# Random matrices in statistics: testing in spiked models 

lain Johnstone

Statistics, Stanford

AustMS, Sydney, 1st October 2013

## International Year of Statistics - 2013


www.statistics2013.org
STATISTICS

- to promote public awareness of Statistics
- steered by professional societies [ASA, RSS, ISI, IBS, ...]
- $\geq 2000$ participating organizations
- 25 Australian sponsors at statistics2013.org/iyos/participants_countrysearch.cfm
- Videos, newsletters, website, events, conferences,


## Outline

- Random matrices and covariances
- Principal Components Analysis, examples
- Spiked covariance model
- Phase transition
- Weak signals
- Strong signals


## Random Matrix Theory (RMT)

Eigenvalues and vectors of large square random matrices:

$$
\mathbf{A} v_{j}=\mu_{j} v_{j} \quad \mathbf{A}=\left(A_{i j}\right) \quad n \times n .
$$

Structured randomness:

- $A_{i j}$ i.i.d. Hermitian, or
[Wigner matrix]
- A invariant for $O(n), U(n)$ [GOE, GUE]

Interest in properties of eigenvalues:

- empirical distribution: $F_{n}(x)=n^{-1} \#\left\{i: \lambda_{i} \leq x\right\}$
- extremes: $\lambda_{(1)}=\max \lambda_{j}$
- spacings ...


## RMT: 'Wishart' case

Consider $\mathbf{X}=\left(X_{i j}\right) \quad n \times p \quad$ rectangular, i.i.d entries
Study eigenvalues $\lambda_{j}$ of $\mathbf{X}^{T} \mathbf{X}$
Accessible because $\lambda_{j}=\mu_{j}^{2}$, with $\left\{\mu_{j}\right\}$ eigenvalues of

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{X} \\
\mathbf{X}^{T} & \mathbf{0}
\end{array}\right)
$$

Link to statistics:

- $n^{-1} \mathbf{X}^{T} \mathbf{X}$ is (simple form) of covariance matrix.
- goal: helpful approximations based on $p / n \rightarrow \gamma>0$


## Covariance Matrices - Population

$X^{T}=\left(X_{, j}\right) \in \mathbb{R}^{p}, \quad$ a random (row) vector distributed as $\mathcal{P}$.
Population mean:

$$
\mu=\mathbb{E}_{\mathcal{P}} X
$$

Pop. covariance matrix: $\quad \Sigma=\mathbb{E}(X-\mu)(X-\mu)^{T}$

$$
=\mathbb{E} X X^{\top} \quad \text { if } \mu=0
$$

$$
\Sigma_{j j^{\prime}}=\operatorname{Cov}\left(X_{, j}, X_{, j^{\prime}}\right)
$$

In general $\Sigma(p \times p)$ has $O\left(p^{2} / 2\right)$ parameters. Too many!

Simpler models: $\quad \Sigma=\sigma^{2} I_{p}$

$$
\Sigma=\sigma^{2}\left(I_{p}+\sum_{1}^{M} h_{\nu} \mathbf{v}_{\nu} \mathbf{v}_{\nu}^{T}\right) \quad \text { low rank ('spiked') }
$$

## Covariance Matrices - Sample

Data: $\quad X_{1}^{T}, \ldots, X_{n}^{T} \in \mathbb{R}^{p} \quad\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ assumed to be independent draws from $X^{T} \sim \mathcal{P}_{\Sigma}$

Sample covariance matrix: $\quad S=n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{\top}$
Use observed $S$ to estimate or test unknown $\Sigma$.
E.g. $H_{0}: \quad \Sigma=I \quad$ "null" hypothesis

$$
H_{A}: \quad \Sigma=I+h \mathbf{v v}^{T} \quad \text { "alternative" hypothesis }
$$

Link to RMT: $\quad n S=\mathbf{X}^{T} \mathbf{X} \quad$ using the $n \times p$ data matrix

$$
\mathbf{X}=\left(X_{i, j}\right)=\left[\begin{array}{c}
X_{1}^{T} \\
\vdots \\
X_{n}^{T}
\end{array}\right]
$$

## Principal Components Analysis

Statistical interpretation of eigenstructure: $\quad S \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$.
Goal: reduce dimensionality of data from $p$ (large) to $k$ (small):


Interpret as directions $\mathbf{v}_{\boldsymbol{j}}$ of maximum variance, with variances

$$
\begin{aligned}
\lambda_{j} & =\max \left\{\mathbf{v}^{T} S \mathbf{v}: \mathbf{v}^{T} \mathbf{v}_{j^{\prime}},\|\mathbf{v}\|=1\right\} \\
& =" \text { principal component variances" }
\end{aligned}
$$

## Outline

- Random matrices and covariances
- Principal Components Analysis, two examples: genetics, finance
- Spiked covariance model
- Phase transition
- Weak signals
- Strong signals


## Example 1: PCA \& population structure from genetic data



Gene ( $Y$ ) vs. Phenotype ( $X$ ) shows apparent correlation, but ...

