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Random Matrix Theory (RMT)

Eigenvalues and vectors of large square random matrices:

Avj = µjvj A = (Aij) n × n.

Structured randomness:

I Aij i.i.d. Hermitian, or [Wigner matrix]

I A invariant for O(n),U(n) [GOE, GUE]

Interest in properties of eigenvalues:

I empirical distribution: Fn(x) = n−1#{i : λi ≤ x}
I extremes: λ(1) = maxλj
I spacings ...



RMT: ‘Wishart’ case

Consider X = (Xij) n × p rectangular, i.i.d entries

Study eigenvalues λj of XTX

Accessible because λj = µ2
j , with {µj} eigenvalues of

A =

(
0 X
XT 0

)

Link to statistics:

I n−1XTX is (simple form) of covariance matrix.

I goal: helpful approximations based on p/n→ γ > 0



Covariance Matrices - Population

XT = (X, j) ∈ Rp, a random (row) vector distributed as P.

Population mean: µ = EPX

Pop. covariance matrix: Σ = E(X − µ)(X − µ)T

= EXXT if µ = 0.
Σjj ′ = Cov(X, j ,X, j ′)

In general Σ (p × p) has O(p2/2) parameters. Too many!

Simpler models: Σ = σ2Ip ‘white’

Σ = σ2(Ip +
∑M

1 hνvνvTν ) low rank (’spiked’)



Covariance Matrices - Sample

Data: XT
1 , . . . ,X

T
n ∈ Rp (or Cp)

assumed to be independent draws from XT ∼ PΣ

Sample covariance matrix: S = n−1
∑n

i=1 XiX
T
i

Use observed S to estimate or test unknown Σ.

E.g. H0: Σ = I “null” hypothesis
HA: Σ = I + hvvT “alternative” hypothesis

Link to RMT: nS = XTX using the n × p data matrix

X = (Xi ,j) =

X
T
1
...

XT
n





Principal Components Analysis

Statistical interpretation of eigenstructure: Svj = λjvj .

Goal: reduce dimensionality of data from p (large) to k (small):

2Xv=2;Z

1Xv=1;Z

2;X

1;X
... .. .... ... .... ...

.
.

.
.....
.....
.

..
.....
.

...
rotate

Interpret as directions vj of maximum variance, with variances

λj = max{vTSv : vTvj ′ , ‖v‖ = 1}
= ”principal component variances”
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Example 1: PCA & population structure from genetic data
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Example 1: PCA & population structure from genetic data
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Gene (Y ) vs. Phenotype (X ) shows apparent correlation, but ...
3 subpopulations — Within each population, no correlation exists!



Example 1: PCA & population structure from genetic data

Patterson et. al. (2006), Price et. al. (2006)

n = #individuals, p = #markers (e.g. SNPs)

Xij = (normalized) allele count,

case i = 1, . . . , n, marker j = 1, . . . , p.

H = n × sample covariance matrix of Xij

I Eigenvalues of H: λ1 > λ2 > . . . > λmin(n,p)

I How many λi are significant?

I Under H0, distribution of λ1 if H ∼Wp(n, I )?



Example 1: PCA & population structure from genetic data

I PPR (2006) example: 3 African populations, n = 67, p = 993

I Tracy-Widom theory =⇒ 2 “significant” eigenvectors,
separates populations



Example 2: finance
Arbitrage Pricing Theory → a few factors “explain” returns

R =
M∑
ν=1

bν fν + e



Example 2: finance
Arbitrage Pricing Theory → a few factors “explain” returns
Given j = 1, . . . , p securities, t = 1, . . . ,T observation times,
(and M = 1),

Rjt = bj1f1t + ejt .



Example 2: finance
Arbitrage Pricing Theory → a few factors “explain” returns.
Given j = 1, . . . , p securities, t = 1, . . . ,T observation times,

Rjt =
M∑
ν=1

bjν fνt + ejt .

Under Gaussian assumptions*, Σ = Cov (R) has eigenvalues

(`1 > `2 = · · · = `M > σ2
e , . . . , σ

2
e ).

