Random matrices in statistics: testing in spiked models

lain Johnstone

Statistics, Stanford

AustMS, Sydney, 1st October 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

International Year of Statistics - 2013

www.statistics2013.org

- to promote public awareness of Statistics
- steered by professional societies [ASA, RSS, ISI, IBS, ...]
- \blacktriangleright \geq 2000 participating organizations
 - 25 Australian sponsors at statistics2013.org/iyos/participants_countrysearch.cfm
- Videos, newsletters, website, events, conferences,

Outline

- Random matrices and covariances
 - Principal Components Analysis, examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Spiked covariance model
 - Phase transition
 - Weak signals
 - Strong signals

Random Matrix Theory (RMT)

Eigenvalues and vectors of large square random matrices:

$$\mathbf{A}\mathbf{v}_j = \mu_j \mathbf{v}_j$$
 $\mathbf{A} = (A_{ij})$ $n \times n$.

Structured randomness:

- ► *A_{ij}* i.i.d. Hermitian, or [Wigner matrix]
- A invariant for O(n), U(n) [GOE, GUE]

Interest in properties of eigenvalues:

- empirical distribution: $F_n(x) = n^{-1} \# \{i : \lambda_i \le x\}$
- extremes: $\lambda_{(1)} = \max \lambda_j$
- spacings ...

RMT: 'Wishart' case

Consider $\mathbf{X} = (X_{ij})$ $n \times p$ rectangular, i.i.d entries Study eigenvalues λ_j of $\mathbf{X}^T \mathbf{X}$

Accessible because $\lambda_j = \mu_j^2$, with $\{\mu_j\}$ eigenvalues of

$$\mathbf{A} = \begin{pmatrix} \mathbf{0} & \mathbf{X} \\ \mathbf{X}^{\mathcal{T}} & \mathbf{0} \end{pmatrix}$$

Link to statistics:

- $n^{-1}\mathbf{X}^T\mathbf{X}$ is (simple form) of covariance matrix.
- ▶ goal: helpful approximations based on $p/n \rightarrow \gamma > 0$

Covariance Matrices - Population

 $X^T = (X_{,j}) \in \mathbb{R}^p$, a random (row) vector distributed as \mathcal{P} .

Population mean:

$$\mu = \mathbb{E}_{\mathcal{P}} X$$

Pop. covariance matrix:
$$\begin{split} \Sigma &= \mathbb{E}(X-\mu)(X-\mu)^T \\ &= \mathbb{E} XX^T \quad \text{if } \mu = 0. \\ \Sigma_{jj'} &= \text{Cov}(X_{,j}, X_{,j'}) \end{split}$$

In general $\Sigma(p imes p)$ has $O(p^2/2)$ parameters. Too many!

Simpler models: $\Sigma = \sigma^2 I_p$ 'white'

$$\Sigma = \sigma^2 (I_p + \sum_{1}^{M} h_{\nu} \mathbf{v}_{\nu} \mathbf{v}_{\nu}^T)$$
 low rank ('spiked')

Covariance Matrices - Sample

Data: $X_1^T, \dots, X_n^T \in \mathbb{R}^p$ (or \mathbb{C}^p) assumed to be independent draws from $X^T \sim \mathcal{P}_{\Sigma}$ Sample covariance matrix: $S = n^{-1} \sum_{i=1}^n X_i X_i^T$

Use observed S to estimate or test unknown Σ .

E.g. H_0 : $\Sigma = I$ "null" hypothesis H_A : $\Sigma = I + h\mathbf{v}\mathbf{v}^T$ "alternative" hypothesis

Link to RMT: $nS = \mathbf{X}^T \mathbf{X}$ using the $n \times p$ data matrix

$$\mathbf{X} = (X_{i,j}) = \begin{bmatrix} X_1^T \\ \vdots \\ X_n^T \end{bmatrix}$$

Principal Components Analysis

Statistical interpretation of eigenstructure: $S\mathbf{v}_j = \lambda_j \mathbf{v}_j$.

