

1.2 Posets and Zorn's Lemma

A set Σ is called **partially ordered** or a **poset** with respect to a relation \leq if

(i) **(reflexivity)**

$$(\forall \sigma \in \Sigma) \quad \sigma \leq \sigma ;$$

(ii) **(antisymmetry)**

$$(\forall \sigma, \tau \in \Sigma) \quad \sigma \leq \tau \leq \sigma \quad \Rightarrow \quad \sigma = \tau ;$$

(iii) **(transitivity)**

$$(\forall \rho, \sigma, \tau \in \Sigma) \quad \rho \leq \sigma \leq \tau \implies \rho \leq \tau .$$

Let $X \subseteq \Sigma$ where Σ is a poset.

Call X a **chain** or say that X is **totally ordered** if

$$(\forall x, y \in X) \quad x \leq y \quad \text{or} \quad y \leq x .$$

“everything is comparable”

Call $\sigma \in \Sigma$ an **upper bound** for X if

$$(\forall x \in X) \quad x \leq \sigma .$$

Call $\sigma \in \Sigma$ **maximal** if

$$(\forall \tau \in \Sigma) \quad \sigma \leq \tau \implies \sigma = \tau .$$

Examples:

(1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} are totally ordered with respect to the usual \leq , and all of these fail to have a maximal element.

