

Example: Let $M = N = F[x]$, regarded as vector spaces over a field F .

What is $M \otimes_F N$?

To answer this: Consider the bilinear mapping

$$f : M \times N \rightarrow F[x, y]$$

defined by

$$(p(x), q(x)) \mapsto p(x)q(y).$$

The Theorem guarantees the existence of a unique module homomorphism f' such that the following diagram commutes:

$$\begin{array}{ccc}
 & g & \\
 M \times N & \xrightarrow{\hspace{3cm}} & M \otimes_F N \\
 f \searrow & & \swarrow f' \\
 & F[x, y] &
 \end{array}$$

Note that

$$M = N = \langle x^i \mid i \geq 0 \rangle$$

so that

$$M \otimes N = \langle x^i \otimes x^j \mid i, j \geq 0 \rangle.$$

Note also that, for each $i, j \geq 0$,

$$\begin{aligned} f'(x^i \otimes x^j) &= f'(g(x^i, x^j)) \\ &= f(x^i, x^j) = x^i y^j. \end{aligned}$$

We wish to show that f' is an isomorphism.

Define $h : F[x, y] \rightarrow M \otimes N$ by

$$h\left(\sum \lambda_{m,n} x^m y^n\right) = \sum \lambda_{m,n} (x^m \otimes y^n).$$

Easy to check h is linear, and further that, for $i, j \geq 0$

$$(f' \circ h)(x^i y^j) = f'(x^i \otimes y^j) = x^i y^j$$

and

$$(h \circ f')(x^i \otimes y^j) = h(x^i y^j) = x^i \otimes y^j.$$

Thus, these mapping fix the generators of $F[x, y]$ and $M \otimes N$ respectively, so

$$f' \circ h = \text{id}_{F[x, y]} \quad \text{and} \quad h \circ f' = \text{id}_{M \otimes N},$$

from which it follows immediately that f' and h are mutually inverse isomorphisms. This proves

$$F[x] \otimes_F F[x] \cong F[x, y].$$

What about $F[x] \otimes_{F[x]} F[x]$

where $F[x]$ (being a ring also) is regarded as a module over itself?

Exercise: Prove that, for any A -module M ,

$$A \otimes_A M \cong M,$$

extending the following mapping on generators:

$$a \otimes x \mapsto a x \quad (x \in M, a \in A).$$

As an illustration of technique we will prove the following result:

Proposition: Let M, N be A -modules.
Then there is a unique isomorphism

$$M \otimes_A N \cong N \otimes_A M$$

extending the following mapping on generators:

$$x \otimes y \mapsto y \otimes x \quad (y \in N, x \in M).$$

Proof: Define $f : M \times N \rightarrow N \otimes M$ by

$$f(x, y) = y \otimes x \quad (x \in M, y \in N).$$

Then, by properties of tensors,

$$\begin{aligned} f(ax_1 + bx_2, y) &= y \otimes (ax_1 + bx_2) \\ &= (y \otimes ax_1) + (y \otimes bx_2) \\ &= a(y \otimes x_1) + b(y \otimes x_2) \\ &= af(x_1, y) + bf(x_2, y). \end{aligned}$$

Similarly f is linear in the second variable.

Thus f is bilinear, so there is a unique module homomorphism h such that the following diagram commutes:

$$\begin{array}{ccc}
 & g & \\
 M \times N & \xrightarrow{\hspace{3cm}} & M \otimes N \\
 f \searrow & & \swarrow h \\
 & N \otimes M &
 \end{array}$$

Hence, for $x \in M$, $y \in N$,

$$h(x \otimes y) = h(g(x, y)) = f(x, y) = y \otimes x.$$

Similarly, there exists a module homomorphism $k : N \otimes M \rightarrow M \otimes N$ such that

$$k(y \otimes x) = x \otimes y \quad (x \in M)(y \in N).$$

whence

$$(k \circ h)(x \otimes y) = k(y \otimes x) = x \otimes y.$$

Hence $k \circ h = \text{id}_{M \otimes N}$ (since it fixes generators).

Similarly $h \circ k = \text{id}_{N \otimes M}$, so h and k are mutually inverse isomorphisms. Further h is unique because it is defined on generators.

Despite the ambiguity of tensors of elements, we have

Corollary to the proof of the main Theorem:

Suppose $\sum_{i=1}^n (x_i \otimes y_i) = 0$ in $M \otimes N$. Then

$$\sum_{i=1}^n (x_i \otimes y_i) = 0 \quad \text{in} \quad M_0 \otimes N_0,$$

for some finitely generated submodules M_0 of M and N_0 of N .