Goal: reduce dimensionality of data from p (large) to k (small):

Interpret as directions \mathbf{v}_i of maximum variance, with variances

$$\lambda_j = \max\{\mathbf{v}^T S \mathbf{v} : \mathbf{v}^T \mathbf{v}_{j'}, \|\mathbf{v}\| = 1\}$$

= "principal component variances"

Outline

Random matrices and covariances

 Principal Components Analysis, two examples: genetics, finance

・ロト ・西ト ・ヨト ・ヨー うらぐ

- Spiked covariance model
 - Phase transition
 - Weak signals
 - Strong signals

Gene (Y) vs. Phenotype (X) shows apparent correlation, but ...

イロト イポト イヨト イヨト

Gene (Y) vs. Phenotype (X) shows apparent correlation, but ... 3 subpopulations — Within each population, no correlation exists!

Patterson et. al. (2006), Price et. al. (2006)

n = #individuals, p = #markers (e.g. SNPs)

 $X_{ij} = (normalized)$ allele count, case i = 1, ..., n, marker j = 1, ..., p. $H = n \times sample$ covariance matrix of X_{ij}

- Eigenvalues of H: $\lambda_1 > \lambda_2 > \ldots > \lambda_{\min(n,p)}$
- How many λ_i are significant?
- Under H_0 , distribution of λ_1 if $H \sim W_p(n, I)$?

- ▶ PPR (2006) example: 3 African populations, n = 67, p = 993
- Tracy-Widom theory ⇒ 2 "significant" eigenvectors, separates populations

SAC

Arbitrage Pricing Theory \rightarrow a few *factors* "explain" returns

$$R=\sum_{
u=1}^{M}b_{
u}f_{
u}+e$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Arbitrage Pricing Theory \rightarrow a few *factors* "explain" returns Given j = 1, ..., p securities, t = 1, ..., T observation times, (and M = 1),

$$R_{jt}=b_{j1}f_{1t}+e_{jt}.$$

Arbitrage Pricing Theory \rightarrow a few *factors* "explain" returns. Given j = 1, ..., p securities, t = 1, ..., T observation times,

$$R_{jt} = \sum_{\nu=1}^M b_{j\nu} f_{\nu t} + e_{jt}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Arbitrage Pricing Theory \rightarrow a few *factors* "explain" returns. Given j = 1, ..., p securities, t = 1, ..., T observation times,

$$R_{jt} = \sum_{
u=1}^M b_{j
u} f_{
u t} + e_{jt}.$$

Under Gaussian assumptions*, $\Sigma = \text{Cov}(R)$ has eigenvalues

$$(\ell_1 > \ell_2 = \cdots = \ell_M > \sigma_e^2, \ldots, \sigma_e^2).$$

 $(^*) \qquad b_{j\nu} \sim N(\beta,\sigma_b^2); \quad f_{\nu t} \sim N(0,\sigma_f^2); \quad e_{jt} \sim N(0,\sigma_e^2) \quad \text{all independent}$

Arbitrage Pricing Theory \rightarrow a few *factors* "explain" returns. Given j = 1, ..., p securities, t = 1, ..., T observation times,

$$R_{jt} = \sum_{\nu=1}^M b_{j\nu} f_{\nu t} + e_{jt}.$$

Under Gaussian assumptions*, $\Sigma = \text{Cov}(R)$ has eigenvalues

$$(\ell_1 > \ell_2 = \cdots = \ell_M > \sigma_e^2, \dots, \sigma_e^2).$$

Form *sample* covariance matrix S

$$S_{jk} = T^{-1} \sum_{t} (R_{jt} - \bar{R}_{j\cdot}) (R_{kt} - \bar{R}_{k\cdot})$$

Use (largest) sample eigenvalues $\hat{\ell}_i(S)$ to estimate ℓ_i .

 $(^*) \qquad b_{j\nu} \sim \textit{N}(\beta,\sigma_b^2); \quad f_{\nu t} \sim \textit{N}(0,\sigma_f^2); \quad e_{jt} \sim \textit{N}(0,\sigma_e^2) \quad \text{all independent}$

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model $\rightarrow \Sigma = \text{diag}(\ell_1, \dots, \ell_4, \sigma_e^2, \dots, \sigma_e^2)$

 $\ell_1 > \ell_2 = \ell_3 = \ell_4 > \sigma_e^2$

・ロト・日本・モート モー うへぐ

Use $\hat{\ell}_i(S)$ to estimate ℓ_1, \ldots, ℓ_4 .

