Verview	The Yang-Baxter equation	Quantum

Recent developments

Generalised Yang-Baxter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Yang-Baxter equation from sutured Floer homology

groups

Daniel V. Mathews

Monash University Daniel.Mathews@monash.edu

AustMS Annual Meeting University of Sydney 30 September 2013

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Outline	Э			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 The Yang-Baxter equation
- Quantum groups
- 4 Recent developments
- 5 Generalised Yang-Baxter

Overview •	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Overvi	ew			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

"A Yang-Baxter equation from sutured Floer homology" We will:

• Explain what the Yang-Baxter equation is.

Overview ●	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Overv				

"A Yang-Baxter equation from sutured Floer homology" We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview •	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Overvi	iew			

"A Yang-Baxter equation from sutured Floer homology" We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Discuss how it ties together lots of different threads of recent work in 3-dimensional topology and knot theory:
 - Quantum groups and invariants
 - Jones and Alexander polynomials
 - Khovanov homology
 - Floer homology
 - Categorification

Overview •	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter

Overview

"A Yang-Baxter equation from sutured Floer homology" We will:

- Explain what the Yang-Baxter equation is.
- Say something about where it comes from, what it means, and why we care about it.
- Discuss how it ties together lots of different threads of recent work in 3-dimensional topology and knot theory:
 - Quantum groups and invariants
 - Jones and Alexander polynomials
 - Khovanov homology
 - Floer homology
 - Categorification
- Indicate how a generalised Yang-Baxter equation is found in sutured Floer homology, further tying this story together.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Generalised to "Higher genus"
- Generalised to "Higher dimension"

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Outlin	۵			

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 The Yang-Baxter equation
 - What is it?
 - What does it mean?
- Quantum groups
- 4 Recent developments
- 5 Generalised Yang-Baxter

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	000			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let *R* be linear $V \otimes V \longrightarrow V \otimes V$.

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Genera
	• 0 00			00000

What is the Yang-Baxter equtaion?

• Let V be a vector space (module, abelian group, ...)

ised Yang-Baxter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Let *R* be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R)$$

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. (*I* = identity)

Overview	The Yang-Baxter equation	Quantum groups	Recent developmen
	• 0 00		

Generalised Yang-Baxter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let *R* be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$({\it R}\otimes{\it I})\circ({\it I}\otimes{\it R})\circ({\it R}\otimes{\it I})=({\it I}\otimes{\it R})\circ({\it R}\otimes{\it I})\circ({\it I}\otimes{\it R})$$
 .

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. (*I* = identity)

Can be written alternatively as

$$R_{12}R_{23}R_{12}=R_{23}R_{12}R_{23}.$$

Overview	The Yang-Baxter equation	Quantum groups	Recent de
	0000		

Generalised Yang-Baxter

velopments

What is the Yang-Baxter equtaion?

- Let V be a vector space (module, abelian group, ...)
- Let *R* be linear $V \otimes V \longrightarrow V \otimes V$.

Definition

The Yang-Baxter equation for R is

$$({\it R}\otimes{\it I})\circ({\it I}\otimes{\it R})\circ({\it R}\otimes{\it I})=({\it I}\otimes{\it R})\circ({\it R}\otimes{\it I})\circ({\it I}\otimes{\it R})$$
 .

An equality of linear maps $V^{\otimes 3} \longrightarrow V^{\otimes 3}$. (*I* = identity)

Can be written alternatively as

$$R_{12}R_{23}R_{12}=R_{23}R_{12}R_{23}.$$

E.g. take $V = \mathbb{R}^2 = \mathbb{R}e_1 \oplus \mathbb{R}e_2$ and

$$R = \begin{pmatrix} 1+u & & \\ & u & 1 & \\ & 1 & u & \\ & & 1+u \end{pmatrix} \qquad \text{w.r.t. basis} \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2, e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2, e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2, e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_1 \otimes e_2 \otimes e_2 \otimes e_2 \otimes e_2). \\ (e_1 \otimes e_1 \otimes e_1 \otimes e_2 \otimes e_2$$