Form sample covariance matrix S

Sjk = T−1
∑
t

(Rjt − R̄j·)(Rkt − R̄k·)

Use (largest) sample eigenvalues ˆ̀
i (S) to estimate `i .

(∗) bjν ∼ N(β, σ2
b); fνt ∼ N(0, σ2

f ); ejt ∼ N(0, σ2
e ) all independent
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Example 2: finance

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model → Σ = diag( `1, . . . , `4, σ
2
e , . . . , σ

2
e )

`1 > `2 = `3 = `4 > σ2
e

Use ˆ̀
i (S) to estimate `1, . . . , `4.

Empirical puzzle (Brown, 1989):
many sample eigenvalues swamp `2, `3, `4.

I Illustration: vary p = 50(1)200 (T = 80)

I Plot theoretical `i (p) and simulated ˆ̀
i (p) versus p.
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Example 2: theoretical `i(p) values

50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p = # securities

ei
ge

nv
al

ue
s

 ← Population eigenvalue 1

 ↓ Population eigenvalues 2−4
 ↓ noise  σ

e
2



Example 2: Brown(1989) plot

p = # securities

ei
ge

nv
al

ue
s

 ← Av. Sample eigenvalues 2−9

Av. top eigenvalue  ↓ 

50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08



Example 2: finance

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model* → Σ = diag( `1, . . . , `4,σ
2
e , . . . , σ

2
e )

`1 > `2 = `3 = `4 > σ2
e

Use ˆ̀
i (S) to estimate `1, . . . , `4.

Empirical puzzle (Brown, 1989):
many sample eigenvalues swamp `2, `3, `4.

I Illustration: vary p = 50(1)200

I Plot theoretical `i (p) and simulated ˆ̀
i (p) versus p.

Explanation (Harding, 2008):
`2, `3, `4 are below a phase transition
predicted by RMT.
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Spiked Covariance Model

I n (independent) observations on p-vectors: Xi

I correlation structure is “white + low rank”:
p£n

iX

Σ = Cov(Xi ) = σ2I +
M∑
ν=1

hνvνv
T
ν

Interest in

I testing/estimating hν [today]

I determining M

I estimating vν



Some motivating models

1. Economics: Xi = vector of stocks (indices) at time i
vν = factor loadings, fνi factors, Zi idiosyncratic terms.

2. ECG: Xi = ith heartbeat (p samples per cycle)
vν = may be sparse in wavelet basis.

3. Microarrays: Xi = expression of p genes in ith patient.
vν = may be sparse few genes involved in each factor.

4. Genetics: Xi = allele count at p SNPs in ith individual.

5. Sensors: Xi = observations at sensors
vν = cols. of steering matrix, fνi signals

6. Climate: Xi = measurements from global network at time i
vν = (empirical) orthogonal functions (EOF)
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p and n and all that

p = # variables/parameters
n = # of (independent?) observations

I p = o(n) classical statistics

I n = o(p) (nominally) high-dimensional data, sparsity

This talk:

I p/n→ γ > 0 less ambitious; important phenomena appear
I for e.g. p = 5, n = 20, this limit may yield better

approximation than p fixed, n large.

I p, n fixed (strong signal asymptotics).
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Wishart Distribution

X = (Xi ,j) n × p

Rows XT
i = (Xi ,j)

indep∼ Np(µ,Σ)

J. Wishart 1898-1956

Definition: sample covariance, unnormalized:

H = XTX ∼Wp(n,Σ) if µ = 0

p variables, n degrees of freedom. “Null case:” Σ = I

Eigenvalues of H: λ1 > λ2 > · · · > λn∧p ≥ 0



Wishart Eigenvalues, Null case

2 draws of eigenvalues from W15(60, I )
– Spreading of sample eigenvalues from 4 to [1,9].

2 draws of 15 independent U(1, 9) variates – very different!
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The Quarter Circle Law

Description of spreading phenomenon in null case:

Marčenko-Pastur, (67) For H ∼Wp(n, I ) p/n→ γ ≤ 1

Empirical distribution function: for eigenvalues {nλj}pj=1 of H,

Fp(x) = p−1#{λj ≤ x} → F (x) = f (x)dx .

