An explicit string bundle

David M. Roberts

School of Mathematical Sciences
University of Adelaide

3 October 2013
 57th Annual Meeting of the Australian Mathematical Society

Bundles on spheres

Recall:
$\left\{S O(k)\right.$-bundles on $\left.S^{n}\right\} \simeq\left[S^{n}, B S O(k)\right]$

$$
\begin{aligned}
& \simeq\left[S^{n-1}, S O(k)\right] \\
& \simeq \pi_{n-1}(S O(k))
\end{aligned}
$$

Whitehead towers 1

For X a (path-connected) space, a Whitehead tower is a sequence

$$
\cdots \rightarrow X_{4} \rightarrow X_{3} \rightarrow X_{2} \rightarrow X_{1} \rightarrow X
$$

such that

$$
\begin{aligned}
& X_{n} \text { is } n \text {-connected } \\
& \pi_{i}\left(X_{n}\right) \rightarrow \pi_{i}(X) \text { is an isomorphism for } i>n \text {. }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& X=S O(k) \\
& \quad \cdots \rightarrow(* *) \rightarrow \operatorname{Spin}(k) \rightarrow \operatorname{Spin}(k) \rightarrow S O(k)
\end{aligned}
$$

Lifting the structure group

Recall that a k-manifold M is spin if the structure group of its tangent bundle can be lifted to $\operatorname{Spin}(k)$.
The obstruction to this happening is a certain cohomology class in $H^{2}(M, \mathbb{Z} / 2)$.

The frame bundle $F S^{5}$ is an $S O(5)$-bundle, classified by the nontrivial element in $\pi_{4}(S O(5))=\mathbb{Z} / 2$.
$H^{2}\left(S^{5}, \mathbb{Z} / 2\right)=0$, hence S^{5} is spin.
The lift $F S_{\text {spin }}^{5}$ of $F S^{5}$ to a $S p i n(5)$-bundle is classified by

$$
S^{4} \xrightarrow{\eta} S^{3} \simeq S p(1) \hookrightarrow S p(2) \simeq S \operatorname{pin}(5)
$$

so in fact lifts to an $S p(1)=S U(2)=S \operatorname{pin}(3)$-bundle.

Transition function

Recall that $S^{4} \simeq \mathbb{H} \mathbb{P}^{1}$, with homogeneous coordinates $[p ; q]$, $p, q \in \mathbb{H}$ not both zero.

Proposition
The transition function $T: \mathbb{H P}^{1} \rightarrow S p(1)$ for $F S_{\text {spin }}^{5}$ is given by

$$
T[p ; q]=\frac{2 p \bar{q} i \bar{p} q-|p|^{4}+|q|^{4}}{|p|^{4}+|q|^{4}}
$$

(ignoring irrelevant factors of $(-1,1)$ for this talk)

Whitehead towers 2

Q In

$$
\cdots \rightarrow(* *) \rightarrow \operatorname{Spin}(k) \rightarrow \operatorname{Spin}(k) \rightarrow S O(k)
$$

What is ' $(* *)^{\prime}$?
A1 A 3-connected topological group
A2 Not a finite dimensional Lie group! (Hint: $\Rightarrow \pi_{3}(G) \neq 0$)
A3 A Lie 2-group, $\operatorname{String}(k)$, presented by a crossed module of Lie groups (Baez-Crans-Schreiber-Stevenson arXiv:math/0504123).

Crossed modules

Definition

A crossed module is

- a map $t: K \rightarrow H$
- an action $a: H \times K \rightarrow K$
- such that t is H-equivariant and $a \circ(t \times i d)=A d$.

Key example: $\operatorname{String}(k)=(\widehat{\Omega G} \rightarrow P G)$, for $G=\operatorname{Spin}(k)$ (or even just a compact Lie group).

We will take $G=S p(1)$. Then $\widehat{\Omega S p(1)} \rightarrow P S p(1)$ is a model for String (3).
(NB: more on $\widehat{\Omega G}$ later)

Cocycles 1

Recall the definition of a G-valued cocycle: an open cover $\left\{U_{i}\right\}$ of the space in question, and functions

$$
g_{i j}: U_{i j}:=U_{i} \cap U_{j} \rightarrow G \quad \forall i, j
$$

such that on $U_{i j k}$:

$$
g_{i j} g_{j k}=g_{i k}
$$

Cocycles 2

Let $t: K \rightarrow H$ be a crossed module such that $H \rightarrow H / t(K)=G$ has local sections. Say we want to lift the cocycle $\left\{g_{i j}\right\}$ to a ($K \rightarrow H$)-valued cocycle.

- We take an open cover $\coprod_{\alpha} U_{i j}^{\alpha} \rightarrow U_{i j}$ and functions $h_{i j}^{\alpha}: U_{i j}^{\alpha} \rightarrow H$ lifting $g_{i j}$.
- The $h_{i j}^{\alpha}$ only satisfy the cocycle condition on

$$
U_{i j k}^{\alpha \beta \gamma}=U_{i j}^{\alpha} \cap U_{j k}^{\beta} \cap U_{i k}^{\gamma}
$$

up to a $t(K)$-valued function, which we then lift to a function

$$
k_{i j k}^{\alpha \beta \gamma}: U_{i j k}^{\alpha \beta \gamma} \rightarrow K
$$

(if possible!)

