
Birational geometry of 
Moduli space of curves

Donghoon Hyeon

Department of Mathematics

POSTECH

Pohang, Gyungbuk 790-784
R. O. Korea

October 3, 2013

57th Annual Meeting of the Australian Mathematical Society 

The University of Sydney



Affine algebraic variety
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𝑉 𝑓1, 𝑓2, … , 𝑓𝑠 = {𝑥 = (𝑥1, … , 𝑥𝑛)∈ ℂ
𝑛 | 𝑓1 𝑥 = 𝑓2 𝑥 = ⋯ = 𝑓𝑠 𝑥 = 0}

𝑓𝑖(𝑥) ∈ ℂ[𝑥1, … , 𝑥𝑛]

𝑓 𝑥, 𝑦, 𝑧 = (𝑦 − 3)2−(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)

𝐷 = 𝑉(𝑓, 𝑧 − 1) ∪ 𝑉(𝑥 − 𝑧 − 1 3, 𝑦 − 𝑧 − 1 2)

𝐶 = 𝑉(𝑦2 − 𝑥3, 𝑧) ⊂ ℂ3
𝐶

𝐷

Objects in algebraic geometry



Projective algebraic variety

ℙ𝑛 = (ℂ𝑛+1 − 0 )/ℂ∗

𝑉 𝑓1, 𝑓2, … , 𝑓𝑠 = {𝑥 = (𝑥0, … , 𝑥𝑛)∈ ℙ
𝑛 | 𝑓1 𝑥 = ⋯ = 𝑓𝑠 𝑥 = 0}

𝑓𝑖(𝑥) ∈ ℂ[𝑥0, … , 𝑥𝑛] (homogeneous)

𝑝 = (1,0,0) ∈ ℙ2

𝐵𝑙𝑝ℙ
2 = { 𝑥, 𝑦, 𝑧; 𝑠, 𝑡 ∈ ℙ2 × ℙ1 | 𝑦𝑡 = 𝑧𝑠}

𝐵𝑙𝑝ℙ
2

ℙ2

Objects in algebraic geometry

Example

Source: D. Arapura’s
website



Moduli theory

A moduli space (of curves, of surfaces, of vector bundles over a 
curve etc) is

• the set of isomorphism classes (equipped with a structure of algebraic variety)
• and certain universal properties

The term moduli was first used by B. Riemann (1826-1866).

Slit & Sew

“This depends on 
3𝑔 − 3 modulun”

𝑔 + 1 Riemann spheres
Genus 𝑔

Riemann surface



Plane isometries

Plane isometries ↔ (translation)∘(orthogonal transformation) 

• 𝑓 𝑧 = 𝑎𝑧 + 𝑏 (𝑎 ∈ 𝑆1, 𝑏 ∈ ℂ) is a rotation unless 𝑎 = 1.

• 𝑓 𝑧 = 𝑎𝑧 + 𝑏 (𝑎 ∈ 𝑆1, 𝑏 ∈ ℂ) is a glide unless 𝑏 + 𝑎𝑏 = 0.

𝑝 𝑟

𝑞

𝑓 𝑝 = 𝑝 + 𝑣 𝑓 𝑟

𝑓 𝑞

𝑣

reflecting 
line

Translating 
vector

around
𝑏(1 − 𝑎)−1

Rotation 
by Arg(𝑎 )

reflection

Distance 
preserving 

map



Moduli of plane isometries

Moduli of plane isometries ≔ 𝑂(2) × ℝ2 ≃ (𝑆1 × ℝ2)∐(𝑆1 × ℝ2)
𝑎, 𝑏
↕
𝑎𝑧 + 𝑏

𝑎, 𝑏
↕
𝑎𝑧 + 𝑏

∐

translation
a=1

rotation
reflection

𝑏 + 𝑎𝑏 = 0
glide

Picture: Notes on 
geometry by E. Rees



{plane cubics}/(coordinate change) = ℙ9/𝑆𝐿3(ℂ)

Moduli space = (parameter space)/(group action)

Construction of quotient in algebraic geometry is NOT automatic!

