The Triapsis Semigroup

Nick Ham

advisors: Des FitzGerald & Peter Jarvis

University of Tasmania

September 30, 2013

Let
$$N = \{1, ..., n\}$$
 and $N' = \{1', ..., n'\}$.

Let $N = \{1, ..., n\}$ and $N' = \{1', ..., n'\}$. A bipartition or diagram is a partition of $N \cup N'$.

Let $N = \{1, ..., n\}$ and $N' = \{1', ..., n'\}$. A bipartition or diagram is a partition of $N \cup N'$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

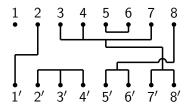
Example

Take n = 8 and consider {{1}, {2,1'}, {3,4,7,7',8'}, {5,6}, {8,5',6'}, {2',3',4'}}.

Let $N = \{1, ..., n\}$ and $N' = \{1', ..., n'\}$. A bipartition or diagram is a partition of $N \cup N'$.

Example

Take n = 8 and consider {{1}, {2,1'}, {3,4,7,7',8'}, {5,6}, {8,5',6'}, {2',3',4'}}.

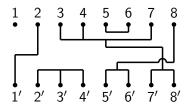


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $N = \{1, ..., n\}$ and $N' = \{1', ..., n'\}$. A bipartition or diagram is a partition of $N \cup N'$.

Example

Take n = 8 and consider {{1}, {2,1'}, {3,4,7,7',8'}, {5,6}, {8,5',6'}, {2',3',4'}}.

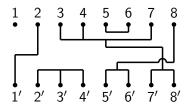


A diagram is **planar** if the edges can be drawn without crossing inside the rectangle bounding the vertices.

Let $N = \{1, ..., n\}$ and $N' = \{1', ..., n'\}$. A bipartition or diagram is a partition of $N \cup N'$.

Example

Take n = 8 and consider {{1}, {2,1'}, {3,4,7,7',8'}, {5,6}, {8,5',6'}, {2',3',4'}}.

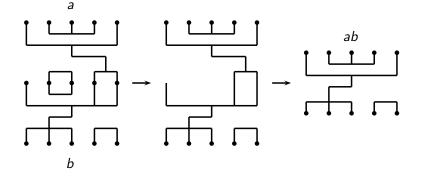


A diagram is **planar** if the edges can be drawn without crossing inside the rectangle bounding the vertices.

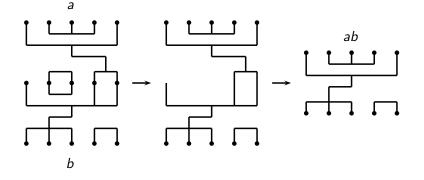
transversal components are edges that connect vertices in both rows.

Two diagrams $a, b \in \mathcal{P}_n$ are multiplied pictorially as follows:

Two diagrams $a, b \in \mathcal{P}_n$ are multiplied pictorially as follows: Example



Two diagrams $a, b \in \mathcal{P}_n$ are multiplied pictorially as follows: Example

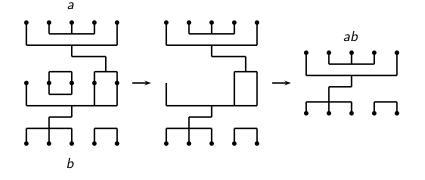


・ロト ・ 同ト ・ ヨト ・ ヨト

э

place a on top of b;

Two diagrams $a, b \in \mathcal{P}_n$ are multiplied pictorially as follows: Example

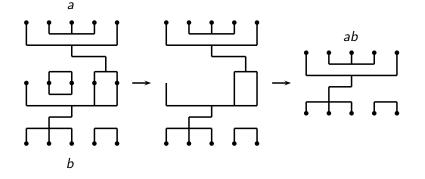


イロト イポト イヨト

3

- place a on top of b;
- remove the middle dots and stranded loops; and

Two diagrams $a, b \in \mathcal{P}_n$ are multiplied pictorially as follows: Example



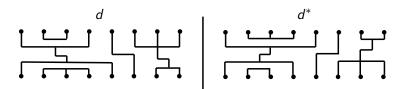
A A A A

- place a on top of b;
- remove the middle dots and stranded loops; and
- clip loose ends and collapse remaining loops.

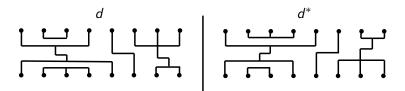
◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Pictorially we obtain d^* by flipping d upside down.