## Example 1: PCA \& population structure from genetic data




Gene $(Y)$ vs. Phenotype $(X)$ shows apparent correlation, but ... 3 subpopulations - Within each population, no correlation exists!

## Example 1: PCA \& population structure from genetic data

Patterson et. al. (2006), Price et. al. (2006)

$$
n=\# \text { individuals, } \quad p=\# \text { markers (e.g. SNPs) }
$$

$X_{i j}=($ normalized $)$ allele count,

$$
\text { case } i=1, \ldots, n, \quad \text { marker } j=1, \ldots, p \text {. }
$$

$H=n \times$ sample covariance matrix of $X_{i j}$

- Eigenvalues of $H: \quad \lambda_{1}>\lambda_{2}>\ldots>\lambda_{\min (n, p)}$
- How many $\lambda_{i}$ are significant?
- Under $H_{0}$, distribution of $\lambda_{1}$ if $H \sim W_{p}(n, I)$ ?


## Example 1: PCA \& population structure from genetic data

- PPR (2006) example: 3 African populations, $n=67, p=993$
- Tracy-Widom theory $\Longrightarrow 2$ "significant" eigenvectors, separates populations



## Example 2: finance

Arbitrage Pricing Theory $\rightarrow$ a few factors "explain" returns

$$
R=\sum_{\nu=1}^{M} b_{\nu} f_{\nu}+e
$$

## Example 2: finance

Arbitrage Pricing Theory $\rightarrow$ a few factors "explain" returns Given $j=1, \ldots, p$ securities, $t=1, \ldots, T$ observation times, (and $M=1$ ),

$$
R_{j t}=b_{j 1} f_{1 t}+e_{j t} .
$$

## Example 2: finance

Arbitrage Pricing Theory $\rightarrow$ a few factors "explain" returns.
Given $j=1, \ldots, p$ securities, $t=1, \ldots, T$ observation times,

$$
R_{j t}=\sum_{\nu=1}^{M} b_{j \nu} f_{\nu t}+e_{j t}
$$

## Example 2: finance

Arbitrage Pricing Theory $\rightarrow$ a few factors "explain" returns. Given $j=1, \ldots, p$ securities, $t=1, \ldots, T$ observation times,

$$
R_{j t}=\sum_{\nu=1}^{M} b_{j \nu} f_{\nu t}+e_{j t}
$$

Under Gaussian assumptions*, $\quad \Sigma=\operatorname{Cov}(R)$ has eigenvalues

$$
\left(\ell_{1}>\ell_{2}=\cdots=\ell_{M}>\sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)
$$

$\left(^{*}\right) \quad b_{j \nu} \sim N\left(\beta, \sigma_{b}^{2}\right) ; \quad f_{\nu t} \sim N\left(0, \sigma_{f}^{2}\right) ; \quad e_{j t} \sim N\left(0, \sigma_{e}^{2}\right) \quad$ all independent

## Example 2: finance

Arbitrage Pricing Theory $\rightarrow$ a few factors "explain" returns.
Given $j=1, \ldots, p$ securities, $t=1, \ldots, T$ observation times,

$$
R_{j t}=\sum_{\nu=1}^{M} b_{j \nu} f_{\nu t}+e_{j t}
$$

Under Gaussian assumptions*, $\quad \Sigma=\operatorname{Cov}(R)$ has eigenvalues

$$
\left(\ell_{1}>\ell_{2}=\cdots=\ell_{M}>\sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)
$$

Form sample covariance matrix $S$

$$
S_{j k}=T^{-1} \sum_{t}\left(R_{j t}-\bar{R}_{j} .\right)\left(R_{k t}-\bar{R}_{k .}\right)
$$

Use (largest) sample eigenvalues $\hat{\ell}_{i}(S)$ to estimate $\ell_{i}$.
(*) $\quad b_{j \nu} \sim N\left(\beta, \sigma_{b}^{2}\right) ; \quad f_{\nu t} \sim N\left(0, \sigma_{f}^{2}\right) ; \quad e_{j t} \sim N\left(0, \sigma_{e}^{2}\right) \quad$ all independent

## Example 2: finance

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model $\rightarrow \Sigma=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{4}, \sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)$

$$
\ell_{1}>\ell_{2}=\ell_{3}=\ell_{4}>\sigma_{e}^{2}
$$

Use $\hat{\ell}_{i}(S)$ to estimate $\ell_{1}, \ldots, \ell_{4}$.

## Example 2: finance

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model $\rightarrow \Sigma=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{4}, \sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)$

$$
\ell_{1}>\ell_{2}=\ell_{3}=\ell_{4}>\sigma_{e}^{2}
$$

Use $\hat{\ell}_{i}(S)$ to estimate $\ell_{1}, \ldots, \ell_{4}$.
Empirical puzzle (Brown, 1989): many sample eigenvalues swamp $\ell_{2}, \ell_{3}, \ell_{4}$.