Overview o	The Yang-Baxter equation ○●○○	Quantum groups	Recent developments	Generalised Yang-Baxter
Origin	and meaning	of the Yar	ng-Baxter eq	uation

Think of:

• Vector space/module/etc *V* as possible states of a system (particle, atom, cat, etc...)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	0000			

Think of:

- Vector space/module/etc *V* as possible states of a system (particle, atom, cat, etc...)
- Tensor product V^{⊗n} as a composite of n such systems (n particles, cats, etc...)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	0000			

Think of:

- Vector space/module/etc *V* as possible states of a system (particle, atom, cat, etc...)
- Tensor product V^{⊗n} as a composite of n such systems (n particles, cats, etc...)
- Linear map $V^{\otimes n} \longrightarrow V^{\otimes n}$ as an evolution of this system.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Think of:

- Vector space/module/etc *V* as possible states of a system (particle, atom, cat, etc...)
- Tensor product V^{⊗n} as a composite of n such systems (n particles, cats, etc...)
- Linear map $V^{\otimes n} \longrightarrow V^{\otimes n}$ as an evolution of this system.

Represent *V* by a point, $V^{\otimes n}$ by *n* points, maps $V^{\otimes n} \longrightarrow V^{\otimes n}$ by lines between them.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an *interaction*

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Then the Yang-Baxter equation says, graphically:

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an *interaction*

Then the Yang-Baxter equation says, graphically:

(ロ) (同) (三) (三) (三) (○) (○)

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an *interaction*

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram. Evolutions of system are equivalent if isotopic as *braids*.

(ロ) (同) (三) (三) (三) (○) (○)

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an *interaction*

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram. Evolutions of system are equivalent if isotopic as *braids*.

(ロ) (同) (三) (三) (三) (○) (○)

Think of $R: V \otimes V \longrightarrow V \otimes V$ as representing an *interaction*

Then the Yang-Baxter equation says, graphically:

The map should depend only on the topology of the diagram. Evolutions of system are equivalent if isotopic as *braids*. The group of *braids* on *n* strands has a presentation

$$B_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \mid \frac{\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{if } |i-j| \ge 2}{\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{for } i = 1, \dots, n-1} \right\rangle_{\mathcal{O}}.$$

Overview o	The Yang-Baxter equation ○○○●	Quantum groups	Recent developments	Generalised Yang-Baxte
Origin	and meaning	of the Yar	ng-Baxter equ	uation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

A solution to the Yang-Baxter equation:

• Guarantees that *R* gives an action of B_n on $V^{\otimes n}$.

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	0000			

A solution to the Yang-Baxter equation:

- Guarantees that *R* gives an action of B_n on $V^{\otimes n}$.
- Makes statistical mechanics models *exactly solvable* (Baxter).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	0000			

A solution to the Yang-Baxter equation:

- Guarantees that *R* gives an action of B_n on $V^{\otimes n}$.
- Makes statistical mechanics models *exactly solvable* (Baxter).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Gives invariants of braids.

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
	0000			

A solution to the Yang-Baxter equation:

- Guarantees that *R* gives an action of B_n on $V^{\otimes n}$.
- Makes statistical mechanics models *exactly solvable* (Baxter).
- Gives invariants of braids.

Any knot is the closure of a braid, and it turns out we can obtain *knot invariants* also.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Outlin	ρ			

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

2 The Yang-Baxter equation

3 Quantum groups

- What are they?
- How they solve Yang-Baxter
- 4 Recent developments

Overview o	The Yang-Baxter equation	Quantum groups ●○○	Recent developments	Generalised Yang-Baxter
~				

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Overview o	The Yang-Baxter equation	Quantum groups ●○○	Recent developments	Generalised Yang-Baxter
Quant	um groups			

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Given semisimple Lie algebra g, take its *enveloping* algebra U(g). ("Pretend [·, ·] is a commutator".)

