
Example: Let M = N = F [x] , regarded as

vector spaces over a field F .

What is M ⊗F N ?

To answer this: Consider the bilinear mapping

f : M ×N → F [x, y]

defined by

(

p(x) , q(x)
)

7→ p(x) q(y) .
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The Theorem guarantees the existence of a unique

module homomorphism f ′ such that the following

diagram commutes:

M ×N M ⊗F N

F [x, y]

g

f f ′

Note that

M = N = 〈 xi | i ≥ 0 〉
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so that

M ⊗N = 〈 xi ⊗ xj | i, j ≥ 0 〉 .

Note also that, for each i, j ≥ 0 ,

f ′(xi ⊗ xj) = f ′(g(xi, xj))

= f(xi, xj) = xiyj .

We wish to show that f ′ is an isomorphism.
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Define h : F [x, y] → M ⊗N by

h
(

∑

λm,n x
m yn

)

=
∑

λm,n
(

xm ⊗ xn
)

.

Easy to check h is linear, and further that, for

i, j ≥ 0

(f ′ ◦ h)(xiyj) = f ′(xi ⊗ xj) = xiyj

and

(h ◦ f ′)(xi ⊗ xj) = h(xiyj) = xi ⊗ xj .
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Thus, these mapping fix the generators of F [x, y]

and M ⊗N respectively, so

f ′ ◦ h = idF [x,y] and h ◦ f ′ = idM⊗N ,

from which it follows immediately that f ′ and h

are mutually inverse isomorphisms. This proves

F [x] ⊗F F [x] ∼= F [x, y] .
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What about F [x] ⊗F [x] F [x]

where F [x] (being a ring also) is regarded as a

module over itself?

Exercise: Prove that, for any A-module

M ,

A ⊗A M ∼= M ,

extending the following mapping on

generators:

a⊗ x 7→ a x ( x ∈M , a ∈ A ) .
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As an illustration of technique we will prove the

following result:

Proposition: Let M , N be A-modules.

Then there is a unique isomorphism

M ⊗A N ∼= N ⊗A M

extending the following mapping on

generators:

x⊗ y 7→ y ⊗ x ( y ∈ N , x ∈M ) .
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Proof: Define f : M ×N → N ⊗M by

f(x, y) = y ⊗ x (x ∈M,y ∈ N) .

Then, by properties of tensors,

f(ax1 + bx2, y) = y ⊗ (ax1 + bx2)

= (y ⊗ ax1) + (y ⊗ bx2)

= a(y ⊗ x1) + b(y ⊗ x2)

= af(x1, y) + bf(x2, y) .

Similarly f is linear in the second variable.
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Thus f is bilinear, so there is a unique module

homomorphism h such that the following diagram

commutes:

M ×N M ⊗N

N ⊗M

g

f h

Hence, for x ∈M , y ∈ N ,

h(x⊗ y) = h(g(x, y)) = f(x, y) = y ⊗ x .
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Similarly, there exists a module homomorphism k :

N ⊗M → M ⊗N such that

k(y ⊗ x) = x⊗ y (x ∈M)(y ∈ N) .

whence

(k ◦ h)(x⊗ y) = k(y ⊗ x) = x⊗ y .

Hence k ◦ h = idM⊗N (since it fixes generators).

Similarly h ◦ k = idN⊗M , so h and k are

mutually inverse isomorphisms. Further h is unique

because it is defined on generators.
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Despite the ambiguity of tensors of elements, we

have

Corollary to the proof of the main Theorem:

Suppose

n
∑

i=1

(xi⊗ yi) = 0 in M ⊗N . Then

n
∑

i=1

(xi ⊗ yi) = 0 in M0 ⊗N0 ,

for some finitely generated submodules M0 of

M and N0 of N .
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Proof: To say

∑

(xi ⊗ yi) = 0 in M ⊗N ,

means
∑

(xi , yi) ∈ D

where M ⊗N = C/D for C , D as in the proof

of the main Theorem.

Hence
∑

(xi, yi) is a finite linear combination of

generators of D .
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Let M0 be the submodule of M generated by all

(finitely many) elements of M appearing in first

coordinates of ordered pairs used in these generators.

Define N0 analogously using second coordinates.

Both M0 and N0 are finitely generated.

Then M0 ⊗ N0 = C0/D0 for appropriate C0

and D0 .

But
∑

(xi, yi) ∈ D ∩ C0 = D0 , so
∑

(xi, yi) ∈ D0 in M0 ⊗N0 .
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Tensoring homomorphisms:

Let f : M → M ′ , g : N → N ′ be A-module

homomorphisms. We wish to use these to construct

a homomorphism

f ⊗ g : M ⊗N → M ′ ⊗N ′ .

Define

h : M ×N →M ′ ⊗N ′

by

h(x, y) = f(x) ⊗ g(y) .
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Then h is linear in the first variable:

h(ax1 + bx2, y) = f(ax1 + bx2) ⊗ g(y)

=
(

af(x1) + bf(x2)
)

⊗ f(y)

= a
(

f(x1) ⊗ g(y)
)

+ b
(

f(x2) ⊗ g(y)
)

= ah(x1, y) + b h(x2, y) .

437



Similarly in the second variable, so h is bilinear.

Hence there is a unique homomorphism f⊗g which

makes the following diagram commute:

M ×N M ⊗N

M ′ ⊗N ′

h f ⊗ g

so that
(

f ⊗ g
)

(x⊗ y) = f(x) ⊗ g(y) .
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Example: Let F be a field and fix α, β ∈ F .

Define linear transformations f, g : F [x] → F by

f
(

p(x)
)

= p(α) and g
(

p(x)
)

= p(β) .

Then

f ⊗ g : F [x] ⊗F F [x] → F ⊗F F

where

p1(x) ⊗ p2(x) 7→ p1(α) ⊗ p2(β) .
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Recall that φ : F [x, y] → F [x] ⊗F F [x] extending

xiyj 7→ xi ⊗ xj

and ψ : F ⊗F F → F extending

a⊗ b 7→ a b

are isomorphisms (the latter being a special case of

an exercise).

Hence we get the following commutative square for

some h :
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F [x, y] F

F [x] ⊗F F [x] F ⊗F F

h

φ

f ⊗ g

ψ

so that

h
(

∑

λi,j x
i yj

)

= ψ
(

f ⊗ g
(

φ
(

∑

λi,j x
i yj

)))

= ψ
(

f ⊗ g
(

∑

λi,j x
i ⊗ xj

))

= ψ
(

∑

λi,j α
i ⊗ βj

)

=
∑

λi,j α
i βj .
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Tensoring behaves well with respect to composition

of homomorphisms:

If

M −→M ′ −→ M ′′
f f ′

and

N −→ N ′ −→ N ′′

g g′

are A-module homomorphisms then

(

f ′ ◦ f
)

⊗
(

g′ ◦ g
)

=
(

f ′ ⊗ g′
)

◦
(

f ⊗ g
)
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because they agree on generators:

[(

f ′ ◦ f
)

⊗
(

g′ ◦ g
)]

(x⊗ y) =
[(

f ′ ◦ f
)

(x)
]

⊗
[(

g′ ◦ g
)]

(y)
]

= f ′(f(x)) ⊗ g′(g(y)) =
(

f ′ ⊗ g′
)(

f(x) ⊗ g(y)
)

=
(

f ′ ⊗ g′
)[(

f ⊗ g
)

(x⊗ y)
]

=
[(

f ′ ⊗ g′
)

◦
[(

f ⊗ g
)]

(x⊗ y) .

443


