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1. If A is an m × n matrix over the field C (complex numbers) then A is the
m× n matrix whose entries are the complex conjugates of the entries of A.

(i) Show that an arbitrary complex matrix can be written as P + iQ with
P and Q real.

(ii) A is Hermitian if A = At (transpose of A). Show that A is Hermitian
if and only if its real part (P ) is symmetric and its imaginary part (Q)
is skew-symmetric.

(iii) Show that if A is Hermitian then vtAv is a real number for all complex
column vectors v (of appropriate size).

(iv) A Hermitian matrix A is said to be it positive definite if vtAv > 0 for
all nonzero v. Prove that positive definite matrices are nonsingular.

(v) Show that a Hermitian matrix A is positive definite if and only if there
exists a nonsingular B such that A = B

t
B. (The “if” part is OK. For

the “only if” you have to use row and column operations. Start by
showing that the diagonal entries of A are real and positive.)

(vi) Show that the sum of two positive definite matrices is positive definite.
(vii) Let G be a finite subgroup of GLn(C). Prove that there exists a positive

definite matrix A such that Y
t
AY = A for all Y ∈ G. (Hint: Try

A =
∑

X∈G X
t
X.)

(viii)Prove that if G is a finite subgroup of GLn(C) then there exists a non-
singular B such that BXB−1 is unitary for all X ∈ G. (A matrix is
unitary if its inverse is the transpose of its conjugate.)

Solution.

(i) Let A have (r, s)-entry αrs ∈ C. Writing αrs = βrs + iγrs with βrs, γrs ∈ R
we see that A = P + iQ where P and Q have (r, s)-entries βrs and γrs

(respectively).
(ii) Since (P + iQ)t = (P − iQ)t = P t − iQt we see that A = P + iQ is

Hermitian if and only if P t = P and Qt = −Q.
(iii) Recall that transposing reverses products; that is, (XY )t = Y tXt when-

ever the left hand side is defined. (Note that this implies that (A−1)t = (At)−1
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whenever A is nonsingular. It is also clear that taking complex conjugates
preserves sums and products, and commutes with the maps A 7→ A−1 and
A 7→ At.) Let v be an arbitrary column vector and let z = vtAv. Since z is a
1× 1 matrix we have zt = z, and so

z =
(
(vtAv)

)t = vtA
t
v = vtAv = z.

Thus z is real.
(iv) Suppose that A is positive definite. Note first that since A is Hermitian

it must be square (as its transpose is the same shape as itself). Now let v be
in the nullspace of A; that is, v is a column vector such that Av = 0. Then
vtAv = v0 = 0, and positive definiteness of A gives v = 0. So the nullspace
of A is {0}; this implies that A is nonsingular.

(v) Recall that if v ∈ Cn and the kth entry of v is xk+iyk (for k = 1, 2, . . . , n)
then vtv =

∑n
k=1 x2

k + y2
k, which is real, nonnegative, and zero only if v = 0.

This shows that the identity matrix is positive definite. Suppose now that
A = B

t
CB where B, C ∈ GLn(C) and C is positive definite, and let v ∈ Cn

be nonzero. Then Bv 6= 0, since B is nonsingular, and since C is positive
definite it follows that (Bv)tC(Bv) > 0. But vtAv = (Bv)tC(Bv), and since
this is positive for all nonzero v it follows that A is positive definite. Putting
C = I gives the “if” part.
Let A be an arbitrary positive definite n×n Hermitian matrix. We use induc-
tion on n to prove that A has the desired form; note that in the case n = 1 the
matrix A is simply a positive real number, and we may take B =

√
A. Let el

be the lth column of the identity matrix (so that e1, e2, . . . , en comprise the
standard basis of Cn). The (l, l)-entry of A is el

tAel, which must be positive
since A is positive definite. Thus we can write

A =
(

a x
˜
t

x
˜

A′

)
where a is real and positive, x

˜
∈ Cn−1 and A′ is some (n − 1) × (n − 1)

Hermitian matrix. Now set

D =
( √

a−1 0
−a−1x

˜
I

)
and observe that D is nonsingular; indeed, as a row operation matrix the effect
of D is to divide the first row by

√
a and add multiples of the first row to the

others. We see that the first column of DA is (
√

a)e1. Now postmultiplication
by D

t
performs a corresponding sequence of column operations, and we find

that

DAD
t
=

(
1 0
0 A′′

)
.
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Since A was positive definite, this must be too. Hence A′′ is a (n−1)×(n−1)
positive definite matrix. By induction we can write A′′ = Y

t
Y , and this gives

A = D−1

(
1 0
0 Y

)t (
1 0
0 Y

)
(D

t
)−1 = B

t
B

where B =
(

1 0

0 Y

)
(D

t
)−1.

