Birational geometry of Moduli space of curves

Donghoon Hyeon
Department of Mathematics
POSTECH
Pohang, Gyungbuk 790-784
R. O. Korea

October 3, 2013
$57^{\text {th }}$ Annual Meeting of the Australian Mathematical Society The University of Sydney

Objects in algebraic geometry

Affine algebraic variety

$$
\begin{aligned}
V\left(f_{1}, f_{2}, \ldots, f_{s}\right) & =\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid f_{1}(x)=f_{2}(x)=\cdots=f_{s}(x)=0\right\} \\
f_{i}(x) & \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x, y, z)=(y-\sqrt{3})^{2}-(x-1)(x-2)(x-3) \\
& D=V(f, z-1) \cup V\left(x-(z-1)^{3}, y-(z-1)^{2}\right) \\
& C=V\left(y^{2}-x^{3}, z\right) \subset \mathbb{C}^{3}
\end{aligned}
$$

Objects in algebraic geometry

Projective algebraic variety

$$
\begin{aligned}
& \mathbb{P}^{n}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*} \\
& V\left(f_{1}, f_{2}, \ldots, f_{s}\right)=\left\{x=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{P}^{n} \mid f_{1}(x)=\cdots=f_{s}(x)=0\right\} \\
& f_{i}(x) \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \quad \text { (homogeneous) }
\end{aligned}
$$

Example

$$
\begin{aligned}
& p=(1,0,0) \in \mathbb{P}^{2} \\
& B l_{p} \mathbb{P}^{2}=\left\{(x, y, z ; s, t) \in \mathbb{P}^{2} \times \mathbb{P}^{1} \mid y t=z s\right\}
\end{aligned}
$$

Source: D. Arapura's website

Moduli theory

A moduli space (of curves, of surfaces, of vector bundles over a curve etc) is

- the set of isomorphism classes (equipped with a structure of algebraic variety)
- and certain universal properties

The term moduli was first used by B. Riemann (1826-1866).

Slit \& Sew

$g+1$ Riemann spheres
"This depends on $3 g-3$ modulun"

Plane isometries

Plane isometries \leftrightarrow (translation) \circ (orthogonal transformation)

- $f(z)=a z+b\left(a \in S^{1}, b \in \mathbb{C}\right)$ is a rotation unless $a=1$.

Rotation
by $\operatorname{Arg}(a)$

$$
\begin{aligned}
& \text { around } \\
& b(1-a)^{-1}
\end{aligned}
$$

- $f(z)=a \bar{z}+b\left(a \in S^{1}, b \in \mathbb{C}\right)$ is a glide unless $b+a \bar{b}=0$.
reflection

Moduli of plane isometries

Moduli of plane isometries :=O(2)× $\mathbb{R}^{2} \simeq\left(S^{1} \times \mathbb{R}^{2}\right) \amalg\left(S^{1} \times \mathbb{R}^{2}\right)$

Picture: Notes on geometry by E. Rees

(a, b)	(a, b)
\uparrow	\uparrow
$a z+b$	$a \bar{z}+b$

rotation
translation $a=1$
reflection
$b+a \bar{b}=0$

Moduli of plane cubics

Plane cubics (elliptic curves)
$\left\{(x, y, z) \in \mathbb{P}^{2} \mid F(x, y, z)=\sum_{i+j+k=3} a_{i j k} x^{i} y^{j} z^{k}=0\right\}$
$y^{2} z-x^{2}(x-z)=0$
$x^{0} y^{2} z^{1}-x^{3} y^{0} z^{0}+x^{2} y^{0} z^{1}=0$

(-1,0,1,0,0,0,0,1,0,0)
\{plane cubics\}/(coordinate change) $=\mathbb{P}^{9} / S L_{3}(\mathbb{C})$

Moduli space $=($ parameter space $) /($ group action $)$
Equals

Construction of quotient in algebraic geometry is NOT automatic!

