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1. Recall that if X and Y are topological spaces then f :X → Y is continuous at
a ∈ X if and only if a ∈ Int (f−1(U)) whenever U is an open neighbourhood
of f(a). Use this criterion to show that is f : R → R is the mapping defined
by

f(x) =
{

x2−4
x−2 if x 6= 2,
0 if x = 2,

then f is not continuous at x = 2.

Solution.

The given definition of f is peculiar. It is equivalent and simpler to say that
f(x) = x + 2 for x 6= 2 and f(2) = 0.

Let U = (−1, 1), which is an open neighbourhood of 0 = f(2). If x 6= 2 and
x ∈ f−1(U) then f(x) = x + 2 ∈ U = (−1,+1), and thus x ∈ (−3,−1).
Thus f−1(U) ⊆ {2} ∪ (−3,−1). There is no ε > 0 such that the open
ball B(2, ε) = (2 − ε, 2 + ε) is contained in f−1(U) ⊆ {2} ∪ (−3,−1); so
2 /∈ Int (f−1(U). Thus f is not continuous at 2, since there is an open neigh-
bourhood U of f(2) with 2 /∈ Int (f−1(U).

2. Let f : R → R be the mapping defined by

f(x) =
{ 1 if x ≥ 0,
−1 if x < 0.

Prove that f is not continuous at the point x = 0.

Solution.

Let U = (0, 2), an open neighbourhood of 1 = f(0). Since f(x) only ever
takes the two values 1 and −1, we see that

f−1(U) = {x | f(x) ∈ (0, 2) } = {x | f(x) = 1 } = [0,∞).

Since 0 /∈ Int ([0,∞)) it follows that f is not continuous at 0.
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3. Let (X, dX) and (Y, dY ) be two metric spaces and let b be a fixed but arbitrary
point in Y . Let f :X → Y be a mapping defined by f(x) = b for all x ∈ X.
Prove that f is a continuous mapping on X.

Solution.

Let U be an open subset of Y . If b ∈ U then f(x) ∈ U for all x ∈ X,
and so f−1(U) = X. If b /∈ U then there is no x ∈ X with f(x) ∈ U ,
and so f−1(U) = ∅. In either case, f−1(U) is an open subset of X. Thus
the preimage of every open subset of Y is an open subset of X; thus f is a
continuous function from X to Y . (Note that the proof applies equally well
if X and Y are any topological spaces.)

4. Let f : R → R be the mapping defined by

f(x) =
{

x if x 6= 0,
1 if x = 0.

Show that f is not continuous at x = 0, and hence show that f is not a
continuous mapping on R.

Solution.

f−1(1/2, 3/2) = (1/2, 3/2) ∪ {0}, and 0 /∈ Int ((1/2, 3/2) ∪ {0}). So f is not
continuous at 0. So it is not true that f is continuous at all points of R.

5. Let f : R2 → R be given by f(x, y) = xy. Determine the sets

S1 = f−1
(
(1,∞)

)
and S2 = f−1

(
(0, 1)

)
.

Draw the sets S1 and S2 in R2.

Solution.

The regions in question lie in the 1st
and 3rd quadrants, and are unbounded.
In each case the hyperbola xy = 1 is
part of the frontier, but not in the set
itself. For S2 the coordinate axes are
part of the frontier but not in the set.

Note that since (1,∞) and (0, 1) are open subsets of R, and the function f is
continuous, the sets S1 and S2 are open subsets of R2.
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6. Let (X, dX) and (Y, dY ) be two metric spaces. Prove that a mapping f :X → Y
is continuous on X if and only if for all closed sets F in Y , the set f−1(F ) is
closed in X.

Solution.

(This is valid for general topological spaces, not just metric spaces.) Write
OX for the collection of all open subsets of X and OY for the collection of
all open subsets of Y . Put CX = {X \O | O ∈ OX }, the collection of closed
subsets of X and CY = {Y \O | O ∈ OY }, the collection of closed subsets of
Y . By definition, f is continuous at a ∈ X if and only if for all U ∈ OY , if
f(a) ∈ U then a ∈ Int (f−1(U)). So f is continuous at all points if X if and
only if for all U ∈ OY and all a ∈ X, if a ∈ f−1(U) then a ∈ Int (f−1(U).
That is, f is continuous on X if and only if for all U ∈ OY , all points of
f−1(U) are interior points. This holds if and only if f−1(U) ∈ OX .

