A Yang-Baxter equation from sutured Floer homology

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

AustMS Annual Meeting
University of Sydney 30 September 2013

Outline

(1)
Overview

- Introduction
(2) The Yang-Baxter equation
(3) Quantum groups

4 Recent developments
(5) Generalised Yang-Baxter

Overview

"A Yang-Baxter equation from sutured Floer homology" We will:

- Explain what the Yang-Baxter equation is.

Overview

"A Yang-Baxter equation from sutured Floer homology" We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.

Overview

"A Yang-Baxter equation from sutured Floer homology"
We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.
- Discuss how it ties together lots of different threads of recent work in 3-dimensional topology and knot theory:
- Quantum groups and invariants
- Jones and Alexander polynomials
- Khovanov homology
- Floer homology
- Categorification

Overview

"A Yang-Baxter equation from sutured Floer homology"
We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.
- Discuss how it ties together lots of different threads of recent work in 3-dimensional topology and knot theory:
- Quantum groups and invariants
- Jones and Alexander polynomials
- Khovanov homology
- Floer homology
- Categorification
- Indicate how a generalised Yang-Baxter equation is found in sutured Floer homology, further tying this story together.
- Generalised to "Higher genus"
- Generalised to "Higher dimension"

Outline

(1) Overview
(2) The Yang-Baxter equation

- What is it?
- What does it mean?
(3) Quantum groups

4 Recent developments
(5) Generalised Yang-Baxter

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let R be linear $V \otimes V \longrightarrow V \otimes V$.

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let R be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$
(R \otimes I) \circ(I \otimes R) \circ(R \otimes I)=(I \otimes R) \circ(R \otimes I) \circ(I \otimes R) .
$$

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. $(I=$ identity $)$

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let R be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$
(R \otimes I) \circ(I \otimes R) \circ(R \otimes I)=(I \otimes R) \circ(R \otimes I) \circ(I \otimes R) .
$$

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. (I = identity)

- Can be written alternatively as

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let R be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$
(R \otimes I) \circ(I \otimes R) \circ(R \otimes I)=(I \otimes R) \circ(R \otimes I) \circ(I \otimes R) .
$$

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. ($I=$ identity $)$

- Can be written alternatively as

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} .
$$

E.g. take $V=\mathbb{R}^{2}=\mathbb{R} e_{1} \oplus \mathbb{R} e_{2}$ and

$$
R=\left(\begin{array}{cccc}
1+u & & & \\
& u & 1 & \\
& 1 & u & \\
& & \\
& & 1+u
\end{array}\right)
$$

w.r.t. basis

$$
\left(e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right)
$$

Origin and meaning of the Yang-Baxter equation

Think of:

- Vector space/module/etc V as possible states of a system (particle, atom, cat, etc...)

Origin and meaning of the Yang-Baxter equation

Think of:

- Vector space/module/etc V as possible states of a system (particle, atom, cat, etc...)
- Tensor product $V^{\otimes n}$ as a composite of n such systems (n particles, cats, etc...)

Origin and meaning of the Yang-Baxter equation

Think of:

- Vector space/module/etc V as possible states of a system (particle, atom, cat, etc...)
- Tensor product $V^{\otimes n}$ as a composite of n such systems (n particles, cats, etc...)
- Linear map $V^{\otimes n} \longrightarrow V^{\otimes n}$ as an evolution of this system.

Origin and meaning of the Yang-Baxter equation

Think of:

- Vector space/module/etc V as possible states of a system (particle, atom, cat, etc...)
- Tensor product $V^{\otimes n}$ as a composite of n such systems (n particles, cats, etc...)
- Linear map $V^{\otimes n} \longrightarrow V^{\otimes n}$ as an evolution of this system.

Represent V by a point, $V^{\otimes n}$ by n points, maps $V^{\otimes n} \longrightarrow V^{\otimes n}$ by lines between them.

