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Setting

Consider a mixing chaotic dynamical system xn = T (xn−1), with a
physical invariant measure µ.

The physical measure encodes long-term ergodic behaviour of xn.
Mathematically, for observables Φ and Lebesgue-a.e. x0,

1
N

N−1∑
n=0

Φ(xn)
N→∞−−−−→

∫
Φ(x) dµ(x) =: E[Φ]
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Setting
Consider a smooth family of mixing chaotic dynamical systems
xn = T ε(xn−1), with physical invariant measures µε.
The physical measures encode long-term ergodic behaviour of xn.
Mathematically, for observables Φ and Lebesgue-a.e. x0,

1
N

N−1∑
n=0

Φ(xn)
N→∞−−−−→

∫
Φ(x) dµε(x) =: Eε[Φ]
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Linear response theory

Eε[Φ] :=

∫
Φ(x) dµε(x)

Linear response theory (LRT) answers: What is d
dεµ

ε?
(e.g. for Taylor approximations)

. . . supposing Eε[Φ] is differentiable
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LRT in practice

The application of linear response theory to climate systems has
met with some success:
• Toy models: Majda et al ’07, ’10, Lucarini & Sarno ’11
• Barotropic models: Bell ’80, Gritsun & Dymnikov ’99,

Abramov & Majda ’09
• Quasi-geostrophic models: Dymnikov & Gritsun ’01
• Atmospheric models: North et al ’04, Cionni et al ’04, work of

Gritsun and others ’02, ’07, ’10, Ring & Plumb ’08
• Coupled climate models: Langen & Alexeev ’05, Kirk &

Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15



LRT in practice

However:

• Rough responses are known in
atmospheric and ocean dynamics
(e.g. Chekroun et al. ’14)
• The failure of linear response needs

very long time series to be visible
(Gottwald, W. & Wouters ’16)

Chekroun et al., 2014
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LRT in theory
Analytically, we know LRT works in
• Statistical mechanics: Kubo ’66
• Stochastic dynamical systems: Hänggi ’78, Hairer & Majda ’10
• Axiom A (uniformly hyperbolic dissipative chaos): Ruelle ’97-8

• Other dissipative systems. . . ?
Baladi and others (’08, ’10, ’14, ’15) proved there is no linear
response for quadratic maps, even Whitney differentiability.
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The question

In this talk we will address the following question:

When and why does linear response occur at macroscopic
scales in high-dimensional systems?



The question
In this talk we will address the following question:

When and why does linear response occur (for all prac-
tical purposes) at macroscopic scales in high-dimensional
systems?
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The model
We study a reasonably simple multiscale system:
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We will derive reductions for mean-field dynamics Φ, and discuss
(very rich) LRT properties of these systems.
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We will derive reductions for mean-field dynamics Φ, and discuss
(very rich) LRT properties of these systems.

1

macroscopic observables
microscopic subsystem uncoupled coupled

f satisfies LRT finite M 3 3
M ! 1 3 O

f violates LRT with smooth d⌫
da

finite M (3) (3)
M ! 1 3 O

f violates LRT with non-smooth d⌫
da

finite M 7 (3)
M ! 1 7 7



Uncoupled case

System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
Microscopic dynamics:

q
(j)
n = f (q

(j)
n−1; a(j), ε), j = 1, . . . ,M

Mean-field observable:

Φn =
1
M

M∑
j=1

φ(q
(j)
n )
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Each subsystem q(j) evolves independently: suppose they have
physical measures µa

(j),ε and are mixing.



Uncoupled case: expectations

Two (nested) ways to take expectations:

relevant for LRT

• Over dynamics, i.e. initial conditions: Eε[ · · · ]

• Over dynamical systems, i.e. selection of parameters a(j) (if
relevant): 〈 Eε[ ··· ] 〉
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LRT of mean-field Φ

We are interested in behaviour with respect to ε of

Eε[Φ] =
1
M

M∑
j=1

Eε[φ(q(j))]

The q(j) will move independently toward statistical equilibrium, so

Eε[φ(q(j))] =

∫
φ(q) dµa

(j),ε(q)︸ ︷︷ ︸
function of ε and a(j) ∼ ν



LRT of mean-field Φ

Because the a(j) are randomly selected, a CLT in 〈 · 〉 gives

Eε[Φ] =
1
M

M∑
j=1

Eε[φ(q(j))] = Φ̄ε +
1√
M
ηε + o(1/

√
M)

where ηε is a mean-zero Gaussian process in ε, and

Φ̄ε = 〈Eε[φ(q)]〉 =

∫∫
φ(q) dµa,ε(q) dν(a)

So response of mean-field Φ is Φ̄ε plus small correction for finite
ensemble size.