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model $\rightarrow \Sigma = \text{diag}(\ell_1, \dots, \ell_4, \sigma_e^2, \dots, \sigma_e^2)$

 $\ell_1 > \ell_2 = \ell_3 = \ell_4 > \sigma_e^2$

Use $\hat{\ell}_i(S)$ to estimate ℓ_1, \ldots, ℓ_4 .

Empirical puzzle (Brown, 1989):

many sample eigenvalues swamp ℓ_2, ℓ_3, ℓ_4 .

- Illustration: vary p = 50(1)200 (T = 80)
- ▶ Plot theoretical $\ell_i(p)$ and simulated $\hat{\ell}_i(p)$ versus p.

Example 2: theoretical $\ell_i(p)$ values

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Example 2: Brown(1989) plot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model*
$$\rightarrow \Sigma = \text{diag}(\ell_1, \dots, \ell_4, \sigma_e^2, \dots, \sigma_e^2)$$

 $\ell_1 > \ell_2 = \ell_3 = \ell_4 > \sigma_e^2$

Use $\hat{\ell}_i(S)$ to estimate ℓ_1, \ldots, ℓ_4 .

Empirical puzzle (Brown, 1989):

many sample eigenvalues swamp ℓ_2, ℓ_3, ℓ_4 .

- Illustration: vary p = 50(1)200
- ▶ Plot theoretical $\ell_i(p)$ and simulated $\hat{\ell}_i(p)$ versus p.

Explanation (Harding, 2008):

 ℓ_2, ℓ_3, ℓ_4 are below a phase transition predicted by RMT.

Outline

Random matrices and covariances

Principal Components Analysis, two examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Spiked covariance model
 - Phase transition
 - Weak signals
 - Strong signals

Spiked Covariance Model

- n (independent) observations on p-vectors: X_i
 correlation structure is "white + low rank".

$$\Sigma = \operatorname{Cov}(X_i) = \sigma^2 I + \sum_{\nu=1}^M h_{\nu} \mathbf{v}_{\nu} \mathbf{v}_{\nu}^T$$

Interest in

- testing/estimating h_{ν} [today]
- \blacktriangleright determining *M*
- estimating \mathbf{v}_{ν}

Some motivating models

- 1. Economics: X_i = vector of stocks (indices) at time *i* \mathbf{v}_{ν} = factor loadings, $f_{\nu i}$ factors, Z_i idiosyncratic terms.
- 2. ECG: $X_i = i$ th heartbeat (*p* samples per cycle) $\mathbf{v}_{\nu} =$ may be sparse in *wavelet* basis.
- 3. Microarrays: X_i = expression of p genes in *i*th patient. \mathbf{v}_{ν} = may be sparse few genes involved in each factor.
- 4. Genetics: X_i = allele count at p SNPs in *i*th individual.
- 5. Sensors: X_i = observations at sensors \mathbf{v}_{ν} = cols. of steering matrix, $f_{\nu i}$ signals
- 6. Climate: X_i = measurements from global network at time *i* \mathbf{v}_{ν} = (empirical) orthogonal functions (EOF)

Outline

- Spiked Covariance model
 - Examples $\Sigma = I + h \mathbf{v} \mathbf{v}^T$
- Wishart eigenvalues and Phase Transition

$$p/n \rightarrow \gamma$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Weak Signals
 - Contiguity
- Strong Signals
 - Approximations to Power

p and n and all that

p = # variables/parameters n = # of (independent?) observations

p = o(n) classical statistics
 n = o(p) (nominally) high-dimensional data, sparsity

This talk:

p and n and all that

p = # variables/parameters n = # of (independent?) observations

p = o(n) classical statistics
 n = o(p) (nominally) high-dimensional data, sparsity

This talk:

p/n → γ > 0 less ambitious; important phenomena appear
 for e.g. p = 5, n = 20, this limit may yield better approximation than p fixed, n large.

p and n and all that

p = # variables/parameters n = # of (independent?) observations

p = o(n) classical statistics
 n = o(p) (nominally) high-dimensional data, sparsity

This talk:

- ▶ $p/n \rightarrow \gamma > 0$ less ambitious; important phenomena appear
 - for e.g. p = 5, n = 20, this limit may yield better approximation than p fixed, n large.
- p, n fixed (strong signal asymptotics).