Origin and meaning of the Yang-Baxter equation

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an interaction

Then the Yang-Baxter equation says, graphically:

Origin and meaning of the Yang-Baxter equation

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an interaction

Then the Yang-Baxter equation says, graphically:

Origin and meaning of the Yang-Baxter equation

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an interaction

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram. Evolutions of system are equivalent if isotopic as braids.

Origin and meaning of the Yang-Baxter equation

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an interaction

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram.
Evolutions of system are equivalent if isotopic as braids.

Origin and meaning of the Yang-Baxter equation

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an interaction

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram.
Evolutions of system are equivalent if isotopic as braids.
The group of braids on n strands has a presentation
$B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right|$

$$
\begin{gathered}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { if }|i-j| \geq 2 \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \text { for } i=1, \ldots, n-1
\end{gathered}
$$

Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:

- Guarantees that R gives an action of B_{n} on $V^{\otimes n}$.

Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:

- Guarantees that R gives an action of B_{n} on $V^{\otimes n}$.
- Makes statistical mechanics models exactly solvable (Baxter).

Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:

- Guarantees that R gives an action of B_{n} on $V^{\otimes n}$.
- Makes statistical mechanics models exactly solvable (Baxter).
- Gives invariants of braids.

Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:

- Guarantees that R gives an action of B_{n} on $V^{\otimes n}$.
- Makes statistical mechanics models exactly solvable (Baxter).
- Gives invariants of braids.

Any knot is the closure of a braid, and it turns out we can obtain knot invariants also.

Outline

(9) Overview
(2) The Yang-Baxter equation
(3) Quantum groups

- What are they?
- How they solve Yang-Baxter

4 Recent developments
(5) Generalised Yang-Baxter

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

- Given semisimple Lie algebra \mathfrak{g}, take its enveloping algebra $U(\mathfrak{g})$. ("Pretend $[\cdot, \cdot]$ is a commutator".)

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

- Given semisimple Lie algebra \mathfrak{g}, take its enveloping algebra $U(\mathfrak{g})$. ("Pretend $[\cdot, \cdot]$ is a commutator".)
- $U(\mathfrak{g})$ has a presentation (Serre 1965) over \mathbb{C} with $3 n$ generators

$$
X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, H_{1}, H_{2}, \ldots, H_{n}
$$

and relations

$$
\begin{gathered}
{\left[H_{i}, H_{j}\right]=0, \quad\left[X_{i}, Y_{j}\right]=\delta_{i j} H_{i},} \\
{\left[H_{i}, X_{j}\right] \stackrel{ }{=} a_{i j} X_{j}, \quad\left[H_{i}, Y_{j}\right]=-a_{i j} Y_{j},} \\
\text { some others... }
\end{gathered}
$$

where $a_{i j}$ is the Cartan matrix of \mathfrak{g}.

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

- Given semisimple \mathfrak{g} and enveloping $U(\mathfrak{g})$, take its quantum enveloping algebra or quantum group $U_{q}(\mathfrak{g})$.
- $U(\mathfrak{g})$ has a presentation (Serre 1965) over \mathbb{C} with $3 n$ generators

$$
X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, H_{1}, H_{2}, \ldots, H_{n}
$$

and relations

$$
\begin{gathered}
{\left[H_{i}, H_{j}\right]=0, \quad\left[X_{i}, Y_{j}\right]=\delta_{i j} H_{j},} \\
{\left[H_{i}, X_{j}\right] \stackrel{ }{=}=a_{i j} X_{j}, \quad\left[H_{i}, Y_{j}\right]=-a_{i j} Y_{j},} \\
\text { some others... }
\end{gathered}
$$

where $a_{i j}$ is the Cartan matrix of \mathfrak{g}.