Bad degeneration of elliptic curves

$\left[C_{t}\right]=\left[C_{t}^{\prime}\right]$ in a moduli space

For $\left\{\left[C_{t}\right]=\left[C^{\prime}{ }_{t}\right]\right\}_{t \neq 0}$ to have a unique limit, we need to keep one and discard the other.

Which curve should we pick? (GIT)

Need a reliable system to pick the correct limits.
Mumford's Geometric Invariant Theory (GIT)

To understand a quotient space

Question. What are the (regular) functions on the quotient space?

Regular function h on X / G
G-invariant function $\pi^{*} h$ on X

Ring of invariants

Ring of regular functions on X / G

Subring $\mathbb{C}[X]^{G} \subset \mathbb{C}[X]$ of G-invariant regular functions on X

Theorem (Hilbert-Weyl-Haboush) If G is reductive, the ring of invariants is finitely generated.

$$
\begin{gathered}
\left\{\sigma_{0}, \ldots, \sigma_{s}\right\}: \\
\text { generators of } \mathbb{C}[X]
\end{gathered} \quad \longrightarrow \quad X / G=\left[\begin{array}{c}
\text { (image of } \phi) \subset \mathbb{P}^{s} \\
\phi(x)=\left(\sigma_{0}(x), \ldots, \sigma_{s}(x)\right)
\end{array}\right]
$$

If $\sigma_{0}, \ldots, \sigma_{s}$ all vanish at x, then ϕ is NOT defined at x !

Back to moduli of elliptic curves

space of cubic polynomials $=\mathbb{C}\left[a_{300}, a_{210}, \ldots, a_{003}\right]$

$$
\mathbb{C}\left[a_{i j k}\right]^{S L_{3}(\mathbb{C})}=\mathbb{C}[S, T], \operatorname{deg}(S)=4, \operatorname{deg}(T)=6 \text { (Aronhold, 1850) }
$$

$J=\frac{16 S^{3}}{T^{2}+64 S^{3}}$ (characteristic $\neq 2,3$)

