1.8 Extension and Contraction

let f: A— B be aring homomorphism.

If I << A define the extension ¢ of I (with
respect to f ) to be

r= (fa)).
I T

ideal generated in B
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Thus

I° = {» yif(x) | n>1,
1=1

v, € B, x;, €l (\V/Z)}

ypically ¢ is much larger than f(I) .

eg. If f:Z— Q is the identity embedding then

{0} #1 < Z

— I = Q.
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If J < B define the contraction J¢ of J (with
respect to f ) to be

Jo= 7)) = {zeA ]| fx)el}.

Easy to see:

JC < A.

We have already noted (on page 62) that

the property of an ideal being prime is
preserved under contraction.
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However, primeness need not be preserved under

extension:

eg. If f:7Z — Q is the identity embedding and
p € Z 1s prime then pZ is a prime ideal in Z , but
(pZ)¢ = Q is not prime in Q.

In general, f: A — B factorizes
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where s is surjective and 7 Is injective.

For the surjective branch of the factorization, the
relationship between ideals is described by an easy
modification of an earlier Proposition (page 38):

Proposition: There I1s a one-one
correspondence between ideals of f(A)
and ideals of A containing ker f , and
prime ideals correspond to prime ideals.
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There is no known simple relationship
between prime ideals of f(A) and prime
ideals of B .

Example (Gaussian integers):

Consider extension with respect to the identity
embedding of Z in Zli] .

The nonzero prime ideals of Z have the form pZ
where p € Z is prime, but

(pz)* = {pa | a€zli]} = p2zl]
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may or may not be prime in Zli] .

The full story is as follows:

() 2zl = (1+i)22z[i] = ((1+4)z[i])”;
(i) if p=1 ( mod4) then pzl|i| is the

product of two distinct prime ideals;

(iii) if p=3 ( mod 4) then pZ[i] is prime
in Zli] .
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To explain part of this, we exploit the following

Fact: Z|i| is a UFD.

— which in turn follows from other facts:

E

7

1| is a Euclidean domain (ED);

Ds are PIDs, and PIDs are UFDs.

— a branch of general theory that may be explored
later when we discuss Gauss' Theorem.
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Thus in  Z[i] , all irreducibles are primes
(and conversely).

Proof of (i): (1+1)? = 2i
so (1+1)* and 2 differ by a unit in z[7]
so generate the same principal ideal. Thus
i) = (1+i)3zfi] = ((1+4)z)”.
[General fact: if a,b € A then (aA)(bA) = abA ]
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But |1 +4]°=2 so 1+ isirreducible in Z[i], so
IS a prime element.

Hence (1 +¢)Z|i| is a prime ideal of Z[i] and (i) is
proved.

Proof of (ii): This follows from a theorem of
Fermat:

If p is a positive prime integer congruent
to 1 mod 4, then

p=z"+y>  (r,yez)
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(proved for example in LeVeque “Eleme
of numbers”).

In this case, p = (x +y)(x —1y) , so

pzli] = ((z+1y)z[i]) ((z —iy)

But x £+ 1y is irreducible (because |z -

SO x £ 1y IS prime.

ntary theory

Z[i]) -

:iy\z =1p ),
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Also neither x + iy nor = — iy is a multiple of the
other

(since they do not differ by a unit, noting that

TFY ).

Hence pZ|i] is a product of two distinct prime
ideals, proving (ii).

Proof of (iii)): Let p be a prime congruent to 3
mod 4. We show p is irreducible. Suppose

p = af  (3a,B€Zli) .
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Then
p’ = [pI* = [|a]*|8]",
so |a|®> mustbe 1, p or p?.

Suppose |a]*> = p, and write o = a -+ bi for
some integers a,b .

Then
p = a2—|—b2

Is odd, so one of a, b is odd and the other even.
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If a=2k, b=2[+1 for some integers
k., [, then

D = CL2—|—b2
— 4k*+ 417+ 41+ 1

= 1 mod 4,

contradicting that p Is congruent to 3 mod
4.
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Similarly a odd and b even leads to a contradiction.

Hence |a|* = 1, in which case « is a unit,
or |al* = p*, inwhichcase |3]° = 1 and S is
a unit.

This proves p is irreducible, so prime.

Hence pZ|i| is a prime ideal and (iii) is proved.
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