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“A Yang-Baxter equation from sutured Floer homology”
We will:

@ Explain what the Yang-Baxter equation is.

@ Say something about where it comes from, what it means,
and why we care about it.

@ Discuss how it ties together lots of different threads of
recent work in 3-dimensional topology and knot theory:
@ Quantum groups and invariants
e Jones and Alexander polynomials
e Khovanov homology
e Floer homology
e Categorification

@ Indicate how a generalised Yang-Baxter equation is found
in sutured Floer homology, further tying this story together.

e Generalised to “Higher genus”
e Generalised to “Higher dimension”
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What is the Yang-Baxter equtaion?

@ Let V be a vector space (module, abelian group, ...)
@ LetRbelinear VoV — Ve V.

Definition

The Yang-Baxter equation for R is

(ReNo(I®R)o(Rel)=(I®R)o(R® N o(I®R).

An equality of linear maps V®3 — V®3_ (] = identity)
@ Can be written alternatively as
Ri2Ro3Ri2 = R23Ri2Res.

E.g. take V = R? = Re; ¢ Rep and
14+ u

u 1 w.r.t. basis

1 u (e1®e1,61R€2,8R 61,6 R e2).

14+u

R =
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Origin and meaning of the Yang-Baxter equation

Think of:
@ Vector space/module/etc V as possible states of a system

(particle, atom, cat, etc...)
@ Tensor product V®" as a composite of n such systems (n

particles, cats, etc...)
@ Linear map V®" — V®" as an evolution of this system.

Represent V by a point, V®" by n points, maps V" — y&n
by lines between them.

» . ’ . \/®<} - ° ’ N . v@f
Tz

v@‘}
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Origin and meaning of the Yang-Baxter equation

Thinkof R: V® V — V ® V as representing an interaction
VeV

>
Xt

Then the Yang-Baxter equation says, graphically:

:L\/]

The map should depend only on the topology of the diagram.
Evolutions of system are equivalent if isotopic as braids.
The group of braids on n strands has a presentation
. ojoj = 0j0; ifli—j|>2
Bn = <0'17---70'n1 | Oi0j410j = 0410041 fori= 1,... ,Nn— 1 )
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Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:
@ Guarantees that R gives an action of B, on V",

@ Makes statistical mechanics models exactly solvable
(Baxter).

@ Gives invariants of braids.

Any knot is the closure of a braid, and it turns out we can obtain
knot invariants also.



Quantum groups

Outline

e Overview
e The Yang-Baxter equation

Q Quantum groups
@ What are they?
@ How they solve Yang-Baxter

e Recent developments

e Generalised Yang-Baxter



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.

@ Given semisimple Lie algebra g, take its enveloping
algebra U(g). (“Pretend [, ] is a commutator”.)



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.
@ Given semisimple Lie algebra g, take its enveloping
algebra U(g). (“Pretend [, ] is a commutator”.)
@ U(g) has a presentation (Serre 1965) over C with 3n
generators

X17X27"‘7Xn7 Y1, YQ,--., Yn,H1,H2,...,Hn
and relations
[Hi, Hj] =0, [Xi, Y]] = 6;H;,
[Hi X)) = aiX,  [Hi, Yl = —a;Y],
some others...

where aj; is the Cartan matrix of g.



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.
@ Given semisimple g and enveloping U(g), take its quantum
enveloping algebra or quantum group Ugy(g).
@ U(g) has a presentation (Serre 1965) over C with 3n
generators

X17X27"‘7Xn7 Y1, YQ,--., Yn,H1,H2,...,Hn
and relations
[Hi, Hi] =0, [X;, Y]] = 6;H;,
[Hi X] = a;X,  [Hi, Yl = —a;Y],
some others...

where aj; is the Cartan matrix of g.



