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abstract

Computational mathematics is a branch of applied mathematics
which utilises mathematical concepts and theorems to understand
and develop computational techniques. These techniques are used
in applications from weather forecast to machine learning. Equally
broad is the scope of mathematics used – from algebraic and
differential geometry over linear and multilinear algebra to
functional and harmonic analysis.
The challenges originate from the applications considered and the
computers used. They include the curse of dimensionality in
statistics and uncertainty quantification, ill-posedness of inverse
problems, parallelism, asynchronicity and faults in high performance
computing and generally computational costs like energy and time.
In my talk I will discuss some computational techniques including
sparse grids, low rank tensors and local iterated function systems.
With these examples I intend to demonstrate how pure and applied
mathematics can work with computer science and the application
sciences to address our current computational challenges.
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prelude: the most popular computer
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smart phones – computers in our pockets?

image from Wikipedia

smart phones are computers which can be
used to do phone calls

Linpack benchmark at 100 MFlop/s –
about 1/2 of Cray 1, prominent
supercomputer in 1980s

while there is more to computing than
dense linear systems, computational
power of the multiple processors in phones
may be used do computational science

decisions based on complex computational
procedures may be done computing a
large number of scenarious off-line,
storing the results in the cloud and then
interpolating and displaying the results on
the phone (or tablett) on-line
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proof of concept: Raspberry Pi 2012

full computer based on ARM processor used in mobile phone

running Linux operating system

simple simulations with Python SciPy or Octave

uses 3.5 W
image from Wikipedia
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the online / offline paradigm is very old

logarithm table 17th until 20th century

values computed in advance (offline) by
several human computers and interpolated
(online) by human computer when needed

based on mathematical and
computational advances

mathematical tables even older . . .
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reduced basis methods

example: solution of elliptic PDEs with parameter µ, weak form

aµ(uµ, v) = L(v) for µ from compact set

approach

determine uµ1 , . . . , uµK offline on supercomputer

online (phone): new uµ ∈ span(uµ1 , . . . , uµK ) – Galerkin

questions and comments

how to choose original set of µj?

if features f (uµ) only – approximate I/O map

model reduction in controller design (Anderson/Moore)

requires mathematical error analysis – approximation theory

high dimensional problem and high performance computing

density estimation – statistical inverse problem
Binev et al 2011, H./Griebel 2010, Stuart 2010
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high performance computers
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Computational Performance Over Time

Source: Top-500

”I think there is a world market for maybe five computers.” –
Thomas Watson, chairman of IBM, 1943
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Clusters

Fujitsu K-Computer, JP LRZ SuperMUC (IBM System x), DE

NCI Raijin (Fujitsu
Primergy), AU

earlier computers resembled factory
assembly lines

today’s computers are like complex
networks of interacting workers
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The energy challenge

Watts consumed in context

all of Google 260 MW
747 140 MW
exascale computer with current technology 200 MW
planned (2022) exascale computer 20 MW
K-computer 12.7 MW
Sequoia (LLNL) 8.6 MW
Car 100 KW
Brain 20 W

comments

energy: 1 MW for 1 year = US $ 106

hardware cost: US $ 200 M

energy = time * watts

challenge: large problems unaffordable

what is exascale

K 103 M 106

G 109 T 1012

P 1015 E 1018

data from Jack Dongarra
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energy saving in computational science

save execution time:

continue with what we do today: reduce communication,
increase cache usage, efficient algorithms
avoid synchronisation
recompute instead of compute-store-recall
replace double precision computations with single precision
where possible
use autotuning – compilers can save as well

hardware manufacturers support savings by

providing excess of computational resources (GPUs)
improving data access by sharing resources (multicore)

hardware savings come at cost that parallel algorithms now
need to be strongly scalable
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high performance computing and mathematics

consequences of high level parallelism and energy savings

component failures more frequent

unpredictable completion times

high and complex communication

requirements for the new algorithms and maths

resilient against faults

asynchronous, independent of order of processing

decide what and how computed when and where ,,on the fly”