$$
S=T=0
$$

$y^{2} z-x^{3}=0$ is NOT defined in \mathbb{P}^{1}

$$
\text { for } y^{2} z-x^{3}=0
$$

with homogeneous coordinates
S, T

Back to moduli of elliptic curves

```
S=abcm-(bc\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}+ca\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}+ab\mp@subsup{c}{1}{}\mp@subsup{c}{2}{})-m(a\mp@subsup{b}{3}{}\mp@subsup{c}{2}{}+b\mp@subsup{c}{1}{}\mp@subsup{a}{3}{}+c\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})
    - m
    + (a\mp@subsup{b}{1}{}\mp@subsup{c}{2}{2}+a\mp@subsup{c}{1}{}\mp@subsup{b}{3}{2}+b\mp@subsup{a}{2}{}\mp@subsup{c}{1}{2}+b\mp@subsup{c}{2}{}\mp@subsup{a}{3}{2}+c\mp@subsup{b}{3}{}\mp@subsup{a}{2}{2}+c\mp@subsup{a}{3}{}\mp@subsup{b}{1}{2})
    - (b
T= a}\mp@subsup{\mp@code{D}}{}{2}\mp@subsup{c}{}{2}-6abc(a\mp@subsup{b}{3}{}\mp@subsup{c}{2}{}+b\mp@subsup{c}{1}{}\mp@subsup{a}{3}{}+c\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})+12abcm(\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}+\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{3}{}
    + 36m}\mp@subsup{m}{}{2}(bc\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}+ca\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}+ab\mp@subsup{c}{1}{}\mp@subsup{c}{2}{})-3(\mp@subsup{a}{}{2}\mp@subsup{b}{3}{2}\mp@subsup{a}{3}{2}+\mp@subsup{b}{}{2}\mp@subsup{c}{1}{2}\mp@subsup{a}{3}{2}+\mp@subsup{c}{}{2}\mp@subsup{a}{2}{2}\mp@subsup{b}{1}{2}
    + 4( a 2 bc 3}+\mp@subsup{a}{}{2}c\mp@subsup{b}{3}{2}+\mp@subsup{a}{}{2}c\mp@subsup{b}{3}{3}+\mp@subsup{b}{}{3}c\mp@subsup{a}{3}{3}+\mp@subsup{b}{}{2}a\mp@subsup{c}{1}{3}+\mp@subsup{c}{}{2}a\mp@subsup{b}{1}{3}+\mp@subsup{c}{}{2}b\mp@subsup{a}{2}{3}
    - 24m(bcb, a a
    - 12(bcc\mp@subsup{c}{2}{}\mp@subsup{a}{3}{}\mp@subsup{a}{2}{2}+bc\mp@subsup{b}{3}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{2}+ca\mp@subsup{c}{1}{}\mp@subsup{b}{3}{}\mp@subsup{b}{1}{2}+ca\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{b}{3}{2}+ab\mp@subsup{b}{1}{}\mp@subsup{c}{2}{}\mp@subsup{c}{1}{2})
    + 6abca, b}\mp@subsup{b}{1}{}\mp@subsup{c}{2}{}+12\mp@subsup{m}{}{2}(a\mp@subsup{b}{1}{}\mp@subsup{c}{2}{2}+a\mp@subsup{c}{1}{}\mp@subsup{b}{3}{2}+b\mp@subsup{a}{2}{}\mp@subsup{c}{1}{2}+b\mp@subsup{c}{2}{}\mp@subsup{a}{3}{2}+c\mp@subsup{b}{3}{}\mp@subsup{a}{2}{2}+c\mp@subsup{a}{3}{}\mp@subsup{b}{1}{2}
    - 20abcm}\mp@subsup{}{}{3}-60m(a\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}+b\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}+c\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}
    + 12m(a\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}\mp@subsup{c}{2}{2}+a\mp@subsup{a}{3}{}\mp@subsup{c}{2}{}\mp@subsup{b}{3}{2}+b\mp@subsup{b}{3}{}\mp@subsup{c}{1}{}\mp@subsup{a}{3}{2}+b\mp@subsup{b}{1}{}\mp@subsup{a}{3}{}\mp@subsup{c}{1}{2}+c\mp@subsup{c}{1}{}\mp@subsup{a}{2}{}\mp@subsup{b}{1}{2}+c\mp@subsup{c}{2}{}\mp@subsup{b}{1}{}\mp@subsup{a}{2}{2})
    +6(a\mp@subsup{b}{3}{}\mp@subsup{c}{2}{}+b\mp@subsup{c}{1}{}\mp@subsup{a}{3}{}+c\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})(\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}\mp@subsup{c}{1}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{c}{2}{})-6\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{3}{}
    + 24(a\mp@subsup{b}{1}{}\mp@subsup{b}{3}{2}\mp@subsup{c}{1}{2}+a\mp@subsup{c}{1}{}\mp@subsup{c}{2}{2}\mp@subsup{b}{1}{2}+b\mp@subsup{c}{2}{}\mp@subsup{c}{1}{2}\mp@subsup{a}{2}{2}+b\mp@subsup{a}{2}{}\mp@subsup{a}{3}{2}\mp@subsup{c}{2}{2}+c\mp@subsup{a}{3}{}\mp@subsup{a}{2}{2}\mp@subsup{b}{3}{2}+c\mp@subsup{b}{3}{}\mp@subsup{b}{1}{2}\mp@subsup{a}{3}{2})
    - 12(a\mp@subsup{a}{2}{}\mp@subsup{b}{1}{}\mp@subsup{c}{2}{3}+a\mp@subsup{a}{3}{}\mp@subsup{c}{1}{}\mp@subsup{b}{3}{3}+b\mp@subsup{b}{3}{}\mp@subsup{c}{2}{}\mp@subsup{a}{3}{3}+b\mp@subsup{b}{1}{}\mp@subsup{a}{2}{}\mp@subsup{c}{1}{3}+c\mp@subsup{c}{1}{}\mp@subsup{a}{3}{}\mp@subsup{b}{1}{3}+c\mp@subsup{c}{2}{}\mp@subsup{b}{3}{}\mp@subsup{a}{2}{3})
    - 8m}\mp@subsup{m}{}{6}+24\mp@subsup{m}{}{4}(\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}+\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{3}{})-36\mp@subsup{m}{}{3}(\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}\mp@subsup{c}{1}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{c}{2}{}
    +36m(a, b}\mp@subsup{b}{3}{}\mp@subsup{c}{1}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{c}{2}{})(\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}+\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{3}{})+8(\mp@subsup{b}{1}{3}\mp@subsup{c}{1}{3}+\mp@subsup{c}{2}{3}\mp@subsup{a}{2}{3}+\mp@subsup{a}{3}{3}\mp@subsup{b}{3}{3}
    - 12( (b1 2 c
    - 12m}\mp@subsup{}{2}{2}(\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}+\mp@subsup{c}{2}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{3}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{3}{}\mp@subsup{b}{1}{}\mp@subsup{c}{1}{})-24\mp@subsup{m}{}{2}(\mp@subsup{b}{1}{2}\mp@subsup{c}{1}{2}+\mp@subsup{c}{2}{2}\mp@subsup{a}{2}{2}+\mp@subsup{a}{3}{2}\mp@subsup{b}{3}{2}
```



```
    + 6abca, }\mp@subsup{\mp@code{2}}{2}{}\mp@subsup{c}{1}{}-12\mp@subsup{m}{}{3}(a\mp@subsup{b}{3}{}\mp@subsup{c}{2}{}+b\mp@subsup{c}{1}{}\mp@subsup{a}{3}{}+c\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})
```