Pictorially we obtain d^* by flipping d upside down. Example



Pictorially we obtain d^* by flipping d upside down. Example



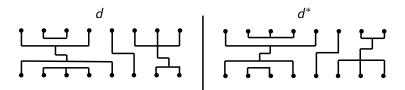
イロト 人間ト イヨト イヨト

э

For each $d \in \mathcal{P}_n$:

•
$$d^{**} = d$$
 (* is an involution);

Pictorially we obtain d^* by flipping d upside down. Example

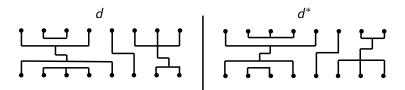


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For each $d \in \mathcal{P}_n$:

- $d^{**} = d$ (* is an involution);
- $(de)^* = e^*d^*$ (* is an anti-homomorphism); and

Pictorially we obtain d^* by flipping d upside down. Example



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For each $d \in \mathcal{P}_n$:

•
$$d^{**} = d$$
 (* is an involution);

• $(de)^* = e^*d^*$ (* is an anti-homomorphism); and

►
$$dd^*d = d$$
.

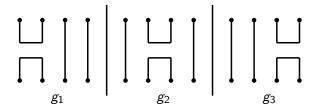
Jones Monoid \mathcal{J}_n

The **Jones Monoid** \mathcal{J}_n consists of all planar matchings of $N \cup N'$.

Jones Monoid \mathcal{J}_n

The **Jones Monoid** \mathcal{J}_n consists of all planar matchings of $N \cup N'$. Example

Three generators of \mathcal{J}_4 .



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

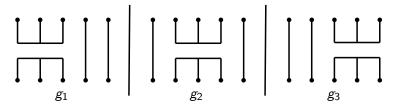
We call the **hooks** in the generators **diapses**.

For the **Triapsis Semigroup** \mathcal{F}_n we replace the diapses in the generators of \mathcal{J}_n with triapses.

For the **Triapsis Semigroup** \mathcal{F}_n we replace the diapses in the generators of \mathcal{J}_n with triapses.

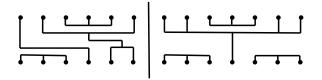
Example

Three generators of \mathcal{F}_5 .



Examples

Triapsis Semigroup \mathcal{F}_n

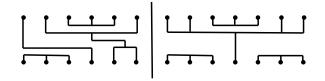


イロト イヨト イヨト

3

Let $d \in \mathcal{P}_n$. For $d \in \mathcal{F}_n$ we require:

Triapsis Semigroup \mathcal{F}_n



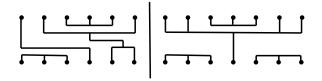
イロト 人間ト イヨト イヨト

э

Let $d \in \mathcal{P}_n$. For $d \in \mathcal{F}_n$ we require:

d be planar;

Triapsis Semigroup \mathcal{F}_n

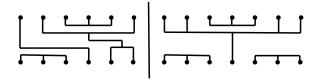


Let $d \in \mathcal{P}_n$. For $d \in \mathcal{F}_n$ we require:

- d be planar;
- there be at least one triapsis at the top and at least one at the bottom;

・ロット (雪) (日) (日) (日)

Triapsis Semigroup \mathcal{F}_n

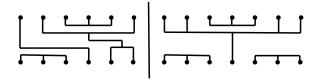


Let $d \in \mathcal{P}_n$. For $d \in \mathcal{F}_n$ we require:

- d be planar;
- there be at least one triapsis at the top and at least one at the bottom;
- non-transversal components have cardinality divisible by 3; and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples



Let $d \in \mathcal{P}_n$. For $d \in \mathcal{F}_n$ we require:

- d be planar;
- there be at least one triapsis at the top and at least one at the bottom;
- non-transversal components have cardinality divisible by 3; and
- the upper and lower cardinalities of transversal components be congruent mod 3.

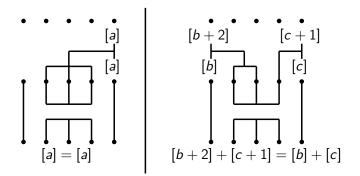
Proposition

 \mathcal{F}_n is a subsemigroup of the semigroup just described.

Proposition

 \mathcal{F}_n is a subsemigroup of the semigroup just described.

Examples

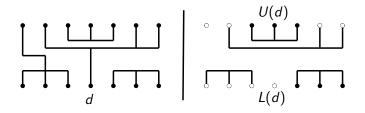


イロト イヨト イヨト

A **pattern** p is a partition of N (or N') with a two-tone vertex colouring.

A **pattern** p is a partition of N (or N') with a two-tone vertex colouring.

Example

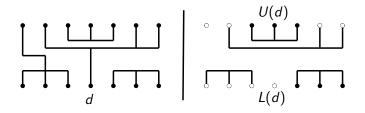


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The colour of a vertex indicates whether it connects to a transversal or non-transversal component.