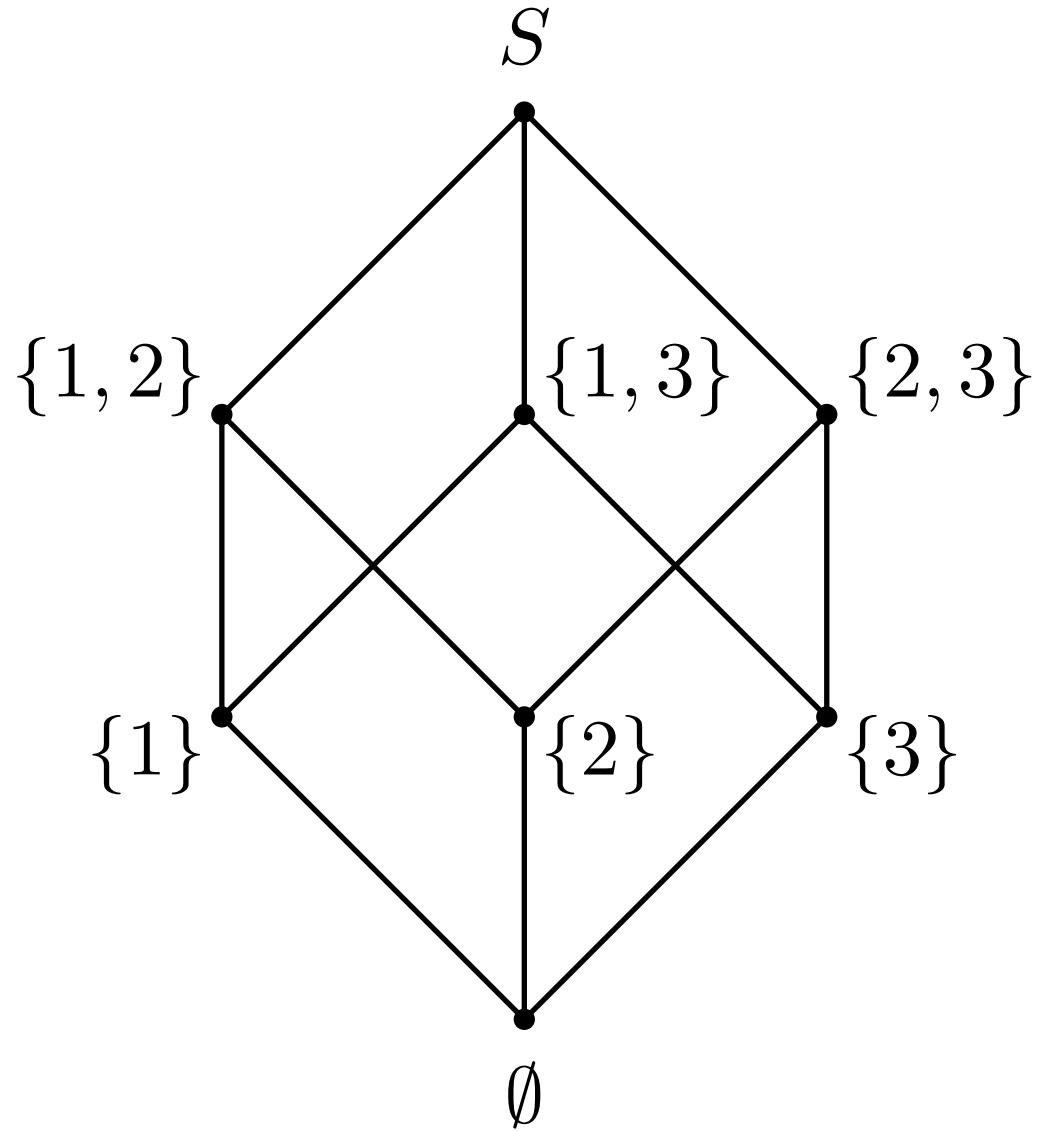
(2) Let S be a set and put

$$\Sigma = \mathcal{P}(S) = \{ T \mid T \subseteq S \},$$

the **power set** of S , which is a poset with respect to \subseteq , having S as **the** maximal element.

If $|S| > 1$ then $\mathcal{P}(S)$ is **not** totally ordered.

e.g. If $S = \{1, 2, 3\}$ then $\mathcal{P}(S)$ looks like



The previous picture is called a **Hasse diagram**,

in which a line segment joins two nodes x and y if $x < y$ and there is no z for which $x < z < y$,

in which case we say y **covers** x .

Now put

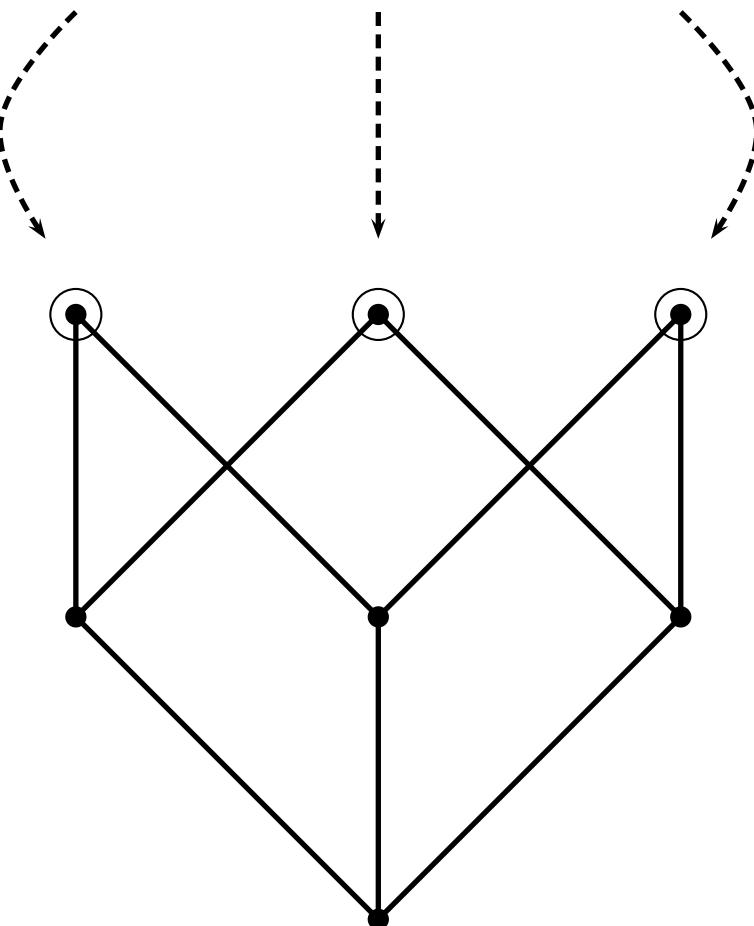
$$\Sigma' = \mathcal{P}(S) \setminus \{S\}.$$