Moduli of plane cubics
Plane cubics (elliptic curves)

(𝑎300, 𝑎210, 𝑎201, … , 𝑎021, 𝑎012, 𝑎003)∈ ℙ
9

(𝑥, 𝑦, 𝑧) ∈ ℙ2 𝐹 𝑥, 𝑦, 𝑧 =  𝑖+𝑗+𝑘=3𝑎𝑖𝑗𝑘𝑥
𝑖𝑦𝑗𝑧𝑘 = 0 𝑦2𝑧 − 𝑥2 𝑥 − 𝑧 = 0

𝑥0𝑦2𝑧1- 𝑥3𝑦0𝑧0+ 𝑥2𝑦0𝑧1=0

(−1,0,1,0,0,0,0,1,0,0)

Equals
isomorphism 



𝐶𝑡: 𝑦
2𝑧 = 𝑥 𝑥 − 𝑡2𝑧 𝑥 − 2𝑡3𝑧 𝑦2𝑧 = 𝑥3

𝐶′𝑡: 𝑦′
2𝑧 = 𝑥′ 𝑥′ − 𝑧 𝑥′ − 2𝑡𝑧 𝑦′2𝑧 = 𝑥′2 𝑥′ − 𝑧

⇝

⇝

⇝

Bad degeneration of elliptic curves

𝑡 → 0

𝑡 → 0

𝑥′ = 𝑡2𝑥Isomorphic
when 𝑡 ≠ 0

𝐶𝑡 = [𝐶′𝑡] in a moduli space

Not
isomorphic
at 𝑡 = 0:
Two different 
possible limits!

For { 𝐶𝑡 = [𝐶
′
𝑡]}𝑡≠0 to have 

a unique limit, we need to 
keep one and discard the other.

𝑦′ = 𝑡3𝑦



Which curve should we pick? (GIT)

Need a reliable system to pick the correct limits.  

To understand a quotient space

Question. What are the (regular) functions on the quotient space?

𝑋

ℂ

ℎ𝜋∗ℎ

𝑋/𝐺
Regular function
ℎ on 𝑋/𝐺

𝐺-invariant function
𝜋∗ℎ on 𝑋

Mumford’s Geometric Invariant Theory (GIT)

constant 
on 
G-orbits



(image of 𝜙) ⊂ ℙ𝑠

𝜙 𝑥 = 𝜎0 𝑥 ,… , 𝜎𝑠 𝑥

Ring of invariants

Ring of regular 
functions on 𝑋/𝐺

Subring ℂ[𝑋]𝐺 ⊂ ℂ 𝑋 of 
𝐺-invariant regular 

functions on 𝑋

Theorem (Hilbert-Weyl-Haboush) If 𝐺 is reductive, the ring of 
invariants is finitely generated. 

𝜎0, … , 𝜎𝑠 :
generators of ℂ[𝑋]𝐺

𝑋/𝐺=

If 𝜎0, … , 𝜎𝑠 all vanish at 𝑥, then 𝜙 is NOT defined at 𝑥!   



Back to moduli of elliptic curves

ℂ[𝑎𝑖𝑗𝑘]
𝑆𝐿3 ℂ = ℂ 𝑆, 𝑇 , deg 𝑆 = 4, deg 𝑇 = 6 (Aronhold, 1850)

space of cubic polynomials = ℂ[𝑎300, 𝑎210, … , 𝑎003]

𝑆 = 𝑇 = 0
for 𝑦2𝑧 − 𝑥3 = 0

𝑦2𝑧 − 𝑥3 = 0 is NOT defined in ℙ1

with homogeneous coordinates 
𝑆, 𝑇

𝐽 =
16𝑆3

𝑇2+64𝑆3
(characteristic ≠ 2,3)



Back to moduli of elliptic curves

Source: Lectures on invariant theory by I. Dolgachev



𝐶𝑡: 𝑦
2𝑧 = 𝑥 𝑥 − 𝑡2𝑧 𝑥 − 2𝑡3𝑧 𝑦2𝑧 = 𝑥3

𝐶′𝑡: 𝑦′
2𝑧 = 𝑥′ 𝑥′ − 𝑧 𝑥′ − 2𝑡𝑧 𝑦′2𝑧 = 𝑥′2 𝑥′ − 𝑧

⇝

⇝

⇝

Bad degeneration of elliptic curves

𝑡 → 0

𝑡 → 0

𝑥′ = 𝑡2𝑥Isomorphic
when 𝑡 ≠ 0

Not
isomorphic
at 𝑡 = 0:
Two different 
possible limits!𝑦′ = 𝑡3𝑦

𝑆 = 𝑇 = 0

𝑆 = −
1

81



Construction of quotients (GIT)