For Σ = I ,

f MP(x) =
1

2πγx

√
(b+ − x)(x − b−),

b± = (1±√γ)2.
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Largest eigenvalue: Null case

Square root singularity:

f MP(x) ∼ c
√
b+ − x , x → b+

Heuristically,

λ1 − b+ = Op(n−2/3),

)x(MPf

)3={2n(O

+b

{1n

and

n2/3γ1/6

(1 +
√
γ)4/3

(λ1 − b+)
D⇒ TWβ,

-4 -2 0 2 4

the Tracy-Widom distributions [β = 1 for R, β = 2 for C.]



Largest eigenvalue: Non-null cases

Rank 1 for simplicity: Σ = I + h vvT

For 0 ≤ h <
√
γ,

n2/3γ1/6

(1 +
√
γ)4/3

(λ1 − (1 +
√
γ)2)

D⇒ TWβ,

Limit does not depend on h.

“Fundamental asymptotic limit of sample eigenvalue based
detection” (?)

R C
h = 0 J (01) Johannson (00)
h ∈ (0,

√
γ) Féral-Péché (09) Baik-Ben Arous-Péché (05)



Largest eigenvalue: Phase transition
Different rates, limit distributions:

For h <
√
γ : n2/3

[
λ1 − µ(γ)

σ(γ)

]
D⇒ TWβ,

For h >
√
γ : n1/2

[
λ1 − ρ(h, γ)

τ(h, γ)

]
D⇒ N(0, 1)

with

ρ(h, γ) = (1 + h)
(

1 +
γ

h

)
τ2(h, γ) = 2(1 + h)2

(
1− γ

h2

)

h=1+º`

°1+

bias

(bulk)

2)°(1+

2)°(1+

°

1

)º`(½

Statistical physics lit, 94-
Baik-Ben Arous-Peche(05)
, Paul (07) Baik-Silverstein
(06), Bloemendal-Virag
(11) Mo (11) , Wang (12)
Benaych-Georges-Guionnet-
Maida (11)
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Example:finance

How many factors are present in security returns? Use PCA??
S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model* → Σ = diag( `1, . . . , `4, σ
2
e , . . . , σ

2
e )

`1 > `2 = `3 = `4 > σ2
e

Goal: Use ˆ̀
i (S) to estimate `1, . . . , `4.

Empirical puzzle (Brown, 1989):
many sample eigenvalues swamp `2, `3, `4.

Explanation (Harding, 2008):
`2, `3, `4 are below the 1 +

√
γ phase transition.
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Brown(1989) plot
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Marcenko-Pastur & phase transition
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Detecting weak signals?

For h <
√
γ, distribution of largest eigenvalue

λ1 ≈ µ(γ) + n−2/3σ(γ)TW1

does not depend on h.

Onatski-Moreira-Hallin, AOS (2013):

I can detect h <
√
γ, with error

I use all eigenvalues

I contiguity ideas yield limit distributions for h ∈ (0,
√
γ).



Likelihood Ratio Test

Xi ∼ Np(0, I + hvvT ), H0 : h = 0 vs. H1 : h > 0, v unspecified.

Invariant under rotations, so consider

p(λ; h) = joint density of sample eigenvalues λ = (λ1, . . . , λn).

=
γ(n, p, λ)

(1 + h)n/2

∫
S(p)

e
n
2

h
1+h

x ′pΛxp (dxp)

with Λ = diag(λ1, . . . , λp).

Likelihood ratio test against fixed h > 0:

L(λ; h) =
p(λ; h)

p(λ; 0)
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Asymptotic normality of likelihood ratio

Under H0 (h = 0), for 0 ≤ h ≤ h̄ <
√
γ, and p/n→ γ

log L(h;λ)⇒ L(h;λ), (O-M-H, 2013)

a Gaussian process [by Bai-Silverstein CLT in RMT], with

EL(h;λ) = 1
4 log

(
1− h2

γ

)
Cov{L(h1;λ),L(h2;λ)} = −1

2 log
(

1− h1h2

γ

)
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h

[ if h ≥ H >
√
γ, L(h;λ) = Op(e−nδ). ]
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Detecting weak signals

Reparametrize: θ =
√
− log(1− h2/γ) for h <

√
γ.

