
1.2 Posets and Zorn’s Lemma

A set Σ is called partially ordered or a poset with

respect to a relation ≤ if

(i) (reflexivity)

(∀σ ∈ Σ) σ ≤ σ ;

(ii) (antisymmetry)

(∀σ, τ ∈ Σ) σ ≤ τ ≤ σ =⇒ σ = τ ;
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(iii) (transitivity)

(∀ρ, σ, τ ∈ Σ) ρ ≤ σ ≤ τ =⇒ ρ ≤ τ .

Let X ⊆ Σ where Σ is a poset.

Call X a chain or say that X is totally ordered

if

(∀x, y ∈ X) x ≤ y or y ≤ x .

“everything is comparable”
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Call σ ∈ Σ an upper bound for X if

(∀x ∈ X) x ≤ σ .

Call σ ∈ Σ maximal if

(∀τ ∈ Σ) σ ≤ τ =⇒ σ = τ .

Examples:

(1) Z , Q , R are totally ordered with respect to

the usual ≤ , and all of these fail to have a maximal

element.
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(2) Let S be a set and put

Σ = P (S) = { T | T ⊆ S } ,

the power set of S , which is a poset with respect

to ⊆ , having S as the maximal element.

If |S| > 1 then P(S) is not totally ordered.

e.g. If S = {1, 2, 3} then P(S) looks like
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∅

S

{3}{1} {2}

{2, 3}{1, 2} {1, 3}
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The previous picture is called a Hasse

diagram,

in which a line segment joins two nodes x

and y if x < y and there is no z for

which x < z < y ,

in which case we say y covers x .
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Now put

Σ′ = P(S) \ {S} .

Then Σ′ is a poset with respect to ⊆ (called a

subposet of Σ ), but now Σ′ has many maximal

elements, namely

S\{x} where x ∈ S .

e.g. if S = {1, 2, 3} then Σ′ looks like
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maximal elements
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Examples (continued):

(3) Let A be a ring and put

Σ = { I | I � A , I 6= A } .

Then Σ is a poset with respect to ⊆ ,

and now the maximal elements of Σ are

precisely the maximal ideals of A .
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e.g. If A = Z2 then Σ ∪ {A} is the poset

{0}

A

If R,S are rings then define the direct

sum to be

R ⊕ S = { (x, y) | x ∈ R , y ∈ S }

with coordinatewise operations.
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e.g. If

A = Z2 ⊕ Z2 = { (0, 0), (0, 1), (1, 0), (1, 1) }

then Σ ∪ {A} is the poset

A

〈 (0, 1) 〉〈 (1, 0) 〉

〈 (0, 0) 〉 = {(0, 0)}
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where 〈 〉 denotes “ideal generated by...”.

The maximal ideals of Z2 ⊕ Z2 are 〈 (0, 1) 〉 and

〈 (1, 0) 〉 , both of which are rings with identity (!)

isomorphic to Z2 .

e.g. If A = Z2 ⊕ Z2 ⊕ Z2 then Σ ∪ {A} is the

poset
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〈 (0, 0, 0) 〉

A

〈 (0, 0, 1) 〉〈 (1, 0, 0) 〉 〈 (0, 1, 0) 〉

〈 (1, 0, 0), (0, 0, 1) 〉

〈 (1, 0, 0), (0, 1, 0) 〉 〈 (0, 1, 0), (0, 0, 1) 〉

The maximal ideals are all isomorphic to Z2 ⊕ Z2 .
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Exercise: Prove that if A and B are

rings and

I � A ⊕ B

then

I = C ⊕ D

= { (x, y) | x ∈ C , y ∈ D }

for some C � A , D � B .
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Exercise: Draw the Hasse diagram for the

poset of vector subspaces (under ⊆ ) of

Z2⊕Z2 , regarded as a 2-dimensional vector

space over the field Z2 .

(Compare with the poset of ideals of the

ring Z2 ⊕ Z2 .)
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A poset Σ is called well-ordered if Σ is totally

ordered and

each nonempty subset of Σ has a least

element.

e.g. Z+ , N are, but Z , Q+ , R+ , Q , R are

not well-ordered with respect to the usual ≤ .

All finite totally ordered sets are

well-ordered.

81



Exercise: Let Σ be a nonempty alphabet

given some total order ≤ .

Define the lexicographic or dictionary

order on Σ∗ = { words over Σ }
by x1 . . . xm < y1 . . . yn if, for some k

such that 0 ≤ k < n ,

(∀i) 0 < i ≤ k =⇒ xi = yi

and k + 1 ≤ m =⇒ xk+1 < yk+1 .