A **pattern** p is a partition of N (or N') with a two-tone vertex colouring.

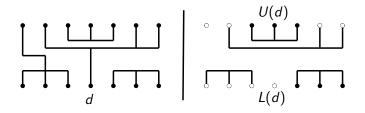
Example



The colour of a vertex indicates whether it connects to a transversal or non-transversal component. Hence we can break a diagram $d \in \mathcal{P}_n$ into its **upper pattern** U(d) and **lower pattern** L(d).

A **pattern** p is a partition of N (or N') with a two-tone vertex colouring.

Example



The colour of a vertex indicates whether it connects to a transversal or non-transversal component. Hence we can break a diagram $d \in \mathcal{P}_n$ into its **upper pattern** U(d) and **lower pattern** L(d).

Let *P* be a subsemigroup of \mathcal{P}_n that is closed under *.

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

▶ a pattern *p* is *P*-admissible if $\exists d \in P$ with U(d) = p;

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

▶ a pattern p is P-admissible if $\exists d \in P$ with U(d) = p;

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

▶ *P*-admissible p, q are *P*-compatible if $\exists d \in P$ with U(d) = p and L(d) = q.

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

- ▶ a pattern p is P-admissible if $\exists d \in P$ with U(d) = p;
- ▶ *P*-admissible p, q are *P*-compatible if $\exists d \in P$ with U(d) = p and L(d) = q.

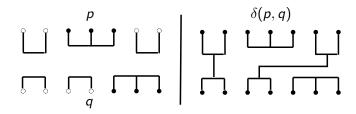
If P is planar then d is unique, which we denote by $\delta(p,q)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

- ▶ a pattern p is P-admissible if $\exists d \in P$ with U(d) = p;
- ▶ *P*-admissible p, q are *P*-compatible if $\exists d \in P$ with U(d) = p and L(d) = q.

If *P* is planar then *d* is unique, which we denote by $\delta(p, q)$. Example

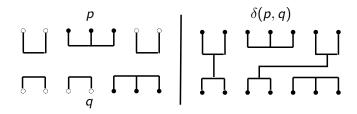


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

- ▶ a pattern *p* is *P*-admissible if $\exists d \in P$ with U(d) = p;
- ▶ *P*-admissible p, q are *P*-compatible if $\exists d \in P$ with U(d) = p and L(d) = q.

If P is planar then d is unique, which we denote by $\delta(p,q)$. Example

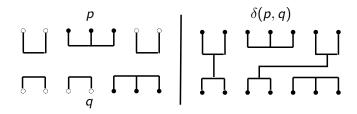


P-compatibility is an equivalence relation;

Let P be a subsemigroup of \mathcal{P}_n that is closed under *.

- ▶ a pattern p is P-admissible if $\exists d \in P$ with U(d) = p;
- ▶ *P*-admissible p, q are *P*-compatible if $\exists d \in P$ with U(d) = p and L(d) = q.

If P is planar then d is unique, which we denote by $\delta(p,q)$. Example



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

P-compatibility is an equivalence relation;

•
$$\delta(p,q)\delta(q,r) = \delta(p,r).$$

A pattern p is \mathcal{F}_n -admissible iff:

A pattern p is \mathcal{F}_n -admissible iff:

▶ it is planar;

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
 - each non-transversal component has cardinality divisible by 3.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
 - each non-transversal component has cardinality divisible by 3.

 \mathcal{F}_n -admissible patterns p, q are \mathcal{F}_n -compatible iff:

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
 - each non-transversal component has cardinality divisible by 3.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 \mathcal{F}_n -admissible patterns p, q are \mathcal{F}_n -compatible iff:

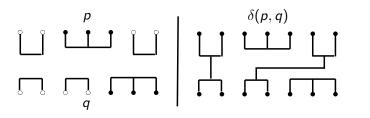
rank(p) = rank(q); and

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
 - each non-transversal component has cardinality divisible by 3.

- \mathcal{F}_n -admissible patterns p, q are \mathcal{F}_n -compatible iff:
 - rank(p) = rank(q); and
 - the cardinalities of *matched* transversal components are congruent mod 3.

- A pattern p is \mathcal{F}_n -admissible iff:
 - it is planar;
 - it has at least one triapsis; and
 - each non-transversal component has cardinality divisible by 3.
- \mathcal{F}_n -admissible patterns p, q are \mathcal{F}_n -compatible iff:
 - rank(p) = rank(q); and
 - the cardinalities of *matched* transversal components are congruent mod 3.