Seek optimal test of H0 : θ = 0 vs. HA : θ = θ1 > 0

Recap: Likelihood ratio: Ln(λ; θ1) = p(λ; θ1)/p(λ; 0) satisfies

log Ln
Pn,0⇒ N(−θ2

1/4, θ2
1/2)

Pn,θ1⇒ N(+θ2
1/4, θ2

1/2) (Contiguity!)

So for asymptotically optimal test,

Reject ⇔ log Ln > Cn,α = θ1zα/
√

2− θ2
1/4



Asymptotic Power

Compute ‘Power’ β(θ1) = Pθ=θ1(Reject) = limPn,θ1(log Ln > Cn,α)

if Pθ=0(Reject) = α16 A. ONATSKI, M.J. MOREIRA, AND M. HALLIN
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Fig 3. The maximal asymptotic power of the λ-based tests (dashed lines) and μ-based
tests (solid lines) of θ = 0 against θ = θ1. Left panel: θ-parametrization. Right panel:
h-parametrization.

of 2 supθ∈(0,M ]Xθ, where Xθ is a Gaussian process with E (Xθ) = −θ2/4
and Cov (Xθ1 ,Xθ2) = −12 ln

µ
1−

r³
1− e−θ21

´ ³
1− e−θ22

´¶
. According to

Le Cam’s third lemma, under a specific alternative θ = θ1 ≤M , the asymp-
totic distribution of the LR statistic equals the distribution of 2 supθ∈(0,M ] X̃θ,

where X̃θ is a Gaussian process with the same covariance function as that

of Xθ, but with a different mean: E
³
X̃θ

´
= E(Xθ) + Cov (Xθ,Xθ1).

Therefore, to numerically evaluate the asymptotic power function of the
λ-based LR test, we simulate 500,000 observations of Xθ on a grid of 1,000
equally spaced points in θ ∈ [0,M = 6], whereM = 6 is chosen as the upper
limit of the grid because it is large enough for the power envelopes to rich the
value of 99%. For each observation, we save its supremum on the grid, and
use the empirical distribution of two times the suprema as the approximate
asymptotic distribution of the likelihood ratio statistic under the null. We
denote this distribution as F̂0. Its 95% quantile equals 4.3982.
For each θ1 on the grid, we repeat the simulation for process X̃θ to obtain

the approximate asymptotic distribution of the likelihood ratio statistic un-
der the alternative θ = θ1, which we denote as F̂1. We use the value of F̂1
at the 95% quantile of F̂0 as a numerical approximation to the asymptotic
power at θ1 of the λ-based LR test with asymptotic size 0.05.
Figure 4 shows the resulting asymptotic power curve of the LR test (solid

line) along with the asymptotic power envelope (dotted line). It also shows



Asymptotic Power
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Fig 5. Asymptotic powers (βJ , βLW , βCLR) of the tests described in Examples 1 (John),
2 (Ledoit and Wolf), and 3 (Bai et al.).

The asymptotic power functions of the tests from Examples 1, 2, and 3 are
non-trivial. Figure 5 compares these power functions to the corresponding
power envelopes. Since John’s test is invariant with respect to orthogonal
transformations and scalings, βJ (θ1) is compared to the power envelope
β (θ1;μ). The asymptotic power functions βLW (θ1) and βCLR (θ1) are com-
pared to the power envelope β (θ1;λ) because the Ledoit-Wolf test of Σ = I
and the “corrected” likelihood ratio test are invariant only with respect to
orthogonal transformations.
Interestingly, whereas βJ (θ1) and βLW (θ1) depend only on α and θ1,