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

- Given semisimple \mathfrak{g} and enveloping $U(\mathfrak{g})$, take its quantum enveloping algebra or quantum group $U_{q}(\mathfrak{g})$.
- $U_{h}(\mathfrak{g})$ has a presentation (Drinfeld-Jimbo 1987) generated over $\mathbb{C}[[h]]$ by

$$
X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, H_{1}, H_{2}, \ldots, H_{n}
$$

with relations

$$
\begin{gathered}
{\left[H_{i}, H_{j}\right]=0, \quad\left[X_{i}, Y_{j}\right]=\delta_{i j} \operatorname{sinh(d_{ij}H_{i}/2)},} \\
\left.\left[H_{i}, X_{j}\right]=a_{i j} X_{j}, \quad\left[H_{i}, Y_{j}\right]=-h_{i j} / 2\right) \\
\text { some others... }
\end{gathered}
$$

$a_{i j}=$ Cartan matrix, $d_{i}=$ root lengths, $q_{i}=e^{h d_{i} / 2}$.

Quantum groups

A large and interesting source of solutions to the Yang-Baxter equation comes from quantum groups.

- Given semisimple \mathfrak{g} and enveloping $U(\mathfrak{g})$, take its quantum enveloping algebra or quantum group $U_{q}(\mathfrak{g})$.
- $U_{h}(\mathfrak{g})$ has a presentation (Drinfeld-Jimbo 1987) generated over $\mathbb{C}[[h]]$ by

$$
X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, H_{1}, H_{2}, \ldots, H_{n}
$$

with relations

$$
\begin{gathered}
{\left[H_{i}, H_{j}\right]=0, \quad\left[X_{i}, Y_{j}\right]=\delta_{i j} \operatorname{sinh(i_{i}H_{i}/2)} \operatorname{sinh(hd_{i}/2)},} \\
{\left[H_{i}, X_{j}\right]=a_{i j} X_{i}, \quad\left[H_{i}, Y_{j}\right]=-a_{i j} Y_{j},} \\
\text { some others... }
\end{gathered}
$$

$a_{i j}=$ Cartan matrix, $d_{i}=$ root lengths, $q_{i}=e^{h d_{i} / 2}$.

- In quantum groups we find things like quantum integers

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\cdots+q^{-n+1} .
$$

A quantum group

A quantum group we're interested in: $U_{q \mathfrak{s l}(1 \mid 1)}$.

$$
U_{q}(\mathfrak{s l}(1 \mid 1))=\mathbb{Q}(q)\left\langle E, F, H^{ \pm 1} \left\lvert\, \begin{array}{c}
F^{2}=0 \\
E H=H E, F H=H F \\
E F+F E=\frac{H-H^{-1}}{q-q^{-1}}
\end{array}\right.\right\rangle
$$

Yang-Baxter equation in quantum groups

- $U_{q}(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g}.

Yang-Baxter equation in quantum groups

- $U_{q}(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g}.
- If V is a representation of $U_{q}(\mathfrak{g})$, there is an R-matrix $V \otimes V \longrightarrow V \otimes V$ satisfying Yang-Baxter.

Yang-Baxter equation in quantum groups

- $U_{q}(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g}.
- If V is a representation of $U_{q}(\mathfrak{g})$, there is an R-matrix $V \otimes V \longrightarrow V \otimes V$ satisfying Yang-Baxter.
- Closing a braid and taking the trace of the associated map $V^{\otimes n} \longrightarrow V^{\otimes n}$ gives a polynomial in q which is a quantum knot invariant.

Yang-Baxter equation in quantum groups

- $U_{q}(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g}.
- If V is a representation of $U_{q}(\mathfrak{g})$, there is an R-matrix $V \otimes V \longrightarrow V \otimes V$ satisfying Yang-Baxter.
- Closing a braid and taking the trace of the associated map $V^{\otimes n} \longrightarrow V^{\otimes n}$ gives a polynomial in q which is a quantum knot invariant.

Taking simple \mathfrak{g}, V gives well-known knot invariants.