Suppose that f is continuous on X and let F ∈ CY . Then Y \ F ∈ OY , and
so f−1(Y \ F ) ∈ OX . But f−1(Y \ F ) = X \ f−1(F ); so X \ f−1(F ) ∈ OX ,
and so f−1(F ) ∈ CX .

Conversely, suppose that f−1(F ) ∈ CX for all F ∈ CY , and let U ∈ OY . Then
Y \ U ∈ CY ; so X \ f−1(U) = f−1(Y \ U) ∈ CX , and so f−1(U) ∈ OX . This
holds for all U ∈ OY ; so f is continuous on X.

7. Let (X, dX) and (Y, dY ) be two metric spaces. Prove that a mapping f :X → Y
is continuous on X if and only if for all subsets A of X,

f(A) ⊆ f(A).

Solution.

Note that if S ⊆ X and T ⊆ Y then f(S) ⊆ T if and only if S ⊆ f−1(T ). Now
if f is continuous and A ⊆ X we have f(A) ⊆ f(A), and so A ⊆ f−1(f(A)).
By Question 6, since f(A) is closed, so is f−1(f(A)). So A ⊆ f−1(f(A)) gives
A ⊆ f−1(f(A)), and so f(A) ⊆ f(A).

Conversely, suppose that f(A) ⊆ f(A) for all A ⊆ X, and let F ∈ CY . Put
A = f−1(F ). Then A ⊆ f−1(f(A)). But f(A) ⊆ F and F is closed; so
f(A) ⊆ F , and therefore A ⊆ f−1(F ) = A, which shows that A is closed.
So the preimages of all closed sets are closed, and thus f is continuous (by
Question 6).

8. Let (X, dX) and (Y, dY ) be two metric spaces. Prove that a mapping f :X → Y
is continuous on X if and only if for all subsets B of Y ,

f−1(B) ⊆ f−1(B).
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Solution.

Suppose f is continuous and let B ⊆ Y . Put A = f−1(B). Then f(A) ⊆ B,
and by Question 7, A ⊆ f−1(f(A)) ⊆ f−1(B). That is, f−1(B) ⊆ f−1(B).
Conversely, suppose that f−1(B) ⊆ f−1(B) for all B ⊆ Y , and let A ⊆ X.
Put B = f(A). Then A ⊆ f−1(B); so A ⊆ f−1(B), and so (by our hypothesis)
A ⊆ f−1(B). Hence f(A) ⊆ B = f(A), and as this holds for all A ⊆ X it
follows from Question 7 that f is continuous.

9. Let (X, dX) and (Y, dY ) be two metric spaces. Prove that a mapping f :X → Y
is continuous on X if and only if for all subsets B of Y ,

f−1(Int B) ⊆ Int f−1(B).

Solution.

This follows readily from the fact, proved in the solution to Question 6 above,
that f is continuous if and only if the preimage of every open set is open, and
this proof was given in lectures. It is also easy to show that the condition in
this question is equivalent to the one given in Question 8.
Suppose that f is continuous and let B ⊆ Y . Put D = Y \ B. Then
D = Y \ (Int (B)); so by Question 8,

f−1(D) ⊆ f−1(Y \ (Int (B))) = X \ f−1(Int (B)).
Taking complements gives f−1(Int (B)) ⊆ X \ f−1(D) = Int (X \ (f−1(D))).
But X \ (f−1(D) = f−1(Y \ D) = f−1(B), and so we have shown that
f−1(Int (B)) ⊆ Int (f−1(B).
Conversely, suppose that f−1(Int (B)) ⊆ Int (f−1(B) for all B ⊆ Y . Let
D ⊆ Y and put B = Y \D. Then Int B = Y \D; so

X \ f−1(D) = f−1(Y \D) ⊆ Int (f−1(B)),
and taking complements gives X \ f−1(B) = X \ Int (f−1(B)) ⊆ f−1(D).
But X \ (f−1(B) = f−1(Y \ B) = f−1(D), and so we have shown that
f−1(D) ⊆ f−1(D) for all D ⊆ Y . By Question 8, f is continuous.