LRT of Φ̄ε

Φ̄ε = 〈Eε[φ(q)]〉 =

∫∫
φ(q) dµa,ε(q) dν(a)

• Clearly if all microscopic subsystems satisfy LRT then so does
Φ̄ε.

• On the other hand if the microscopic subsystems violate LRT
and ν is discrete (e.g. ν = δa0), then Φ̄ε will not have LRT.
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LRT of Φ̄ε

If ν is smooth (e.g. dν
da ∈ BV ), then averaging over dν(a) can give

“collective” linear response of microscopic systems that may violate
LRT:
• An easy case: If f can be written as f ( · ; a + Kε):

dΦ̄ε

dε
=

∫
d
dε

(∫
φ(q) dµa+Kε(q)

)
dν(a)

=

∫
K

d
da

(∫
φ(q) dµa+Kε(q)

)
dν(a)

= −K
∫∫

φ(q) dµa+Kε(q) d
(

dν
da

)
=⇒ LRT holds
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LRT of Φ̄ε

• If f ( · ; a, ε) is a family of (analytic) unimodal maps:

• These maps obey LRT along topological conjugacy classes
(Ruelle ’09);

• Avila et al. (’03) conjectured that topological conjugacy
classes of these maps have a uniformly analytic
codimension-one lamination.

This may imply Φ̄ε has linear response.
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LRT of Φ̄ε

Smooth family of unimodal maps:

f (q; a, ε) = (a + 4εq(1− q))q(1− q),

ν ∼ Cosine(3.75, 0.05) 3.65 3.75 3.85

a
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20

d
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d
a
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LRT of ηε

Eε[Φ] = Φ̄ε +
1√
M
ηε + o(1/

√
M)

Finite M correction ηε is almost surely as rough as the individual
q(j) responses.
Thus, for finite M, Φ may only have “approximate” LRT:
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Macroscopic reduction

What about the dynamics of Φn?

The q(j)s are independent of each other, so for any n

Φn =
1
M

M∑
j=1

φ(q
(j)
n )

is a sum of independent random variables.
Thus

Φn = Eε[Φ] +
1√
M
ζn + o(1/

√
M)

where ζn, n ∈ N are mean-zero Gaussian random variables.
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Macroscopic reduction

When M � 1, ζ appears to converge to a stationary Gaussian
process.

The autocorrelation function is the average over ν of the
microscopic autocorrelations:

Cov[ζm, ζn] = 〈Cov[φ(qm), φ(qn)]〉 .

Hence ζ has decay of correlations and can be approximated by e.g.
an AR process.
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Mean-field coupled case

System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
Microscopic dynamics:

q
(j)
n = f (q

(j)
n−1; Φn−1, a

(j), ε), j = 1, . . . ,M

Mean-field driver/observable:

Φn =
1
M

M∑
j=1

φ(q
(j)
n )
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Externally-coupled system

System parameters: a(j), j = 1, . . . ,M sampled
from measure ν
External driver: dn
Microscopic dynamics:

q
(j)
n = f (q

(j)
n−1; dn−1, a

(j), ε), j = 1, . . . ,M

Mean-field observable:

Φn =
1
M

M∑
j=1

φ(q
(j)
n )
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Suppose q(j) have time-dependent physical measures µd ,a
(j),ε

n with
decay of correlations.



Externally-coupled system

We can make the same CLT reduction as before,

Φn = 〈Eε[Φn|d ]〉+
1√
M
ηd ,εn +

1√
M
ζdn + o(1/

√
M),

Parameters of this reduction are now time-dependent and depend
on past history of d .



Macroscopic reduction of coupled system

Ansatz: if M � 1, the coupled system can be approximated by
setting dn ≡ Φn.
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Macroscopic reduction of coupled system

This gives the macroscopic reduction:

Φn = 〈Eε[Φn|Φ]〉+
1√
M
ηΦ,ε
n +

1√
M
ζΦ
n + o(1/

√
M)

=: F (Φn−1,Φn−2, . . . ; ε)

usually smaller than ζ̃

self-generated noise



Macroscopic reduction of coupled system

This gives the macroscopic reduction:

Φn = 〈Eε[Φn|Φ]〉+
1√
M
ηΦ,ε
n +

1√
M
ζΦ
n + o(1/

√
M)

=: F (Φn−1,Φn−2, . . . ; ε)

usually smaller than ζ̃

self-generated noise



LRT of coupled system: finite M

Φn = F (Φn−1,Φn−2, . . . ; ε) +
1√
M
ηΦ,ε
n +

1√
M
ζ̃Φ
n + o(1/

√
M)

defines a stochastic dynamical system in Φ.