Then Σ' is a poset with respect to \subseteq (called a **subposet** of Σ), but now Σ' has many maximal elements, namely

$$S \setminus \{x\} \quad \text{where} \quad x \in S.$$

e.g. if $S = \{1, 2, 3\}$ then Σ' looks like

maximal elements



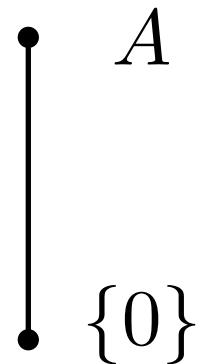
Examples (continued):

(3) Let A be a ring and put

$$\Sigma = \{ I \mid I \triangleleft A, I \neq A \}.$$

Then Σ is a poset with respect to \subseteq , and now the maximal elements of Σ are precisely the maximal ideals of A .

e.g. If $A = \mathbb{Z}_2$ then $\Sigma \cup \{A\}$ is the poset



If R, S are rings then define the **direct sum** to be

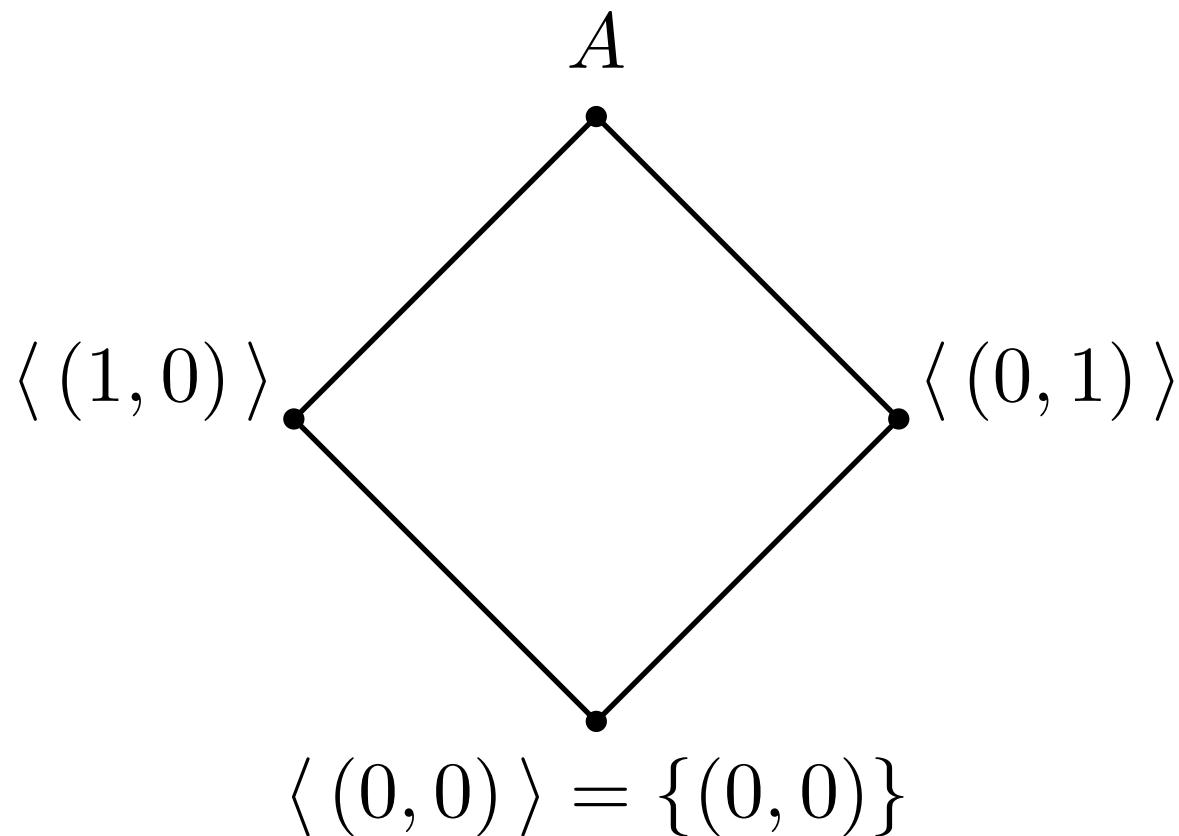
$$R \oplus S = \{ (x, y) \mid x \in R, y \in S \}$$