Proof: To say

$$\sum (x_i \otimes y_i) = 0 \quad \text{in} \quad M \otimes N,$$

means

$$\sum (x_i, y_i) \in D$$

where $M \otimes N = C/D$ for C, D as in the proof of the main Theorem.

Hence $\sum (x_i, y_i)$ is a finite linear combination of generators of D .

Let M_0 be the submodule of M generated by all (finitely many) elements of M appearing in first coordinates of ordered pairs used in these generators.

Define N_0 analogously using second coordinates.

Both M_0 and N_0 are finitely generated.

Then $M_0 \otimes N_0 = C_0/D_0$ for appropriate C_0 and D_0 .

But $\sum (x_i, y_i) \in D \cap C_0 = D_0$, so

$$\sum (x_i, y_i) \in D_0 \quad \text{in} \quad M_0 \otimes N_0.$$

Tensoring homomorphisms:

Let $f : M \rightarrow M'$, $g : N \rightarrow N'$ be A -module homomorphisms. We wish to use these to construct a homomorphism

$$f \otimes g : M \otimes N \rightarrow M' \otimes N'.$$

Define

$$h : M \times N \rightarrow M' \otimes N'$$

by

$$h(x, y) = f(x) \otimes g(y).$$

Then h is linear in the first variable:

$$\begin{aligned} h(ax_1 + bx_2, y) &= f(ax_1 + bx_2) \otimes g(y) \\ &= (af(x_1) + bf(x_2)) \otimes f(y) \\ &= a(f(x_1) \otimes g(y)) + b(f(x_2) \otimes g(y)) \\ &= a h(x_1, y) + b h(x_2, y). \end{aligned}$$

Similarly in the second variable, so

h is bilinear.

Hence there is a unique homomorphism $f \otimes g$ which makes the following diagram commute:

$$\begin{array}{ccc} M \times N & \xrightarrow{\quad} & M \otimes N \\ h \searrow & & \swarrow f \otimes g \\ & M' \otimes N' & \end{array}$$

so that

$$(f \otimes g)(x \otimes y) = f(x) \otimes g(y) .$$

Example: Let F be a field and fix $\alpha, \beta \in F$. Define linear transformations $f, g : F[x] \rightarrow F$ by

$$f(p(x)) = p(\alpha) \quad \text{and} \quad g(p(x)) = p(\beta).$$

Then

$$f \otimes g : F[x] \otimes_F F[x] \rightarrow F \otimes_F F$$

where

$$p_1(x) \otimes p_2(x) \mapsto p_1(\alpha) \otimes p_2(\beta).$$

Recall that $\phi : F[x, y] \rightarrow F[x] \otimes_F F[x]$ extending

$$x^i y^j \mapsto x^i \otimes x^j$$

and $\psi : F \otimes_F F \rightarrow F$ extending

$$a \otimes b \mapsto a b$$

are isomorphisms (the latter being a special case of an exercise).

Hence we get the following commutative square for some h :

$$\begin{array}{ccc}
 F[x, y] & \xrightarrow{h} & F \\
 \phi \downarrow & & \uparrow \psi \\
 F[x] \otimes_F F[x] & \xrightarrow{f \otimes g} & F \otimes_F F
 \end{array}$$

so that

$$\begin{aligned}
 h\left(\sum \lambda_{i,j} x^i y^j\right) &= \psi\left(f \otimes g \left(\phi\left(\sum \lambda_{i,j} x^i y^j\right)\right)\right) \\
 &= \psi\left(f \otimes g \left(\sum \lambda_{i,j} x^i \otimes x^j\right)\right) \\
 &= \psi\left(\sum \lambda_{i,j} \alpha^i \otimes \beta^j\right) = \sum \lambda_{i,j} \alpha^i \beta^j.
 \end{aligned}$$

Tensoring behaves well with respect to composition of homomorphisms:

If

$$M \xrightarrow{f} M' \xrightarrow{f'} M''$$

and

$$N \xrightarrow{g} N' \xrightarrow{g'} N''$$

are A -module homomorphisms then

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g)$$

because they agree on generators:

$$\begin{aligned} & [(f' \circ f) \otimes (g' \circ g)](x \otimes y) = [(f' \circ f)(x)] \otimes [(g' \circ g)](y) \\ &= f'(f(x)) \otimes g'(g(y)) = (f' \otimes g')(f(x) \otimes g(y)) \\ &= (f' \otimes g')[(f \otimes g)(x \otimes y)] \\ &= [(f' \otimes g') \circ [(f \otimes g)](x \otimes y) . \end{aligned}$$