we need new (stochastic) mathematical models and analysis
to understand computational complexity and accuracy of the
new algorithms
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errors

causes

faults

very infrequent in current clusters – use checkpoint-restart
this can bring exascale computers to a halt

coarse scale approximation

used in sparse grids, reduces complexity

single-precision arithmetic

to speed-up data movement

approaches

approximation theory

extrapolation by combining different grids
robust combination overcomes instability
error analysis ⇒ fault fingerprint

optimisation

improved sparse grid approximation
recovery from faults
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redundancy

replicate all computations

for fault tolerance: unlikely that both processes will fault
M.Bougeret, H.Casanova, Y.Robert, F.Vivien, D.Zaidouni, 2012

recompute instead of store/recall

computation is more time and energy efficient

linear algebra uses checksums for error-correction P.Du, A.Bouteiller,

G.Bosilca, T.Herault, J.Dongarra, 2012

checkpoint/restart – on failure

natural redundancy of the sparse grid combination technique

different grids contain essentially same lower scale information
use this to get fault tolerance
reduce communication?
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Synchronisation

standard iterative methods like conjugate gradients require
synchronisation at every step

in exascale computers one requires asynchronous algorithms

any synchronisation can lead to large performance degradation
control convergence locally
synchronize at the end only
asynchronous methods incurr additional error
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a formidable challenge: the curse of dimensionality
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Simulation of hot magnetized plasmas
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Gyrokinetic Simulations

FORTRAN90/95 code developed at IPP in Garching (group
of Prof. Frank Jenko)

sophisticated simulation code, which implements the
gyrokinetic equations

highly parallelized

5D problem
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Vlasov–Maxwell Equations

Vlasov-Equation

∂fs
∂t

+ ~v
∂fs
∂~x

+
qs
ms

(~E + ~v × ~B) · ∂fs
∂~v

= 0

Moments of the Distribution Function f

ρ(~x , t) =
∑
s

qs

∫
fs(~x , ~v , t)d~v ~j(~x , t) =

∑
s

qs

∫
fs(~x , ~v , t)~vd~v

Maxwell Equations

− 1

c2

∂~E

∂t
+∇× ~B = µ0

~j ∇ · ~E =
ρ

ε0

∂~B

∂t
+∇× ~E = 0 ∇ · ~B = 0
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regular isotropic grid

approximate unknown
function u(x , y)

compute only values u(xi , yj)
on discrete grid points

interpolate values u(x , y) for
other points (x , y)

regular isotropic grid:
xi = ih and yj = jh

the challenge: curse of dimension

In two dimensions 1/h2 grid points, in d dimensions 1/hd grid
points but accuracy proportional to h2
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regular anisotropic grids

more general regular grids

choose fine grid when u(x , y) has large gradients

choose coarse grid when u(x , y) is smooth

gradients may be different in different directions

choose anisotropic grid when u(x , y) varies differently in different
directions

with anisotropic grids one can approximate multi-dimensional
u(x1, . . . , xd) if u very smooth in most xk
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sampling and scale space

full grid captures all scales

subgrid captures less scales

evaluation of u(x , y)
on the grid
corresponds to
sampling u on the
grid points

sampling on a fine
grid captures high
frequencies – small
scale fluctuations
(Nyqvist/Shannon)

with anisotropic grids
one can capture small
scales in one
dimension and
different scales in
another
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geometric definition of sparse grid

a simple sparse grid

∪ =

sparse grid in frequency / scale space

∪ =

captures fine scales in both dimensions but not joint fine scales
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hyperbolic cross

sparse grid points sparse grid scale diagram

the scale diagram displays (a quarater of) a hyperbolic cross
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asymptotic error rates

five dimensional case

102 104 106 108 1010 1012

10−4

10−3

10−2

10−1

100

number of grid points

er
ro

r

isotropic grid
sparse grid

only asymptotic error rates
given here

constants and
preasymptotics also depend
on dimension

practical experience: with
sparse grids up to 10
dimensions

Zenger 1991

asymptotic rates number of points L2 error

regular isotropic grids h−d h2

sparse grids h−1 | log2 h|d−1 h2 | log2 h|d−1
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combining solutions from multiple grids