\mathfrak{g}	V	Invariant	
$\mathfrak{s l}(2)$	V_{2}	Jones polynomial	(Witten 1989, Reshetikin-Turaev 1990)
$\mathfrak{s l}(2)$	V_{n}	Coloured Jones	(Turaev 1994, Melvin-Morton 1995)
$\mathfrak{s l}(1 \mid 1)$	V_{2}	Alexander	(Kauffman-Saleur 1991)

Outline

(1) Overview
(2) The Yang-Baxter equation
(3) Quantum groups

4 Recent developments

- Khovanov homology
- Floer homology
(5) Generalised Yang-Baxter

Jones \rightarrow Khovanov

The Jones polynomial can be given as $U_{q \mathfrak{s l}(2)}$ quantum invariant or by skein relations.

Jones \rightarrow Khovanov

The Jones polynomial can be given as $U_{q \mathfrak{s l}(2)}$ quantum invariant or by skein relations.
E.g. via Kauffman bracket $\langle K\rangle$:

$$
J(K)=\frac{(-1)^{n_{-}} q^{n_{+}-2 n_{-}}}{q+q^{-1}}\langle K\rangle \quad n_{ \pm}=\# \text { right/left-handed crossings. }
$$

Jones \rightarrow Khovanov

The Jones polynomial can be given as $U_{q \mathfrak{s l}}$ (2) quantum invariant or by skein relations.
E.g. via Kauffman bracket $\langle K\rangle$:

$$
J(K)=\frac{(-1)^{n_{-}} q^{n_{+}-2 n_{-}}}{q+q^{-1}}\langle K\rangle \quad n_{ \pm}=\# \text { right/left-handed crossings. }
$$

- So $J(K)$ can be written as a sum over resolutions of crossings of K.

Jones \rightarrow Khovanov

The Jones polynomial can be given as $U_{q \mathfrak{s l}}$ (2) quantum invariant or by skein relations.
E.g. via Kauffman bracket $\langle K\rangle$:
$\rangle\rangle\rangle=\langle\backsim\rangle\langle \rangle\langle \rangle, \quad\langle\bigcirc L\rangle=\left(q+q^{-1}\right)\langle L\rangle$
$J(K)=\frac{(-1)^{n_{-}} q^{n_{+}-2 n_{-}}}{q+q^{-1}}\langle K\rangle \quad n_{ \pm}=\#$ right/left-handed crossings.

- So $J(K)$ can be written as a sum over resolutions of crossings of K.
- Khovanov (late 1990s) took this idea to much greater algebraic lengths...

Recent developments ○○○

Generalised Yang-Baxter 00000

Khovanov homology

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices $=$ tensor powers of 2-dim vector space V, edges $=$ homomorphisms based on $U_{q}(s /(2))(1+1)$-dimensional TQFT \rightarrow find differential \rightarrow Take homology

(Source: Bar-Natan, "On Khovanov's categorification of the Jones polynomial")

Khovanov homology

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices $=$ tensor powers of 2-dim vector space V, edges $=$ homomorphisms based on $U_{q}(s /(2))(1+1)$-dimensional TQFT \rightarrow find differential \rightarrow Take homology

Khovanov homology

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices $=$ tensor powers of 2-dim vector space V, edges $=$ homomorphisms based on $U_{q}(s l(2))(1+1)$-dimensional TQFT \rightarrow find differential \rightarrow Take homology

Khovanov homology

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices $=$ tensor powers of 2-dim vector space V, edges $=$ homomorphisms based on $U_{q}(s l(2))(1+1)$-dimensional TQFT \rightarrow find differential \rightarrow Take homology

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth-Szabé, Rasmussen, 2003).

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth-Szabó, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsvàth-Szabó, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsvàth-Szabé, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.

Source: Lipshitz, "A cylindrical
reformulation of Heegaard Floer
homology"

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth-Szabé, Rasmussen, 2003).

- Take Heegaard decomposition

(Σ, α, β) of 3-manifold M

- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.

Source: Lipshitz, "A cylindrical
reformulation of Heegaard Floer
homology"

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth-Szabé, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions $\alpha \cap \beta, \partial$ counting holomorphic curves.

