

1.8 Extension and Contraction

Let $f : A \rightarrow B$ be a ring homomorphism.

If $I \triangleleft A$ define the **extension** I^e of I (**with respect to f**) to be

$$I^e = \langle f(I) \rangle.$$

ideal generated in B

Thus

$$\begin{aligned} I^e &= \left\{ \sum_{i=1}^n y_i f(x_i) \mid n \geq 1, \right. \\ &\quad \left. y_i \in B, \quad x_i \in I \quad (\forall i) \right\} \end{aligned}$$

Typically I^e is much larger than $f(I)$.

e.g. If $f : \mathbb{Z} \rightarrow \mathbb{Q}$ is the identity embedding then

$$\{0\} \neq I \triangleleft \mathbb{Z} \implies I^e = \mathbb{Q}.$$

If $J \triangleleft B$ define the **contraction** J^c of J (**with respect to f**) to be

$$J^c = f^{-1}(J) = \{ x \in A \mid f(x) \in J \}.$$

Easy to see:

$$J^c \triangleleft A.$$

We have already noted (on page 62) that

the property of an ideal being **prime** is
preserved under contraction.

However, primeness need not be preserved under extension:

e.g. If $f : \mathbb{Z} \rightarrow \mathbb{Q}$ is the identity embedding and $p \in \mathbb{Z}$ is prime then $p\mathbb{Z}$ is a prime ideal in \mathbb{Z} , but $(p\mathbb{Z})^e = \mathbb{Q}$ is not prime in \mathbb{Q} .

In general, $f : A \rightarrow B$ factorizes

$$\begin{array}{ccc} & f & \\ A & \xrightarrow{\hspace{2cm}} & B \\ s \searrow & & \nearrow i \\ & f(A) & \end{array}$$

where s is surjective and i is injective.

For the surjective branch of the factorization, the relationship between ideals is described by an easy modification of an earlier Proposition (page 38):

Proposition: There is a one-one correspondence between ideals of $f(A)$ and ideals of A containing $\ker f$, and prime ideals correspond to prime ideals.

There is no known simple relationship between prime ideals of $f(A)$ and prime ideals of B .

Example (Gaussian integers):

Consider extension with respect to the identity embedding of \mathbb{Z} in $\mathbb{Z}[i]$.

The nonzero prime ideals of \mathbb{Z} have the form $p\mathbb{Z}$ where $p \in \mathbb{Z}$ is prime, but

$$(p\mathbb{Z})^e = \{ p\alpha \mid \alpha \in \mathbb{Z}[i] \} = p\mathbb{Z}[i]$$

may or may not be prime in $\mathbb{Z}[i]$.

The full story is as follows:

$$(i) \quad 2\mathbb{Z}[i] = (1+i)^2\mathbb{Z}[i] = ((1+i)\mathbb{Z}[i])^2;$$

(ii) if $p \equiv 1 \pmod{4}$ then $p\mathbb{Z}[i]$ is the product of two distinct prime ideals;

(iii) if $p \equiv 3 \pmod{4}$ then $p\mathbb{Z}[i]$ is prime in $\mathbb{Z}[i]$.

To explain part of this, we exploit the following

Fact: $\mathbb{Z}[i]$ is a UFD.

— which in turn follows from other facts:

$\mathbb{Z}[i]$ is a **Euclidean domain (ED)**;

EDs are PIDs, and PIDs are UFDs.

— a branch of general theory that may be explored later when we discuss Gauss' Theorem.

Thus in $\mathbb{Z}[i]$, all irreducibles are primes (and conversely).

Proof of (i): $(1 + i)^2 = 2i$

so $(1 + i)^2$ and 2 differ by a unit in $\mathbb{Z}[i]$,

so generate the same principal ideal. Thus

$$2\mathbb{Z}[i] = (1 + i)^2\mathbb{Z}[i] = ((1 + i)\mathbb{Z})^2.$$

[General fact: if $a, b \in A$ then $(aA)(bA) = abA$.]

But $|1 + i|^2 = 2$ so $1 + i$ is irreducible in $\mathbb{Z}[i]$, so is a prime element.

Hence $(1 + i)\mathbb{Z}[i]$ is a prime ideal of $\mathbb{Z}[i]$ and (i) is proved.

Proof of (ii): This follows from a theorem of Fermat:

If p is a positive prime integer congruent to 1 mod 4, then

$$p = x^2 + y^2 \quad (\exists x, y \in \mathbb{Z}^+)$$

(proved for example in LeVeque “Elementary theory of numbers”).

In this case, $p = (x + iy)(x - iy)$, so

$$p\mathbb{Z}[i] = ((x + iy)\mathbb{Z}[i])((x - iy)\mathbb{Z}[i]).$$

But $x \pm iy$ is irreducible (because $|x \pm iy|^2 = p$),
so $x \pm iy$ is prime.

Also neither $x + iy$ nor $x - iy$ is a multiple of the other

(since they do not differ by a unit, noting that $x \neq y$).

Hence $p\mathbb{Z}[i]$ is a product of two distinct prime ideals, proving (ii).

Proof of (iii): Let p be a prime congruent to 3 mod 4. We show p is irreducible. Suppose

$$p = \alpha\beta \quad (\exists \alpha, \beta \in \mathbb{Z}[i]).$$

Then

$$p^2 = |p|^2 = |\alpha|^2 |\beta|^2,$$

so $|\alpha|^2$ must be 1, p or p^2 .

Suppose $|\alpha|^2 = p$, and write $\alpha = a + bi$ for some integers a, b .

Then

$$p = a^2 + b^2$$

is odd, so one of a, b is odd and the other even.

If $a = 2k$, $b = 2l + 1$ for some integers k , l , then

$$p = a^2 + b^2$$

$$= 4k^2 + 4l^2 + 4l + 1$$

$$\equiv 1 \pmod{4},$$

contradicting that p is congruent to 3 mod 4.

Similarly a odd and b even leads to a contradiction.

Hence $|\alpha|^2 = 1$, in which case α is a unit,

or $|\alpha|^2 = p^2$, in which case $|\beta|^2 = 1$ and β is a unit.

This proves p is irreducible, so prime.

Hence $p\mathbb{Z}[i]$ is a prime ideal and (iii) is proved.