with coordinatewise operations.

e.g. If

$$A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{ (0,0), (0,1), (1,0), (1,1) \}$$

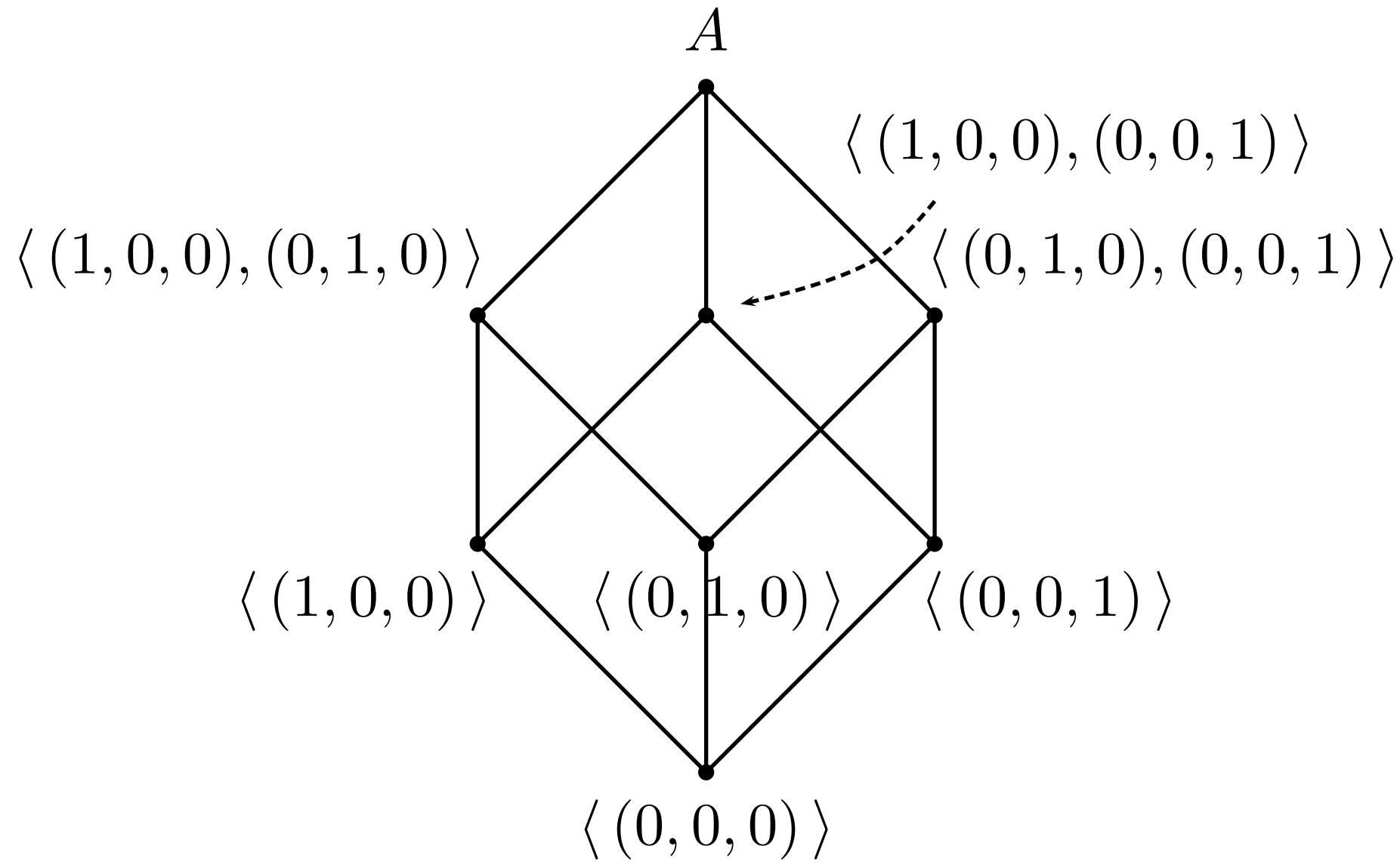
then $\Sigma \cup \{A\}$ is the poset



where $\langle \quad \rangle$ denotes “ideal generated by...”.

The maximal ideals of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ are $\langle (0, 1) \rangle$ and $\langle (1, 0) \rangle$, both of which are rings with identity (!) isomorphic to \mathbb{Z}_2 .

e.g. If $A = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ then $\Sigma \cup \{A\}$ is the poset



The maximal ideals are all isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Exercise: Prove that if A and B are rings and

$$I \triangleleft A \oplus B$$

then

$$I = C \oplus D$$

$$= \{ (x, y) \mid x \in C, y \in D \}$$

for some $C \triangleleft A, D \triangleleft B$.

Exercise: Draw the Hasse diagram for the poset of vector subspaces (under \subseteq) of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, regarded as a 2-dimensional vector space over the field \mathbb{Z}_2 .

(Compare with the poset of **ideals** of the **ring** $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.)

A poset Σ is called **well-ordered** if Σ is totally ordered and

each nonempty subset of Σ has a least element.

e.g. \mathbb{Z}^+ , \mathbb{N} are, but \mathbb{Z} , \mathbb{Q}^+ , \mathbb{R}^+ , \mathbb{Q} , \mathbb{R} are **not** well-ordered with respect to the usual \leq .

All finite totally ordered sets are well-ordered.

Exercise: Let Σ be a nonempty alphabet given some total order \leq .