regular grid approximation

regular grid Gh

function space Vh

Galerkin equations for uh

a(uh, vh) = 〈f , vh〉

for all vh ∈ Vh

sparse grid approximation

sparse grid GSG =
⋃

h Gh

function space VSG =
∑

h Vh

Galerkin equations for uSG

a(uSG, vSG) = 〈f , vSG〉

for all vSG ∈ VSG

combination technique – where HPC comes in

compute all uh in parallel and combine solutions using parallel
reduction:

uC =
∑
h

chuh

Big question: when is uC ≈ uSG?
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Inclusion / exclusion principle in combinatorics

A

B

for the cardinality of sets

|A ∪ B| = |A|+ |B| − |A ∩ B|

more general for additive α:

α(A∪B) = α(A)+α(B)−α(A∩B)

Theorem (de Moivre)

If A1, . . . ,Am form intersection structure then

α

(
m⋃
i=1

Ai

)
=

m∑
i=1

ci α(Ai ), for some ci ∈ Z
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overlap of grids and combination

sparse grid points sparse grid scale diagram

combination formula

uC = u1,16 + u2,8 + u4,4 + u8,2 + u16,1 − u1,8 − u2,4 − u4,2 − u8,1

Griebel, Schneider, Zenger 1992
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overlap = redundancy ⇒ (lossy) fault tolerance

sparse grid points sparse grid scale diagram

revised combination formula

uC = u1,16 + u4,4 + u8,2 + u16,1 − u4,2 − u8,1 − u1,4

H. CTAC 2003, Harding 2012
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tensors
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tensors

tensor = multidimensional array
u ∈ Rn1×···×nd

for d > 4 curse of dimension:

O(nd) storage not feasible
many computations not
feasible

feasible tensors

rank one: u(x) =
∏

i ui (xi )

product of lower-dimensional
tensors:
u(x) =

∏
α∈C uα(xα)

where C ⊂ 2{1,...,d} and
xα = (xα1 , . . . , xαk

)

examples

probabilities on
discrete state
space, data
mining, ML and
statistics

chemical master
equation

quantum
mechanics

graphical models

Kolda and Bader: Tensor decompositions and applications, SIAM Review 2009
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motivation: matrix decompositions A = BCT

aij =
r∑

k=1

bik cjk

examples: LU, QR, SVD

if rank r low use factors B and C in computations

Ax = B(CT x) requires O(rn) operations instead O(n2)

key ingredients

augmented (3D) feasible tensor T with elements

tikj = bikcjk

original matrix elements defined as sum

aij =
∑
k

tikj
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tensor decompositions

recover u from augmented tensor t

u(x) =
∑
α

t(x , α) =
∑
α

∏
j

tj(x , α)

examples of augmented tensors

CP: t(x1, x2, x3, α) = u1(x1, α) u2(x2, α) u3(x3, α)

Tucker: t(x1, x2, x3, α1, α2, α3) =
u1(x1, α1) u2(x2, α2) u3(x3, α3)w(α1, α2, α3)

hierarchical: t(x1, x2, x3, α1, α2, α3) =
u1(x1, α2) u2(x2, α2) u3(x3, α3)w1(α1, α2)w2(α1, α3)

tensor train:
t(x1, x2, x3, α1, α2) = u1(x1, α1) u2(x2, α1, α2) u3(x3, α2)
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Tensor Trains – a stable low-rank approximation

A(i1, . . . , id) = G (i1)G (i2) · · ·G (id)

where G (ik) are rk−1 × rk matrices (r0 = rd = 1)

properties

get G (ik) with SVD of smaller matrices

the ranks rk are the equal to the ranks of the matrices Ak

which are obtained from A by unfolding, i.e., Ak is a n1 · · · nk
by nk+1 · · · nd matrix with elements A(i1, . . . , ik ; ik+1, . . . , id)

Choose low-rank approximations in the SVDs with errors εk ,
get error bound for approximation B in Frobenius norm:

‖A− B‖2
F ≤

d∑
i=1

ε2
k .

