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Objects in algebraic geometry

Affine algebraic variety
V(fi for oo f5) = {x = (21, ., )€ CF | f1(x) = fo(x) = -+ = f5(x) = 0}

fi(x) € Clxq, ..., x5 ]

elliptic tail

Example

fy,2) = (r =V3)’=(x = D(x — 2)(x — 3)
D=V(f,z—DuVix—-(z-1)3y—-(z-1)%

C=V(y*—-x32)ccC?




Objects in algebraic geometry

Projective algebraic variety
"= (€ - (0))/C
V(fi faren o) = {x = (X0, o, x0)€ P | f1(x)

fi(x) € C[xyp, ..., x,] (homogeneous)
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Example
p = (1,0,0) € P2

BL,P? = {(x,y,2;s,t) € P* x P! | yt = zs}

Source: D. Arapura’s
website



Moduli theory

A moduli space (of curves, of surfaces, of vector bundles over a
curve etc) Is

« the set of isomorphism classes (equipped with a structure of algebraic variety)
 and certain universal properties

The term modaduli was first used by B. Riemann (1826-1866).

“This depends on

, 3g — 3 moaulun'
Slit & Sew

Genus g

1 Riemann spheres .
g+ P Riemann surface




Distance Plane iIsometries
map

Plane isometries « (translation)e(orthogonal transformation)
* f(z) =az+ b (a €St beCQ)is a rotation unless a = 1.

Rotation

by Arg(a) around

b(1—a)™?
e f(z2)=az+b(aeStbeC)isa glide unless b+ ab = 0.
g

reflection

reflecting
line

Translating
vector
f(a)



Moduli of plane isometries

Moduli of plane isometries := 0(2) X R? =~ (ST x RHO[[(S x R?)
(a,b) (a,b)

Picture: Notes on _
geometry by E. Rees az+b az+ b

L @.i;-

rotation translation ide reflec_tion
a=1 2 b+ab=0



Moduli of plane cubics

Plane cubics (elliptic curves)

{(t,y,2) e P?|F(x,y,2) = X4 jrx=3 Qijrx'y! 2z = 0} yiz—x%(x—2)=0
xoyzz1_ X3y0Z0+ X2y0Z1=O
I 5 I
(azo0, Az10, A201, -+ » Ao21, Ao125 A003)E IP (-1,0,1,0,0,0,0,1,0,0)

{plane cubics}/(coordinate change) = IP?/SL;(C)

Equals
Moduli space = (parameter space)/(group action)  isomorphism

Construction of quotient in algebraic geometry is NOT automatic!



Bad degeneration of elliptic curves

o Not
Ce: yZZ = x(x — tZZ)(x — 2t32) t >0 v\ iIsomorphic
att =0:

. Iwo different
Isomorphic x' = tzxéy = t3y i possible limits!

when t = 0
Cli iz =X ( — ) —2t2)

For {[C¢] = [C"¢]}¢20 to have

[C:] = [C;] in @ moduli space a unique limit, we need to
keep one and discard the other.




Which curve should we pick? (GIT)

Need a reliable system to pick the correct limits.

Mumford's Geometric Invariant Theory (GIT)

To understand a quotient space

Question. What are the (regular) functions on the quotient space?

constant
on
G-orbits

Regular function ., G-invariant function
”*}\ Ln h on X/G m*h on X



Ring of invariants

Subring C[X]¢ c C[X] of
G-invariant regular
functions on X

Ring of regular
functions on X/G

Theorem (Hilbert-Weyl-Haboush) If G is reductive, the ring of
invariants is finitely generated.

{09, ..., 0} X/G= { (image of ¢) c P* }
generators of C[X]¢ ¢ (x) = (gp(x), ..., 05(x))

If gy, ..., 0, all vanish at x, then ¢ is NOT defined at x!



Back to moduli of elliptic curves

space of cubic polynomials = Clasgg, @210, ---» Aoo3]

Claijx] L0 — ¢[s, T], deg(S) = 4,deg(T) = 6 (Aronhold, 1850)

