The Dirichlet-to-Neumann Map on the Half Space

Abraham C.S. Ng Supervised by Dr. Daniel Hauer University of Sydney

Sponsors

Australian Government

Department of Education

Australian Mathematical Sciences Institute

Motivation (not for me...for the topic!)

Suppose we have

 \blacktriangleright Some medium Ω in \mathbb{R}^3 that conducts electricity.

When we apply

• A voltage φ to the boundary/surface of Ω .

This induces

- \blacktriangleright A potential u that satisfies Ohm's Law in the domain Ω and
- The gradient ∇u of u describes an electric field through the medium.
- ► The normal component ∇u · ν =: ∂u/∂ν of that electric field ∇u at the boundary of Ω describes the current flux density through the surface.

For a specified domain Ω , the Dirichlet-to-Neumann Map is an operator that sends the voltage φ to the normal component $\frac{\partial u}{\partial \nu}$ of the induced field ∇u at the boundary. Comparing abstractly computed expected values with actual measured values at the boundary gives us information about the properties of the medium Ω .

Our Classical Friends, Dirichlet...

Suppose Ω is an open set in \mathbb{R}^d .

The Dirichlet Problem. Let φ be a function on the boundary $\partial\Omega$. Does there exist a unique twice differentiable function u on Ω such that

$$\begin{cases} -\Delta u = 0 \text{ on } \Omega \text{ (Laplace's Equation)} \\ u = \varphi \text{ on } \partial \Omega. \end{cases}$$

Here
$$\Delta u = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2}$$
 and is called the Laplacian.

...and Neumann, Introduce Us to DtN

The Neumann Problem. Let ψ be a function on the boundary $\partial \Omega$. Does there exist a unique twice differentiable function u on Ω such that

$$egin{cases} -\Delta u = 0 ext{ on } \Omega ext{ (Laplace again!)} \ rac{\partial u}{\partial
u} = \psi ext{ on } \partial \Omega. \end{cases}$$

Here $\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu$ is the normal derivative of u at the boundary with respect to a given normal ν .

The Dirichlet-to-Neumann Map. As the name suggests, the Dirichlet-to-Neumann (DtN) Map sends boundary value data to normal derivative data via a solution.

$$\Lambda:\varphi\mapsto u\mapsto \frac{\partial u}{\partial\nu},$$

where u is the solution to the Dirichlet Problem.

Is the DtN Map on the Halfspace an Old Friend?

What does the Dirichlet-to-Neumann Map actually look like? In particular, we want to investigate the DtN Map on the Halfspace

$$\mathbb{R}^{d}_{+} := \mathbb{R}^{d-1} \times (0, \infty) = \{(x, y) : x \in \mathbb{R}^{d-1}, y > 0\}$$

with boundary and normal vector

$$\partial \mathbb{R}^d_+ = \mathbb{R}^{d-1} \times \{0\} = \mathbb{R}^{d-1} \text{ and } \nu = (0, ..., 0, -1).$$

Is the DtN Map on the Halfspace an Old Friend? (cont.)

Let us consider the DtN Map in the smooth case. Suppose that we have $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d-1})$, with $u \in \mathcal{C}^{\infty}(\overline{\mathbb{R}^{d}_{+}})$ a solution to

$$egin{cases} -\Delta u = 0 ext{ in } \mathbb{R}^d_+ \ u(x,0) = arphi ext{ (on } \mathbb{R}^{d-1}). \end{cases}$$

Then the normal derivative of u is given by

$$\frac{\partial u}{\partial \nu} = \nabla u|_{\mathbb{R}^{d-1}} \cdot \nu = (\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_d})|_{\mathbb{R}^{d-1}} \cdot (0, ..., -1) = -\frac{\partial u}{\partial x_d}(x, 0).$$

In terms of the DtN map,

$$\Lambda \varphi = -\frac{\partial u}{\partial x_d}(x,0) \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{d-1}).$$

We can then apply the DtN map once more, to get $\Lambda^2 \varphi$.

Is the DtN Map on the Halfspace an Old Friend? (cont.)

We want the solution to the Dirichlet problem for the boundary function $-\frac{\partial u}{\partial x_a}(x,0)$, that is, v such that

$$egin{cases} -\Delta v = 0 ext{ in } \mathbb{R}^d_+ \ v(x,0) = -rac{\partial u}{\partial x_d}(x,0) ext{ (on } \mathbb{R}^{d-1}). \end{cases}$$

However, by Schwarz' Theorem, we have that

$$-\Delta \frac{\partial u}{\partial x_d} = -\frac{\partial}{\partial x_d} \Delta u = 0 \text{ in } \mathbb{R}^d_+.$$

And trivially,

$$-\frac{\partial u}{\partial x_d}(x,0) = -\frac{\partial u}{\partial x_d}(x,0) \text{ on } \mathbb{R}^{d-1}.$$

It follows that $v = -\frac{\partial u}{\partial x_d}$ is the solution of the particular Dirichlet problem.

Is the DtN Map on the Halfspace an Old Friend? (cont.)

Using the same normal, we have

$$\frac{\partial}{\partial \nu} \left(-\frac{\partial u}{\partial x_d} \right) = -\frac{\partial}{\partial x_d} \left(-\frac{\partial u}{\partial x_d} \right|_{\mathbb{R}^{d-1}} = \frac{\partial^2 u}{\partial x_d^2} (x, 0).$$

Hence,

$$\Lambda^2 \varphi = \Lambda(\Lambda \varphi) = \Lambda(-\frac{\partial u}{\partial x_d}(x,0)) = \frac{\partial^2 u}{\partial x_d^2}(x,0).$$

But we know that

$$\sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = \Delta u = 0,$$

so it follows that

$$\Lambda^{2}\varphi = \frac{\partial^{2}u}{\partial x_{d}^{2}}(x,0) = -\sum_{i=1}^{d-1} \frac{\partial^{2}u}{\partial x_{i}^{2}}(x,0) = -\Delta_{d-1}\varphi.$$

The d-1 Laplacian! The Project.

We get the identity for smooth functions,

$$\Lambda^2 = -\Delta_{d-1}.$$

This identity is the main focus of the research project. We sought to:

- Generalise the classical Dirichlet/Neumann Problems to weaker nonclassical conditions - Sobolev spaces, weak derivatives, Lebesgue spaces etc - and investigate the Well-Posedness of these problems.
- Generalise the Dirichlet-to-Neumann Map with respect to the above weaker conditions.
- Investigate how, on appropriately constructed generalised spaces, as operators,

$$\Lambda = (-\Delta_{d-1})^{1/2}.$$

 Prove the above well-known identity using new and previously undiscovered methods.

Acknowledgements

Acknowledgement and appreciation should and must be bestowed upon

- > Peter Dirichlet and Carl Neumann for giving us classical problems.
- ► Sobolev for pioneering for us appropriate weaker conditions.
- The many authors of papers and texts such as Haim Brezis and Vladimir Maz'ja.
- ▶ The other students in my project team, Ben Szczesny and David Wu.
- ▶ My supervisor for the project, Dr. Daniel Hauer.
- The Australian Mathematical Sciences Institute and the School of Mathematics at the University of Sydney for this opportunity.