
1.8 Extension and Contraction

Let f : A → B be a ring homomorphism.

If I � A define the extension Ie of I (with

respect to f ) to be

Ie = 〈 f(I) 〉 .

ideal generated in B
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Thus

Ie =
{

n
∑

i=1

yi f(xi) | n ≥ 1 ,

yi ∈ B , xi ∈ I (∀i)
}

Typically Ie is much larger than f(I) .

e.g. If f : Z → Q is the identity embedding then

{0} 6= I � Z =⇒ Ie = Q .
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If J � B define the contraction J c of J (with

respect to f ) to be

J c = f−1(J) = { x ∈ A | f(x) ∈ J } .

Easy to see:

J c
� A .

We have already noted (on page 62) that

the property of an ideal being prime is

preserved under contraction.
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However, primeness need not be preserved under

extension:

e.g. If f : Z → Q is the identity embedding and

p ∈ Z is prime then pZ is a prime ideal in Z , but

(pZ)e = Q is not prime in Q .

In general, f : A → B factorizes

f
A B

f(A)
s i
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where s is surjective and i is injective.

For the surjective branch of the factorization, the

relationship between ideals is described by an easy

modification of an earlier Proposition (page 38):

Proposition: There is a one-one

correspondence between ideals of f(A)

and ideals of A containing ker f , and

prime ideals correspond to prime ideals.
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There is no known simple relationship

between prime ideals of f(A) and prime

ideals of B .

Example (Gaussian integers):

Consider extension with respect to the identity

embedding of Z in Z[i] .

The nonzero prime ideals of Z have the form pZ

where p ∈ Z is prime, but

(pZ)e = { pα | α ∈ Z[i] } = p Z[i]
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may or may not be prime in Z[i] .

The full story is as follows:

(i) 2Z[i] = (1 + i)2Z[i] =
(

(1 + i)Z[i]
)2

;

(ii) if p ≡ 1 ( mod 4) then pZ[i] is the

product of two distinct prime ideals;

(iii) if p ≡ 3 ( mod 4) then pZ[i] is prime

in Z[i] .
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To explain part of this, we exploit the following

Fact: Z[i] is a UFD.

— which in turn follows from other facts:

Z[i] is a Euclidean domain (ED);

EDs are PIDs, and PIDs are UFDs.

— a branch of general theory that may be explored

later when we discuss Gauss’ Theorem.
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Thus in Z[i] , all irreducibles are primes

(and conversely).

Proof of (i): (1 + i)2 = 2i

so (1 + i)2 and 2 differ by a unit in Z[i] ,

so generate the same principal ideal. Thus

2Z[i] = (1 + i)2
Z[i] =

(

(1 + i)Z
)2

.

[General fact: if a, b ∈ A then (aA)(bA) = abA .]
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But |1 + i|2 = 2 so 1 + i is irreducible in Z[i] , so

is a prime element.

Hence (1 + i)Z[i] is a prime ideal of Z[i] and (i) is

proved.

Proof of (ii): This follows from a theorem of

Fermat:

If p is a positive prime integer congruent

to 1 mod 4, then

p = x2 + y2 (∃x, y ∈ Z
+)
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(proved for example in LeVeque “Elementary theory

of numbers”).

In this case, p = (x + iy)(x − iy) , so

pZ[i] =
(

(x + iy) Z[i]
) (

(x − iy) Z[i]
)

.

But x ± iy is irreducible (because |x ± iy|2 = p ),

so x ± iy is prime.
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Also neither x + iy nor x− iy is a multiple of the

other

(since they do not differ by a unit, noting that

x 6= y ).

Hence pZ[i] is a product of two distinct prime

ideals, proving (ii).

Proof of (iii): Let p be a prime congruent to 3

mod 4. We show p is irreducible. Suppose

p = αβ (∃α, β ∈ Z[i]) .
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Then

p2 = |p|2 = |α|2 |β|2 ,

so |α|2 must be 1 , p or p2 .

Suppose |α|2 = p , and write α = a + bi for

some integers a, b .

Then

p = a2 + b2

is odd, so one of a , b is odd and the other even.

236



If a = 2k , b = 2l + 1 for some integers

k , l , then

p = a2 + b2

= 4k2 + 4l2 + 4l + 1

≡ 1 mod 4 ,

contradicting that p is congruent to 3 mod

4.
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Similarly a odd and b even leads to a contradiction.

Hence |α|2 = 1 , in which case α is a unit,

or |α|2 = p2 , in which case |β|2 = 1 and β is

a unit.

This proves p is irreducible, so prime.

Hence pZ[i] is a prime ideal and (iii) is proved.
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