16S3

] = s (characteristic + 2,3)

y?z —x3 =0 is NOT defined in P1
me— with homogeneous coordinates
S, T

S=T=0
for y2z —x3 =0



Back to moduli of elliptic curves

S = abem — (beazas + cabiby + abeice) — m(abses + beias + casbr)
— m* 4+ 2m?(bic1 + c2a2 + azbs) — 3m(azbsc; + asbics)
+ (abic3 + acib3 + basc® + beya3 + chsal + casb?)
— (Y32 + a3 + a2bl) + (caazasbs + asbsbicy + bicicaas),

b
I

a’b’c® — 6abe(abscy + beras + caszby) + 12abem(bic + caas + azbs)
36m?(bcazas + cabibs + abeics) — 3(a’bia3 + b2clal + 2adb?)
A(a®bcs + a’cbl + a’cb3 + bPcal + bPact + c’abt + c*baj)
24m(bebia; + beeias + cacab? + caazbl + abazca + abbycl)
12(becaasas + bebsazal + cacibsb? + caazbib3 + abbicacy)
6abcasbicy + 12m?(abicy + acib3 + basc? + beaai + cbsas + cazb?)
20abem® — 60m(abibscicy + beicaasas + casazbi bs)

12m(aazbscy + aascabs + bbscial + bbiazcs + ceiazbl + cezbial)
6(absce + beiag + cazbi)(azbscs + azbice) — 6b1c1caa2a3b3
24(abib2c? + acicab? + beacial + basaies + cazalbi + cbszbia?)
12(aasbic + aazciby + bbycaa3 + bbiasc; + cerash? + ceabsal)
8m® + 24m*(b1¢1 + caas + asbs) — 36m®(azbsc; + asbicy)

+ 36m(agbsci + asbic)(bicy + caas + azbs) + 8(b3c3 + c3ad + a3b3)
— 12(b3c3caan + bicTasbs + caasasbs + caasbicy + azbibicy + a3by)

— 12m?(bicicaas + Coaza3bs + asbsbicy) — 24m> (B3¢t + caas + a3b3)
+ 18(bebiciazas + cacyazbsby + abaszbscicy) — 27(asb3ct + a3bic)

+ 6abcasbyc; — 12m3(abgcg + bciag + cagby).

|+ +

_|_

I+ + +

Here we use the following dictionary between our notation of coefficients and
Salmon’s:

Source: Lectures on invariant theory by I. Dolgachev (al, o, 3, Ca, U5, g, A7, g, Cg, am) = (a, 3a2, 303, 3b1, 6m, 3(31, b, 363, 362, C).



Isomorphic
when t # 0

Bad degeneration of elliptic curves

Ce: 2z = x(x — t?z)(x — 2t32)
x' = tzxéy’ = t3y

C'h:v?z=x"(x'—2z)(x' — 2tz)

Not
isomorphic
att=0:

Two different
possible limits!



Construction of quotients (GIT)

X = projective variety
G = algebraic group ~ X

X355 = open locus of semistable points at which an invariant function
does not vanish

Theorem (Mumford) There exists a projective guotient

XSS — XSS/G
(\ Usually denoted

u —o Spec ClU by X//G



Recall: Hypersurface case (single equation)

Plane cubics (elliptic curves)

{(t,y,2) e P|F(x,y,2) = X4 jrx=z Qijix'y! 2" = 0} yéz —x%(x —2) =0

xoyzz1_ X3y020+ X2y021=0

| |

9
(@300, A210, A201, -+ » Ao21, Ao125 Ag03)E [P (-1,0,1,0,0,0,0,1,0,0)



Construction of moduli of curves

Need multiple equations to define a curve C c P"

s-dimensional
subspace
Space of degree
a; o @S FOWS :
m polynomials
al,a
az,a

Cc P < : € Gr(s,Clxg, ..., x5 ]m)

S
a
> T C IP(/\ C[xo, ...,xn]m>

C=Vv({,fs.. ) c P

fi = z a; o x* € Clxg, ..., X,]

Assume: deg f; = m




Construction of moduli of curves

Uniform number s and degree m

” ’ / ’ 7 — o .
Use a ‘canonical embedding of the defining equations

C = nonsingular projective curve of genus g = dim H’(w()

Does NOT
depend on C

CoP (Ho(a)c‘g”’)) =~ pv-D=D-1 s cut out by s degree m
equations!

w, = sheaf of holomorphic 1-forms



Hilbert points

al,a
az,a

€ Gr (s, Clxq, ..., Xn]m)

Vector space of
: : n+m
Dimension (™)

SLp+1(C) ~ Hy,,,, = {[C];n | C nonsingular genus g} c Gr(s, C[xg, ..., X |m)

CS P (Ho(a)(;@v)) «—

As o

I
[C],, = mth Hilbert point of C

H,..//SL,+1(C) = moduli space of curves of genus g



Moduli of curves

(Moduli space of curves of genus g) = H,, ,,,//SLy41(C)

Choice of Degree of
embedding C equations

Semistability depends on Moduli space H,, ,,,//SL;+1(C)
the choice of (v, m) depends on (v, m)

Problem Describe the moduli spaces associated to various (v, m).