10. Give an example of a mapping f :X → Y , where X and Y are metric spaces,
such that f is continuous and closed, but not open.

Solution.

Let f : R → R be defined by f(x) = 0 for all x. Then f is continuous. However,
f is not open. We show this by finding an open subset U of R such that f(U)
is not an open subset of R. Let U = (−1, 1). (In fact, any nonempty open
subset of R would do equally well.) Then f(U) = {0}, which is not open
(since 0 is in the set but there is no ε > 0 such that (0− ε, 0 + ε is contained
in the set). If C is any closed subset of R then f(C) = {0} if C 6= ∅, while
f(∅ = ∅). In either case f(C) is closed. So f takes closed sets to closed sets,
and so f is closed.
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11. Give an example of a continuous mapping f : R → R, such that f is neither
open nor closed.

Solution.

Let f be defined by f(x) = e−x2
for all x ∈ R. Observe that f takes only

positive values, has a maximum of 1 at x = 0, and approaches 0 as x → ∞
and as x → −∞. So f(R) = (0, 1]. As R is both open and closed, while (0, 1]
is neither open nor closed, f is neither an open mapping nor a closed mapping
(although it is obviously continuous).

12. Let f : R → R be defined by f(x) = x2. Show that f is not open.

Solution.

Let U = R. Then U is an open subset of R, but f(U) = {x2 | x ∈ R } = [0,∞)
is not open. So f is not an open mapping. (It is true that f is a closed
mapping, however. For suppose that C is any closed subset of R, and let t
be a point in the closure of f(C). Then there exists a sequence (an)∞n=0 of
points in f(C) with limn→∞ an = t. Since an ∈ f(C) for all n there exists
xn ∈ C with an = f(xn) = x2

n. Since the sequence (an) is convergent it is
bounded; so there exists B ∈ R with |xn|2 = |an| < B for all n. So |xn| <

√
B

for all n, and so the sequence (xn) is bounded too. Hence lim supn→∞ xn

exists. Write l = lim supn →∞xn. For each ε > 0 there is an n such that
|l − xn| < ε; so for each k ∈ Z+ we may choose nk such that |l − xnk

| < 1/k.
Then limk→∞ xnk

= l. But each xnk
∈ C; so l ∈ C. But C is closed; so l ∈ C.

Furthermore,
l2 = lim

k→∞
x2

nk
= lim

k→∞
ank

= lim
n→∞

an = t.

Thus t = f(l) ∈ f(C), and we have shown that every point of f(C) is in
f(C). That is, f(C) is closed. As this holds for all closed subsets C of R, the
mapping f is closed.

13. Let X and Y be any sets and f :X → Y a mapping. Let X1 be a subset of X
and fX1 :X1 → Y the restriction of f to X1 (defined by fX1(x) = f(x) for all
x ∈ X1).

Prove that for all subsets B of Y , f−1
X1

(B) = f−1(B) ∩X1.

Solution.

f−1
X1

(B) = {x ∈ X1 | fX1(x) ∈ B }
= {x ∈ X | x ∈ X1 and f(x) ∈ B }
= X1 ∩ {x ∈ X | f(x) ∈ B } = f−1(B) ∩X1.
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14. Let X, Y and Z be any sets and let f :X → Y and g:Y → Z be any mappings.
Let g ◦ f :X → Z be the composite mapping defined by

(g ◦ f)(x) = g
(
f(x)

)
(for all x ∈ X.)

Prove that for any subset B ⊆ Z, (g ◦ f)−1(B) = f−1
(
g−1(B)

)
.

Deduce that if X, Y and Z are topological spaces and f and g are continuous
then g ◦ f is continuous.

Solution.

(g ◦ f)−1(B) = {x ∈ X | (g ◦ f)(x) ∈ B }
= {x ∈ X | g(f(x)) ∈ B }
= {x ∈ X | f(x) ∈ g−1(B) }
= f−1(g−1(B)).

Let B be any open subset of Z. If g is continuous then g−1(B) is open in Y .
If f is also continuous then f−1(g−1(U)) is open in X. Thus if both f and g
are continuous then (g ◦ f)−1(U) is open whenever U is open, and thus g ◦ f
is continuous.


