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Tutorial 1
1. If A is an m x n matrix over the field C (complex numbers) then A is the

m X n matrix whose entries are the complex conjugates of the entries of A.

(i) Show that an arbitrary complex matrix can be written as P + 4@ with
P and Q real.

(ii) A is Hermitian if A = A® (transpose of A). Show that A is Hermitian
if and only if its real part (P) is symmetric and its imaginary part (Q)
is skew-symmetric.

(iii) Show that if A is Hermitian then v* Av is a real number for all complex
column vectors v (of appropriate size).

(iv) A Hermitian matrix A is said to be it positive definite if v*Av > 0 for
all nonzero v. Prove that positive definite matrices are nonsingular.

(v) Show that a Hermitian matrix A is positive definite if and only if there
exists a nonsingular B such that A = B'B. (The “if” part is OK. For
the “only if” you have to use row and column operations. Start by
showing that the diagonal entries of A are real and positive.)

(vi) Show that the sum of two positive definite matrices is positive definite.

(vii) Let G be a finite subgroup of GL,,(C). Prove that there exists a positive
definite matrix A such that Y AY = A for all Y € G. (Hint: Try

—t
A=Y vea X X))

(viii) Prove that if G is a finite subgroup of GL,,(C) then there exists a non-
singular B such that BXB~! is unitary for all X € G. (A matrix is
unitary if its inverse is the transpose of its conjugate.)

Solution.

(4)

(iz)
(id)

Let A have (r, s)-entry «,.s € C. Writing a5 = Brs +i7rs With B, vrs € R
we see that A = P + i@ where P and @ have (r,s)-entries (.5 and 7,
(respectively).

Since (P +1iQ)" = (P —iQ)" = P' —iQ" we see that A = P +iQ is
Hermitian if and only if P* = P and Q' = —Q.

Recall that transposing reverses products; that is, (XY)' = Y*X* when-
ever the left hand side is defined. (Note that this implies that (A=1)* = (A%)~!

(i)

whenever A is nonsingular. It is also clear that taking complex conjugates
preserves sums and products, and commutes with the maps A — A~ and
A+ A'.) Let v be an arbitrary column vector and let z = v*Av. Since z is a
1 x 1 matrix we have z' = %, and so

zZ= ((@tAv))t =A=' Av = 2.

Thus z is real.

Suppose that A is positive definite. Note first that since A is Hermitian
it must be square (as its transpose is the same shape as itself). Now let v be
in the nullspace of A; that is, v is a column vector such that Av = 0. Then
7' Av = D0 = 0, and positive definiteness of A gives v = 0. So the nullspace
of A is {0}; this implies that A is nonsingular.

Recall that if v € C" and the k'" entry of v is xj, +iyy (for k=1, 2, ..., n)

then 7tv = ZZ:l xi + y,zc, which is real, nonnegative, and zero only if v = 0.
This shows that the identity matrix is positive definite. Suppose now that
A =B'CB where B, C' € GL,(C) and C is positive definite, and let v € C"
be nonzero. Then Bv # 0, since B is nonsingular, and since C is positive
definite it follows that (Bv)'C(Bv) > 0. But v*Av = (Bv)'C(Bv), and since
this is positive for all nonzero v it follows that A is positive definite. Putting
C = I gives the “if” part.
Let A be an arbitrary positive definite n x n Hermitian matrix. We use induc-
tion on n to prove that A has the desired form; note that in the case n = 1 the
matrix A is simply a positive real number, and we may take B = v/A. Let ¢
be the I*" column of the identity matrix (so that ey, es, ... , e, comprise the
standard basis of C™). The (I,1)-entry of A is €"Ae;, which must be positive
since A is positive definite. Thus we can write

a z*
A_<26 A’)

where a is real and positive, z € C"~! and A’ is some (n — 1) x (n — 1)
Hermitian matrix. Now set

p= (5, 1)