Wishart Distribution

 $\mathbf{X} = (X_{i,j}) \quad n \times p$

Rows
$$X_i^T = (X_{i,j}) \stackrel{\text{indep}}{\sim} N_p(\mu, \Sigma)$$

J. Wishart 1898-1956

Definition: sample covariance, unnormalized:

 $H = \mathbf{X}^T \mathbf{X} \qquad \sim W_p(n, \Sigma) \qquad \text{if } \mu = 0$

p variables, *n* degrees of freedom. "Null case:" $\Sigma = I$

Eigenvalues of *H*: $\lambda_1 > \lambda_2 > \cdots > \lambda_{n \wedge p} \ge 0$

Wishart Eigenvalues, Null case

2 draws of eigenvalues from $W_{15}(60, I)$

- Spreading of sample eigenvalues from 4 to [1,9].

2 draws of 15 independent U(1,9) variates – very different!

The Quarter Circle Law

Description of spreading phenomenon in null case:

Marčenko-Pastur, (67) For $H \sim W_p(n, I)$ $p/n \rightarrow \gamma \leq 1$ Empirical distribution function: for eigenvalues $\{n\lambda_j\}_{j=1}^p$ of H,

$$F_p(x) = p^{-1} \# \{\lambda_j \leq x\} \rightarrow F(x) = f(x) dx.$$

Largest eigenvalue: Null case

the *Tracy-Widom* distributions [$\beta = 1$ for \mathbb{R} , $\beta = 2$ for \mathbb{C} .]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Largest eigenvalue: Non-null cases

Rank 1 for simplicity: $\Sigma = I + h \mathbf{v} \mathbf{v}^T$ For $0 \le h < \sqrt{\gamma}$,

$$\frac{n^{2/3}\gamma^{1/6}}{(1+\sqrt{\gamma})^{4/3}}(\lambda_1-(1+\sqrt{\gamma})^2) \stackrel{\mathcal{D}}{\Rightarrow} TW_{\beta},$$

Limit does **not** depend on *h*.

"Fundamental asymptotic limit of sample eigenvalue based detection" (?)

 \mathbb{R} \mathbb{C} h = 0J (01)Johannson (00) $h \in (0, \sqrt{\gamma})$ Féral-Péché (09)Baik-Ben Arous-Péché (05)

Largest eigenvalue: Phase transition

Different rates, limit distributions:

For
$$h < \sqrt{\gamma}$$
: $n^{2/3} \left[\frac{\lambda_1 - \mu(\gamma)}{\sigma(\gamma)} \right] \stackrel{\mathcal{D}}{\Rightarrow} TW_{\beta}$,
For $h > \sqrt{\gamma}$: $n^{1/2} \left[\frac{\lambda_1 - \rho(h, \gamma)}{\tau(h, \gamma)} \right] \stackrel{\mathcal{D}}{\Rightarrow} N(0, 1)$

(ロ)、(型)、(E)、(E)、 E) の(の)
Largest eigenvalue: Phase transition

Different rates, limit distributions:

For
$$h < \sqrt{\gamma}$$
: $n^{2/3} \left[\frac{\lambda_1 - \mu(\gamma)}{\sigma(\gamma)} \right] \stackrel{\mathcal{D}}{\Rightarrow} TW_{\beta}$,
For $h > \sqrt{\gamma}$: $n^{1/2} \left[\frac{\lambda_1 - \rho(h, \gamma)}{\tau(h, \gamma)} \right] \stackrel{\mathcal{D}}{\Rightarrow} N(0, 1)$

with

$$\rho(\mathbf{h},\gamma) = (1+\mathbf{h})\left(1+\frac{\gamma}{\mathbf{h}}\right) \qquad \tau^2(\mathbf{h},\gamma) = 2(1+\mathbf{h})^2\left(1-\frac{\gamma}{\mathbf{h}^2}\right)$$

Statistical physics lit, 94-Baik-Ben Arous-Peche(05) , Paul (07) Baik-Silverstein (06), Bloemendal-Virag (11) Mo (11) , Wang (12) Benaych-Georges-Guionnet-Maida (11)

Example:finance

How many factors are present in security returns? Use PCA?? S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model*
$$\rightarrow \Sigma = \text{diag}(\ell_1, \dots, \ell_4, \sigma_e^2, \dots, \sigma_e^2)$$

 $\ell_1 > \ell_2 = \ell_3 = \ell_4 > \sigma_e^2$

Goal: Use $\hat{\ell}_i(S)$ to estimate ℓ_1, \ldots, ℓ_4 .