Theorem (Mumford) There exists a projective quotient 

𝑋 = projective variety

𝐺 = algebraic group ↷ 𝑋

𝑋𝑠𝑠 = open locus of semistable points at which an invariant function 
does not vanish

𝑋𝑠𝑠⟶ 𝑋𝑠𝑠/𝐺

∪ ∪

𝑈 ⟶ 𝑆𝑝𝑒𝑐 ℂ[𝑈]𝐺

Usually denoted 
by 𝑋//𝐺



Recall: Hypersurface case (single equation)

Plane cubics (elliptic curves)

(𝑎300, 𝑎210, 𝑎201, … , 𝑎021, 𝑎012, 𝑎003)∈ ℙ
9

(𝑥, 𝑦, 𝑧) ∈ ℙ2 𝐹 𝑥, 𝑦, 𝑧 =  𝑖+𝑗+𝑘=3𝑎𝑖𝑗𝑘𝑥
𝑖𝑦𝑗𝑧𝑘 = 0 𝑦2𝑧 − 𝑥2 𝑥 − 𝑧 = 0

𝑥0𝑦2𝑧1- 𝑥3𝑦0𝑧0+ 𝑥2𝑦0𝑧1=0

(−1,0,1,0,0,0,0,1,0,0)



Construction of moduli of curves

Need multiple equations to define a curve 𝐶 ⊂ ℙ𝑛

𝐶 = 𝑉 𝑓1, 𝑓2, … , 𝑓𝑠 ⊂ ℙ
𝑛

𝑓𝑖 = 𝑎𝑖,𝛼 𝑥
𝛼 ∈ ℂ[𝑥0, … , 𝑥𝑛]

Assume: deg 𝑓𝑖 = 𝑚

𝐶 ⊂ ℙ𝑛

𝑎1,𝛼
𝑎2,𝛼
⋮
𝑎𝑠,𝛼

𝑎𝑖,𝛼 as rows

∈

𝑠-dimensional 
subspace

𝐺𝑟(𝑠, ℂ[𝑥0, … , 𝑥𝑛]𝑚)

Space of degree 
𝑚 polynomials

⊂ ℙ  

𝑠

ℂ[𝑥0, … , 𝑥𝑛]𝑚



Construction of moduli of curves

Use a “canonical embedding” Uniform number 𝑠 and degree 𝑚
of the defining equations

𝜔𝐶 = sheaf of holomorphic 1-forms

𝐶 ↪ ℙ 𝐻0 𝜔𝐶
⊗𝜈 ≅ ℙ 2𝜈−1 𝑔−1 −1 is cut out by 𝑠 degree 𝑚

equations! 

𝐶 = nonsingular projective curve of genus 𝑔 = dim𝐻0(𝜔𝐶)

Does NOT 
depend on 𝐶



𝑎1,𝛼
𝑎2,𝛼
⋮
𝑎𝑠,𝛼

Vector space of 

Dimension 𝑛+𝑚
𝑚

𝐶 ↪ ℙ 𝐻0 𝜔𝐶
⊗𝜈 ∈ 𝐺𝑟(𝑠, ℂ[𝑥0, … , 𝑥𝑛]𝑚)

Hilbert points

𝑪 𝒎 = 𝒎th Hilbert point of 𝑪

∥

𝑆𝐿𝑛+1 ℂ ↷ 𝑯𝜈,𝑚 = 𝐶 𝑚 𝐶 nonsingular genus 𝑔 ⊂ 𝐺𝑟(𝑠, ℂ[𝑥0, … , 𝑥𝑛]𝑚)

𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ = moduli space of curves of genus 𝑔



(Moduli space of curves of genus 𝑔) = 𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ

Choice of 
embedding 𝐶

Degree of 
equations

Moduli of curves

Moduli space 𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ

depends on (𝜈,𝑚)
Semistability depends on 

the choice of (𝜈,𝑚)

Problem Describe the moduli spaces associated to various (𝜈,𝑚). 



• it has only nodes as singularity, and; 

• it has only finite automorphisms.

Deligne-Mumford stable curves

A complete connected curve (of genus 𝑔 ≥ 2) is Deligne-Mumford 
stable if

(𝜈,𝑚) = (≥ 5,≫ 0)

Theorem (Mumford, Gieseker 1974~80) 

𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ ≃ Moduli space 𝑀𝑔 of Deligne-Mumford stable curves.