—a 'z I

and observe that D is nonsingular; indeed, as a row operation matrix the effect
of D is to divide the first row by /a and add multiples of the first row to the
others. We see that the first column of DA is (y/a)e;. Now postmultiplication

by D performs a corresponding sequence of column operations, and we find

that
—t 1 0
DAD = (0 A”) .
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Since A was positive definite, this must be too. Hence A” isa (n—1) X (n—1)

positive definite matrix. By induction we can write A" = VtY, and this gives

t
(10 10\ i1 st
A=D (0 Y) (0 Y><D> _B'B

where B = ((1) 3) (D1

(vi) If A, B € GL,,(C) are positive definite and 0 # v € C" then
7' (A4 B)v =0"Av + 7" Bv > 0

(since v*Av > 0 and v*Bv > 0).

(vit) We see that Y AY = EXGG(Vtyt)(XY) = Zzgcftz = A (since
Z = XY runs through all elements of G as X does).

(vidi) By (wii) we can find a positive definite A such that Y'AY = A for all
Y € G, and by (v) we can put A = B'B. But the equation Y B BY = B'B
can be written as BY 1B~ = (Eil)t?tgt, or, equivalently,

(BYB~Y)~! = (BYB-1)t,
showing that BY B~! is unitary for all Y € G.

2. Recall that the dot product on C" is defined by u-v = %'v, and that unitary
matrices preserve it (in the sense that (Xu) - (Xv) = u-v for all u and v if
X is unitary). Recall also that if U is a subspace of C" then C" = U @& U+,
where
Ut ={veC"|u-v=0forallucU}
(the orthogonal complement of U).

Let G be a finite group of n X n unitary matrices, and let U be a G-invariant
subspace of C". (That is, if X € G and u € U then Xu € U.) Prove that the
orthogonal complement of U is also G-invariant.

Solution.
Let v € UL and let X € G. Then for all u € U we have that X ~'u € U (since

X~! € G and U is G-invariant), and so
(Xv)-u=Xv-X(X u)
=v-X"lu (since X is unitary)
=0 (since v € U™).

Hence Xv € U™, and since this holds for all X € G and v € U' we have
shown that U~ is G-invariant.
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3. Let H and N be groups and ¢: H — Aut(N) a homomorphism. Define
Hx N={(h,x) |he H z € N}
with multiplication given by
(h,z)(k,y) = (hk,2*®)y)

for all h,k € H and =,y € N. Prove that this makes H X N into a group.
(Such a group is called a semidirect product of N by H. If ¢ is the trivial
homomorphism (h+— 1 € Aut(N) for all h € H) we get the direct product of
N and H.)

Solution.

Since ¢ is a homomorphism we have ¢(1) = 1, where the 1 on the left hand
side is the identity element of H and the 1 on the right hand side is the
identity automorphism of N. Hence our multiplication rule gives

(h,z)(1,1) = (h1,2*M1 = (h,z).
Since all automorphisms of N map 1 to 1 we also find that
(1,1)(h, ) = (1h,1°MWa) = (b, z).

So H x N has an identity element. The following calculation proves associa-
tivity:

((hyz)(k,9)) (1, 2) = (hk, 2B y)(1, z) = (hkl, (2*®y)?Oz)

(hkl, $¢(k)¢>(l)y¢(l)z) = (hk, $¢(k1)y¢>(z)z)
= (h,x)(kl,y¢(z>z) = (h,x)((k,y)(l,z))_

Let (h, z) be an arbitrary element of Hx N, and let k = h~! and y = (x_1)¢(k).
Since (z=1)?*) = (z2*))~1 we see that (h,z)(k,y) = (hk,2%®y) = (1,1).
Moreover, since ¢(k)p(h) = ¢(hk) = 1 we also have that y*) = z=1, and
(k,y)(h,x) = (kh,y¢(h)x = (1,1), so that (k,y) is definitely the inverse of
(h,x).



