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1′ 2′ 3′ 4′ 5′ 6′ 8′7′

A diagram is planar if the edges can be drawn without crossing
inside the rectangle bounding the vertices.
transversal components are edges that connect vertices in both
rows.
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◮ place a on top of b;
◮ remove the middle dots and stranded loops; and
◮ clip loose ends and collapse remaining loops.
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For each d ∈ Pn:

◮ d∗∗ = d (∗ is an involution);

◮ (de)∗ = e∗d∗ (∗ is an anti-homomorphism); and

◮ dd∗d = d .
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Let d ∈ Pn. For d ∈ Fn we require:

◮ d be planar;

◮ there be at least one triapsis at the top and at least one at
the bottom;

◮ non-transversal components have cardinality divisible by 3; and

◮ the upper and lower cardinalities of transversal components be
congruent mod 3.
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Fn is a subsemigroup of the semigroup just described.
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[a] [b]

[b + 2]

[c]

[c + 1][a]

[a] = [a] [b + 2] + [c + 1] = [b] + [c]
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δ(p, q)

◮ P-compatibility is an equivalence relation;

◮ δ(p, q)δ(q, r) = δ(p, r).
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Definition
For a, b ∈ S:

◮ R = {(a, b) ∈ S2 : aS1 = bS1};

◮ L = {(a, b) ∈ S2 : S1a = S1b};

◮ H = L ∩ R;

◮ J = {(a, b) ∈ S2 : S1aS1 = S1bS1};

◮ D = L ∨ R(= R ◦ L = L ◦ R) (= J for finite S).

Theorem (Howie)

If T ≤ S is regular then Green’s L, R and H relations are just
their respective restrictions on S, ie. LT = LS ∩ T 2.
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Theorem (Wilcox)

For a, b ∈ Pn:

◮ aRb iff U(a) = U(b);

◮ aLb iff L(a) = L(b);

◮ aHb iff U(a) = U(b) and L(a) = L(b); and

◮ aJ b iff rank(a) = rank(b).
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Theorem
For a, b ∈ Fn, aJ b iff U(a), U(b) are Fn-compatible.
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Questions?