- Illustration: vary $p=50(1) 200 \quad(T=80)$
- Plot theoretical $\ell_{i}(p)$ and simulated $\hat{\ell}_{i}(p)$ versus $p$.


## Example 2: theoretical $\ell_{i}(p)$ values



## Example 2: Brown(1989) plot



## Example 2: finance

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model ${ }^{*} \rightarrow \Sigma=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{4}, \sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)$

$$
\ell_{1}>\ell_{2}=\ell_{3}=\ell_{4}>\sigma_{e}^{2}
$$

$$
\text { Use } \hat{\ell}_{i}(S) \text { to estimate } \ell_{1}, \ldots, \ell_{4}
$$

Empirical puzzle (Brown, 1989): many sample eigenvalues swamp $\ell_{2}, \ell_{3}, \ell_{4}$.

- Illustration: vary $p=50(1) 200$
- Plot theoretical $\ell_{i}(p)$ and simulated $\hat{\ell}_{i}(p)$ versus $p$.

Explanation (Harding, 2008):
$\ell_{2}, \ell_{3}, \ell_{4}$ are below a phase transition predicted by RMT.

## Outline

- Random matrices and covariances
- Principal Components Analysis, two examples
- Spiked covariance model
- Phase transition
- Weak signals
- Strong signals


## Spiked Covariance Model

- $n$ (independent) observations on $p$-vectors: $X_{i}$
- correlation structure is "white + low rank":


$$
\Sigma=\operatorname{Cov}\left(X_{i}\right)=\sigma^{2} \boldsymbol{I}+\sum_{\nu=1}^{M} h_{\nu} \mathbf{v}_{\nu} \mathbf{v}_{\nu}^{T}
$$

Interest in

- testing/estimating $h_{\nu}$ [today]
- determining $M$
- estimating $\mathbf{v}_{\nu}$


## Some motivating models

1. Economics: $\quad X_{i}=$ vector of stocks (indices) at time $i$
$\mathbf{v}_{\nu}=$ factor loadings, $f_{\nu i}$ factors, $Z_{i}$ idiosyncratic terms.
2. ECG: $\quad X_{i}=i$ th heartbeat ( $p$ samples per cycle)
$\mathbf{v}_{\nu}=$ may be sparse in wavelet basis.
3. Microarrays: $\quad X_{i}=$ expression of $p$ genes in $i$ th patient.
$\mathbf{v}_{\nu}=$ may be sparse few genes involved in each factor.
4. Genetics: $\quad X_{i}=$ allele count at $p$ SNPs in ith individual.
5. Sensors: $\quad X_{i}=$ observations at sensors
$\mathbf{v}_{\nu}=$ cols. of steering matrix, $f_{\nu i}$ signals
6. Climate: $\quad X_{i}=$ measurements from global network at time $i$ $\mathbf{v}_{\nu}=$ (empirical) orthogonal functions (EOF)

## Outline

- Spiked Covariance model
- Examples $\quad \Sigma=I+h \mathbf{v v}^{T}$
- Wishart eigenvalues and Phase Transition

- Weak Signals
- Contiguity
- Strong Signals
- Approximations to Power


## $p$ and $n$ and all that

$p=\#$ variables/parameters
$n=\#$ of (independent?) observations

- $p=o(n) \quad$ classical statistics
- $n=o(p) \quad$ (nominally) high-dimensional data, sparsity

This talk:

## $p$ and $n$ and all that

$p=\#$ variables/parameters
$n=\#$ of (independent?) observations

- $p=o(n) \quad$ classical statistics
- $n=o(p) \quad$ (nominally) high-dimensional data, sparsity

This talk:

- $p / n \rightarrow \gamma>0 \quad$ less ambitious; important phenomena appear
- for e.g. $p=5, n=20$, this limit may yield better approximation than $p$ fixed, $n$ large.


## $p$ and $n$ and all that

$p=\#$ variables/parameters
$n=\#$ of (independent?) observations

- $p=o(n) \quad$ classical statistics
- $n=o(p) \quad$ (nominally) high-dimensional data, sparsity

This talk:

- $p / n \rightarrow \gamma>0 \quad$ less ambitious; important phenomena appear
- for e.g. $p=5, n=20$, this limit may yield better approximation than $p$ fixed, $n$ large.
- $p, n$ fixed (strong signal asymptotics).


