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Overview

“A Yang-Baxter equation from sutured Floer homology”
We will:

Explain what the Yang-Baxter equation is.

Say something about where it comes from, what it means,
and why we care about it.
Discuss how it ties together lots of different threads of
recent work in 3-dimensional topology and knot theory:

Quantum groups and invariants
Jones and Alexander polynomials
Khovanov homology
Floer homology
Categorification

Indicate how a generalised Yang-Baxter equation is found
in sutured Floer homology, further tying this story together.

Generalised to “Higher genus”
Generalised to “Higher dimension”
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What is the Yang-Baxter equtaion?

Let V be a vector space (module, abelian group, ...)
Let R be linear V ⊗ V −→ V ⊗ V .

Definition
The Yang-Baxter equation for R is

(R ⊗ I) ◦ (I ⊗ R) ◦ (R ⊗ I) = (I ⊗ R) ◦ (R ⊗ I) ◦ (I ⊗ R) .

An equality of linear maps V⊗3 −→ V⊗3. (I = identity)
Can be written alternatively as

R12R23R12 = R23R12R23.

E.g. take V = R2 = Re1 ⊕ Re2 and

R =


1 + u

u 1
1 u

1 + u

 w.r.t. basis
(e1 ⊗ e1,e1 ⊗ e2,e2 ⊗ e1,e2 ⊗ e2).
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Origin and meaning of the Yang-Baxter equation

Think of:
Vector space/module/etc V as possible states of a system
(particle, atom, cat, etc...)

Tensor product V⊗n as a composite of n such systems (n
particles, cats, etc...)
Linear map V⊗n −→ V⊗n as an evolution of this system.

Represent V by a point, V⊗n by n points, maps V⊗n −→ V⊗n

by lines between them.
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Origin and meaning of the Yang-Baxter equation

Think of R : V ⊗ V −→ V ⊗ V as representing an interaction

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram.
Evolutions of system are equivalent if isotopic as braids.
The group of braids on n strands has a presentation

Bn =

〈
σ1, . . . , σn−1 |

σiσj = σjσi if |i − j | ≥ 2
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . ,n − 1

〉
.
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Origin and meaning of the Yang-Baxter equation

A solution to the Yang-Baxter equation:
Guarantees that R gives an action of Bn on V⊗n.

Makes statistical mechanics models exactly solvable
(Baxter).
Gives invariants of braids.

Any knot is the closure of a braid, and it turns out we can obtain
knot invariants also.
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Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.

Given semisimple Lie algebra g, take its enveloping
algebra U(g). (“Pretend [·, ·] is a commutator”.)
U(g) has a presentation (Serre 1965) over C with 3n
generators

X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn,H1,H2, . . . ,Hn

and relations [
Hi ,Hj

]
= 0, [Xi ,Yj ] = δijHi ,[

Hi ,Xj
]

= aijXj , [Hi ,Yj ] = −aijYj ,
some others...

where aij is the Cartan matrix of g.
In quantum groups we find things like quantum integers
[n]q = qn−q−n

q−q−1 = qn−1 + qn−3 + · · ·+ q−n+1.
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A large and interesting source of solutions to the Yang-Baxter
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Quantum groups

A large and interesting source of solutions to the Yang-Baxter
equation comes from quantum groups.

Given semisimple g and enveloping U(g), take its quantum
enveloping algebra or quantum group Uq(g).
Uh(g) has a presentation (Drinfeld-Jimbo 1987) generated
over C[[h]] by
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A quantum group

A quantum group we’re interested in: Uqsl(1|1).

Uq(sl(1|1)) = Q(q)

〈
E ,F ,H±1 |

E2 = F 2 = 0,
EH = HE ,FH = HF ,
EF + FE = H−H−1

q−q−1

〉
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Yang-Baxter equation in quantum groups

Uq(g) has nice properties, “same” representations as g.

If V is a representation of Uq(g), there is an R-matrix
V ⊗ V −→ V ⊗ V satisfying Yang-Baxter.
Closing a braid and taking the trace of the associated map
V⊗n −→ V⊗n gives a polynomial in q which is a quantum
knot invariant.

Taking simple g, V gives well-known knot invariants.
g V Invariant

sl(2) V2 Jones polynomial (Witten 1989, Reshetikhin-Turaev 1990)

sl(2) Vn Coloured Jones (Turaev 1994, Melvin-Morton 1995)

sl(1|1) V2 Alexander (Kauffman-Saleur 1991)
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Jones→ Khovanov

The Jones polynomial can be given as Uqsl(2) quantum
invariant or by skein relations.

E.g. via Kauffman bracket 〈K 〉:〈 〉
=

〈 〉
−q

〈 〉
, 〈 L〉 = (q +q−1)〈L〉

J(K ) =
(−1)n−qn+−2n−

q + q−1 〈K 〉 n± = # right/left-handed crossings.

So J(K ) can be written as a sum over resolutions of
crossings of K .
Khovanov (late 1990s) took this idea to much greater
algebraic lengths...
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Khovanov homology

Resolve crossings→ arrange resolutions into cube→ vertices = tensor powers of 2-dim vector space V , edges =

homomorphisms based on Uq (sl(2)) (1+1)-dimensional TQFT→ find differential→ Take homology

(Source: Bar–Natan, “On Khovanov’s categorification of the Jones polynomial”)

Khovanov homology is a
bigraded abelian group
Khi,j(K ).
Its definition includes
Uqsl(2).
Its Euler characteristic is
J(K ):∑

j

t j
∑

i

(−1)i dim Khi,j(K ) = J(K ).