Overview o	The Yang-Baxter equation	Quantum groups ●○○	Recent developments	Generalised Yang-Baxter

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

- Given semisimple Lie algebra g, take its *enveloping* algebra U(g). ("Pretend [·, ·] is a commutator".)
- U(g) has a presentation (Serre 1965) over C with 3n generators

$$X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n, H_1, H_2, \ldots, H_n$$

and relations

$$\begin{bmatrix} H_i, H_j \end{bmatrix} = 0, \quad [X_i, Y_j] = \delta_{ij}H_i, \\ \begin{bmatrix} H_i, X_j \end{bmatrix} = a_{ij}X_j, \quad [H_i, Y_j] = -a_{ij}Y_j, \\ \text{some others...}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where a_{ij} is the Cartan matrix of \mathfrak{g} .

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

- Given semisimple g and enveloping U(g), take its quantum enveloping algebra or quantum group Uq(g).
- U(g) has a presentation (Serre 1965) over C with 3n generators

$$X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n, H_1, H_2, \ldots, H_n$$

and relations

$$\begin{bmatrix} H_i, H_j \end{bmatrix} = 0, \quad [X_i, Y_j] = \delta_{ij}H_i, \\ \begin{bmatrix} H_i, X_j \end{bmatrix} = a_{ij}X_j, \quad [H_i, Y_j] = -a_{ij}Y_j, \\ \text{some others...}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where a_{ij} is the Cartan matrix of g.

Overview o	The Yang-Baxter equation	Quantum groups ●○○	Recent developments	Generalised Yang-Baxter

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

- Given semisimple g and enveloping U(g), take its quantum enveloping algebra or quantum group Uq(g).
- U_h(𝔅) has a presentation (Drinfeld-Jimbo 1987) generated over ℂ[[h]] by

$$X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n, H_1, H_2, \ldots, H_n$$

with relations

$$\begin{bmatrix} H_i, H_j \end{bmatrix} = 0, \quad [X_i, Y_j] = \delta_{ij} \frac{\sinh(d_i H_i/2)}{\sinh(h d_i/2)}, \\ \begin{bmatrix} H_i, X_j \end{bmatrix} = a_{ij} X_j, \quad [H_i, Y_j] = -a_{ij} Y_j, \\ \text{some others...}$$

 a_{ij} = Cartan matrix, d_i = root lengths, $q_i = e^{hd_i/2}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Overview o	The Yang-Baxter equation	Quantum groups ●o⊙	Recent developments	Generalised Yang-Baxter

A large and interesting source of solutions to the Yang-Baxter equation comes from *quantum groups*.

- Given semisimple g and enveloping U(g), take its quantum enveloping algebra or quantum group Uq(g).
- U_h(𝔅) has a presentation (Drinfeld-Jimbo 1987) generated over ℂ[[h]] by

$$X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n, H_1, H_2, \ldots, H_n$$

with relations

$$\begin{bmatrix} H_i, H_j \end{bmatrix} = 0, \quad [X_i, Y_j] = \delta_{ij} \frac{\sinh(d_i H_i/2)}{\sinh(hd_i/2)}, \\ \begin{bmatrix} H_i, X_j \end{bmatrix} = a_{ij}X_j, \quad [H_i, Y_j] = -a_{ij}Y_j, \\ \text{some others...}$$

 a_{ij} = Cartan matrix, d_i = root lengths, $q_i = e^{hd_i/2}$.

• In quantum groups we find things like *quantum integers* $[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \dots + q^{-n+1}.$

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
A qua	ntum aroup			

A quantum group we're interested in: $U_{q\mathfrak{sl}}(1|1)$.

$$U_q(\mathfrak{sl}(1|1)) = \mathbb{Q}(q) \left\langle E, F, H^{\pm 1} \mid \begin{array}{c} E^2 = F^2 = 0, \\ EH = HE, FH = HF, \\ EF + FE = \frac{H - H^{-1}}{q - q^{-1}} \end{array} \right\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $U_q(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
		000		

• $U_q(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g} .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

If V is a representation of U_q(𝔅), there is an R-matrix
 V ⊗ V → V ⊗ V satisfying Yang-Baxter.