Source: Lipshitz, "A cylindrical

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth-Szabé, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions $\alpha \cap \beta, \partial$ counting holomorphic curves.

- Take homology $\widehat{H F}_{i, j}(M)$.

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváh-Szabó, Rasmussen, 2003).

- Take Heegaard decomposition (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions $\alpha \cap \beta, \partial$ counting holomorphic curves.

- Take homology $\widehat{H F}_{i, j}(M)$.
- Can similarly obtain knot Floer homology $\widehat{H F K}_{i, j}(K)$.

Source: Lipshitz, "A cylindrical
reformulation of Heegaard Floer
homology"

Categorification

Ozsváth-Szabo: Taking the Euler characteristic of Floer homology gives the Alexander polynomial.

$$
\sum_{j} t^{j} \sum_{i}(-1)^{i} \operatorname{dim} \widehat{H F K}_{i, j}(K)=A(K)
$$

Categorification

Ozsváth-Szabo: Taking the Euler characteristic of Floer homology gives the Alexander polynomial.

$$
\sum_{j} t^{j} \sum_{i}(-1)^{i} \operatorname{dim} \widehat{H F K}_{i, j}(K)=A(K)
$$

$\left\{\begin{array}{c}\text { Khovanov } \\ \text { Knot Floer }\end{array}\right\}$ homology categorifies $\left\{\begin{array}{c}\text { Jones } \\ \text { Alexander }\end{array}\right\}$ polynomial.

Categorification

Ozsváth-Szabo: Taking the Euler characteristic of Floer homology gives the Alexander polynomial.

$$
\sum_{j} t^{j} \sum_{i}(-1)^{i} \operatorname{dim} \widehat{H F K}_{i, j}(K)=A(K)
$$

$\left\{\begin{array}{l}\text { Khovanov } \\ \text { Knot Floer }\end{array}\right\}$ homology categorifies $\left\{\begin{array}{c}\text { Jones } \\ \text { Alexander }\end{array}\right\}$ polynomial. Knot invariant \quad Quantum invariant of \quad Categorified by
Jones polynomial $\quad U_{q}(\mathfrak{s l}(2))$

Alexander polynomial
$U_{q}(\mathfrak{s l}(1 \mid 1))$

Khovanov
Heegaard Floer

Categorification

Ozsváth-Szabo: Taking the Euler characteristic of Floer homology gives the Alexander polynomial.

$$
\sum_{j} t^{j} \sum_{i}(-1)^{i} \operatorname{dim} \widehat{H F K}_{i, j}(K)=A(K)
$$

$\left\{\begin{array}{l}\text { Khovanov } \\ \text { Knot Floer }\end{array}\right\}$ homology categorifies $\left\{\begin{array}{c}\text { Jones } \\ \text { Alexander }\end{array}\right\}$ polynomial. | Knot invariant | Quantum invariant of | Categorified by |
| :--- | :---: | :---: |
| ones polynomial | $U_{q}(\mathfrak{s l}(2))$ | Khovanov | Alexander polynomial

- The definition of Khovanov homology "contains" $U_{q}(\mathfrak{s l}(2))$.
- The definition of Heegaard Floer homology does not obviously contain $U_{q}(\mathfrak{s l}(1 \mid 1))$.

Categorification

Ozsváth-Szabo: Taking the Euler characteristic of Floer homology gives the Alexander polynomial.

$$
\sum_{j} t^{j} \sum_{i}(-1)^{i} \operatorname{dim} \widehat{H F K}_{i, j}(K)=A(K) .
$$

$\left\{\begin{array}{c}\text { Khovanov } \\ \text { Knot Floer }\end{array}\right\}$ homology categorifies $\left\{\begin{array}{c}\text { Jones } \\ \text { Alexander }\end{array}\right\}$ polynomial. | Knot invariant | Quantum invariant of | Categorified by |
| :--- | :---: | :---: |
| Jones polynomial | $U_{q}(\mathfrak{s l}(2))$ | Khovanov |

Alexander polynomial
$U_{q}(\mathfrak{s l}(1 \mid 1))$ Heegaard Floer

- The definition of Khovanov homology "contains" $U_{q}(\mathfrak{s l}(2))$.
- The definition of Heegaard Floer homology does not obviously contain $U_{q}(\mathfrak{s l}(1 \mid 1))$.