Oseledets, Tyrtyschnikov, 2009, Oseledets 2012, earlier work in quantum mechanics
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computing with fractals
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iterated function systems

contractive functions fi : X → X on metric space X

Hutchinson operator:

F (A) =
⋃
i

fi (A)

fractal = fixpoint G of F :

G = F (G )

Hutchinson 1981

iterated function systems are everywhere

in particular in computational mathematics

Barnsley, “Fractals everywhere”, 1988
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example 1: Barnsley’s fern

3 functions f1, f2, f3

from: Wikipedia, 2006, de Campos

39 / 55



example 2: Peano curve

9 functions f1, . . . , f9
space filling curve, continuous map from one to two
dimensions

used to order grid points in high performance computing
(Griebel, Zumbusch 2002)

from: Wikimedia Commons, 2007, de Campos
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example 3: sparse grids

use IFS to generate fine grid from coarse grid

fix point = unit square

grid = “incomplete fractal”

sparse grid has IFS with 2d + 1 elements, regular grid 2d

elements
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fractals and computation

local IFS fi : Xi → X

F (A) =
⋃
i

fi (A ∩ Xi )

gives piecewise polynomials and wavelets (refinement
equations), used in computer graphics (subdivision)

numerical grids obtained by truncating evaluation of IFS

coding points on fractals

x = fi1 ◦ fi2 ◦ · · · (x0)

then represent x by its “digits” (i1, i2, . . .)

chaos game to generate random points on fractal (Barnsley)

xk+1 = fR(xk), R chosen randomly

more on numerics and fractals: Barnsley, Massopust, H. 2013
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Collage Theorem (Barnsley 1988)

If

f1, . . . , fN contractive IFS on complete metric space X

M nonempty compact subset of X

and

dH(M,
N⋃
i=1

fi (M)) < ε

then Hausdorff distance between M and attractor A of IFS satisfies

dH(M,A) <
ε

1− s

where s = maxi Lip fi
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collage fitting algorithm

minimise Φ

IFS defines operator F (·, α)

choose initial u0

iteration k = 0, 1, 2, . . .

αk+1 = argminα Φ(F (uk , α))

uk+1 = F (uk , αk+1)

convergence

if F (·, α) provides a descent direction for Φ

Barnsley, H., Massopust 2013
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epilogue: regularisation
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Two applications of the Galerkin method

Dirichlet problem

−∆u = f in Ω

f (x) = 0 x ∈ ∂Ω

linear system of equations

Au = f

A symmetric positive definite

Finite elements

minimisation problem

uh = argminVh

1

2

∫
Ω
|∇v |2−

∫
Ω
f v

approximation space

Vh = pw polynomial functions

Conjugate gradients

minimisation problem

uh = argminVh

1

2
(v ,Av)− (f , v)

approximation space

Vh = span{v0,Av0, . . . ,A
kv0}
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Galerkin error

Solving minimisation problem is equivalent to minimising error in
the energy norm

‖uh − u‖E =

∫
Ω
|∇(uh − u)|2

error in function values (use
inverse inequality)

‖uh − u‖∞ ≤ Ch‖uh − u‖E

large Ch in high dimensions

‖uh − u‖A = (uh − u,A(uh − u))

error in components

‖uh − u‖∞ ≤ CA‖uh − u‖A

large CA if A ill-conditioned

Things can go wrong when the constants Ch and CA are too large
=⇒ this is a first indicator of an underlying ill-posed problem
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dimension-related ill-posedness

FEM basis functions

hat function: b(ξ) = (1− |ξ|)+

tent function: t(x) =
∏

i b(xi )

scale and shift:
uh,z(x) := t((x − z)/h)