Here we use the following dictionary between our notation of coefficients and Salmon's:

Bad degeneration of elliptic curves

$$
S=T=0
$$

Construction of quotients (GIT)

$X=$ projective variety
$G=$ algebraic group $\sim X$
$X^{S S}=$ open locus of semistable points at which an invariant function does not vanish

Theorem (Mumford) There exists a projective quotient

$$
\begin{array}{lc}
X^{s s} \rightarrow X^{s s} / G \longleftrightarrow \\
U & U \\
U & \rightarrow \text { Spec } \mathbb{C}[U]^{G}
\end{array} \quad \begin{gathered}
\text { Usually denoted } \\
\text { by } X / / G
\end{gathered}
$$

Recall: Hypersurface case (single equation)

Plane cubics (elliptic curves)

$\left\{(x, y, z) \in \mathbb{P}^{2} \mid F(x, y, z)=\sum_{i+j+k=3} a_{i j k} x^{i} y^{j} z^{k}=0\right\}$

$\left(a_{300}, a_{210}, a_{201}, \ldots, a_{021}, a_{012}, a_{003}\right) \in \mathbb{P}^{9}$

$$
y^{2} z-x^{2}(x-z)=0
$$

$$
x^{0} y^{2} z^{1}-x^{3} y^{0} z^{0}+x^{2} y^{0} z^{1}=0
$$

$(-1,0,1,0,0,0,0,1,0,0)$

Construction of moduli of curves

Need multiple equations to define a curve $C \subset \mathbb{P}^{n}$

$$
C=V\left(f_{1}, f_{2}, \ldots, f_{s}\right) \subset \mathbb{P}^{n}
$$

$f_{i}=\sum a_{i, \alpha} x^{\alpha} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$
Assume: $\operatorname{deg} f_{i}=m$

Construction of moduli of curves

Use a "canonical embedding"

Uniform number s and degree m of the defining equations
$C=$ nonsingular projective curve of genus $g=\operatorname{dim} H^{0}\left(\omega_{C}\right)$
$\omega_{C}=$ sheaf of holomorphic 1-forms

$C \hookrightarrow \mathbb{P}\left(H^{0}\left(\omega_{C}{ }^{\otimes v}\right)\right) \cong \mathbb{P}^{(2 v-1)(g-1)-1}$ is cut out by s degree m equations!