Long-standing question:
How are Floer homology and $U_{q}(\mathfrak{s l}(1 \mid 1))$ related?

Outline

(9) Overview
(2) The Yang-Baxter equation
(3) Quantum groups

4 Recent developments
(5) Generalised Yang-Baxter

- Sutured Floer homology
- Mapping class group action and generalised Yang-Baxter

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds $\left(\Sigma \times S^{1}, V \times S^{1}\right)$:
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds ($\Sigma \times S^{1}, V \times S^{1}$):
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and \#squares $=\frac{1}{2}|V|-\chi(\Sigma)$.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds ($\Sigma \times S^{1}, V \times S^{1}$):
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and $\#$ squares $=\frac{1}{2}|V|-\chi(\Sigma)$.
E.g.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds ($\Sigma \times S^{1}, V \times S^{1}$):
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and $\#$ squares $=\frac{1}{2}|V|-\chi(\Sigma)$. E.g.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds $\left(\Sigma \times S^{1}, V \times S^{1}\right)$:
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and \#squares $=\frac{1}{2}|V|-\chi(\Sigma)$. E.g.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds ($\Sigma \times S^{1}, V \times S^{1}$):
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and $\#$ squares $=\frac{1}{2}|V|-\chi(\Sigma)$. E.g.

Sutured Floer homology of product manifolds

Juhász 2006: $\operatorname{SFH}(M, \Gamma)$ an invariant of sutured 3-manifolds.

- M 3-mfld with boundary, curves $\Gamma \subset \partial M$ satisfying conditions.
Consider SFH of product manifolds ($\Sigma \times S^{1}, V \times S^{1}$):
- Σ a surface, $V \subset \partial S^{1}$ alternating signed vertices.

Turns out (Σ, V) naturally decomposes into squares with alternating vertices and $\#$ squares $=\frac{1}{2}|V|-\chi(\Sigma)$. E.g.

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
S F H\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes}\left(\frac{1}{2}|V|-\chi(\Sigma)\right)
$$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$S F H\left(\square^{+} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad{ }^{+}+{ }_{\bullet}^{+}=\mathbf{0}, \quad{ }^{+}{ }^{+}=\mathbf{1}$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$\operatorname{SFH}\left(\square_{\square}^{+} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad \stackrel{\square}{C}=\mathbf{0}, \quad \square$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$\operatorname{SFH}\left(\square_{\square}^{+} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad{ }_{C}^{+}=\mathbf{0}, \quad{ }^{+}$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$\operatorname{SFH}\left(\square_{\square}^{+} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad \stackrel{\square}{C}=\mathbf{0}, \quad \square$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$\operatorname{SFH}\left(\square_{\square} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad \square=\mathbf{0}, \quad \square=\mathbf{1}$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor \mathbb{V}.

$$
\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right)=\mathbb{V}^{\otimes\left(\frac{1}{2}|V|-\chi(\Sigma)\right) .}
$$

- Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).
$\operatorname{SFH}\left(\square_{\square}^{+} \times S^{1}\right)=\mathbb{V}=\mathbb{Z} \mathbf{0} \oplus \mathbb{Z} \mathbf{1}, \quad \stackrel{C}{C}=\mathbf{0}$,

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $M C G^{+}(\Sigma, V)$ action on curves γ gives an action on $S F H$.

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $M C G^{+}(\Sigma, V)$ action on curves γ gives an action on $S F H$.