βCLR (θ1) depends also on c. As c converges to one, βCLR (θ1) converges
to α, which corresponds to the case of trivial power. As c converges to zero,
βCLR (θ1) converges to βJ (θ1). In Figure 5, we provide the plot of βCLR (θ1)
that corresponds to c = 0.5.
The left panel of Figure 5 shows that the power function of John’s test

is very close to the power envelope β (θ1;μ) in the vicinity of θ1 = 0. Such
behavior is consistent with the fact that John’s test is locally most powerful
invariant. However, for large θ1, the asymptotic power functions of all the
tests from Examples 1, 2, and 3 are lower than the corresponding asymp-
totic power envelopes. We should stress here that these tests have power
against general alternatives as opposed to the “spiked” alternatives that
maintain the assumption that the population covariance matrix of data has
the form σ2 (Ip + hvv0).
For the “spiked” alternatives, the λ- and μ-based LR tests may be more

LW = p−1tr[(Σ̂− I )2]− γn[p−1trΣ̂]2 + γn, γn = p/n, Σ̂ = H/n [Ledoit-Wolf ]

CLR = trΣ̂− log det Σ̂− p(1− (1− γ−1
n ) log(1− γn)) [Bai et. al. ]

Recall that θ =
√
− log(1− h2/γ) ...
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A dose of reality

In original parameter h, power is good only very close to
√
γ.
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Fig 3. The maximal asymptotic power of the λ-based tests (dashed lines) and μ-based
tests (solid lines) of θ = 0 against θ = θ1. Left panel: θ-parametrization. Right panel:
h-parametrization.

of 2 supθ∈(0,M ]Xθ, where Xθ is a Gaussian process with E (Xθ) = −θ2/4
and Cov (Xθ1 ,Xθ2) = −12 ln

µ
1−

r³
1− e−θ21

´ ³
1− e−θ22

´¶
. According to

Le Cam’s third lemma, under a specific alternative θ = θ1 ≤M , the asymp-
totic distribution of the LR statistic equals the distribution of 2 supθ∈(0,M ] X̃θ,

where X̃θ is a Gaussian process with the same covariance function as that

of Xθ, but with a different mean: E
³
X̃θ

´
= E(Xθ) + Cov (Xθ,Xθ1).

Therefore, to numerically evaluate the asymptotic power function of the
λ-based LR test, we simulate 500,000 observations of Xθ on a grid of 1,000
equally spaced points in θ ∈ [0,M = 6], whereM = 6 is chosen as the upper
limit of the grid because it is large enough for the power envelopes to rich the
value of 99%. For each observation, we save its supremum on the grid, and
use the empirical distribution of two times the suprema as the approximate
asymptotic distribution of the likelihood ratio statistic under the null. We
denote this distribution as F̂0. Its 95% quantile equals 4.3982.
For each θ1 on the grid, we repeat the simulation for process X̃θ to obtain

the approximate asymptotic distribution of the likelihood ratio statistic un-
der the alternative θ = θ1, which we denote as F̂1. We use the value of F̂1
at the 95% quantile of F̂0 as a numerical approximation to the asymptotic
power at θ1 of the λ-based LR test with asymptotic size 0.05.
Figure 4 shows the resulting asymptotic power curve of the LR test (solid

line) along with the asymptotic power envelope (dotted line). It also shows

.... “It is not done well; but you are surprised to find it done at all.”
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Strong signals

H ∼Wp(n, σ2I + hvvT )

So far: h <
√
γ : λ1(H) ∼ µTW + σTWTW /n2/3

h >
√
γ : λ1(H) ∼ N(µh,γ , σ

2
h,γ/n)

In strong signal regime: h� √γ,

for rank one alternatives:

largest eigenvalue test is actually best test

e.g. p fixed, n large [so γ = p/n ∼ 0]

log L(h;λ) =
n

2

[
λ1

h

h + 1
− log(1 + h)

]
(1 + o(1)).
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Change perspective

H ∼Wp(n, σ2I + h vvT )

Consider n, p fixed

Strong signal: h large ⇔ σ2 small

Goal: power approximation for “Roy’s largest root test”:

find Ph(λ1 > λ(α)) where P0(λ1 > λ(α)) = α.