Deligne-Mumford stable curves

A complete connected curve (of genus g = 2) is Deligne-Mumford
stable if

* it has only nodes as singularity, and;

* it has only finite automorphisms.> u r\\

A smooth rational component meets
the rest of the curve in = 3 points

“Mumford and I . \
realized in 1974 that. An ordinary node

. (Gieseker’s Tata lecture
(V, m) — (2 5, >> O) notes)

Theorem (Mumford, Gieseker 1974~80)
H, ;»//SLy+1(C) = Moduli space M, of Deligne-Mumford stable curves.



Deligne-Mumford stable curves

Unstable curves (bad singularity)

[FE1 "

Unstable curves (infinite automorphisms)

Infinite
automorphisms

Fix C, D and move 1 fixing 0 and o
the points on P! .7<. P )
by automorphisms (\ pl

/ \ D o )

fixing 0 and oo




Pseudostable curves

A complete connected curve is pseudostable if it has nodes and
cusps as singularities, has finite automorphisms, but no elliptic tails.

(v=4, m>0)

Theorem (Schubert 1991, Morrison-Hyeon 2010)
H, ,.//SL,,,(C) = Moduli space M_gpsof pseudostable curves.



- —pS
M, VS M,

Problem What is the relation between M, and M_gps?

v )
N ey
o Y

o .

Hs o//SLns1(C)  Hyoo//SLns1(C)

Problem More generally: Construct the moduli spaces associated to
various (v, m) and describe the relations between them.

Issues

« In the two “old” moduli spaces, nonisomorphic curves are separated, which is
not the case in general due to much more complicated orbit structures.

« No motivation to solve the issue! .
Found in

MMP for M,



Classification of varieties

X and Y are birational to each other if there exist open subvarieties
XoOU=VcCcY

e.g. f:X - Y (aresolution of singularities), blow up




Classification of varieties

Classification up to isomorphism === Moduli theory

« How many varieties (of a given type) are there? : dimension of the moduli
« Can a given variety (algebraically) deformed to another? : connectedness

 Functoriality » computation of invariants : new examples of varieties

Classification up to birational ) Minimal Model
equivalence Program

« Minimal Model Program : A procedure to find a canonical representative in
each birational equivalence class



Minimal Model Program

(Dimension = 1) There is a unique nonsingular projective curve X
birational to any given curve.

(Dimension = 2) There are many nonsingular projective surfaces
that are birational to each other.

« E.g. A blow up of X (with a nonsingular center) is nonsingular if
X Is nonsingular.

Bl,X = X#S% (X is topologically simpler than its blow up!)

Start with X and blow down (until we can't).



Minimal Model Program (dimension= 2)

S = a minimal
model

l

End

Start

)

S = nonsingular
projective surface

Yes l

3 blow down
¢o: S->W

o

-

.
.
.
.
.
-------
------

-----------
wst®
..
Y
o
o
.
.
S
-
o
3

------
-----------
.
..
.
.

7 ECS
K5E=—1

Castelnuovo
Theorem



Minimal Model Program (dimension= 2)

Start
% S = nonsing. proj. surf. End
S = a minimal _Yes = ¢ = Morl
model K¢ =" nef? S=W fiber space
No | Yes
J’ ‘l' No
End 3 extremal contraction __J Exc(¢) = B

¢: S->W (—1) —curve?



Minimal Model Program (dingesSsusim

Start the exceptional
€ = smallest category locus
where MMP works F | - ‘
X€eG X=Y i X=Xt
X = a minimal 3X -» Xt
Yes .
model or D — Ky = nef? LS ” Mori flip
Mori fibre space A A
| Yes
l No‘ll No
3 extremal contraction codim _

—
End o: X ->Y Exc(¢p) =1



Log MMP for the moduli of curves

KM—g contracts too many divisSors! e Use K— + ad Instead
a E 10,1] N Q




Log MMP for the moduli of curves

Ky~ + ad nef? Curves
J to be
contracted!
Theorem Of Gibney_KeeI_Morrison ""--......,.......----.....-------....,.‘
+ —  {E| Ui +a5)E<o}
Fulton’s conjecture ~-. Generators
of the cone
of curves

Intersection can be carried out by an

O; =~ M,_. 1 X M; — :
i g-il L1 inductive argument



Hassett-Keel program

Hassett-Keel program: Run the log MMP guided by K3~+ a0 as

Dimension
we decrease a from 1 to O. :
....................... Vary the .] One |OCUS
---------- Invariant L —
In M,

o
-
.
.
o*
.
.
.
.
.