Define the **lexicographic** or **dictionary** order on $\Sigma^* = \{ \text{words over } \Sigma \}$ by $x_1 \dots x_m < y_1 \dots y_n$ if, for some k such that $0 \leq k < n$,

$$(\forall i) \quad 0 < i \leq k \implies x_i = y_i$$

and $k + 1 \leq m \implies x_{k+1} < y_{k+1}$.

Verify that Σ^* is well-ordered iff $|\Sigma| = 1$.

We use the following result from set theory:

Zorn's Lemma: Let Σ be a nonempty poset such that every chain $\mathcal{C} \subseteq \Sigma$ has an upper bound in Σ . Then

Σ has a maximal element.

This is equivalent to the **Axiom of Choice**, the **Well-Ordering Principle**, and **Transfinite Induction**

(explained, for example, in “Naive Set Theory” by Halmos).

The **Well-Ordering Principle** says that every set can be well-ordered.

This is nontrivial; e.g. there is no known explicit well-ordering of \mathbb{R} .

Idea of proof of Zorn's Lemma:

(1) Start with any element $x_0 \in \Sigma$ and build a chain upwards

$$x_0 < x_1 < x_2 < \dots$$

unless you reach a maximal element.

- (2) This chain has an upper bound y_0 .
- (3) Build a new chain upwards
$$y_0 < y_1 < y_2 < \dots$$
unless you reach a maximal element.
- (4) Continue building a chain unless you reach a maximal element.

(5) Suppose “every element of Σ gets examined” yet the chain \mathcal{C} continues to be built without bound. Then for all $z \in \Sigma$

$$(\exists x \in \mathcal{C}) \quad x \not\prec z$$

(6) But \mathcal{C} has an upper bound z_0 , so

$$(\forall x \in \mathcal{C}) \quad x \leq z_0$$

contradicting (5).