- $U_q(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g} .
- If V is a representation of U_q(𝔅), there is an R-matrix
 V ⊗ V → V ⊗ V satisfying Yang-Baxter.
- Closing a braid and taking the *trace* of the associated map V^{⊗n} → V^{⊗n} gives a polynomial in *q* which is a *quantum knot invariant*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Ba
		000		

- $U_q(\mathfrak{g})$ has nice properties, "same" representations as \mathfrak{g} .
- If V is a representation of U_q(𝔅), there is an R-matrix
 V ⊗ V → V ⊗ V satisfying Yang-Baxter.
- Closing a braid and taking the *trace* of the associated map V^{⊗n} → V^{⊗n} gives a polynomial in *q* which is a *quantum knot invariant*.

Taking simple g, V gives well-known knot invariants.

g	V	Invariant		
sl(2)	V_2	Jones polynomial	(Witten 1989, Reshetikhin-Turaev 1990)	
sl(2)	Vn	Coloured Jones	(Turaev 1994, Melvin-Morton 1995)	
$\mathfrak{sl}(1 1)$	V_2	Alexander	(Kauffman-Saleur 1991)	
Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
---------------	--------------------------	----------------	---------------------	-------------------------
Outline	Э			

・ コット (雪) (小田) (コット 日)

- 2 The Yang-Baxter equation
- Quantum groups
- 4 Recent developments
 - Khovanov homology
 - Floer homology

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ●○○○	Generalised Yang-Baxter
Jones	\rightarrow Khovanov			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Jones polynomial can be given as $U_{q\mathfrak{sl}(2)}$ quantum invariant or by *skein relations*.

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ●○○○	Generalised Yang-Baxter
Jones	\rightarrow Khovanov			

The Jones polynomial can be given as $U_{q\mathfrak{sl}}(2)$ quantum invariant or by *skein relations*. E.g. via Kauffman bracket $\langle K \rangle$:

$$\left\langle \begin{array}{c} \end{array}\right\rangle = \left\langle \begin{array}{c} \end{array}\right\rangle - q \left\langle \begin{array}{c} \end{array}\right\rangle \quad \left(\begin{array}{c} \end{array}\right\rangle, \quad \left\langle \bigcirc L \right\rangle = (q + q^{-1}) \left\langle L \right\rangle$$
$$(-1)^{n_{-}} q^{n_{+} - 2n_{-}}$$

 $J(K) = \frac{(-1)^{n-}q^{n+-2n-}}{q+q^{-1}} \langle K \rangle \quad n_{\pm} = \# \text{ right/left-handed crossings.}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ●○○○	Generalised Yang-Baxter
Jones	\rightarrow Khovanov			

The Jones polynomial can be given as $U_{q\mathfrak{I}}(2)$ quantum invariant or by *skein relations*.

E.g. via Kauffman bracket $\langle K \rangle$:

$$\left\langle \begin{array}{c} \end{array} \right\rangle = \left\langle \begin{array}{c} \end{array} \right\rangle - q \left\langle \begin{array}{c} \end{array} \right\rangle$$
, $\left\langle \bigcirc L \right\rangle = (q+q^{-1}) \left\langle L \right\rangle$
 $J(K) = rac{(-1)^{n_-}q^{n_+-2n_-}}{q+q^{-1}} \left\langle K \right\rangle$ $n_{\pm} = \#$ right/left-handed crossings

 So J(K) can be written as a sum over resolutions of crossings of K.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ●○○○	Generalised Yang-Baxter
Jones	\rightarrow Khovanov			

The Jones polynomial can be given as $U_{q\mathfrak{sl}}(2)$ quantum invariant or by *skein relations*. E.g. via Kauffman bracket $\langle K \rangle$:

 $J(K) = \frac{1}{q+q^{-1}} \langle K \rangle$ $n_{\pm} = \#$ right/left-handed crossings.

- So J(K) can be written as a sum over resolutions of crossings of K.
- Khovanov (late 1990s) took this idea to much greater algebraic lengths...