−2 −1 0 1 2

0

0.5

1

ξ

b
(ξ

)

properties of u for z ∈ Ω and h small

uh,z(z) = 1 and uh,z(x) = 0 on boundary

H1 semi-norm ‖v‖1 =
√∫
|∇v |2 is then

‖uh,z‖2
1 = 2 d

(
2

3

)d−1

h3d−4 ≤ 2 d

(
2

3

)d−1

d ≥ 2 and h→ 0: ‖uh,z‖1 → 0
d →∞: ‖uh,z‖1 → 0
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ill-posed problems

J. Hadamard (1865-
1963)

Hadamard: a problem Au = g
is well-posed if a unique
solution u exists which depends
continuously on f , otherwise
the problem is ill-posed

popular method for solution of
ill-posed problem: Tikhonov
regularization

uδ = argminv ‖Av−fδ‖2+α‖v‖2

A.N. Tikhonov (1906-1993)

Tikhonov regularisation simultaneously stabilises the norm of the
solution and minimizes the residual
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error theory for linear ill-posed problems in a nutshell

the classical theory

error bound for solution of Au = f given fδ

‖uδ − u‖ ≤ (‖Auδ − fδ‖+ ‖fδ − f ‖)
s

s+1 (‖uδ‖s + ‖u‖s)
1

s+1

from Hölder inequality and triangle inequality

size of the four terms:

consistency: ‖Auδ − fδ‖ small

data error: ‖fδ − f ‖ ≤ δ
numerical stability: ‖uδ‖s = ‖(A∗A)−

s
2 uδ‖ bounded

source condition = regularity of solution: u ∈ R((A∗A)
s
2 )

error = O(ε
s

s+1 ) =⇒ small for large s
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Issues with the source condition u ∈ R((A∗A)s/2)

examples where classical theory fails

derivatives of analytic functions

statistical inverse problem

Stokes enhancement in spectroscopy

relations between operator A and u and f

operator A models either

observational procedure (tomography)
computational method (spectral sharpening)

as Au = f one has f ∈ R(A) necessarily

stronger conditions on f or u translate to conditions on the
operator A for a fixed u and either

prescribe properties of measurement devices
prescribe properties of computational procedure

we need more flexible source conditions

51 / 55



Reconstruction Rα of u = A−1f from fε

worst case error of Rα for data error ε and u ∈ M

e(Rα,M, ε) = sup{‖Rα(fε)− u‖ | fε ∈ Uε(Au), u ∈ M}

error bound for optimal choice of Rα

e(M, ε) = inf{e(Rα,M, ε) | Rα : Y → X}

A bound for the optimal error

ω(M, ε) ≤ e(M, ε) ≤ ω(M, 2ε)

where modulus of continuity of A−1 on M is

ω(M, ε) = sup{‖x‖ | x ∈ M, ‖Ax‖ ≤ ε}

use variable Hilbert scales to get bounds
Ivanov/Korolyuk, 1969, Micchelli/Rivlin 1980, Anderssen/H./Hofmann 1992–2013

52 / 55



Bounding the modulus of continuity of A−1

Mathe/Pereverzev’03 and Hofmann/Mathe/Schieck’08

ω(M, ε) ≤ R ψ (Θ−1(ε/R))

ψ ↗ and M = ψ(A∗A)[BR ]

Θ(t) =
√
t ψ(t) and ψ

2
(Θ−1(

√
t)) concave

H./Hofmann’10 – same bound but simpler criterion

ω(M, ε) ≤ ε
√

Ψ(R2/ε2)

M = Bχ(R) ball in Xχ

χ(λ) ≥ Ψ−1(λ)/λ and Ψ concave
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conclusions

earlier computations focussed on low-dimensional, well-posed
problems which were to be solved on simple computational
techniques

today many computational problems involve large data sets,
are ill-posed and also high dimensional

the new computational infrastructure is changing:

on one size there are ever increasing very low-powered devices
on the other side the large high performance engines in
compute and data centres
major factor is energy, requires rethinking models and
algorithms

collaboration between mathematicians, computer scientists,
engineers and scientists leads to new technology
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