Empirical puzzle (Brown, 1989):

many sample eigenvalues swamp ℓ_2, ℓ_3, ℓ_4 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:finance

How many factors are present in security returns? Use PCA?? S.J. Brown (1989) simulations, calibrated to NYSE data

4 factor model*
$$\rightarrow \Sigma = \text{diag}(\ell_1, \dots, \ell_4, \sigma_e^2, \dots, \sigma_e^2)$$

 $\ell_1 > \ell_2 = \ell_3 = \ell_4 > \sigma_e^2$

Goal: Use $\hat{\ell}_i(S)$ to estimate ℓ_1, \ldots, ℓ_4 .

Empirical puzzle (Brown, 1989): many sample eigenvalues swamp ℓ_2, ℓ_3, ℓ_4 .

Explanation (Harding, 2008): ℓ_2, ℓ_3, ℓ_4 are below the $1 + \sqrt{\gamma}$ phase transition.

Brown(1989) plot

Source: Harding(2008).

Marcenko-Pastur & phase transition

Source: Harding(2008).

Outline

- Examples $\Sigma = I + h \mathbf{v} \mathbf{v}^T$
- Phase Transition
- Weak Signals
 - Contiguity

$$p/n \rightarrow \gamma$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Strong Signals
 - Approximations to Power

Detecting weak signals?

For $h < \sqrt{\gamma}$, distribution of largest eigenvalue

$$\lambda_1 \approx \mu(\gamma) + n^{-2/3} \sigma(\gamma) T W_1$$

does not depend on h.

Onatski-Moreira-Hallin, AOS (2013):

- can detect $h < \sqrt{\gamma}$, with error
- use all eigenvalues
- contiguity ideas yield limit distributions for $h \in (0, \sqrt{\gamma})$.

Likelihood Ratio Test

 $X_i \sim N_p(0, I + h \mathbf{v} \mathbf{v}^T), \quad H_0: h = 0 \text{ vs. } H_1: h > 0, \mathbf{v} \text{ unspecified.}$

Invariant under rotations, so consider

 $p(\lambda; h) = \text{joint density of sample eigenvalues } \lambda = (\lambda_1, \dots, \lambda_n).$

Likelihood ratio test against fixed h > 0:

$$L(\lambda; h) = \frac{p(\lambda; h)}{p(\lambda; 0)}$$

Likelihood Ratio Test

 $X_i \sim N_p(0, I + h \mathbf{v} \mathbf{v}^T), \quad H_0: h = 0$ vs. $H_1: h > 0, \mathbf{v}$ unspecified. Invariant under rotations, so consider

 $p(\lambda; h) = \text{joint density of sample eigenvalues } \lambda = (\lambda_1, \dots, \lambda_n).$

$$= \frac{\gamma(n, p, \lambda)}{(1+h)^{n/2}} \int_{\mathcal{S}(p)} e^{\frac{n}{2} \frac{h}{1+h} x'_p \Lambda x_p} (dx_p)$$

with $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_p).$

Likelihood ratio test against fixed h > 0:

$$L(\lambda; h) = \frac{p(\lambda; h)}{p(\lambda; 0)} = \frac{1}{(1+h)^{n/2}} \int_{S(p)} e^{\frac{n}{2} \frac{h}{1+h} x'_p \Lambda x_p} (dx_p)$$

Asymptotic normality of likelihood ratio

Under
$$H_0$$
 $(h = 0)$, for $0 \le h \le \overline{h} < \sqrt{\gamma}$, and $p/n \to \gamma$
 $\log L(h; \lambda) \Rightarrow \mathcal{L}(h; \lambda)$, (O-M-H, 2013)

a Gaussian process [by Bai-Silverstein CLT in RMT], with

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Asymptotic normality of likelihood ratio

Under
$$H_0$$
 $(h = 0)$, for $0 \le h \le \overline{h} < \sqrt{\gamma}$, and $p/n \to \gamma$
 $\log L(h; \lambda) \Rightarrow \mathcal{L}(h; \lambda)$, (O-M-H, 2013)

a Gaussian process [by Bai-Silverstein CLT in RMT], with

Detecting weak signals

Reparametrize:
$$\theta = \sqrt{-\log(1 - h^2/\gamma)}$$
 for $h < \sqrt{\gamma}$.