Verify that Σ∗ is well-ordered iff |Σ| = 1 .

82



We use the following result from set theory:

Zorn’s Lemma: Let Σ be a nonempty

poset such that every chain C ⊆ Σ has

an upper bound in Σ . Then

Σ has a maximal element.

This is equivalent to the Axiom of Choice, the Well-

Ordering Principle, and Transfinite Induction

(explained, for example, in “Naive Set Theory” by

Halmos).
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The Well-Ordering Principle says that

every set can be well-ordered.

This is nontrivial; e.g. there is no known explicit

well-ordering of R .

Idea of proof of Zorn’s Lemma:

(1) Start with any element x0 ∈ Σ and build a

chain upwards

x0 < x1 < x2 < . . .

unless you reach a maximal element.
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(2) This chain has an upper bound y0 .

(3) Build a new chain upwards

y0 < y1 < y2 < . . .

unless you reach a maximal element.

(4) Continue building a chain unless you reach a

maximal element.
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(5) Suppose “every element of Σ gets examined”

yet the chain C continues to be built without bound.

Then for all z ∈ Σ

(∃x ∈ C) x 6< z

(6) But C has an upper bound z0 , so

(∀x ∈ C) x ≤ z0

contradicting (5).
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(7) Hence (5) can’t happen, so in the process

of attempting to build such a chain C a maximal

element must have been reached.

The “examining of every element of Σ ”

can be made precise if we assume Σ has

been well-ordered.

Difficult (optional) exercise:

Prove that Zorn’s Lemma and the Well-

Ordering Principle are equivalent.
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The following is a standard application of Zorn’s

Lemma:

Theorem: Every nonzero ring has a

maximal ideal.

Proof: Let A be a nonzero ring and put

Σ = { I | I � A , I 6= A } .

Then Σ is a poset with respect to ⊆ .
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Also Σ 6= ∅ since {0} ∈ Σ .

Let C ⊆ Σ be a chain.

If C = ∅ put K = {0} .

If C 6= ∅ put

K =
⋃

{I∈C}

I = { x ∈ A | (∃I ∈ C) x ∈ I } .

We check that K � A .
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This is clear if C = ∅ , so suppose C 6= ∅ .

(i) K 6= ∅ since 0 ∈ K .

(ii) Let x, y ∈ K , z ∈ A . Then

x ∈ I , y ∈ J (∃ I , J ∈ C) .

But C is a chain, so J ⊆ I or I ⊆ J .

If J ⊆ I then x− y ∈ I ⊆ K , and if I ⊆ J then

x − y ∈ J ⊆ K . Thus

x − y ∈ K .
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Further xz ∈ I ⊆ K , so xz ∈ K .

By (i) and (ii), K � A .

We check that K 6= A .

If 1 ∈ K then 1 ∈ I for some I ∈ C , so I = A ,

contradicting that I ∈ Σ .

Hence K 6= A . Thus
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K ∈ Σ and clearly K is an upper bound

for C .

By Zorn’s Lemma, Σ has a maximal element, which

is a maximal ideal of A , and the theorem is proved.

Corollary: Let I � A , I 6= A .

Then there exists a maximal ideal of A

containing I .
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Proof: By the Theorem, since A/I is nonzero,

A/I has a maximal ideal J = J/I for some

I ⊆ J � A .

But the maximality of J implies the maximality of

J , and we are done.

Corollary: Every nonunit in A 6= {0} is

contained in a maximal ideal of A .
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Proof: If x ∈ A is a nonunit then xA � A but

xA 6= A , so, by the previous Corollary,

there exists a maximal ideal J of A containing

xA ,

so certainly x ∈ J , and we are done.

Remark: Consider the case when A 6= {0}
satisfies the ascending chain condition (a.c.c.)

(we call A noetherian – see Part 3),
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that is, if

I1 ⊆ I2 ⊆ . . .

is an ascending chain of ideals of A then

In = In+1 = . . . (∃n ≥ 1) .

Then Zorn’s Lemma can be avoided in the proof of

the Theorem:

• start with I1 = {0} ;
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• if I1 is not maximal then

I1 ⊂ I2 � A , (∃I2 6= A) ;

• continuing, either one reaches a maximal ideal, or

one produces a strictly ascending chain

I1 ⊂ I2 ⊂ I3 ⊂ . . .

which is impossible by the a.c.c.;

• hence one finds a maximal ideal of A .
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