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.
@ Given semisimple g and enveloping U(g), take its quantum

enveloping algebra or quantum group Ugy(g).
@ Up(g) has a presentation (Drinfeld-Jimbo 1987) generated

over C[[h]] by
X17X27-~;Xm Y17 Y27"'7 YI’I7H17H27"'7HI’7
with relations
inh(diH; /2
[Hi H] =0, X Y]] = o5 S /2]
[Hi X] = @i, [H, Yl = —a;Y],
some others...

a;j = Cartan matrix, d; = root lengths, g; = ef%/2.



Quantum groups
[ Je]

Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.

@ Given semisimple g and enveloping U(g), take its quantum

enveloping algebra or quantum group Ugy(g).
@ Up(g) has a presentation (Drinfeld-Jimbo 1987) generated

over C[[h]] by

X17X27-~;Xm Y17 Y27"'7 YI’I7H17H27"'7HI’I
with relations
inh(d;H;
[Hi H] = 0. [X: Y] = 0i'Ginchary
[Hi X] = @i, [Hi, Yl = —a;Y],
some others...

a;j = Cartan matrix, d; = root lengths, g; = ef%/2.

@ In quantum groups we find things like quantum integers

Mo= 4 =q""+q" %+ +q ™"
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A quantum group

A quantum group we're interested in: Ugsl(1]1).

E2=F2 =0,
Ug(sI(1]1)) = Q(q) <E, F,H*' | EH= HE,FH = HF, >

_ H-H"!
EF + FE = H=H
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Yang-Baxter equation in quantum groups

@ Uy(g) has nice properties, “same” representations as g.

@ If V is a representation of Uy(g), there is an R-matrix
V&V — V& V satisfying Yang-Baxter.

@ Closing a braid and taking the trace of the associated map
ven s ven gives a polynomial in g which is a quantum
knot invariant.

Taking simple g, V gives well-known knot invariants.
g | V| Invariant
sl(2) Vo> | Jones polynomial  (witen 1989, Reshetikhin-Turaev 1990)
5[(2) Vn Coloured Jones (Turaev 1994, Melvin-Morton 1995)
sl(1]1) | Vo Alexander (Kauffman-Saleur 1991)
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Jones — Khovanov

The Jones polynomial can be given as Ugsl(2) quantum
invariant or by skein relations.
E.g. via Kauffman bracket (K):

<X>:< > <> <> — (q+q L)

(_1 )n_ qn+72n_

K:
JK) g+q!

(K) ny = # right/left-handed crossings.

@ So J(K) can be written as a sum over resolutions of
crossings of K.

@ Khovanov (late 1990s) took this idea to much greater
algebraic lengths...
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Khovanov homology

Resolve crossings — arrange resolutions into cube — vertices = tensor powers of 2-dim vector space V, edges =

homomorphisms based on Ug(s/(2)) (1+1)-dimensional TQFT — find differential — Take homology

1 \H)
X

V()

—n_{

(with (n4,n_) = (3,0))

(Source: Bar-Natan, “On Khovan ion of the Jones ial")
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N

ver{z)]

Vel oo

‘ V{1}

Vei(z)

Vesa}

(Source: Bar-Nat:
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Khovanov homology

Resolve crossings — arrange resolutions into cube — vertices = tensor powers of 2-dim vector space V, edges =

homomorphisms based on Ug(s/(2)) (1+1)-dimensional TQFT — find differential — Take homology

@ Khovanov homology is a
bigraded abelian group

SO il gy Khi,(K).

@ Its definition includes
Ugs!(2).

@ Its Euler characteristic is
J(K):

Z t/Z )" dimKh; ;(K) = J(K).

(Source: Bar-Natan, “On Khovan ion of the Jones ial")
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Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (ozsvatn-szans, Rasmussen, 2003).

@ Take Heegaard decomposition
(¥, o, B) of 3-manifold M Y -

@ Consider holomorphic curves in the o5 7
4-manifold  x I x R. 7 1

@ Prescribe boundary conditions at o | |
+oo by (an p).

@ Take chain complex generated by il 1l
boundary conditions a. N 3, & ) 4 ) T4
counting holomorphic curves. (2 ———

@ Take homology ﬁl?,-,j(M).

@ Can similarly obtain knot Floer
homology HFK j(K).