Seek optimal test of $H_0: \theta = 0$ vs. $H_A: \theta = \theta_1 > 0$

Recap: Likelihood ratio: $L_n(\lambda; \theta_1) = p(\lambda; \theta_1)/p(\lambda; 0)$ satisfies

$$\log L_n \stackrel{P_{n,0}}{\Rightarrow} N(-\theta_1^2/4, \theta_1^2/2)$$
$$\stackrel{P_{n,\theta_1}}{\Rightarrow} N(+\theta_1^2/4, \theta_1^2/2) \quad \text{(Contiguity!)}$$

So for asymptotically optimal test,

Reject
$$\Leftrightarrow \log L_n > C_{n,\alpha} = \frac{\theta_1 z_\alpha}{\sqrt{2} - \theta_1^2}/4$$

Asymptotic Power

Compute 'Power' $\beta(\theta_1) = P_{\theta=\theta_1}(\text{Reject}) = \lim P_{n,\theta_1}(\log L_n > C_{n,\alpha})$

if $P_{\theta=0}(\text{Reject}) = \alpha$

(日)、

프 > 프

Asymptotic Power

$$\begin{split} LW &= p^{-1} \mathrm{tr}[(\hat{\Sigma} - I)^2] - \gamma_n [p^{-1} \mathrm{tr} \hat{\Sigma}]^2 + \gamma_n, \qquad \gamma_n = p/n, \hat{\Sigma} = H/n \text{ [Ledoit-Wolf]} \\ CLR &= \mathrm{tr} \hat{\Sigma} - \log \det \hat{\Sigma} - p(1 - (1 - \gamma_n^{-1}) \log(1 - \gamma_n)) \qquad \text{[Bai et. al.]} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Asymptotic Power

(日)、(四)、(E)、(E)、(E)

Recall that $\theta = \sqrt{-\log(1 - h^2/\gamma)}$...

A dose of reality

In original parameter *h*, power is good only very close to $\sqrt{\gamma}$.

æ

A dose of reality

In original parameter *h*, power is good only very close to $\sqrt{\gamma}$.

.... "It is not done well; but you are surprised to find it done at all."

・ロト ・聞ト ・ヨト ・ヨト

э

Outline

- Spiked Covariance model
 - Examples $\Sigma = I + h \mathbf{v} \mathbf{v}^T$
- Wishart eigenvalues and Phase Transition
- Weak Signals
 - Contiguity
- Strong Signals

Strong signals

$$H \sim W_p(n, \sigma^2 I + h \mathbf{v} \mathbf{v}^T)$$

So far:
$$h < \sqrt{\gamma}$$
: $\lambda_1(H) \sim \mu_{TW} + \sigma_{TW} TW/n^{2/3}$
 $h > \sqrt{\gamma}$: $\lambda_1(H) \sim N(\mu_{h,\gamma}, \sigma_{h,\gamma}^2/n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In strong signal regime: $h \gg \sqrt{\gamma}$,

Strong signals

$$H \sim W_p(n, \sigma^2 I + h \mathbf{v} \mathbf{v}^T)$$

So far:
$$h < \sqrt{\gamma}$$
: $\lambda_1(H) \sim \mu_{TW} + \sigma_{TW} TW/n^{2/3}$
 $h > \sqrt{\gamma}$: $\lambda_1(H) \sim N(\mu_{h,\gamma}, \sigma_{h,\gamma}^2/n)$

In strong signal regime: $h \gg \sqrt{\gamma}$, for rank one alternatives: largest eigenvalue test is actually best test

e.g. *p* fixed, *n* large [so
$$\gamma = p/n \sim 0$$
]

$$\log L(h; \lambda) = \frac{n}{2} \left[\frac{\lambda_1}{h+1} - \log(1+h) \right] (1+o(1)).$$

(ロ) (国) (E) (E) (E) (O)(C)

Change perspective

$$H \sim W_p(n, \sigma^2 I + h \mathbf{v} \mathbf{v}^T)$$

Consider *n*, *p* fixed

Strong signal: *h* large $\Leftrightarrow \sigma^2$ small

Goal: power approximation for "Roy's largest root test":

find $P_h(\lambda_1 > \lambda^{(\alpha)})$ where $P_0(\lambda_1 > \lambda^{(\alpha)}) = \alpha$.