(7) Hence (5) can't happen, so in the process of attempting to build such a chain \mathcal{C} a maximal element must have been reached.

The “examining of every element of Σ ” can be made precise if we assume Σ has been well-ordered.

Difficult (optional) exercise:

Prove that Zorn's Lemma and the Well-Ordering Principle are equivalent.

The following is a standard application of Zorn's Lemma:

Theorem: Every nonzero ring has a maximal ideal.

Proof: Let A be a nonzero ring and put

$$\Sigma = \{ I \mid I \triangleleft A, I \neq A \}.$$

Then Σ is a poset with respect to \subseteq .

Also $\Sigma \neq \emptyset$ since $\{0\} \in \Sigma$.

Let $\mathcal{C} \subseteq \Sigma$ be a chain.

If $\mathcal{C} = \emptyset$ put $K = \{0\}$.

If $\mathcal{C} \neq \emptyset$ put

$$K = \bigcup_{\{I \in \mathcal{C}\}} I = \{x \in A \mid (\exists I \in \mathcal{C}) x \in I\}.$$

We check that $K \triangleleft A$.

This is clear if $\mathcal{C} = \emptyset$, so suppose $\mathcal{C} \neq \emptyset$.

(i) $K \neq \emptyset$ since $0 \in K$.

(ii) Let $x, y \in K, z \in A$. Then

$$x \in I, \quad y \in J \quad (\exists I, J \in \mathcal{C}).$$

But \mathcal{C} is a chain, so $J \subseteq I$ or $I \subseteq J$.

If $J \subseteq I$ then $x - y \in I \subseteq K$, and if $I \subseteq J$ then $x - y \in J \subseteq K$. Thus

$$x - y \in K.$$

Further $xz \in I \subseteq K$, so $xz \in K$.

By (i) and (ii), $K \triangleleft A$.

We check that $K \neq A$.

If $1 \in K$ then $1 \in I$ for some $I \in \mathcal{C}$, so $I = A$, contradicting that $I \in \Sigma$.

Hence $K \neq A$. Thus

$K \in \Sigma$ and clearly K is an upper bound for \mathcal{C} .

By Zorn's Lemma, Σ has a maximal element, which is a maximal ideal of A , and the theorem is proved.

Corollary: Let $I \triangleleft A$, $I \neq A$. Then there exists a maximal ideal of A containing I .

Proof: By the Theorem, since A/I is nonzero, A/I has a maximal ideal $\mathcal{J} = J/I$ for some $I \subseteq J \triangleleft A$.

But the maximality of \mathcal{J} implies the maximality of J , and we are done.

Corollary: Every nonunit in $A \neq \{0\}$ is contained in a maximal ideal of A .

Proof: If $x \in A$ is a nonunit then $xA \triangleleft A$ but $xA \neq A$, so, by the previous Corollary,

there exists a maximal ideal J of A containing xA ,

so certainly $x \in J$, and we are done.

Remark: Consider the case when $A \neq \{0\}$ satisfies the **ascending chain condition (a.c.c.)**

(we call A **noetherian** – see **Part 3**),

that is, if

$$I_1 \subseteq I_2 \subseteq \dots$$

is an ascending chain of ideals of A then

$$I_n = I_{n+1} = \dots \quad (\exists n \geq 1).$$

Then Zorn's Lemma can be avoided in the proof of the Theorem:

- start with $I_1 = \{0\}$;

- if I_1 is not maximal then

$$I_1 \subset I_2 \triangleleft A, \quad (\exists I_2 \neq A);$$

- continuing, either one reaches a maximal ideal, or one produces a strictly ascending chain

$$I_1 \subset I_2 \subset I_3 \subset \dots$$

which is impossible by the a.c.c.;

- hence one finds a maximal ideal of A .