
Metric Spaces Lecture 23

We noted last time that a space that is homeomorphic to a connected space is also
connected. In fact,it is very easy to establish a stronger result: continuous images of
connected sets are connected.
Theorem. Let f :X → Y be continuous, and suppose that A is a connected subset of X.
Then f(A) is a connected subset of Y .
Proof. If f(A) is disconnected then there exist open subsets V1, V2 of Y such that

f(A) ⊆ V1 ∪ V2, (1)
f(A) ∩ V1 6= ∅ and f(A) ∩ V2 6= ∅, (2)

f(A) ∩ V1 ∩ V2 = ∅. (3)

Since f is continuous, f−1(V1) and f−1(V1) are open subsets of X. By (1) above, for each
a ∈ A we have either f(a) ∈ V1 or f(a) ∈ V2; that is, either a ∈ f−1(V1) or a ∈ f−1(V2).
So A ⊆ f−1(V1) ∪ f−1(V2). By (2) there is an a ∈ A such that f(a) ∈ V1, giving
a ∈ f−1(V1), and similarly there is an a′ ∈ A with a′ ∈ f−1(V2). So A∩ f−1(V1) 6= ∅ and
A ∩ f−1(V2) 6= ∅. Finally, A ∩ f−1(V1) ∩ f−1(V2) = ∅, since if there were some element a
in this set it would follow that f(a) ∈ f(A) ∩ V1 ∩ V2, contradicting (3). We have shown
that

A ⊆ f−1(V1) ∪ f−1(V2), (1′)
A ∩ f−1(V1) 6= ∅ and A ∩ f−1(V2) 6= ∅, (2′)

A ∩ f−1(V1) ∩ f−1(V2) = ∅, (3′)

contradicting the fact that A is connected. So the assumption that f(A) is disconnected
has led to a contradiction; so f(A) is connected. �

There is any even shorter proof using the fact that a set is disconnected if and only
if there is a continuous surjective function from the set to the discrete space {0, 1}. If
f(A) is disconnected then there is a surjective continuous function g: f(A) → {0, 1}, and
then the function from A to {0, 1} given by a 7→ g(f(a)) is continuous (since composites
of continuous functions are continuous) and surjective (since g is surjective). So A is
disconnected.

As we shall see, it is not clear that the definition of connectedness that we have given
really captures the everyday concept of connectedness, which is perhaps more to do with
path-connectedness, a concept that we shall define in due course, and that is stonger than
connectedness. However, if intuition suggests that a set is connected, then it ought to be
true that the set is indeed connected in the technical sense. In particular, intervals in R
are connected sets.

There are nine different kinds of intervals: (a, b), (a, b], [a, b), for any a, b ∈ R with
a < b, [a, b], for any a, b ∈ R with a ≤ b, (−∞, a), (∞, a], (a,∞), [a,∞), for any a ∈ R,
and (−∞,∞) (the whole real line). † Intervals can be characterized as follows: a subset I
of R is an interval if and only if I is nonempty, and for all a, b ∈ I and x ∈ R, if a ≤ x ≤ b

† We have deviated from the convention adopted in Choo’s notes by permitting one-
element subsets of R to be counted as closed intervals.
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then x ∈ I. That is to say, if I 6= ∅ then I is an interval if and only if every point of R
that lies between two points of I is also in I.
Lemma. Let a, b ∈ R with a < b, and S a subset of R such that a ∈ S and b /∈ S, and
let p = sup(S ∩ [a, b]).
(i) If S is closed in R then p ∈ S.
(ii) If S is open in R then p /∈ S.
Proof. Note that S ∩ [a, b] is nonempty (since a ∈ S ∩ [a, b]) and bounded above (by b).
So, by an axiom of the real number system, S ∩ [a, b] has a least upper bound. So the
definition of p in the statement of the lemma is meaningful. Observe that a ≤ p (since
a ∈ S ∩ [a, b] and p is an upper bound for S ∩ [a, b]) and p ≤ b (since b is an upper bound
for S ∩ [a, b] and p is the least upper bound for S ∩ [a, b]).

Suppose that S is closed, and suppose that p /∈ S. Then p ∈ R \ S, which is an open
set since S is closed, and so there exists an ε > 0 such that B(p, ε) ⊆ R\S. Of course, since
we are discussing R with its usual metric, B(p, ε) = (p−ε, p+ε). Now let x ∈ S∩ [a, b] be
arbitrary. Since p is an upper bound for S ∩ [a, b] we have x ≤ p, and so either x ≤ p− ε
or p − ε < x ≤ p. The latter alternative gives x ∈ (p − ε, p] ⊆ (p − ε, p + ε) ⊆ R \ S,
contradicting x ∈ S, and so we must have x ≤ p− ε. Since this holds for all x ∈ S ∩ [a, b]
it follows that p−ε is an upper bound for S∩ [a, b]. But p−ε < p, and so this contradicts
the fact that p is the least upper bound for S.

For the second part, suppose that S is open and p ∈ S. Since b /∈ S and p ≤ b it follows
that p < b. Thus p ∈ (−∞, b)∩S, an open set since both (−∞, b) and S are open, and so
there exists an ε > 0 such that (p− ε, p + ε) ⊆ (−∞, b) ∩ S. In particular, p + (ε/2) ∈ S
and p + (ε/2) < b, and since a ≤ p < p + (ε/2) it follows that p + (ε/2) ∈ S ∩ [a, b]. But
since p + (ε/2) > p, this contradicts the fact that p is an upper bound for S ∩ [a, b]. �

Proposition. Let I ⊆ R be an interval. Then I is connected.
Proof. Suppose that I is not connected. Then there exist open subsets U1, U2 of R with
I ∩U1 and I ∩U2 nonempty, I ∩U1 ∩U2 = ∅, and I ⊆ U1 ∪U2. We can choose a ∈ I ∩U1

and b ∈ I ∩ U2 (since these sets are nonempty), and then a 6= b (since I ∩ U1 ∩ U2 = ∅).
Swapping the names of U1 and U2 if necessary, we may assume that a < b.

Since a, b ∈ I, and I is an interval, it follows from our characterization of intervals
that [a, b] ⊆ I. Now put A = [a, b] ∩ U1 and B = [a, b] ∩ U2. Then

A ∪B = [a, b] ∩ (U1 ∪ U2) = [a, b],

since [a, b] ⊆ I ⊆ U1 ∪ U2, and

A ∩B ⊆ I ∩ U1 ∩ U2 = ∅;
so A = [a, b] \ B = [a, b] \ U2. Now if we define p = supA then it follows from the first
part of the lemma that p ∈ A, since A = [a, b] ∩ (R \ U2) and R \ U2 is closed. However,
A = [a, b]∩U1 and U1 is open; so it follows from the second part of the lemma that p /∈ A.
Thus we have obtained the desired contradiction. �

Our characterization of intervals also yields the following converse to the above result.
Proposition. If A ⊆ R is connected and nonempty then A is an interval.
Proof. Suppose that A is connected and A 6= ∅, and suppose that A is not an interval.
By the characterization, of intervals there exist a, b ∈ A and x /∈ A with a ≤ x ≤ b. Put
U1 = (−∞, x) and U2 = (x,∞). Then U1 and U2 are open subsets of R with a ∈ A ∩ U1

and b ∈ A∩U2 (showing that A∩U1 and A∩U2 are both nonempty), A ⊆ R\{x} = U1∪U2,
and A ∩ U1 ∩ U2 = ∅ (since U1 ∩ U2 = ∅). This shows that A is not connected. �
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