## Wishart Distribution

$$
\mathbf{X}=\left(X_{i, j}\right) \quad n \times p
$$

Rows $\quad X_{i}^{T}=\left(X_{i, j}\right) \stackrel{\text { indep }}{\sim} N_{p}(\mu, \Sigma)$

J. Wishart 1898-1956

Definition: sample covariance, unnormalized:

$$
H=\mathbf{X}^{T} \mathbf{X} \quad \sim W_{p}(n, \Sigma) \quad \text { if } \mu=0
$$

$p$ variables, $n$ degrees of freedom. "Null case:" $\Sigma=I$

Eigenvalues of $H: \quad \lambda_{1}>\lambda_{2}>\cdots>\lambda_{n \wedge p} \geq 0$

## Wishart Eigenvalues, Null case

2 draws of eigenvalues from $W_{15}(60, I)$

- Spreading of sample eigenvalues from 4 to $[1,9]$.

2 draws of 15 independent $U(1,9)$ variates - very different!


## The Quarter Circle Law

Description of spreading phenomenon in null case:
Marčenko-Pastur, (67) For $H \sim W_{p}(n, I) \quad p / n \rightarrow \gamma \leq 1$
Empirical distribution function: for eigenvalues $\left\{n \lambda_{j}\right\}_{j=1}^{p}$ of $H$,

$$
F_{p}(x)=p^{-1} \#\left\{\lambda_{j} \leq x\right\} \rightarrow F(x)=f(x) d x
$$

For $\Sigma=I$,

$$
f^{M P}(x)=\frac{1}{2 \pi \gamma x} \sqrt{\left(b_{+}-x\right)\left(x-b_{-}\right)}
$$

$$
b_{ \pm}=(1 \pm \sqrt{\gamma})^{2}
$$



## Largest eigenvalue: Null case

Square root singularity:

$$
f^{M P}(x) \sim c \sqrt{b_{+}-x}, \quad x \rightarrow b_{+}
$$

Heuristically,

$$
\lambda_{1}-b_{+}=O_{p}\left(n^{-2 / 3}\right)
$$


and

$$
\frac{n^{2 / 3} \gamma^{1 / 6}}{(1+\sqrt{\gamma})^{4 / 3}}\left(\lambda_{1}-b_{+}\right) \stackrel{\mathcal{D}}{\Rightarrow} T W_{\beta},
$$


the Tracy-Widom distributions $[\beta=1$ for $\mathbb{R}, \beta=2$ for $\mathbb{C}$.]

## Largest eigenvalue: Non-null cases

Rank 1 for simplicity: $\Sigma=I+h \mathbf{v v}^{\top}$
For $0 \leq h<\sqrt{\gamma}$,

$$
\frac{n^{2 / 3} \gamma^{1 / 6}}{(1+\sqrt{\gamma})^{4 / 3}}\left(\lambda_{1}-(1+\sqrt{\gamma})^{2}\right) \stackrel{\mathcal{D}}{\Rightarrow} T W_{\beta}
$$

Limit does not depend on $h$.
"Fundamental asymptotic limit of sample eigenvalue based detection" (?)

|  | $\mathbb{R}$ | $\mathbb{C}$ |
| :--- | :--- | :--- |
| $h=0$ | J (01) | Johannson (00) |
| $h \in(0, \sqrt{\gamma})$ | Féral-Péché (09) | Baik-Ben Arous-Péché (05) |

## Largest eigenvalue: Phase transition

Different rates, limit distributions:

$$
\begin{array}{ll}
\text { For } h<\sqrt{\gamma}: & n^{2 / 3}\left[\frac{\lambda_{1}-\mu(\gamma)}{\sigma(\gamma)}\right]
\end{array} \stackrel{\mathcal{D}}{\Rightarrow} T W_{\beta},
$$

## Largest eigenvalue: Phase transition

Different rates, limit distributions:

$$
\begin{array}{ll}
\text { For } h<\sqrt{\gamma}: & n^{2 / 3}\left[\frac{\lambda_{1}-\mu(\gamma)}{\sigma(\gamma)}\right]
\end{array} \stackrel{\mathcal{D}}{\Rightarrow} T W_{\beta},
$$

with

$$
\rho(h, \gamma)=(1+h)\left(1+\frac{\gamma}{h}\right) \quad \tau^{2}(h, \gamma)=2(1+h)^{2}\left(1-\frac{\gamma}{h^{2}}\right)
$$



Statistical physics lit, 94-Baik-Ben Arous-Peche(05) Paul (07) Baik-Silverstein (06), Bloemendal-Virag (11) Mo (11), Wang (12) Benaych-Georges-GuionnetMaida (11)

## Example:finance

How many factors are present in security returns? Use PCA??
S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model ${ }^{*} \rightarrow \Sigma=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{4}, \sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)$

$$
\ell_{1}>\ell_{2}=\ell_{3}=\ell_{4}>\sigma_{e}^{2}
$$

Goal: Use $\hat{\ell}_{i}(S)$ to estimate $\ell_{1}, \ldots, \ell_{4}$.
Empirical puzzle (Brown, 1989): many sample eigenvalues swamp $\ell_{2}, \ell_{3}, \ell_{4}$.