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○●○○	Generalised Yang-Baxter
Khova	nov homology			

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices = tensor powers of 2-dim vector space V, edges =

▲□▶▲□▶▲□▶▲□▶ □ のQ@

homomorphisms based on $U_q(sl(2))$ (1+1)-dimensional TQFT \rightarrow find differential \rightarrow Take homology

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Khova	nov homology			

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices = tensor powers of 2-dim vector space V, edges =

homomorphisms based on $U_q(sl(2))$ (1+1)-dimensional TQFT \rightarrow find differential \rightarrow Take homology

 Khovanov homology is a bigraded abelian group Kh_{i,i}(K).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○●○○	Generalised Yang-Baxter	
Khovanov homology					

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices = tensor powers of 2-dim vector space V, edges = homomorphisms based on $U_{d}(sl(2))$ (1+1)-dimensional TQFT \rightarrow find differential \rightarrow Take homology

 Khovanov homology is a bigraded abelian group Kh_{i,j}(K).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Its definition includes
 U_qsl(2).

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○●○○	Generalised Yang-Baxter	
Khovanov homology					

Resolve crossings \rightarrow arrange resolutions into cube \rightarrow vertices = tensor powers of 2-dim vector space V, edges = homomorphisms based on $U_a(sl(2))$ (1+1)-dimensional TQFT \rightarrow find differential \rightarrow Take homology

- Khovanov homology is a bigraded abelian group Kh_{i,j}(K).
- Its definition includes
 U_qsl(2).
- Its Euler characteristic is J(K):

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \operatorname{dim} \operatorname{Kh}_{i,j}(K) = J(K).$$

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○○●○	Generalised Yang-Baxter

(日) (日) (日) (日) (日) (日) (日)

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxt
			0000	

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold $\Sigma \times I \times \mathbb{R}$.

Overview The Yang-Baxter equation Quantum groups

Recent developments

Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold Σ × *I* × ℝ.

Source: Lipshitz, "A cylindrical

reformulation of Heegaard Floer

homology"

Recent developments

Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold Σ × *I* × ℝ.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.

Source: Lipshitz, "A cylindrical

reformulation of Heegaard Floer

homology"

Recent developments

Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold Σ × *I* × ℝ.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions α ∩ β, ∂ counting holomorphic curves.

Source: Lipshitz, "A cylindrical

reformulation of Heegaard Floer

homology"

Recent developments

Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold Σ × *I* × ℝ.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions α ∩ β, ∂ counting holomorphic curves.
- Take homology $\widehat{HF}_{i,j}(M)$.

Source: Lipshitz, "A cylindrical reformulation of Heegaard Floer homology"

Recent developments

Generalised Yang-Baxter

Heegaard Floer homology

Floer homology originated in symplectic geometry. Gives *3-manifold* and *knot* invariants (Ozsváth–Szabó, Rasmussen, 2003).

- Take Heegaard decomposition
 (Σ, α, β) of 3-manifold M
- Consider holomorphic curves in the 4-manifold Σ × *I* × ℝ.
- Prescribe boundary conditions at $\pm \infty$ by $(\alpha \cap \beta)$.
- Take chain complex generated by boundary conditions α ∩ β, ∂ counting holomorphic curves.
- Take homology $\widehat{HF}_{i,j}(M)$.
- Can similarly obtain knot Floer homology HFK_{i,j}(K).

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○○○●	Generalised Yang-Baxter
Catego	orification			

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

$$\begin{cases} Khovanov \\ Knot Floer \end{cases} homology categorifies \begin{cases} Jones \\ Alexander \end{cases} polynomial.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○○○●	Generalised Yang-Baxter
Catego	orification			

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

<pre>{ Khovanov } { Knot Floer }</pre>	homology	categorifies {	Jones Alexander	$\Big\}$ polynomial.
Knot in	variant	Quantum in	variant of	Categorified by
Jones polynomial		$U_q(\mathfrak{sl}(2))$		Khovanov
Alexander polynomial		$U_q(\mathfrak{sl}(1 1))$		Heegaard Floer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○○○●	Generalised Yang-Baxter
Catego	orification			

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

<pre>{ Khovanov } { Knot Floer }</pre>	homology	categorifies {	Jones Alexander	$\Big\}$ polynomial.
Knot invariant		Quantum invariant of		Categorified by
Jones polynomial		$U_q(\mathfrak{sl}(2))$		Khovanov
Alexander polynomial		$U_q(\mathfrak{sl}(1 1))$		Heegaard Floer

• The definition of Khovanov homology "contains" $U_q(\mathfrak{sl}(2))$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The definition of Heegaard Floer homology *does not* obviously contain U_q(sl(1|1)).

