Uniform Continuity of Continuous Functions on Compact Metric Spaces

Daniel Daners

A basic theorem asserts that a continuous function on a compact metric space with values in another metric space is uniformly continuous. The usual proofs based on a contradiction argument involving sequences or on the covering property of compact sets are quite sophisticated for students taking a first course on real analysis. We present a direct proof only using results that are established anyway in such an introductory course.

Let $f : X \to Y$ be a continuous function from the compact metric space (X, d_X) into the metric space (Y, d_Y) . The function $F : X \times X \to \mathbb{R}$ given by

$$F(x, y) := d_Y(f(x), f(y))$$

is continuous with respect to the product metric on $X \times X$. Fix $\varepsilon > 0$ and consider the inverse image

$$A_{\varepsilon} := F^{-1} \big[[\varepsilon, \infty) \big] := \big\{ (x, y) \in X \times X : F(x, y) \ge \varepsilon \big\}.$$

As *F* is continuous and $[\epsilon, \infty)$ is closed, A_{ϵ} is a closed subset of the compact metric space $X \times X$. Hence, A_{ϵ} is compact. Assume that $A_{\epsilon} \neq \emptyset$. The real valued function $(x, y) \mapsto d_X(x, y)$ is continuous on $X \times X$ and hence has a minimum on the compact set A_{ϵ} . Thus, there exists $(x_0, y_0) \in A_{\epsilon}$ such that

$$\delta := d(x_0, y_0) \le d(x, y)$$

for all $(x, y) \in A_{\varepsilon}$. As $(x_0, y_0) \in A_{\varepsilon}$ we have $\delta > 0$ as otherwise $x_0 = y_0$ and hence $0 = F(x_0, y_0) \ge \varepsilon > 0$. Moreover, if $d_X(x, y) < \delta$, then (x, y) is in the complement of A_{ε} , and therefore

$$d_X(x, y) < \delta \implies d_Y(f(x), f(y)) = F(x, y) < \varepsilon.$$
 (1)

This is exactly what is required for uniform continuity. If $A_{\varepsilon} = \emptyset$, then (1) holds for every $\delta > 0$. As the arguments work for every choice of $\varepsilon > 0$ this proves the uniform continuity of f.

School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia daniel. daners@sydney. edu. au