Cocycles 3

The collection of functions $\left\{h_{i j}^{\alpha}, k_{i j k}^{\alpha \beta \gamma}\right\}$ satisfy a pair of equations (Breen 1994, Bartels arXiv:math/0410328, Baez-Schreiber arXiv:math/0511710):

$$
\begin{equation*}
h_{i j}^{\alpha} h_{j k}^{\beta}=t\left(k_{i j k}^{\alpha \beta \gamma}\right) h_{i k}^{\gamma} \tag{C1}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(h_{i j}^{\alpha}, k_{j k l}^{\beta \eta \varepsilon}\right) k_{i j l}^{\alpha \delta \delta}=k_{i j k}^{\alpha \beta \gamma} k_{i k l}^{\gamma \eta \delta}, \tag{C2}
\end{equation*}
$$

which only a physicist could love.

Lifting the structure (2-)group

A k-manifold M is string if we can lift the transition functions for $T M$ to a $(\widehat{\Omega \operatorname{Spin}(k)} \rightarrow P \operatorname{Spin}(k))$-valued cocycle. This is equivalent to the vanishing of a certain cohomology class in $H^{4}(M, \mathbb{Z})$ (cf Killingback, Witten 1980s, Stolz-Teichner 2004, Baez-Stevenson arXiv:0801.3843).

S^{5} again

Since S^{5} is so simple, we can trim down ($C 1$) and ($C 2$).

- The cover $\left\{U_{i}\right\}$ is $\left\{D_{ \pm}^{5}\right\}$
- we take the cover $\left\{\mathbb{H}_{ \pm}\right\}$of $D_{+}^{5} \cap D_{-}^{5}=\mathbb{H}^{1}$ (ignoring factors of $(-1,1)$)
with the cocycle determined by functions
- $\tilde{T}_{ \pm}: \mathbb{H}_{ \pm} \rightarrow P S p(1)$, lifting T, and
- $T_{\widehat{\Omega}}: \mathbb{H}^{\times} \rightarrow \widehat{\Omega S p(1)}$,
satisfying
- $\tilde{T}_{-}(q)=\tilde{T}_{+}(q) t\left(T_{\widehat{\Omega}}(q)\right)$

Transition 'function(s)' 1

Using special charts on $S p(1)$, can show the functions

$$
\begin{aligned}
& \tilde{T}_{+}(q)=\left(s \mapsto \frac{|q|^{4}-s^{2}+2 \bar{q} i q s}{|q|^{4}+s^{2}}\right) \\
& \tilde{T}_{-}(p)=\left(s \mapsto \frac{|p|^{4} s^{2}-1+2 \bar{p} i p s}{|p|^{4} s^{2}+1} \cdot\left(\frac{s-i}{s+i}\right)^{2}\right),
\end{aligned}
$$

where $q \in \mathbb{H}_{+}, p \in \mathbb{H}_{-}$, lift T.
Then $T_{\Omega}(q):=\tilde{T}_{+}(q)^{-1} \tilde{T}_{-}\left(q^{-1}\right): \mathbb{H}^{\times} \rightarrow \Omega S p(1)$ is

$$
T_{\widehat{\Omega}}(q)=\left(s \mapsto \frac{(s+\bar{q} i q)(s \bar{q} i q-1)}{(s-\bar{q} i q)(s \bar{q} i q+1)} \cdot\left(\frac{s-i}{s+i}\right)^{2}\right) .
$$

Transition 'function(s)' 2

Easiest description of $\widehat{\Omega S p(1)}$ is as the cokernel of the homomorphism

$$
\widetilde{\Omega^{2} S p(1)} \rightarrow P \Omega S p(1) \ltimes U(1)
$$

Note that we have then a map

$$
P \mathbb{H}^{\times} \rightarrow P \Omega S p(1) \rightarrow P \Omega S p(1) \ltimes U(1) \rightarrow \widehat{\Omega S p(1)},
$$

which descends to \mathbb{H}^{\times}as the latter is 2-connected.
Thus

$$
T_{\widehat{\Omega}}(q)=\left[T_{\Omega}\left(q_{t}\right) ; 1\right] \in \widehat{\Omega S p(1)}
$$

for q_{t} any (polynomial, say) path in \mathbb{H}^{\times}from 1 to q.

Transition 'function(s)' 3

Proposition

The functions

$$
\begin{aligned}
& \tilde{T}_{+}(q)=\left(s \mapsto \frac{|q|^{4}-s^{2}+2 \bar{q} i q s}{|q|^{4}+s^{2}}\right) \\
& \tilde{T}_{-}(p)=\left(s \mapsto \frac{|p|^{4} s^{2}-1+2 \bar{p} i p s}{|p|^{4} s^{2}+1} \cdot\left(\frac{s-i}{s+i}\right)^{2}\right), \\
& T_{\widehat{\Omega}}(q)=\left[s \mapsto \frac{\left(s+\overline{q_{t}} i q_{t}\right)\left(s \overline{q_{t}} i q_{t}-1\right)}{\left(s-\overline{q_{t}} i q_{t}\right)\left(s \overline{q_{t}} i q_{t}+1\right)} \cdot\left(\frac{s-i}{s+i}\right)^{2} ; 1\right]
\end{aligned}
$$

define the nontrivial $(\Omega \widehat{\operatorname{Spin}(3)} \rightarrow P \operatorname{Spin}(3))$-valued cocycle on S^{5}.
fin.