Example



Definition For $a, b \in S$:

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Definition

For $a, b \in S$:

•
$$\mathcal{R} = \{(a, b) \in S^2 : aS^1 = bS^1\};$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Definition For $a, b \in S$: • $\mathcal{R} = \{(a, b) \in S^2 : aS^1 = bS^1\};$ • $\mathcal{L} = \{(a, b) \in S^2 : S^1a = S^1b\};$

Definition For $a, b \in S$: • $\mathcal{R} = \{(a, b) \in S^2 : aS^1 = bS^1\};$ • $\mathcal{L} = \{(a, b) \in S^2 : S^1a = S^1b\};$ • $\mathcal{H} = \mathcal{L} \cap \mathcal{R};$

$\begin{array}{l} \text{Definition} \\ \text{For } a, b \in S: \\ \bullet \ \mathcal{R} = \{(a,b) \in S^2 : aS^1 = bS^1\}; \\ \bullet \ \mathcal{L} = \{(a,b) \in S^2 : S^1a = S^1b\}; \\ \bullet \ \mathcal{H} = \mathcal{L} \cap \mathcal{R}; \\ \bullet \ \mathcal{J} = \{(a,b) \in S^2 : S^1aS^1 = S^1bS^1\}; \end{array}$

$\begin{array}{l} \hline \textbf{Definition} \\ \hline \textbf{For } a, b \in S: \\ \blacktriangleright \ \mathcal{R} = \{(a,b) \in S^2 : aS^1 = bS^1\}; \\ \vdash \ \mathcal{L} = \{(a,b) \in S^2 : S^1a = S^1b\}; \\ \vdash \ \mathcal{H} = \mathcal{L} \cap \mathcal{R}; \\ \vdash \ \mathcal{J} = \{(a,b) \in S^2 : S^1aS^1 = S^1bS^1\}; \\ \vdash \ \mathcal{D} = \mathcal{L} \lor \mathcal{R} (= \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}) \ (= \mathcal{J} \ \text{for finite } S). \end{array}$

$\begin{array}{l} \mbox{Definition} \\ \mbox{For } a,b\in S: \\ \bullet \ \mathcal{R} = \{(a,b)\in S^2: aS^1=bS^1\}; \\ \bullet \ \mathcal{L} = \{(a,b)\in S^2: S^1a=S^1b\}; \\ \bullet \ \mathcal{H} = \mathcal{L}\cap \mathcal{R}; \\ \bullet \ \mathcal{J} = \{(a,b)\in S^2: S^1aS^1=S^1bS^1\}; \\ \bullet \ \mathcal{D} = \mathcal{L} \lor \mathcal{R} (= \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}) \ (= \mathcal{J} \ \mbox{for finite } S). \end{array}$

Theorem (Howie)

If $T \leq S$ is regular then Green's \mathcal{L} , \mathcal{R} and \mathcal{H} relations are just their respective restrictions on S, ie. $\mathcal{L}^T = \mathcal{L}^S \cap T^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Wilcox) For $a, b \in \mathcal{P}_n$:

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Theorem (Wilcox) For $a, b \in \mathcal{P}_n$: • $a\mathcal{R}b$ iff U(a) = U(b);

Theorem (Wilcox)

For $a, b \in \mathcal{P}_n$:

- $a\mathcal{R}b$ iff U(a) = U(b);
- $a\mathcal{L}b$ iff L(a) = L(b);

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Theorem (Wilcox)

For $a, b \in \mathcal{P}_n$:

- $a\mathcal{R}b$ iff U(a) = U(b);
- $a\mathcal{L}b$ iff L(a) = L(b);
- $a\mathcal{H}b$ iff U(a) = U(b) and L(a) = L(b); and

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem (Wilcox)

For $a, b \in \mathcal{P}_n$:

- $a\mathcal{R}b$ iff U(a) = U(b);
- $a\mathcal{L}b$ iff L(a) = L(b);
- $a\mathcal{H}b$ iff U(a) = U(b) and L(a) = L(b); and

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

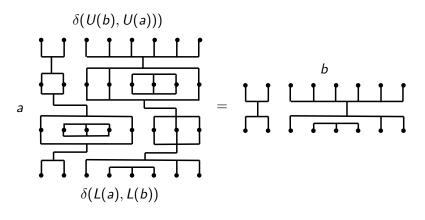
•
$$a\mathcal{J}b$$
 iff $rank(a) = rank(b)$.

Theorem For $a, b \in \mathcal{F}_n$,

Theorem For $a, b \in \mathcal{F}_n$, $a\mathcal{J}b$ iff U(a), U(b) are \mathcal{F}_n -compatible.

Theorem For $a, b \in \mathcal{F}_n$, $a\mathcal{J}b$ iff U(a), U(b) are \mathcal{F}_n -compatible.

Example



Questions?