An old open issue:
A.T. James (64): ‘For numerical evaluation ... power series expansions of
hypergeometric functions are of very limited value.’

T.W. Anderson (84): ‘No straightforward method exists for computing powers for
Roy’s statistic itself.’

O’Brien and Shieh (92): ‘To date, no acceptable method has been developed for
transforming Roy’s largest root test statistic to an F or χ2 statistic.’

Dozens of textbooks; G*Power3 software (07): power for linear statistics, not λ1.
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Small σ perturbation approach
Initial reductions: Σ = I , v = e1

Suppose, at first deterministically

Xi =

(
ui
0

)
+ σ

(
0
ξi

)
Then

Hσ = XTX =

[
z 0T

0 0m−1

]
+ σ
√
z

[
0 bT

b 0m−1

]
+ σ2

[
0 0T

0 Z

]

= A0 + σA1 + σ2A2

Stochastic assumptions: [to get Wp(n, σ2I + h vvT )]

ui ∼ N(0, σ2 + h) ξi ∼ Nm−1(0, I )
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Single matrix result

Proposition:

SP: Assume H ∼Wp(n, σ2I + hvvT ). Then

λ1(Hσ) ∼ V0 + σ2V2 + σ4V4 + op(σ4),

with

V0 = (h + σ2)χ2
n, V2 = χ2

p−1, V4 = (V2/V0)χ2
n−1

and each χ2 is independent.



Example: Signal Detection, h = 10
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[Classical] Multivariate Analysis
Single Wishart

I Principal Component analysis

I Factor analysis

I Multidimensional scaling

Double Wishart

I Canonical correlation analysis

I Multivariate Analysis of Variance
(MANOVA)

I Multivarate regression analysis

I Discriminant analysis

I Tests of equality of covariance
matrices

A. T. James, 1924–2013
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A. James (1964): Five-fold Way

Unified view of multivariate eigenvalue distributions:

single matrix,

two matrix, canonical correlations

Multivariate Univariate Analog Wisharts Typical Application

0F0 χ2 H ∼ Wm(n,Σ + Ω) Signal Detection
Σ known

0F1 non-central χ2 H ∼ Wm(n,Σ,Ω) Equality of Means
Σ known

1F0 F H ∼ Wm(n,Σ + Ω) Signal Detection
E ∼ Wm(n′,Σ) Σ unknown

1F1 non-central F H ∼ Wm(n,Σ,Ω) Equality of Means
E ∼ Wm(n′,Σ) Σ unknown

2F1 r 2/(1 − r 2) H ∼ Wm(q,Σ,Ω) Canonical Correlations
E ∼ Wm(n − q,Σ)
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Power, MANOVA example

Small σ perturbation approach extends to rank one alternatives in
all James’ cases. One example: (1F1 case, MANOVA)

dim groups samples non-cent power power relative
m p ni ω simulated approx error

3 3 10 10 0.483 0.477 -.012
3 3 10 20 0.847 0.852 .006
3 3 10 40 0.995 0.996 .001
6 3 10 10 0.320 0.304 -.050
6 3 10 20 0.671 0.668 -.004
6 3 10 40 0.964 0.967 .003

10 6 20 10 0.208 0.136 -.346
10 6 20 20 0.520 0.442 -.150
10 6 20 40 0.932 0.912 -.021

(α = .05) (SE ≤ .0016).

Approximation better for larger ω, smaller m, p, n and plausible power
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Conclusion- I

I Spiked Covariance model
I Examples,

I Phase Transition

I Weak Signals
I Contiguity

I Strong Signals
I Power Approximations

Σ = I + h vvT

h°0
°! p=n

h0 °

h0 °

I Many extensions possible in other multivariate settings



Conclusion-II

McKinsey report 2011: projects excess demand for 140,000 -
190,000 “deep analytical positions”

Maths + Stats + Computing → good jobs

THANK YOU!
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