A smooth rational component meets
the rest of the curve in ≥ 3 points

An ordinary node
“Mumford and I 

realized in 1974 that..” 
(Gieseker’s Tata lecture 

notes)



Unstable curves (bad singularity)

Deligne-Mumford stable curves

𝐶
𝐷

ℙ1

ℙ1

0 ∞

Infinite 
automorphisms
fixing 0 and ∞Fix 𝐶, 𝐷 and move 

the points on ℙ1

by automorphisms
fixing 0 and ∞

Unstable curves (infinite automorphisms)

𝑦2𝑧 = 𝑥3



Pseudostable curves

(𝜈 = 4; 𝑚 ≫ 0)

Theorem (Schubert 1991, Morrison-Hyeon 2010) 

𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ ≃ Moduli space 𝑀𝑔
𝑝𝑠

of pseudostable curves.

A complete connected curve is pseudostable if it has nodes and 
cusps as singularities, has finite automorphisms, but no elliptic tails.

𝑔 − 1 1



𝑀𝑔 VS 𝑀𝑔
𝑝𝑠

Problem What is the relation between 𝑀𝑔 and 𝑀𝑔
𝑝𝑠

?

Problem More generally: Construct the moduli spaces associated to 
various 𝜈,𝑚 and describe the relations between them. 

𝑯5,∞//𝑆𝐿𝑛+1 ℂ 𝑯4,∞//𝑆𝐿𝑛+1 ℂ

Issues
• In the two “old” moduli spaces, nonisomorphic curves are separated, which is 

not the case in general due to much more complicated orbit structures. 
• No motivation to solve the issue!

Found in 

MMP for 𝑀𝑔



Classification of varieties

𝑋 and 𝑌 are birational to each other if there exist open subvarieties

e.g.   𝑓: 𝑋 → 𝑌 (a resolution of singularities), blow up 

𝑋 ⊃ 𝑈 ≃ 𝑉 ⊂ 𝑌



Moduli theory

Classification up to birational
equivalence 

Minimal Model 
Program

Classification up to isomorphism 

Classification of varieties

• How many varieties (of a given type) are there? : dimension of the moduli

• Can a given variety (algebraically) deformed to another? : connectedness

• Functoriality ⇝ computation of invariants : new examples of varieties

• Minimal Model Program : A procedure to find a canonical representative in 
each birational equivalence class 



(Dimension = 1) There is a unique nonsingular projective curve 𝑋
birational to any given curve. 

Minimal Model Program

(Dimension = 2) There are many nonsingular projective surfaces 
that are birational to each other. 

• E.g. A blow up of 𝑋 (with a nonsingular center) is nonsingular if 
𝑋 is nonsingular. 

𝐵𝑙𝑝𝑋 ≃ 𝑋#𝑆
2 (𝑋 is topologically simpler than its blow up!)

Start with 𝑋 and blow down (until we can’t).



Minimal Model Program (dimension= 2)

End

𝑆 = nonsingular 
projective surface

Start

Is 𝑺 a 
blow up?

∃ blow down
𝜙: 𝑆 → 𝑊

𝑆 = a minimal 
model

𝑆 ≔ 𝑊

No

Yes

∃? 𝐸 ⊂ 𝑆
𝐾𝑆. 𝐸 = −1

Castelnuovo
Theorem



Minimal Model Program (dimension= 2)

End

End𝑆 = nonsing. proj. surf.

Start

𝑲𝑺 = nef?

∃ extremal contraction
𝜙: 𝑆 → 𝑊

𝐸𝑥𝑐 𝜙 =
−1 −curve?

𝑆 = a minimal 
model

𝑆 ≔ 𝑊Yes

No Yes

𝜙 =Mori 
fiber space

No

∀ 𝐸 ⊂ 𝑆
𝐾𝑆. 𝐸 ≥ 0



Minimal Model Program (dimension≥ 3)

End

𝑋 ∈ ℭ

Start

𝑲𝑿 = nef?