Overview The Yang-Baxter equation Quantum groups Recent developments Generalised Yang-Baxter

Khovanov homology

Resolve crossings→ arrange resolutions into cube→ vertices = tensor powers of 2-dim vector space V , edges =

homomorphisms based on Uq (sl(2)) (1+1)-dimensional TQFT→ find differential→ Take homology

(Source: Bar–Natan, “On Khovanov’s categorification of the Jones polynomial”)

Khovanov homology is a
bigraded abelian group
Khi,j(K ).

Its definition includes
Uqsl(2).
Its Euler characteristic is
J(K ):∑

j

t j
∑

i

(−1)i dim Khi,j(K ) = J(K ).



Overview The Yang-Baxter equation Quantum groups Recent developments Generalised Yang-Baxter

Khovanov homology

Resolve crossings→ arrange resolutions into cube→ vertices = tensor powers of 2-dim vector space V , edges =

homomorphisms based on Uq (sl(2)) (1+1)-dimensional TQFT→ find differential→ Take homology

(Source: Bar–Natan, “On Khovanov’s categorification of the Jones polynomial”)

Khovanov homology is a
bigraded abelian group
Khi,j(K ).
Its definition includes
Uqsl(2).

Its Euler characteristic is
J(K ):∑

j

t j
∑

i

(−1)i dim Khi,j(K ) = J(K ).



Overview The Yang-Baxter equation Quantum groups Recent developments Generalised Yang-Baxter

Khovanov homology

Resolve crossings→ arrange resolutions into cube→ vertices = tensor powers of 2-dim vector space V , edges =

homomorphisms based on Uq (sl(2)) (1+1)-dimensional TQFT→ find differential→ Take homology

(Source: Bar–Natan, “On Khovanov’s categorification of the Jones polynomial”)

Khovanov homology is a
bigraded abelian group
Khi,j(K ).
Its definition includes
Uqsl(2).
Its Euler characteristic is
J(K ):∑

j

t j
∑

i

(−1)i dim Khi,j(K ) = J(K ).



Overview The Yang-Baxter equation Quantum groups Recent developments Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry.
Gives 3-manifold and knot invariants (Ozsváth–Szabó, Rasmussen, 2003).

Take Heegaard decomposition
(Σ, α, β) of 3-manifold M
Consider holomorphic curves in the
4-manifold Σ× I × R.
Prescribe boundary conditions at
±∞ by (α ∩ β).
Take chain complex generated by
boundary conditions α ∩ β, ∂
counting holomorphic curves.

Take homology ĤF i,j(M).
Can similarly obtain knot Floer
homology ĤFK i,j(K ).

Source: Lipshitz, “A cylindrical

reformulation of Heegaard Floer

homology”
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Can similarly obtain knot Floer
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Categorification

Ozsváth–Szabo: Taking the Euler characteristic of Floer
homology gives the Alexander polynomial.∑

j

t j
∑

i

(−1)i dim ĤFK i,j(K ) = A(K ).

{
Khovanov

Knot Floer

}
homology categorifies

{
Jones

Alexander

}
polynomial.

Knot invariant Quantum invariant of Categorified by
Jones polynomial Uq(sl(2)) Khovanov

Alexander polynomial Uq(sl(1|1)) Heegaard Floer

The definition of Khovanov homology “contains” Uq(sl(2)).
The definition of Heegaard Floer homology does not
obviously contain Uq(sl(1|1)).

Long-standing question:

How are Floer homology and Uq(sl(1|1)) related?
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Sutured Floer homology of product manifolds

Juhász 2006: SFH(M, Γ) an invariant of sutured 3-manifolds.
M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying
conditions.

Consider SFH of product manifolds (Σ× S1,V × S1):
Σ a surface, V ⊂ ∂S1 alternating signed vertices.

Turns out (Σ,V ) naturally decomposes into squares with
alternating vertices and #squares = 1

2 |V | − χ(Σ).
E.g.

+
-
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Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor V.

SFH(Σ× S1,V × S1) = V⊗( 1
2 |V |−χ(Σ)).

Curves γ on (Σ,V ) which respect signs (sutures) give
elements in SFH (via contact structures).

SFH(
-

-+

+

× S1) = V = Z0⊕ Z1,
-

-+

+
-

-
+ = 0,

-

-+

+

-
+

+ = 1

+ −
+

−
+−+−+

−
+
− + −

+−

+−
+−

+−

+−
+ −

+−

+−
+−

+−

+−
= =

0
1 1 1

0

=
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Mapping class group action

Taking (Σ,V ) a punctured disc (following ideas of Tian)...

The MCG+(Σ,V ) action on curves γ gives an action on SFH.

Theorem (M.)

Let (Σ,V ) be the disc with n punctures, so MCG+(Σ,V ) ∼= Bn.
The action of Bn on SFH(Σ× S1,V × S1) ∼= V⊗n is isomorphic
to the R-matrix action of Uqsl(1|1) on V⊗n

2

So SFH obeys Yang-Baxter R12R23R12 = R23R12R23.
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Genralised Yang-Baxter

Some observations:
Squares of surface decomposition can be regarded as
fundamental representations of Uqsl(1|1).
A direct connection between Uqsl(1|1) and Floer
homology. (Also related work of Tian.)

We actually obtain a parametrised Yang-Baxter equation

R12(q2)R23(q1)R12(q1) = R23(q1)R12(q1)R23(q2)

(as SFH is a Z[H1(Σ)]-module.)
Generalises from the braid group to higher genus mapping
class groups: “higher genus Yang-Baxter”
Unlike standard quantum invariants (“0 + 1-dimensional”),
this invariant is 2 + 1-dimensional.

Further connections to quantum information theory, quantum
gravity, statistical mechanics, representation theory,
categorification, combinatorics...
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Thanks for listening!
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