1.2 Posets and Zorn’s Lemma

A set X Is called partially ordered or a poset with
respect to a relation < if

(i) (reflexivity)

(Vo € X) o<o;

(ii)) (antisymmetry)

(Vo, 7 € X)) c<17<0 = O0=7T;
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(iii) (transitivity)

(Vp,o,7 € X) p<oc<1t — p<T.

Let X C > where > Is a poset.

Call X a chain or say that X is totally ordered
if

(Vx,y € X) r<y o y<w.
“everything i1s comparable”
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Call ¢ € X an upper bound for X if
(Vz € X) r<o.

Call 0 € XY maximal if

(VT e X) c<T = O0=7T.

Examples:

(1) Z, Q, R are totally ordered with respect to
the usual <, and all of these fail to have a maximal

element.
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(2) Let S be aset and put
> = P(S) = A{T | TCS},

the power set of S, which is a poset with respect
to C, having S as the maximal element.

If |S| > 1 then P(S) is not totally ordered.
eg. If S = {1,2,3} then P(S) looks like
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The previous picture is called a Hasse
diagram,

in which a line segment joins two nodes «x
and y if z <y and there is no z for
which z < z <y,

in which case we say y covers x .
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Now put
¥ = PS)\{S}.
Then 3’ is a poset with respect to C (called a

subposet of > ), but now Y’ has many maximal
elements, namely

S\{x} where rels.

eg. if § = {1,2,3} then >’ looks like
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Examples (continued):

(3)

Let A be a ring and put
Y = {IT | I <A, I##A}.

Then > Is a poset with respect to C ,
and now the maximal elements of > are
precisely the maximal ideals of A .
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e.g.

If A=175 then X U{A} is the poset

t A

¢ 10}

If R,S are rings then define the direct
sum to be

RoS = {(zy) |zcR, yes}

with coordinatewise operations.
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eg. |If
A= 7ZyDZy = {(070)7(071)7(170)7(171)}

then X U {A} is the poset
A

((1,0)) ((0,1))

< (07 0) > — {(07 0)}
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where ( ) denotes “ideal generated by...".

The maximal ideals of Zo ® Zy are ((0,1)) and

((1,0)) , both of which are rings with identity (!)
iIsomorphic to Zs .

eg If A = Zo®ZyBDZy then X U{A} is the
poset
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((1,0,0),(0,0,1))

’

<((0,1,0),(0,0,1) )

((1,0,0),(0,1,0))

((1,0,0)) ((0,0,1))

((0,0,0))

The maximal ideals are all isomorphic to Zs & Zs .
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Exercise: Prove thatif A and B

rings and
I « A B
then
I = C&e&D

= {(r,y) | z€C, yeD}

forsome C <A, D« B.

dre
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Exercise: Draw the Hasse diagram for the
poset of vector subspaces (under C ) of

Zo D Zo , regarded as a 2-dimensional vector
space over the field Z .

(Compare with the poset of ideals of the
ring Zs ® Zs .)
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A poset X is called well-ordered if > is totally
ordered and

each nonempty subset of > has a least
element.

eg. Z', N are,but Z, QT, R", Q, R are
not well-ordered with respect to the usual <.

All finite totally ordered sets are
well-ordered.
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Exercise: Let > be a nonempty alphabet
given some total order <.

Define the lexicographic or dictionary
order on ¥* = { words over ¥ }
by z1...2,, < vy1...y, If, for some k
such that 0 < k < n,

(V1) 0<i<k = =z =y
and E+1<m — xp1 < Yra1.

Verify that 3* is well-ordered iff |X| =1.
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We use the following result from set theory:

Zorn's Lemma: Let X be a nonempty
poset such that every chain C C > has
an upper bound in > . Then

Y. has a maximal element.

This is equivalent to the Axiom of Choice, the Well-
Ordering Principle, and Transfinite Induction

(explained, for example, in “Naive Set Theory” by
Halmos).
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The Well-Ordering Principle says that
every set can be well-ordered.

This i1s nontrivial; e.g. there I1s no known explicit
well-ordering of R .

Idea of proof of Zorn’'s Lemma:

(1) Start with any element zy € ¥ and build a
chain upwards

Ty < T1 < T < ...

unless you reach a maximal element.

84



(2) This chain has an upper bound yj .

(3) Build a new chain upwards

Yo < Y1 < Y2 < ...

unless you reach a maximal element.

(4) Continue building a chain unless you reach a

maximal element.
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(5) Suppose “every element of 3 gets examined”
yet the chain C continues to be built without bound.
Then for all z € X

(dz € C) r £z

(6) But C has an upper bound z;, so
(Vx € C) r < zj

contradicting (5).
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(7)  Hence (5) can't happen, so in the process
of attempting to build such a chain C a maximal
element must have been reached.

The “examining of every element of X "
can be made precise if we assume > has
been well-ordered.

Difficult (optional) exercise:

Prove that Zorn's Lemma and the Well-
Ordering Principle are equivalent.
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he following is a standard application of Zorn's
Lemma:

Theorem: Every nonzero ring has a
maximal ideal.

Proof: Let A be a nonzero ring and put
Y = {1 | I <A, T1#A}.

Then > is a poset with respect to C .
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Also 3 # () since {0} € .
Let C C > be a chain.

If C = 0 put K = {0}.

If C # 0 put
K = (JI ={xzcA]| (3lcC)zecl}.
{IeC}

We check that K < A.
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This is clear if C =0, so suppose C # () .
(i) K #0 since 0 € K .

(i) Let |z,ye K,2z€ A.| Then

rel, yeJ 3r, J ().
But C isachain,so JCI or ICJ.

f JCI then x—ye€lCK ,andif I CJ then
r—yeJ C K. Thus

r—1y e K.
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Further zz € I C K | so rz € K .

By (i) and (i), K < A

We check that K # A.

If 1€ K then 1€ forsome I €(C,so I =A,
contradicting that [ € X .

Hence K # A . Thus
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K € > and clearly K s an upper bound
for C .

By Zorn's Lemma, > has a maximal element, which
Is a maximal ideal of A, and the theorem is proved.

Corollary: Let T <« A, I # A.
Then there exists a maximal ideal of A
containing 1 .
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Proof: By the Theorem, since A/I is nonzero,
A/I has a maximal ideal J = J/I for some
I C J g A.

But the maximality of J implies the maximality of
J , and we are done.

Corollary: Every nonunitin A # {0} is
contained in a maximal ideal of A .
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Proof: If x € A is a nonunit then xA < A but
rA # A, so, by the previous Corollary,

there exists a maximal ideal J of A containing

TA
so certainly x € J , and we are done.

Remark:  Consider the case when A # {0}
satisfies the ascending chain condition (a.c.c.)

(we call A noetherian — see Part 3),
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that is, iIf
I, C I, C ...

Is an ascending chain of ideals of A then

Then Zorn's Lemma can be avoided in the proof of
the Theorem:

e start with I; = {0} ;
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o if I; I1s not maximal then

L Cc I, < A, (HIQ#A),

e continuing, either one reaches a maximal ideal, or
one produces a strictly ascending chain

L C I, C I3 C ...
which is impossible by the a.c.c.;

e hence one finds a maximal ideal of A .

96