(vi) If A, B ∈ GLn(C) are positive definite and 0 6= v ∈ Cn then

vt(A + B)v = vtAv + vtBv > 0

(since vtAv > 0 and vtBv > 0).

(vii) We see that Y
t
AY =

∑
X∈G(Y

t
X

t
)(XY ) =

∑
Z∈G Z

t
Z = A (since

Z = XY runs through all elements of G as X does).

(viii) By (vii) we can find a positive definite A such that Y
t
AY = A for all

Y ∈ G, and by (v) we can put A = B
t
B. But the equation Y

t
B

t
BY = B

t
B

can be written as BY −1B−1 = (B
−1

)tY
t
B

t
, or, equivalently,

(BY B−1)−1 = (BY B−1)t,

showing that BY B−1 is unitary for all Y ∈ G.

2. Recall that the dot product on Cn is defined by u · v = utv, and that unitary
matrices preserve it (in the sense that (Xu) · (Xv) = u · v for all u and v if
X is unitary). Recall also that if U is a subspace of Cn then Cn = U ⊕ U⊥,
where

U⊥ = { v ∈ Cn | u · v = 0 for all u ∈ U }

(the orthogonal complement of U).
Let G be a finite group of n× n unitary matrices, and let U be a G-invariant
subspace of Cn. (That is, if X ∈ G and u ∈ U then Xu ∈ U .) Prove that the
orthogonal complement of U is also G-invariant.

Solution.

Let v ∈ U⊥ and let X ∈ G. Then for all u ∈ U we have that X−1u ∈ U (since
X−1 ∈ G and U is G-invariant), and so

(Xv) · u = Xv ·X(X−1u)
= v ·X−1u (since X is unitary)
= 0 (since v ∈ U⊥).

Hence Xv ∈ U⊥, and since this holds for all X ∈ G and v ∈ U⊥ we have
shown that U⊥ is G-invariant.
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3. Let H and N be groups and φ:H → Aut(N) a homomorphism. Define

H×N = { (h, x) | h ∈ H, x ∈ N }

with multiplication given by

(h, x)(k, y) = (hk, xφ(k)y)

for all h, k ∈ H and x, y ∈ N . Prove that this makes H× N into a group.
(Such a group is called a semidirect product of N by H. If φ is the trivial
homomorphism (h 7→ 1 ∈ Aut(N) for all h ∈ H) we get the direct product of
N and H.)

Solution.

Since φ is a homomorphism we have φ(1) = 1, where the 1 on the left hand
side is the identity element of H and the 1 on the right hand side is the
identity automorphism of N . Hence our multiplication rule gives

(h, x)(1, 1) = (h1, xφ(1)1 = (h, x).

Since all automorphisms of N map 1 to 1 we also find that

(1, 1)(h, x) = (1h, 1φ(h)x) = (h, x).

So H×N has an identity element. The following calculation proves associa-
tivity: (

(h, x)(k, y)
)
(l, z) = (hk, xφ(k)y)(l, z) = (hkl, (xφ(k)y)φ(l)z)

(hkl, xφ(k)φ(l)yφ(l)z) = (hkl, xφ(kl)yφ(l)z)
= (h, x)(kl, yφ(l)z) = (h, x)

(
(k, y)(l, z)

)
.

Let (h, x) be an arbitrary element of H×N , and let k = h−1 and y = (x−1)φ(k).
Since (x−1)φ(k) = (xφ(k))−1 we see that (h, x)(k, y) = (hk, xφ(k)y) = (1, 1).
Moreover, since φ(k)φ(h) = φ(hk) = 1 we also have that yφ(h) = x−1, and
(k, y)(h, x) = (kh, yφ(h)x = (1, 1), so that (k, y) is definitely the inverse of
(h, x).