..
.
.
.
.
s
s
we®
an®
wnt
wns
--------
s
------
.......
--------

(KM—g + o). A D S | A AT:M, - Y

—1 .
< extremal contraction

precisely when ¢ < 9/11 -

Hyeon 2009

nEay
.....
.
.
.
03

MMP w.rt

_ —  —ps
M, K—+i5 >T:M,; - M,
Mg 11




Hassett-Keel program

- S —DS
Y7 v U S\ M, €GC
g g g—1 1 (g_l)

Codim one
locus

. —ps
g logto extremal contraction
Codim two locus

(vary the j-invariant
and attaching points)



Hassett-Keel program

. MMP w.rt b —cs
M, K—ps + 7/106P° PiMy - M,

A
Rd
.0
‘Q
gunt
“
*

From another
parameter space
called
Chow variety

Codim R M. &G

Need a Mori flip: M_gps > (M_gps)+e C.



H-semistable curves

Theorem (Hassett, Lee and Hyeon) (v = 2; m > 0)

(@) H, ,,,//SL,+1(C) = Moduli space M_ghsof h-semistable curves;
(b) M_ghs =S (M_gpS)Jr (the Mori flip)

(C)M_g M(a) forae(——el)

A complete connected curve C is h-semistable if

* it has nodes, cusps and tacnodes_as singularities;

- a smooth rational component of it meéts.the rest of the curves in > 3
points counting mutiplicity; -

« an elliptic component of it meets the rest of’ the curves in = 2 points NOT
counting mutiplicity;

« it has no tacnodal elliptic chaing. .. . ..




Log MMP for the moduli of curves(2008~13)

KT
I . (9-2)
A T /gz —
&



Alper-Fedorchuk-Smyth-van der Wyck (2013)

M_g(7/10—e)

We are inching toward the canonical model M, (0) !



Hassett-Keel Program

As a gets smaller, M_g(a) IS expected to be a moduli space of curves
with increasingly worse singularities.

GIT quotient : : iy

Hy o/ /SLys1 (C) Moduli space Singularities

(2,6) M,(2/3) Ay, A,

(2,4.5) M,;(19/29) Ay, ., Ay AS
(2,1.25) M,(17/28) A, ..., As
(2,27/14) M,(49/83) A, ., Ag
— Ay, ., A,

Y 3g + 8 ADE, Xg,]lo, ElZIR
(1,>0) Mg (89 +4 E) ibbons etc.

Fedorchuk-Smyth
arXiv 1012.0329



Hilbert points

al,a
A2 o

CcPt <« € Gr(s,Clxg, ..., Xn]m)

aS,CZ i /

: Vector space of
[C],, = mth Hilbert point of C Dimension (")

H, ., = {[C],;x | C nonsingular genus g} c Gr(s, C[xg, ..., Xp|m)

H,..//SL,+1(C) = moduli space of curves of genus g



Toward new moduli spaces

Alper-Fedorchuk-Smyth-van der Wyck : GIT free approach

Prediction: M, (g) ~ Hym//SLn+1(©), with (v,m) = (2,6).

C c P" : defined by an ideal I c C[x,, ..., x,]

Hilbert-Mumford numerical criterion: [C],,, is (semi)stable if and only if
v choice of coordinates and vr = (ry, ...,1,,) € Z"1,¥r; = 0,
3 a basis {x*D, ..., x4D} for C[xy, ..., Xplm/Ln such that

Yr.a(i) < 0 (resp. < 0)



Finite Hilbert Stability

Key to establishing the stability of [C],,, : estimation of the

dim(C|xg, ..., Xl /Im)w
the equation weight

_ . " " "

dim(C|xg, ..., X lm/Im)w dim H°(line bundle) = Euler characteristic

Estimation of Estimation of
Determined
by the weight
w




Finite Hilbert Stability

Higher cohomologies do NOT vanish for small m. A completely new
method should be developed.

BIG THEOREM (Mumford, Gieseker ~1974) A smooth v-canonical
curve of genus g = 2 has stable mth Hilbert point for v =2 and m >»

0.

CONJECTURE (I. Morrison ~2010) A smooth bicanonical curve of
genus g = 3 has stable mth Hilbert point whenever (g, m) # (3,2).