## Example:finance

How many factors are present in security returns? Use PCA??
S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model ${ }^{*} \rightarrow \Sigma=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{4}, \sigma_{e}^{2}, \ldots, \sigma_{e}^{2}\right)$

$$
\ell_{1}>\ell_{2}=\ell_{3}=\ell_{4}>\sigma_{e}^{2}
$$

Goal: Use $\hat{\ell}_{i}(S)$ to estimate $\ell_{1}, \ldots, \ell_{4}$.
Empirical puzzle (Brown, 1989): many sample eigenvalues swamp $\ell_{2}, \ell_{3}, \ell_{4}$.

Explanation (Harding, 2008):
$\ell_{2}, \ell_{3}, \ell_{4}$ are below the $1+\sqrt{\gamma}$ phase transition.

## Brown(1989) plot



Source: Harding(2008).

## Marcenko-Pastur \& phase transition



Source: Harding(2008).

## Outline

- Spiked Covariance model
- Examples

$$
\Sigma=I+h \mathbf{v v}^{T}
$$

- Phase Transition
- Weak Signals
- Contiguity

$$
p / n \rightarrow \gamma
$$



- Strong Signals
- Approximations to Power


## Detecting weak signals?

For $h<\sqrt{\gamma}$, distribution of largest eigenvalue

$$
\lambda_{1} \approx \mu(\gamma)+n^{-2 / 3} \sigma(\gamma) T W_{1}
$$

does not depend on $h$.

Onatski-Moreira-Hallin, AOS (2013):

- can detect $h<\sqrt{\gamma}$, with error
- use all eigenvalues
- contiguity ideas yield limit distributions for $h \in(0, \sqrt{\gamma})$.


## Likelihood Ratio Test

$X_{i} \sim N_{p}\left(0, I+h \mathbf{v v}^{\top}\right), \quad H_{0}: h=0$ vs. $H_{1}: h>0, \mathbf{v}$ unspecified.
Invariant under rotations, so consider

$$
p(\lambda ; h)=\text { joint density of sample eigenvalues } \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Likelihood ratio test against fixed $h>0$ :

$$
L(\lambda ; h)=\frac{p(\lambda ; h)}{p(\lambda ; 0)}
$$

## Likelihood Ratio Test

$X_{i} \sim N_{p}\left(0, I+h \mathbf{v v}^{\top}\right), \quad H_{0}: h=0$ vs. $H_{1}: h>0, \mathbf{v}$ unspecified.
Invariant under rotations, so consider

$$
\begin{aligned}
& p(\lambda ; h)=\text { joint density of sample eigenvalues } \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) . \\
&=\frac{\gamma(n, p, \lambda)}{(1+h)^{n / 2}} \int_{S(p)} e^{\frac{n}{2} \frac{h}{1+h} x_{p}^{\prime} \Lambda x_{p}}\left(d x_{p}\right) \\
& \quad \text { with } \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right) .
\end{aligned}
$$

Likelihood ratio test against fixed $h>0$ :

$$
L(\lambda ; h)=\frac{p(\lambda ; h)}{p(\lambda ; 0)}=\frac{1}{(1+h)^{n / 2}} \int_{S(p)} e^{\frac{n}{2} \frac{h}{1+h} x_{\rho}^{\prime} \Lambda x_{\rho}}\left(d x_{p}\right)
$$

## Asymptotic normality of likelihood ratio

Under $H_{0}(h=0)$, for $0 \leq h \leq \bar{h}<\sqrt{\gamma}$, and $p / n \rightarrow \gamma$

$$
\log L(h ; \lambda) \Rightarrow \mathcal{L}(h ; \lambda), \quad(\mathrm{O}-\mathrm{M}-\mathrm{H}, 2013)
$$

a Gaussian process [by Bai-Silverstein CLT in RMT], with

## Asymptotic normality of likelihood ratio

Under $H_{0}(h=0)$, for $0 \leq h \leq \bar{h}<\sqrt{\gamma}$, and $p / n \rightarrow \gamma$

$$
\begin{equation*}
\log L(h ; \lambda) \Rightarrow \mathcal{L}(h ; \lambda) \tag{O-M-H,2013}
\end{equation*}
$$

a Gaussian process [by Bai-Silverstein CLT in RMT], with

$$
\begin{aligned}
E \mathcal{L}(h ; \lambda) & =\frac{1}{4} \log \left(1-\frac{h^{2}}{\gamma}\right) \\
\operatorname{Cov}\left\{\mathcal{L}\left(h_{1} ; \lambda\right), \mathcal{L}\left(h_{2} ; \lambda\right)\right\} & =-\frac{1}{2} \log \left(1-\frac{h_{1} h_{2}}{\gamma}\right)
\end{aligned}
$$


$\left[\right.$ if $\left.h \geq H>\sqrt{\gamma}, \quad L(h ; \lambda)=O_{p}\left(e^{-n \delta}\right).\right]$

## Detecting weak signals

Reparametrize: $\quad \theta=\sqrt{-\log \left(1-h^{2} / \gamma\right)} \quad$ for $h<\sqrt{\gamma}$.