Modulo η’s:
• The noise ζ̃Φ generates (annealed) LRT in the microscopic

particles, so this noisy system is ∼smooth in Φ and ε.
• So Φ obeys LRT for finite M.
• Thus so does Φ.
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LRT of coupled system: finite M

LRT for unimodal microscopic components, ν ∼ Cosine:
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LRT of coupled system: finite M

LRT for unimodal microscopic components, ν discrete:
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Thermodynamic limit

As M →∞ the CLT reduction reduces to the law of large numbers:

Φn = F (Φn−1,Φn−2, . . . ; ε).

If we have LRT without coupling, this defines a smooth dynamical
system.
External forcing washes out over time because of microscopic
mixing, so

Φn ≈ F (Φn−1,Φn−2, . . . ,Φn−K ; ε),

i.e. emergent dynamics of Φn are low-dimensional.



Thermodynamic limit

If dynamics converges to equilibrium Φn ≡ Φ̄ε we have

Φ̄ε = F (Φ̄ε, Φ̄ε, . . . ; ε) := F0(Φ̄ε; ε),

which is a smooth function if the microscopic subsystems have
“collective” linear response. Then,

dΦ̄ε

dε
=

(
1− ∂F0

∂Φ̄ε

)−1 ∂F0

∂ε

(+ stability) and hence Φ has LRT.



Thermodynamic limit

For unimodal microscopic component example, dν
dx ∈ C 3, we see

saddle-node bifurcation:
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Thermodynamic limit

What about other limiting macroscopic dynamics?

• LRT in thermodynamic limit is difficult to study accurately
using naive methods: need both long time series and very large
microscopic ensembles.
• However, we can use transfer operator methods to approximate

the dynamics of the microscopic distributions µΦ,ε
n .

• For uniformly expanding f , Chebyshev spectral methods are
very good at this (W. ’19).
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Macroscopic dynamics in thermo. limit
We choose an f uniformly expanding with perturbation parameter ε
regulating the strength of an appropriate mean-field coupling.
For large ε we see period doubling bifurcation to chaos:



Macroscopic dynamics in thermo. limit

The attracting Φ dynamics look unimodal:



LRT in thermodynamic limit
We have breakdown of LRT in the thermodynamic limit:
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LRT in thermodynamic limit
We have breakdown of LRT in the thermodynamic limit:
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We got this from hyperbolic microscopic components!



Macroscopic dynamics in thermo. limit

Side question:
Chaotic hypothesis says macroscopic dynamics should be hyperbolic
(i.e. splitting between stable and unstable directions). Is this the
case?

Answer: No. There are homoclinic tangencies.

How do we know? Continuation with Chebyshev transfer operator
methods (Poltergeist.jl).
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Conclusions

Various mechanisms by which linear response may emerge and/or
break down in large coupled chaotic systems:
• Macroscopic LRT from inhomogeneous microscopic variables

that individually violate LRT
• LRT in large (finite) chaotic systems via feedback of

self-generated noise
• In thermodynamic limit LRT may depend on structure of

macroscopic dynamics
• This may be non-hyperbolic chaos, leading to LRT violation

Mostly these depend on the system’s network structure!



Further directions

• More rigorous study of some of these phenomena (e.g. Sélley
and Tanzi ’20)
• Study of chaotic networks beyond global, mean-field couplings



Further details

Wormell, C.L. and Gottwald, G.A., 2019. Linear response for
macroscopic observables in high-dimensional systems. Chaos 29:
113127.

Wormell, C.L. and Gottwald, G.A., 2018. On the validity of linear
response theory in high-dimensional deterministic dynamical
systems. Journal of Statistical Physics 172: 1479-1498.



Aside on periodic windows

Unimodal maps have periodic dynamics on a dense (but not full
measure) parameter set—i.e., non-mixing.
To keep things simple, we avoid this by adding “hidden” dynamics
r

(j)
n ∈ [0, 1]:

f (q, r ; a, ε) =

{
(f̃ (q; a, ε), 2r), r ≤ 1/2
(q, 2r − 1), r > 1/2.

This makes the unimodal q(j) dynamics mixing while retaining the
same invariant measures.

(N.B. at statistical equilibrium, {rn ≥ 1/2}n∈N are i.i.d. Bernoulli.)



“Mixing”

If dynamical system xn = f (xn−1) is mixing with respect to measure
µ then for all w ∈ L2(µ) with E[w ] = 1,

E[φ(xn)w(x0)] =

∫
φ(xn)w(x0) dµ(x0)

n→∞−−−→ E[φ]

More generally, are going to assume that if µ̃ is a “nice” measure,∫
φ(xn) dµ̃(x0)

n→∞−−−→ E[φ]