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $M C G^{+}(\Sigma, V)$ action on curves γ gives an action on $S F H$.

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $M C G^{+}(\Sigma, V)$ action on curves γ gives an action on SFH.

Theorem (M.)

Let (Σ, V) be the disc with n punctures, so $\mathrm{MCG}^{+}(\Sigma, V) \cong B_{n}$. The action of B_{n} on $\operatorname{SFH}\left(\Sigma \times S^{1}, V \times S^{1}\right) \cong \mathbb{V}^{\otimes n}$ is isomorphic to the R-matrix action of $U_{q \mathfrak{s l}(1 \mid 1)}$ on $V_{2}^{\otimes n}$

So $S F H$ obeys Yang-Baxter $R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}$.

Genralised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of $U_{q \mathfrak{s l}(1 \mid 1) \text {. }}$
- A direct connection between $U_{q} \mathfrak{s l}(1 \mid 1)$ and Floer homology. (Also related work of Tian.)

Genralised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of $U_{q \mathfrak{s l}(1 \mid 1) \text {. }}$
- A direct connection between $U_{q \mathfrak{s l}(1 \mid 1)}$ and Floer homology. (Also related work of Tian.)
- We actually obtain a parametrised Yang-Baxter equation

$$
R_{12}\left(q_{2}\right) R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right)=R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right) R_{23}\left(q_{2}\right)
$$

(as $S F H$ is a $\mathbb{Z}\left[H_{1}(\Sigma)\right]$-module.)

Genralised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of $U_{q \mathfrak{s l}(1 \mid 1) \text {. }}$
- A direct connection between $U_{q \mathfrak{s l}(1 \mid 1)}$ and Floer homology. (Also related work of Tian.)
- We actually obtain a parametrised Yang-Baxter equation

$$
R_{12}\left(q_{2}\right) R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right)=R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right) R_{23}\left(q_{2}\right)
$$

(as $S F H$ is a $\mathbb{Z}\left[H_{1}(\Sigma)\right]$-module.)

- Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"

Genralised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of $U_{q \mathfrak{s l}(1 \mid 1) \text {. }}$
- A direct connection between $U_{q \mathfrak{s l}(1 \mid 1)}$ and Floer homology. (Also related work of Tian.)
- We actually obtain a parametrised Yang-Baxter equation

$$
R_{12}\left(q_{2}\right) R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right)=R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right) R_{23}\left(q_{2}\right)
$$

(as $S F H$ is a $\mathbb{Z}\left[H_{1}(\Sigma)\right]$-module.)

- Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"
- Unlike standard quantum invariants (" $0+1$-dimensional"), this invariant is $2+1$-dimensional.

Genralised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of $U_{q \mathfrak{s l}(1 \mid 1) \text {. }}^{\text {. }}$
- A direct connection between $U_{g \mathfrak{l l}(1 \mid 1)}$ and Floer homology. (Also related work of Tian.)
- We actually obtain a parametrised Yang-Baxter equation

$$
R_{12}\left(q_{2}\right) R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right)=R_{23}\left(q_{1}\right) R_{12}\left(q_{1}\right) R_{23}\left(q_{2}\right)
$$

(as $S F H$ is a $\mathbb{Z}\left[H_{1}(\Sigma)\right]$-module.)

- Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"
- Unlike standard quantum invariants (" $0+1$-dimensional"), this invariant is $2+1$-dimensional.
Further connections to quantum information theory, quantum gravity, statistical mechanics, representation theory, categorification, combinatorics...

Thanks for listening!

References:

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. \& Geom. Top. 10 (2010) 2091-2189
- D. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT, Alg. \& Geom. Top. 11 (2011) 2681-2739.
- D. Mathews, Itsy bitsy topological field theory (2012) arXiv 1201.4584.
- D. Mathews, Itsy bitsy twisty topological field theory, forthcoming.
- D. Mathews, A Yang-Baxter equation in sutured Floer homology, forthcoming.