Seek optimal test of $H_{0}: \theta=0$ vs. $H_{A}: \theta=\theta_{1}>0$

Recap: Likelihood ratio: $\quad L_{n}\left(\lambda ; \theta_{1}\right)=p\left(\lambda ; \theta_{1}\right) / p(\lambda ; 0) \quad$ satisfies

$$
\begin{array}{rlr}
\log L_{n} & \stackrel{P_{n, 0}}{\Rightarrow} & N\left(-\theta_{1}^{2} / 4, \theta_{1}^{2} / 2\right) \\
& \stackrel{P_{n, \theta_{1}}}{\Rightarrow} N\left(+\theta_{1}^{2} / 4, \theta_{1}^{2} / 2\right) \quad \text { (Contiguity!) }
\end{array}
$$

So for asymptotically optimal test,

$$
\text { Reject } \quad \Leftrightarrow \quad \log L_{n}>C_{n, \alpha}=\theta_{1} z_{\alpha} / \sqrt{2}-\theta_{1}^{2} / 4
$$

## Asymptotic Power

Compute 'Power' $\beta\left(\theta_{1}\right)=P_{\theta=\theta_{1}}($ Reject $)=\lim P_{n, \theta_{1}}\left(\log L_{n}>C_{n, \alpha}\right)$
if $\quad P_{\theta=0}($ Reject $)=\alpha$


## Asymptotic Power



$$
\begin{aligned}
& L W=p^{-1} \operatorname{tr}\left[(\hat{\Sigma}-I)^{2}\right]-\gamma_{n}\left[p^{-1} \operatorname{tr} \hat{\Sigma}\right]^{2}+\gamma_{n}, \quad \gamma_{n}=p / n, \hat{\Sigma}=H / n \text { [Ledoit-Wolf ] } \\
& C L R=\operatorname{tr} \hat{\Sigma}-\log \operatorname{det} \hat{\Sigma}-p\left(1-\left(1-\gamma_{n}^{-1}\right) \log \left(1-\gamma_{n}\right)\right) \quad \text { [Bai et. al. ] }
\end{aligned}
$$

## Asymptotic Power



Recall that $\theta=\sqrt{-\log \left(1-h^{2} / \gamma\right)} \ldots$

## A dose of reality

In original parameter $h$, power is good only very close to $\sqrt{\gamma}$.


## A dose of reality

In original parameter $h$, power is good only very close to $\sqrt{\gamma}$.

.... "It is not done well; but you are surprised to find it done at all."

## Outline

- Spiked Covariance model
- Examples $\quad \Sigma=I+h \mathbf{v v}^{T}$
- Wishart eigenvalues and Phase Transition
- Weak Signals
- Contiguity
- Strong Signals
- Approximations to Power [with Boaz Nadler]

| 1 | 1 |
| :---: | :---: | :---: |
| 0 | $\sqrt{\gamma}$ |

## Strong signals

$$
H \sim W_{p}\left(n, \sigma^{2} I+h \mathbf{v} \mathbf{v}^{T}\right)
$$

So far: $\quad h<\sqrt{\gamma}: \quad \lambda_{1}(H) \sim \mu_{T W}+\sigma_{T W} T W / n^{2 / 3}$

$$
h>\sqrt{\gamma}: \quad \lambda_{1}(H) \sim N\left(\mu_{h, \gamma}, \sigma_{h, \gamma}^{2} / n\right)
$$

In strong signal regime: $\quad h \gg \sqrt{\gamma}$,

## Strong signals

$$
H \sim W_{p}\left(n, \sigma^{2} I+h \mathbf{v} \mathbf{v}^{T}\right)
$$

So far: $\quad h<\sqrt{\gamma}: \quad \lambda_{1}(H) \sim \mu_{T W}+\sigma_{T W} T W / n^{2 / 3}$

$$
h>\sqrt{\gamma}: \quad \lambda_{1}(H) \sim N\left(\mu_{h, \gamma}, \sigma_{h, \gamma}^{2} / n\right)
$$

In strong signal regime: $\quad h \gg \sqrt{\gamma}, \quad$ for rank one alternatives: largest eigenvalue test is actually best test
e.g. $p$ fixed, $n$ large $\quad[$ so $\gamma=p / n \sim 0$ ]

$$
\log L(h ; \lambda)=\frac{n}{2}\left[\lambda_{1} \frac{h}{h+1}-\log (1+h)\right](1+o(1))
$$

## Change perspective

$$
H \sim W_{p}\left(n, \sigma^{2} I+h \mathbf{v v}^{T}\right)
$$

Consider n, $p$ fixed
Strong signal: $h$ large $\Leftrightarrow \sigma^{2}$ small
Goal: power approximation for "Roy's largest root test":
find $\quad P_{h}\left(\lambda_{1}>\lambda^{(\alpha)}\right) \quad$ where $\quad P_{0}\left(\lambda_{1}>\lambda^{(\alpha)}\right)=\alpha$.