∃ extremal contraction
𝜙: 𝑋 → 𝑌

codim
𝐸𝑥𝑐 𝜙 = 1

𝑋 = a minimal 
model or 

Mori fibre space

𝑌 ∈ ℭYes

No Yes

∃𝑋 ⇢ 𝑋+

Mori flip

No

𝑋 ≔ 𝑌 𝑋 ≔ 𝑋+

ℭ = smallest category 
where MMP works

“Surgery” on 
the exceptional 

locus 



Log MMP for the moduli of curves

𝐾𝑀𝑔 contracts too many divisors! Use 𝑲𝑴𝒈 + 𝜶𝜹 instead

𝛼 ∈ [0,1] ∩ ℚ

𝛿 = 𝛿0 + 𝛿1 +⋯+ 𝛿 𝑔/2

𝛿0 = 𝛿𝑖 =
𝑔 − 𝑖 𝑖

𝑖 = 1, 2,… , 𝑔/2

Replace
𝑲𝑴𝒈 + 𝜶𝜹

nef?
𝑲𝑴𝒈 nef? by



Log MMP for the moduli of curves

𝑲𝑴𝒈 + 𝜶𝜹 nef?

Theorem of Gibney-Keel-Morrison

+

Fulton’s conjecture

𝐸 (𝐾𝑀𝑔+𝛼𝛿). 𝐸 < 0

𝛿𝑖 ≃ 𝑀𝑔−𝑖,1 ×𝑀𝑖,1
Intersection can be carried out by an 
inductive argument

Generators 
of the cone 
of curves

Curves
to be 

contracted!



Hassett-Keel program: Run the log MMP guided by 𝐾𝑀𝑔+ 𝛼𝛿 as 

we decrease 𝛼 from 1 to 0.

Hassett-Keel program

𝑔 − 1 1
(𝐾𝑀𝑔 + 𝛼𝛿). < 0 ∃ 𝑇:𝑀𝑔 → 𝑌

extremal contraction
precisely when 𝛼 < 9/11

Vary the 𝑗
invariant

Dimension 
one locus 

in 𝑀𝑔

𝑀𝑔

MMP w.r.t

𝐾𝑀𝑔+
9

11
𝛿

𝑇:𝑀𝑔 → 𝑀𝑔
𝑝𝑠

Hassett-
Hyeon 2009



𝑇:𝑀𝑔 → 𝑀𝑔
𝑝𝑠

𝑔 − 1 1 (𝑔 − 1)

𝑇 𝑀𝑔
𝑝𝑠
∈ ℭ

Codim one 
locus

Hassett-Keel program

Codim two locus 
(vary the 𝑗-invariant 
and attaching points)

(𝐾
𝑀𝑔
𝑝𝑠+7/10𝛿𝑝𝑠).

𝑔 − 2

1

= 0 ∃Ψ:𝑀𝑔
𝑝𝑠
→ 𝑌

extremal contraction

(𝑗)



Hassett-Keel program

𝑀𝑔
𝑝𝑠 MMP w.r.t

𝐾
𝑀𝑔
𝑝𝑠 + 7/10𝛿𝑝𝑠 Ψ:𝑀𝑔

𝑝𝑠
→ 𝑀𝑔

𝑐𝑠

From another 
parameter space 

called 
Chow variety

𝑔 − 2

1 (𝑗)
Codim = 2

Need a Mori flip: 𝑀𝑔
𝑝𝑠
⇢ (𝑀𝑔

𝑝𝑠
)+∈ ℭ.

𝑀𝑔
𝑐𝑠
∉ ℭ



H-semistable curves

A complete connected curve 𝐶 is h-semistable if
• it has nodes, cusps and tacnodes as singularities;
• a smooth rational component of it meets the rest of the curves in ≥ 3

points counting mutiplicity;
• an elliptic component of it meets the rest of the curves in ≥ 2 points NOT 

counting mutiplicity;
• it has no tacnodal elliptic chains. 

Theorem (Hassett, Lee and Hyeon) (𝜈 = 2; 𝑚 ≫ 0)

(a) 𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ ≃ Moduli space 𝑀𝑔
ℎ𝑠

of h-semistable curves;

(b) 𝑀𝑔
ℎ𝑠
≃ (𝑀𝑔

𝑝𝑠
)+ (the Mori flip)  

(c) 𝑀𝑔
ℎ𝑠
≃ 𝑀𝑔(𝛼) for 𝛼 ∈

7

10
− 𝜖,
7

10
.

1 1 1



Log MMP for the moduli of curves(2008~13)

𝑀𝑔
ℎ𝑠

𝑀𝑔

𝑀𝑔
𝑝𝑠

𝑀𝑔
𝑐𝑠

𝑔 − 1 1

(𝑔 − 1)

𝑔 − 2

1

𝑔 − 2

(𝑔 − 2)



Alper-Fedorchuk-Smyth-van der Wyck (2013)

𝑀𝑔 7/10−𝜖

≃ 𝑀𝑔
ℎ𝑠

(𝑔 − 2)

𝑀𝑔(
2

3
)

𝑔 − 2 2

𝑦2 = 𝑥5

𝑀𝑔(
2

3
−𝜖)

𝑔 − 2 2

We are inching toward the canonical model 𝑀𝑔(0) !