Source: Lipshitz, “A cylindrical
reformulation of Heegaard Floer

homology”
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Categorification

Ozsvath—Szabo: Taking the Euler characteristic of Floer
homology gives the Alexander polynomial.

Z v Z ) dim HFK ;(K) = A(K).

Khovanov Iy Jones .
{ Kot Floor } homology categor/f/es{ Alexander }polynomlal.
Knot invariant \ Quantum invariant of \ Categorified by
Jones polynomial

Uq(s1(2)) Khovanov
Uq(sI(1]1)) Heegaard Floer

@ The definition of Khovanov homology “contains” Ug(s((2)).
@ The definition of Heegaard Floer homology does not
obviously contain Uq(sl(1]1)).

Alexander polynomial

Long-standing question:

How are Floer homology and Uy(sl(1]1)) related?
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Sutured Floer homology of product manifolds

Juhész 2006: SFH(M,T) an invariant of sutured 3-manifolds.
@ M 3-mfld with boundary, curves I' C OM satisfying
conditions.
Consider SFH of product manifolds (£ x S', V x S'):
@ Y asurface, V c 9S' alternating signed vertices.
Turns out (X, V) naturally decomposes into squares with
alternating vertices and #squares = %\ V] — x(%).
E.g.
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Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor V.
SFH(T x S', V x §') = ve(zIVI-x(®),

@ Curves v on (X, V) which respect signs (sutures) give
elements in SFH (via contact structures).
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Mapping class group action

Taking (X, V) a punctured disc (following ideas of Tian)...
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The MCG™ (%, V) action on curves v gives an action on SFH.

Let (X, V) be the disc with n punctures, so MCG™ (%, V) = B,,.
The action of B, on SFH(X x S', V x S') = V®" js jsomorphic
to the R-matrix action of Uysl(1|1) on V3"

So SFH ObeyS Yang—Baxter R12R23R12 = R23R12R23.
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@ Squares of surface decomposition can be regarded as
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@ A direct connection between Ugsl(1|1) and Floer
homology. (Also related work of Tian.)
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Some observations:
@ Squares of surface decomposition can be regarded as
fundamental representations of Ugs((1/1).
@ A direct connection between Ugsl(1|1) and Floer
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@ We actually obtain a parametrised Yang-Baxter equation
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(as SFH is a Z[H¢(X)]-module.)
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(as SFH is a Z[H1(X)]-module.)
@ Generalises from the braid group to higher genus mapping
class groups: “higher genus Yang-Baxter”



Generalised Yang-Baxter
oeo

Genralised Yang-Baxter

Some observations:
@ Squares of surface decomposition can be regarded as
fundamental representations of Ugs((1/1).
@ A direct connection between Ugsl(1|1) and Floer
homology. (Also related work of Tian.)
@ We actually obtain a parametrised Yang-Baxter equation

Ri2(92)Re3(q1) Ri2(q1) = Rea(q1) R12(q1) AR23(q2)

(as SFH is a Z[H1(X)]-module.)

@ Generalises from the braid group to higher genus mapping
class groups: “higher genus Yang-Baxter”

@ Unlike standard quantum invariants (“0 + 1-dimensional”),
this invariant is 2 + 1-dimensional.
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Genralised Yang-Baxter

Some observations:
@ Squares of surface decomposition can be regarded as
fundamental representations of Ugs((1/1).
@ A direct connection between Ugsl(1|1) and Floer
homology. (Also related work of Tian.)
@ We actually obtain a parametrised Yang-Baxter equation

Ri2(92)Re3(q1) Ri2(q1) = Rea(q1) R12(q1) AR23(q2)

(as SFH is a Z[H1(X)]-module.)
@ Generalises from the braid group to higher genus mapping
class groups: “higher genus Yang-Baxter”
@ Unlike standard quantum invariants (“0 + 1-dimensional”),
this invariant is 2 + 1-dimensional.
Further connections to quantum information theory, quantum
gravity, statistical mechanics, representation theory,
categorification, combinatorics...



Thanks for listening!
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