## Change perspective

$$
H \sim W_{p}\left(n, \sigma^{2} I+h \mathbf{v v}^{T}\right)
$$

Consider $n, p$ fixed
Strong signal: $h$ large $\Leftrightarrow \sigma^{2}$ small
Goal: power approximation for "Roy's largest root test":
find $\quad P_{h}\left(\lambda_{1}>\lambda^{(\alpha)}\right) \quad$ where $\quad P_{0}\left(\lambda_{1}>\lambda^{(\alpha)}\right)=\alpha$.

An old open issue:
A.T. James (64): 'For numerical evaluation ... power series expansions of hypergeometric functions are of very limited value.'
T.W. Anderson (84): 'No straightforward method exists for computing powers for Roy's statistic itself.'
O'Brien and Shieh (92): 'To date, no acceptable method has been developed for transforming Roy's largest root test statistic to an $F$ or $\chi^{2}$ statistic.'
Dozens of textbooks; G*Power3 software (07): power for linear statistics, not $\lambda_{1}$.

## Small $\sigma$ perturbation approach

Initial reductions: $\quad \Sigma=I, \quad v=e_{1}$
Suppose, at first deterministically

$$
X_{i}=\binom{u_{i}}{\mathbf{0}}+\sigma\binom{0}{\boldsymbol{\xi}_{i}}
$$

Then

$$
\begin{aligned}
H_{\sigma}=X^{T} X & =\left[\begin{array}{cc}
z & \mathbf{0}^{T} \\
\mathbf{0} & 0_{m-1}
\end{array}\right]+\sigma \sqrt{z}\left[\begin{array}{cc}
0 & b^{T} \\
b & 0_{m-1}
\end{array}\right]+\sigma^{2}\left[\begin{array}{cc}
0 & \mathbf{0}^{T} \\
\mathbf{0} & Z
\end{array}\right] \\
& =A_{0}+\sigma A_{1}+\sigma^{2} A_{2}
\end{aligned}
$$

## Small $\sigma$ perturbation approach

Initial reductions: $\quad \Sigma=I, \quad v=e_{1}$
Suppose, at first deterministically

$$
X_{i}=\binom{u_{i}}{\mathbf{0}}+\sigma\binom{0}{\xi_{i}}
$$

Then

$$
\begin{aligned}
H_{\sigma}=X^{T} X & =\left[\begin{array}{cc}
z & \mathbf{0}^{T} \\
\mathbf{0} & 0_{m-1}
\end{array}\right]+\sigma \sqrt{z}\left[\begin{array}{cc}
0 & b^{T} \\
b & 0_{m-1}
\end{array}\right]+\sigma^{2}\left[\begin{array}{cc}
0 & \mathbf{0}^{T} \\
\mathbf{0} & z
\end{array}\right] \\
& =A_{0}+\sigma A_{1}+\sigma^{2} A_{2}
\end{aligned}
$$

Stochastic assumptions: $\quad\left[\right.$ to get $\left.W_{p}\left(n, \sigma^{2} I+h v v^{\top}\right)\right]$

$$
u_{i} \sim N\left(0, \sigma^{2}+h\right) \quad \xi_{i} \sim N_{m-1}(0, I)
$$

## Single matrix result

## Proposition:

SP: Assume $H \sim W_{p}\left(n, \sigma^{2} I+h v v^{\top}\right)$. Then

$$
\lambda_{1}\left(H_{\sigma}\right) \sim V_{0}+\sigma^{2} V_{2}+\sigma^{4} V_{4}+o_{p}\left(\sigma^{4}\right)
$$

with

$$
V_{0}=\left(h+\sigma^{2}\right) \chi_{n}^{2}, \quad V_{2}=\chi_{p-1}^{2}, \quad V_{4}=\left(V_{2} / V_{0}\right) \chi_{n-1}^{2}
$$

and each $\chi^{2}$ is independent.