Change perspective

$$H \sim W_p(n, \sigma^2 I + h \mathbf{v} \mathbf{v}^T)$$

Consider *n*, *p* fixed

Strong signal: *h* large $\Leftrightarrow \sigma^2$ small

Goal: power approximation for "Roy's largest root test":

find $P_h(\lambda_1 > \lambda^{(\alpha)})$ where $P_0(\lambda_1 > \lambda^{(\alpha)}) = \alpha$.

An old open issue:

A.T. James (64): 'For numerical evaluation ... power series expansions of hypergeometric functions are of very limited value.'

T.W. Anderson (84): 'No straightforward method exists for computing powers for Roy's statistic itself.'

O'Brien and Shieh (92): 'To date, no acceptable method has been developed for transforming Roy's largest root test statistic to an F or χ^2 statistic.'

Dozens of textbooks; G*Power3 software (07): power for linear statistics, not λ_1 .

Small σ perturbation approach

Initial reductions: $\Sigma = I$, $v = e_1$

Suppose, at first deterministically

$$X_i = \begin{pmatrix} u_i \\ \mathbf{0} \end{pmatrix} + \boldsymbol{\sigma} \begin{pmatrix} 0 \\ \boldsymbol{\xi}_i \end{pmatrix}$$

Then

$$H_{\sigma} = X^{T}X = \begin{bmatrix} z & \mathbf{0}^{T} \\ \mathbf{0} & \mathbf{0}_{m-1} \end{bmatrix} + \sigma\sqrt{z} \begin{bmatrix} 0 & b^{T} \\ b & \mathbf{0}_{m-1} \end{bmatrix} + \sigma^{2} \begin{bmatrix} 0 & \mathbf{0}^{T} \\ \mathbf{0} & Z \end{bmatrix}$$
$$= A_{0} + \sigma A_{1} + \sigma^{2} A_{2}$$

Small σ perturbation approach

Initial reductions: $\Sigma = I$, $v = e_1$

Suppose, at first deterministically

$$X_i = \begin{pmatrix} u_i \\ \mathbf{0} \end{pmatrix} + \frac{\sigma}{\xi_i} \begin{pmatrix} \mathbf{0} \\ \boldsymbol{\xi}_i \end{pmatrix}$$

Then

$$H_{\sigma} = X^{T} X = \begin{bmatrix} z & \mathbf{0}^{T} \\ \mathbf{0} & \mathbf{0}_{m-1} \end{bmatrix} + \sigma \sqrt{z} \begin{bmatrix} 0 & b^{T} \\ b & \mathbf{0}_{m-1} \end{bmatrix} + \sigma^{2} \begin{bmatrix} 0 & \mathbf{0}^{T} \\ \mathbf{0} & Z \end{bmatrix}$$
$$= A_{0} + \sigma A_{1} + \sigma^{2} A_{2}$$

Stochastic assumptions: [to get $W_p(n, \sigma^2 I + h v v^T)$]

 $u_i \sim N(0, \sigma^2 + h)$ $\xi_i \sim N_{m-1}(0, I)$

Single matrix result

Proposition:

SP: Assume
$$H \sim W_p(n, \sigma^2 I + hvv^T)$$
. Then
 $\lambda_1(H_\sigma) \sim V_0 + \sigma^2 V_2 + \sigma^4 V_4 + o_p(\sigma^4)$,

with

$$V_0 = (h + \sigma^2)\chi_n^2, \qquad V_2 = \chi_{p-1}^2, \qquad V_4 = (V_2/V_0)\chi_{n-1}^2$$

and each χ^2 is independent.