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments ○○○●	Generalised Yang-Baxter
Catego	orification			

$$\sum_{j} t^{j} \sum_{i} (-1)^{i} \dim \widehat{HFK}_{i,j}(K) = A(K).$$

<pre>{ Khovanov } { Knot Floer }</pre>	homology	categorifies {	Jones Alexander	$\Big\}$ polynomial.
Knot in	variant	Quantum in	variant of	Categorified by
Jones polynomial		$U_q(\mathfrak{sl}(2))$		Khovanov
Alexander polynomial		$U_q(\mathfrak{sl}(1 1))$		Heegaard Floer

- The definition of Khovanov homology "contains" $U_q(\mathfrak{sl}(2))$.
- The definition of Heegaard Floer homology *does not* obviously contain U_q(sl(1|1)).

Long-standing question:

How are Floer homology and $U_q(\mathfrak{sl}(1|1))$ related?

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter
Outline	j			

- 2 The Yang-Baxter equation
- Quantum groups
- 4 Recent developments
- 5 Generalised Yang-Baxter
 - Sutured Floer homology
 - Mapping class group action and generalised Yang-Baxter

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter ●○○○○

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

(日) (日) (日) (日) (日) (日) (日)

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider *SFH* of *product manifolds* ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices.

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider *SFH* of *product manifolds* ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$.

(日) (日) (日) (日) (日) (日) (日)

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider SFH of product manifolds ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$. E.g.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider *SFH* of *product manifolds* ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$. E.g.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider SFH of product manifolds ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$. E.g.

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider SFH of product manifolds ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$. E.g.

Juhász 2006: $SFH(M, \Gamma)$ an invariant of sutured 3-manifolds.

M 3-mfld with boundary, curves Γ ⊂ ∂M satisfying conditions.

Consider SFH of product manifolds ($\Sigma \times S^1$, $V \times S^1$):

• Σ a surface, $V \subset \partial S^1$ alternating signed vertices. Turns out (Σ, V) naturally decomposes into *squares* with alternating vertices and #squares $= \frac{1}{2}|V| - \chi(\Sigma)$. E.g.

Each square contributes a 2-dimensional tensor factor \mathbb{V} .

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Each square contributes a 2-dimensional tensor factor \mathbb{V} .

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

(日) (日) (日) (日) (日) (日) (日)

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

(日) (日) (日) (日) (日) (日) (日)

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

・ロット (雪) ・ (日) ・ (日)

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

・ロット (雪) (日) (日)

Sutured Floer homology of product manifolds

Each square contributes a 2-dimensional tensor factor $\mathbb V.$

$$SFH(\Sigma \times S^1, V \times S^1) = \mathbb{V}^{\otimes \left(\frac{1}{2}|V| - \chi(\Sigma)\right)}.$$

 Curves γ on (Σ, V) which respect signs (sutures) give elements in SFH (via contact structures).

$$SFH(\mathbf{v} \times S^1) = \mathbb{V} = \mathbb{Z}\mathbf{0} \oplus \mathbb{Z}\mathbf{1}, \quad \mathbf{v} = \mathbf{0}, \quad \mathbf{v} = \mathbf{1}$$

 Overview
 The Yang-Baxter equation
 Quantum groups
 Recent developments
 Generalised Yang-Baxter

 o
 ooo
 ooo
 ooo
 ooo
 ooo

Mapping class group action

Taking (Σ, V) a punctured disc (following ideas of Tian)...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $MCG^+(\Sigma, V)$ action on curves γ gives an action on SFH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Taking (Σ, V) a punctured disc (following ideas of Tian)...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The $MCG^+(\Sigma, V)$ action on curves γ gives an action on SFH.