Hilbert points

$\left.\begin{array}{rl}C \hookrightarrow \mathbb{P}\left(H^{0}\left(\omega_{C}{ }^{\otimes v}\right)\right) \leftrightarrow & {\left[\begin{array}{c}a_{1, \alpha}- \\ \vdots \\ \vdots \\ a_{s, \alpha} \\ \hline\end{array}\right]}\end{array}\right] \in \operatorname{Gr}\left(s, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m}\right)$
$S L_{n+1}(\mathbb{C}) \curvearrowright \boldsymbol{H}_{v, m}=\overline{\left\{[C]_{m} \mid C \text { nonsingular genus } g\right\}} \subset \operatorname{Gr}\left(s, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m}\right)$
$\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C})=$ moduli space of curves of genus g

Moduli of curves

(Moduli space of curves of genus g) $=\boldsymbol{H}_{\nu, m} / / S L_{n+1}(\mathbb{C})$

Semistability depends on the choice of (v, m)

Moduli space $\boldsymbol{H}_{\nu, m} / / S L_{n+1}(\mathbb{C})$ depends on (v, m)

Problem Describe the moduli spaces associated to various (v, m).

Deligne-Mumford stable curves

A complete connected curve (of genus $g \geq 2$) is Deligne-Mumford stable if

- it has only nodes as singularity, and;
- it has only finite automorphisms.

A smooth rational component meets the rest of the curve in ≥ 3 points

$$
(\nu, m)=(\geq 5, \gg 0)
$$

"Mumford and I realized in 1974 that.."

An ordinary node

Theorem (Mumford, Gieseker 1974~80)
$\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C}) \simeq$ Moduli space $\overline{M_{g}}$ of Deligne-Mumford stable curves.

Deligne-Mumford stable curves

Unstable curves (bad singularity)

Unstable curves (infinite automorphisms)

Fix C, D and move the points on \mathbb{P}^{1} by automorphisms fixing 0 and ∞

Infinite
automorphisms fixing 0 and ∞

Pseudostable curves

A complete connected curve is pseudostable if it has nodes and cusps as singularities, has finite automorphisms, but no elliptic tails.

$$
(v=4 ; m \gg 0)
$$

Theorem (Schubert 1991, Morrison-Hyeon 2010)
$\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C}) \simeq$ Moduli space ${\overline{M_{g}}}^{\text {ps }}$ of pseudostable curves.

Problem What is the relation between $\overline{M_{g}}$ and ${\overline{M_{g}}}^{p s}$?

$\boldsymbol{H}_{4, \infty} / / S L_{n+1}(\mathbb{C})$
Problem More generally: Construct the moduli spaces associated to various (v, m) and describe the relations between them.

Issues

- In the two "old" moduli spaces, nonisomorphic curves are separated, which is not the case in general due to much more complicated orbit structures.
- No motivation to solve the issue!

Classification of varieties

X and Y are birational to each other if there exist open subvarieties

$$
X \supset U \simeq V \subset Y
$$

e.g. $\quad f: X \rightarrow Y$ (a resolution of singularities), blow up

Classification of varieties

Classification up to isomorphism

Moduli theory

- How many varieties (of a given type) are there? : dimension of the moduli
- Can a given variety (algebraically) deformed to another? : connectedness
- Functoriality $\mathrm{m} \boldsymbol{m}$ computation of invariants : new examples of varieties

Classification up to birational equivalence

Minimal Model
 Program

- Minimal Model Program : A procedure to find a canonical representative in each birational equivalence class

Minimal Model Program

(Dimension $=1$) There is a unique nonsingular projective curve X birational to any given curve.
(Dimension $=2$) There are many nonsingular projective surfaces that are birational to each other.

