Ou Ou Ou
5 = VU|Rd—1 V= (8_)(17 ceny 8—Xd)|Rd—1 . (0, ceey —1) = ——(X,O).

In terms of the DtN map,
u

oo d—1
g 0 0) € CE(RIE).

Np = —

We can then apply the DtN map once more, to get A2p.
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Is the DtN Map on the Halfspace an Old Friend? (cont.)

We want the solution to the Dirichlet problem for the boundary function
ax L(x,0), that is, v such that

{—Av —0in Rd
(x,0) = =H£(x,0) (on RI71),

However, by Schwarz' Theorem, we have that

ou 0
~A——=——"Au=0inRY.
8Xd aXd v= n
And trivially, ou ou
_ __ 77 Rd_l.
O (x,0) O (x,0) on
It follows that v = —g—)g is the solution of the particular Dirichlet

problem.
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Is the DtN Map on the Halfspace an Old Friend? (cont.)

Using the same normal, we have

0, Ou 0 ou d%u

5( Oxs __3_Xd(_6_>w|Rd_l): a_Xg(Xvo)'

Hence, du 82u
2 _ _
N = ANNAp) = A(__axd (x,0)) = _5‘X§ (x,0).

But we know that
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The d — 1 Laplacian! The Project.

We get the identity for smooth functions,

AN =—Ag_q.

This identity is the main focus of the research project. We sought to:

> Generalise the classical Dirichlet/Neumann Problems to weaker
nonclassical conditions - Sobolev spaces, weak derivatives, Lebesgue
spaces etc - and investigate the Well-Posedness of these problems.

» Generalise the Dirichlet-to-Neumann Map with respect to the above
weaker conditions.

» Investigate how, on appropriately constructed generalised spaces, as

operators,
A= (=Dg_1)Y?

» Prove the above well-known identity using new and previously
undiscovered methods.
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