Example: Signal Detection, h = 10

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

[Classical] Multivariate Analysis

Single Wishart

- Principal Component analysis
- Factor analysis
- Multidimensional scaling

Double Wishart

- Canonical correlation analysis
- Multivariate Analysis of Variance (MANOVA)
- Multivarate regression analysis
- Discriminant analysis
- Tests of equality of covariance matrices

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

[Classical] Multivariate Analysis

Single Wishart

- Principal Component analysis
- Factor analysis
- Multidimensional scaling

Double Wishart

- Canonical correlation analysis
- Multivariate Analysis of Variance (MANOVA)
- Multivarate regression analysis
- Discriminant analysis
- Tests of equality of covariance matrices

A. T. James, 1924–2013

Unified view of multivariate eigenvalue distributions:

single matrix,

Multivariate	Univariate Analog	Wisharts	Typical Application	
0 <i>F</i> _0	χ^2	$H \sim W_m(n, \Sigma + \Omega)$	Signal Detection	
			Σ known	
0 <i>F</i> 1	non-central χ^2	$H \sim W_m(n, \Sigma, \Omega)$	Equality of Means	
			Σ known	

・ロト・日本・モト・モート ヨー うへで

Unified view of multivariate eigenvalue distributions:

two matrix,

Multivariate Univariate Analog	Wisharts	Typical Application
--------------------------------	----------	---------------------

$_1F_0$	F	$H \sim W_m(n, \Sigma + \Omega)$	Signal Detection
		$E \sim W_m(n', \Sigma)$	Σ unknown
$_1F_1$	non-central F	$H \sim W_m(n, \Sigma, \Omega)$	Equality of Means
		$E \sim W_m(n', \Sigma)$	Σ unknown

Unified view of multivariate eigenvalue distributions:

canonical correlations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multivariate	Univariate Analog	Wisharts	Typical Application
--------------	-------------------	----------	---------------------

$$_2F_1 \qquad r^2/(1-r^2) \qquad \begin{array}{c} H \sim W_m(q,\Sigma,\Omega) \ E \sim W_m(n-q,\Sigma) \end{array}$$
 Canonical Correlations

Unified view of multivariate eigenvalue distributions:

single matrix, two matrix, canonical correlations

Multivariate	Univariate Analog	Wisharts	sharts Typical Application	
0 <i>F</i> _0	χ^2	$H \sim W_m(n, \Sigma + \Omega)$	Signal Detection	
			Σ known	
0 <i>F</i> 1	non-central χ^2	$H \sim W_m(n, \Sigma, \Omega)$	Equality of Means	
			Σ known	
$_1F_0$	F	$H \sim W_m(n, \Sigma + \Omega)$	Signal Detection	
		$E \sim W_m(n', \Sigma)$	Σ unknown	
$_1F_1$	non-central F	$H \sim W_m(n, \Sigma, \Omega)$	Equality of Means	
		$E \sim W_m(n', \Sigma)$	Σ unknown	
$_2F_1$	$r^2/(1-r^2)$	$H \sim W_m(q, \Sigma, \Omega)$	Canonical Correlations	
		$E \sim W_m(n-q,\Sigma)$		

Power, MANOVA example

Small σ perturbation approach extends to rank one alternatives in all James' cases. One example: ($_1F_1$ case, MANOVA)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Power, MANOVA example

Small σ perturbation approach extends to rank one alternatives in all James' cases. One example: ($_1F_1$ case, MANOVA)

dim	groups	samples	non-cent	power	power	relative
т	р	ni	ω	simulated	approx	error
3	3	10	10	0.483	0.477	012
3	3	10	20	0.847	0.852	.006
3	3	10	40	0.995	0.996	.001
6	3	10	10	0.320	0.304	050
6	3	10	20	0.671	0.668	004
6	3	10	40	0.964	0.967	.003
10	6	20	10	0.208	0.136	346
10	6	20	20	0.520	0.442	150
10	6	20	40	0.932	0.912	021

 $(\alpha = .05)$ (SE $\le .0016$).

Approximation better for larger ω , smaller m, p, n and plausible power

Conclusion- I

Many extensions possible in other multivariate settings

Conclusion-II

McKinsey report 2011: projects excess demand for 140,000 - 190,000 "deep analytical positions"

 $\mathsf{Maths} + \mathsf{Stats} + \mathsf{Computing} \to \mathsf{good} \ \mathsf{jobs}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()
Conclusion-II

McKinsey report 2011: projects excess demand for 140,000 - 190,000 "deep analytical positions"

 $\mathsf{Maths} + \mathsf{Stats} + \mathsf{Computing} \to \mathsf{good} \mathsf{ jobs}$

THANK YOU!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