Hassett-Keel Program

As 𝛼 gets smaller, 𝑀𝑔(𝛼) is expected to be a moduli space of curves 

with increasingly worse singularities.

GIT quotient 
𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ

Moduli space Singularities

(2,6) 𝑀𝑔 2/3 𝐴1, 𝐴2

(2,4.5) 𝑀𝑔 19/29 𝐴1, … , 𝐴4, 𝐴5′

(2,1.25) 𝑀𝑔 17/28 𝐴1, … , 𝐴5

(2,27/14) 𝑀𝑔 49/83 𝐴1, … , 𝐴6

(2,1.5) 𝑀𝑔 5/9
𝐴1, … , 𝐴6, 
𝐷4, 𝐷5

′ , 𝐷6′

(1,≫ 0) 𝑀𝑔
3𝑔 + 8

8𝑔 + 4
− 𝜖

𝐴𝐷𝐸, 𝑋9, 𝐽10, 𝐸12,R
ibbons etc.

Fedorchuk-Smyth 
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𝑎1,𝛼
𝑎2,𝛼
⋮
𝑎𝑠,𝛼

Vector space of 

Dimension 𝑛+𝑚
𝑚

𝐶 ⊂ ℙ𝑛 ∈ 𝐺𝑟(𝑠, ℂ[𝑥0, … , 𝑥𝑛]𝑚)

Hilbert points

𝑪 𝒎 = 𝒎th Hilbert point of 𝑪

∥

𝑯𝜈,𝑚 = 𝑪 𝒎 𝐶 nonsingular genus 𝑔 ⊂ 𝐺𝑟(𝑠, ℂ[𝑥0, … , 𝑥𝑛]𝑚)

𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ = moduli space of curves of genus 𝑔



Toward new moduli spaces

Alper-Fedorchuk-Smyth-van der Wyck : GIT free approach 

Prediction: 𝑀𝑔
2

3
≃ 𝑯𝜈,𝑚//𝑆𝐿𝑛+1 ℂ , with 𝜈,𝑚 = 2,6 .

Hilbert-Mumford numerical criterion: 𝐶 𝑚 is (semi)stable if and only if 

𝐶 ⊂ ℙ𝑛 : defined by an ideal 𝐼 ⊂ ℂ[𝑥0, … , 𝑥𝑛]

∀ choice of coordinates and ∀𝑟 = 𝑟0, … , 𝑟𝑛 ∈ ℤ
𝑛+1,  𝑟𝑖 = 0, 

∃ a basis 𝑥𝑎(1), … , 𝑥𝑎(𝑙) for ℂ 𝑥0, … , 𝑥𝑛 𝑚/𝐼𝑚 such that

 𝑟. 𝑎 𝑖 < 0 (resp. ≤ 0)  



Finite Hilbert Stability

Key to establishing the stability of 𝐶 𝑚 : estimation of the 
dim(ℂ 𝑥0, … , 𝑥𝑛 𝑚/𝐼𝑚)𝑤

Degree of 
the equation

Monomial 
weight

Estimation of
dim(ℂ 𝑥0, … , 𝑥𝑛 𝑚/𝐼𝑚)𝑤

Determined 
by the weight 
𝑤

𝐻𝑖 = 0, ∀𝑖 > 0
𝑚 ≫ 0

= 𝐸𝑢𝑙𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐
Estimation of

dim𝐻0(𝑙𝑖𝑛𝑒 𝑏𝑢𝑛𝑑𝑙𝑒)



Finite Hilbert Stability

Higher cohomologies do NOT vanish for small 𝑚. A completely new 
method should be developed. 

BIG THEOREM (Mumford, Gieseker ~1974) A smooth 𝜈-canonical 
curve of genus 𝑔 ≥ 2 has stable 𝑚th Hilbert point for 𝜈 ≥ 2 and 𝑚 ≫
0. 

CONJECTURE (I. Morrison ~2010) A smooth bicanonical curve of 
genus 𝑔 ≥ 3 has stable 𝑚th Hilbert point whenever (𝑔,𝑚) ≠ (3,2).