## Example: Signal Detection, $h=10$

Density of $h_{1}$, SP, $m=5, n_{H}=4$


## [Classical] Multivariate Analysis

Single Wishart

- Principal Component analysis
- Factor analysis
- Multidimensional scaling

Double Wishart

- Canonical correlation analysis
- Multivariate Analysis of Variance (MANOVA)
- Multivarate regression analysis
- Discriminant analysis
- Tests of equality of covariance matrices


## [Classical] Multivariate Analysis

Single Wishart

- Principal Component analysis
- Factor analysis
- Multidimensional scaling

Double Wishart

- Canonical correlation analysis
- Multivariate Analysis of Variance (MANOVA)
- Multivarate regression analysis
- Discriminant analysis
- Tests of equality of covariance matrices
A. T. James, 1924-2013



## A. James (1964): Five-fold Way

Unified view of multivariate eigenvalue distributions:
single matrix,

| Multivariate | Univariate Analog | Wisharts | Typical Application |
| :---: | :---: | :--- | :---: |
| ${ }_{0} F_{0}$ | $\chi^{2}$ | $H \sim W_{m}(n, \Sigma+\Omega)$ | Signal Detection |
|  |  |  | $\Sigma$ known |
| ${ }_{0} F_{1}$ | non-central $\chi^{2}$ | $H \sim W_{m}(n, \Sigma, \Omega)$ | Equality of Means |
|  |  |  | known |

## A. James (1964): Five-fold Way

Unified view of multivariate eigenvalue distributions:
two matrix,

| Multivariate | Univariate Analog | Wisharts | Typical Application |
| :--- | :--- | :--- | :--- |


| ${ }_{1} F_{0}$ | $F$ | $H$ | $\sim W_{m}(n, \Sigma+\Omega)$ |
| ---: | :--- | :--- | :---: |
|  | $E \sim W_{m}\left(n^{\prime}, \Sigma\right)$ | Signal Detection |  |
|  |  | $\Sigma$ unknown |  |
| ${ }_{1} F_{1}$ | non-central $F$ | $H$ | $\sim W_{m}(n, \Sigma, \Omega)$ |
|  |  | $E W_{m}\left(n^{\prime}, \Sigma\right)$ | Equality of Means |
|  |  |  | $\Sigma$ unknown |

## A. James (1964): Five-fold Way

Unified view of multivariate eigenvalue distributions:

## canonical correlations

| Multivariate | Univariate Analog | Wisharts | Typical Application |
| :--- | :--- | :--- | :--- |


| ${ }_{2} F_{1} \quad r^{2} /\left(1-r^{2}\right) \quad$ | $H$ |
| ---: | :--- |
|  | $\sim W_{m}(q, \Sigma, \Omega)$ |
| $E$ | $\sim W_{m}(n-q, \Sigma)$ |$\quad$ Canonical Correlations

## A. James (1964): Five-fold Way

Unified view of multivariate eigenvalue distributions:
single matrix, two matrix, canonical correlations

| Multivariate | Univariate Analog | Wisharts | Typical Application |
| :---: | :---: | :--- | :---: |
| ${ }_{0} F_{0}$ | $\chi^{2}$ | $H \sim W_{m}(n, \Sigma+\Omega)$ | Signal Detection |
|  |  | $\Sigma$ known |  |
| ${ }_{0} F_{1}$ | non-central $\chi^{2}$ | $H \sim W_{m}(n, \Sigma, \Omega)$ | Equality of Means |
|  |  |  | $\Sigma$ known |
| ${ }_{1} F_{0}$ | $F$ | $H \sim W_{m}(n, \Sigma+\Omega)$ | Signal Detection |
|  |  | $E \sim W_{m}\left(n^{\prime}, \Sigma\right)$ | $\Sigma$ unknown |
| ${ }_{1} F_{1}$ | non-central $F$ | $H \sim W_{m}(n, \Sigma, \Omega)$ | Equality of Means |
|  |  | $E \sim W_{m}\left(n^{\prime}, \Sigma\right)$ | $\Sigma$ unknown |
| ${ }_{2} F_{1}$ | $r^{2} /\left(1-r^{2}\right)$ | $H \sim W_{m}(q, \Sigma, \Omega)$ | Canonical Correlations |
|  |  | $E \sim W_{m}(n-q, \Sigma)$ |  |

## Power, MANOVA example

Small $\sigma$ perturbation approach extends to rank one alternatives in all James' cases. One example: ( ${ }_{1} F_{1}$ case, MANOVA)

## Power, MANOVA example

Small $\sigma$ perturbation approach extends to rank one alternatives in all James' cases. One example: ( ${ }_{1} F_{1}$ case, MANOVA)


Approximation better for larger $\omega$, smaller $m, p, n$ and plausible power

## Conclusion- I

- Spiked Covariance model
- Examples,

$$
\Sigma=I+h \mathbf{v v}^{T}
$$

- Phase Transition
- Weak Signals

- Contiguity

| $\llcorner$ | $\perp$ |
| :---: | :---: |

- Strong Signals
- Power Approximations

- Many extensions possible in other multivariate settings


## Conclusion-II

McKinsey report 2011: projects excess demand for 140,000 190,000 "deep analytical positions"

Maths + Stats + Computing $\rightarrow$ good jobs

## Conclusion-II

McKinsey report 2011: projects excess demand for 140,000190,000 "deep analytical positions"

Maths + Stats + Computing $\rightarrow$ good jobs

## THANK YOU!