- E.g. A blow up of X (with a nonsingular center) is nonsingular if X is nonsingular.
$B l_{p} X \simeq \bar{X} \# S^{2}$ (X is topologically simpler than its blow up!)

Start with X and blow down (until we can't).

Minimal Model Program (dimension= 2)

Minimal Model Program (dimension= 2)

Minimal Model Program (dim" "Surgery" on

$\mathfrak{C}=$ smallest category
where MMP works

> the exceptional locus
$X=$ a minimal model or
Mori fibre space

\qquad

Log MMP for the moduli of curves

$K_{\overline{M_{g}}}$ contracts too many divisors! \longrightarrow Use $K_{\overline{M_{g}}}+\alpha \delta$ instead $\alpha \in[0,1] \cap \mathbb{Q}$
$\delta=\delta_{0}+\delta_{1}+\cdots+\delta_{\lfloor g / 2\rfloor}$

$$
i=1,2, \ldots,\lfloor g / 2\rfloor
$$

Replace $\boldsymbol{K}_{\overline{M_{g}}}$ nef? by

$$
\begin{gathered}
K_{\overline{M_{g}}}+\alpha \delta \\
\text { nef? }
\end{gathered}
$$

Log MMP for the moduli of curves

$K_{\overline{M_{g}}}+\alpha \delta$ nef?
Curves to be
contracted!
Theorem of Gibney-Keel-Morrison

$$
\left\{E \mid \quad\left(K \overline{M_{g}}+\alpha \delta\right) \cdot E<0\right\}
$$

Fulton's conjecture

Generators of the cone of curves

$$
\delta_{i} \simeq \overline{M_{g-i, 1}} \times \overline{M_{i, 1}}
$$

Intersection can be carried out by an inductive argument

Hassett-Keel program

Hassett-Keel program: Run the log MMP guided by $K_{\overline{M_{n}}}+\alpha \delta$ as we decrease α from 1 to 0 . Dimension

Vary the j invariant one locus
in $\overline{M_{g}}$

$$
\exists T: \overline{M_{g}} \rightarrow Y
$$

extremal contraction
HassettHyeon 2009

MMP w.r.t
 $K_{\overline{M_{g}}}+\frac{9}{11} \delta$

Hassett-Keel program

$$
T: \overline{M_{g}} \rightarrow{\overline{M_{g}}}^{p s}{\underset{g-1}{ }}_{\sim}^{T} \overbrace{(g-1)}{\overline{M_{g}}}^{p s} \in \mathbb{C}
$$

Hassett-Keel program

$$
\Psi:{\overline{M_{g}}}^{p s} \rightarrow{\overline{M_{g}}}^{c s}
$$

From another
parameter space parameter space called
Chow variety
Codim

$$
=2 \longrightarrow{\overline{M_{g}}}^{c s} \notin \mathfrak{C}
$$

Need a Mori flip: ${\overline{M_{g}}}^{p s} \xrightarrow{\rightarrow}\left({\overline{M_{g}}}^{p s}\right)^{+} \in \mathfrak{V}$.

H-semistable curves

Theorem (Hassett, Lee and Hyeon) ($v=2 ; m \gg 0$)
(a) $\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C}) \simeq$ Moduli space ${\overline{M_{g}}}^{h s}$ of h-semistable curves;
(b) ${\overline{M_{g}}}^{h s} \simeq\left({\overline{M_{g}}}^{p s}\right)^{+}$(the Mori flip)
(c) ${\overline{M_{g}}}^{h s} \simeq \overline{M_{g}}(\alpha)$ for $\alpha \in\left(\frac{7}{10}-\epsilon, \frac{7}{10}\right)$.