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $MCG^+(\Sigma, V)$ action on curves γ gives an action on SFH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Taking (Σ, V) a punctured disc (following ideas of Tian)...

The $MCG^+(\Sigma, V)$ action on curves γ gives an action on SFH.

Theorem (M.)

Let (Σ, V) be the disc with n punctures, so $MCG^+(\Sigma, V) \cong B_n$. The action of B_n on $SFH(\Sigma \times S^1, V \times S^1) \cong \mathbb{V}^{\otimes n}$ is isomorphic to the *R*-matrix action of $U_q \mathfrak{sl}(1|1)$ on $V_2^{\otimes n}$

So SFH obeys Yang-Baxter $R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$.

Overview	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter

Some observations:

 Squares of surface decomposition can be regarded as fundamental representations of U_qsl(1|1).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 A direct connection between U_qsl(1|1) and Floer homology. (Also related work of Tian.)

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter ○○○●○

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of U_qsl(1|1).
- A direct connection between U_qsl(1|1) and Floer homology. (Also related work of Tian.)
- We actually obtain a *parametrised Yang-Baxter* equation

 $R_{12}(q_2)R_{23}(q_1)R_{12}(q_1) = R_{23}(q_1)R_{12}(q_1)R_{23}(q_2)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

(as *SFH* is a $\mathbb{Z}[H_1(\Sigma)]$ -module.)

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter ○○○●○

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of U_qsl(1|1).
- A direct connection between U_qsl(1|1) and Floer homology. (Also related work of Tian.)
- We actually obtain a *parametrised Yang-Baxter* equation

 $R_{12}(q_2)R_{23}(q_1)R_{12}(q_1) = R_{23}(q_1)R_{12}(q_1)R_{23}(q_2)$

(as *SFH* is a $\mathbb{Z}[H_1(\Sigma)]$ -module.)

 Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter ○○○●○

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of U_qsl(1|1).
- A direct connection between U_qsl(1|1) and Floer homology. (Also related work of Tian.)
- We actually obtain a *parametrised Yang-Baxter* equation

 $R_{12}(q_2)R_{23}(q_1)R_{12}(q_1) = R_{23}(q_1)R_{12}(q_1)R_{23}(q_2)$

(as *SFH* is a $\mathbb{Z}[H_1(\Sigma)]$ -module.)

- Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"
- Unlike standard quantum invariants ("0 + 1-dimensional"), this invariant is 2 + 1-dimensional.

Overview o	The Yang-Baxter equation	Quantum groups	Recent developments	Generalised Yang-Baxter

Some observations:

- Squares of surface decomposition can be regarded as fundamental representations of U_qsl(1|1).
- A direct connection between U_qsl(1|1) and Floer homology. (Also related work of Tian.)
- We actually obtain a *parametrised Yang-Baxter* equation

 $R_{12}(q_2)R_{23}(q_1)R_{12}(q_1) = R_{23}(q_1)R_{12}(q_1)R_{23}(q_2)$

(as *SFH* is a $\mathbb{Z}[H_1(\Sigma)]$ -module.)

- Generalises from the braid group to higher genus mapping class groups: "higher genus Yang-Baxter"
- Unlike standard quantum invariants ("0 + 1-dimensional"), this invariant is 2 + 1-dimensional.

Further connections to quantum information theory, quantum gravity, statistical mechanics, representation theory, categorification, combinatorics...

Overview

Quantum groups

Recent developments

Generalised Yang-Baxter

Thanks for listening!

- D. Mathews, Chord diagrams, contact-topological quantum field theory, and contact categories, Alg. & Geom. Top. 10 (2010) 2091–2189
- D. Mathews, Sutured Floer homology, sutured TQFT and non-commutative QFT, Alg. & Geom. Top. 11 (2011) 2681–2739.
- D. Mathews, *Itsy bitsy topological field theory* (2012) arXiv 1201.4584.
- D. Mathews, *Itsy bitsy twisty topological field theory*, forthcoming.
- D. Mathews, *A Yang-Baxter equation in sutured Floer homology*, forthcoming.