A complete connected curve C is h-semistable if

- it has nodes, cusps and tacnodes as singularities;
- a smooth rational component of it meets the rest of the curves in ≥ 3 points counting mutiplicity;
- an elliptic component of it meets the rest of the curves in ≥ 2 points NOT counting mutiplicity;
- it has no tacnodal elliptic chains.

Log MMP for the moduli of curves(2008~13)

Alper-Fedorchuk-Smyth-van der Wyck (2013)

$$
\begin{aligned}
& \overline{M_{g}}(7 / 10-\epsilon) \\
& \quad \simeq \bar{M}_{g} s s \underbrace{}_{g-2} \underbrace{}_{(g-2)} \overline{M_{g}}\left(\frac{2}{3}-\epsilon\right)
\end{aligned}
$$

We are inching toward the canonical model $\overline{M_{g}}(0)$!

Hassett-Keel Program

As α gets smaller, $\overline{M_{g}}(\alpha)$ is expected to be a moduli space of curves with increasingly worse singularities.

GIT quotient $\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C})$	Moduli space	Singularities
$(2,6)$	$\overline{M_{g}}(2 / 3)$	A_{1}, A_{2}
$(2,4.5)$	$\overline{M_{g}}(19 / 29)$	$A_{1}, \ldots, A_{4}, A_{5}{ }^{\prime}$
$(2,1.25)$	$\overline{M_{g}}(17 / 28)$	A_{1}, \ldots, A_{5}
$(2,27 / 14)$	$\overline{M_{g}}(49 / 83)$	A_{1}, \ldots, A_{6}
$(2,1.5)$	$\overline{M_{g}}(5 / 9)$	$A_{1}, \ldots, A_{6 \prime}$ $D_{4}, D_{5}^{\prime}, D_{6}^{\prime}$
$(1, \gg 0)$	$\overline{M_{g}}\left(\frac{3 g+8}{8 g+4}-\epsilon\right)$	$A D E, X_{9}, J_{10}, E_{12}, R$ ibbons etc.

Hilbert points

$\boldsymbol{H}_{\nu, m}=\overline{\left\{[\boldsymbol{C}]_{m} \mid C \text { nonsingular genus } g\right\}} \subset \operatorname{Gr}\left(s, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m}\right)$
$\boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C})=$ moduli space of curves of genus g

Toward new moduli spaces

Alper-Fedorchuk-Smyth-van der Wyck : GIT free approach
Prediction: $\overline{M_{g}}\left(\frac{2}{3}\right) \simeq \boldsymbol{H}_{v, m} / / S L_{n+1}(\mathbb{C})$, with $(v, m)=(2,6)$.
$C \subset \mathbb{P}^{n}:$ defined by an ideal $I \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$

Hilbert-Mumford numerical criterion: $[C]_{m}$ is (semi)stable if and only if
\forall choice of coordinates and $\forall r=\left(r_{0}, \ldots, r_{n}\right) \in \mathbb{Z}^{n+1}, \sum r_{i}=0$,
\exists a basis $\left\{x^{a(1)}, \ldots, x^{a(l)}\right\}$ for $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m} / I_{m}$ such that $\sum r . a(i)<0($ resp. $\leq 0)$

Finite Hilbert Stability

Key to establishing the stability of $[C]_{m}$: estimation of the $\operatorname{dim}\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m} / I_{m}\right)_{w}$

Estimation of $\operatorname{dim}\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{m} / I_{m}\right)_{w}$

Estimation of $\operatorname{dim} H^{0}$ (line bundle $) \bar{\pi}$ Euler characteristic

Finite Hilbert Stability

Higher cohomologies do NOT vanish for small m. A completely new method should be developed.

BIG THEOREM (Mumford, Gieseker ~ 1974) A smooth v-canonical curve of genus $g \geq 2$ has stable m th Hilbert point for $v \geq 2$ and $m \gg$ 0.

CONJECTURE (I. Morrison ~2010) A smooth bicanonical curve of genus $g \geq 3$ has stable m th Hilbert point whenever $(g, m) \neq(3,2)$.

