Classifications of Symmetric Normal Form Games

Nick Ham

advisor: Des FitzGerald
University of Tasmania

September 27, 2013

Normal Form Game

Definition
A normal form game「 consists of

Normal Form Game

Definition

A normal form game 「 consists of a (finite) set N of at least two players

Normal Form Game

Definition

A normal form game 「 consists of a (finite) set N of at least two players, and for each player $i \in N$:

Normal Form Game

Definition

A normal form game Γ consists of a (finite) set N of at least two players, and for each player $i \in N$:

- A non-empty (finite) set of strategies A_{i}; and

Normal Form Game

Definition

A normal form game「 consists of a (finite) set N of at least two players, and for each player $i \in N$:

- A non-empty (finite) set of strategies A_{i}; and
- A payoff function $u_{i}: A \rightarrow \mathbb{R}$ where $A=\times_{i \in N} A_{i}$ is the set of strategy profiles or outcomes.

Example

Suppose:

Example

Suppose:

- $N=\{1,2,3\} ;$

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}$,

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Then:

$$
A=\{(a, c, e),(a, c, f),(a, d, e),(a, d, f),(b, c, e),(b, c, f),(b, d, e),(b, d, f)\}
$$

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Then:

$$
A=\{(a, c, e),(a, c, f),(a, d, e),(a, d, f),(b, c, e),(b, c, f),(b, d, e),(b, d, f)\}
$$

We can display the payoffs in tables as follows:

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Then:

$$
A=\{(a, c, e),(a, c, f),(a, d, e),(a, d, f),(b, c, e),(b, c, f),(b, d, e),(b, d, f)\}
$$

We can display the payoffs in tables as follows:

	e	f
$c \mid$	$1,1,1$	$2,2,3$
d	$2,3,2$	$5,4,4$
	$(a,)$	

	e	f
$c \mid$	$3,2,2$	$4,5,4$
d	$4,4,5$	$6,6,6$
	$(b,)$	

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Then:

$$
A=\{(a, c, e),(a, c, f),(a, d, e),(a, d, f),(b, c, e),(b, c, f),(b, d, e),(b, d, f)\}
$$

We can display the payoffs in tables as follows:

	e	f
$c \mid$	$1,1,1$	$2,2,3$
d	$2,3,2$	$5,4,4$
	$(a,)$	

	e	f
c	3, 2, 2	4, 5, 4
d	4, 4, 5	6,6,6
	$(b,$,	

The payoff to player 3 for the strategy profile (b, d, e) is

Example

Suppose:

- $N=\{1,2,3\}$;
- $A_{1}=\{a, b\}, A_{2}=\{c, d\}, A_{3}=\{e, f\}$.

Then:

$$
A=\{(a, c, e),(a, c, f),(a, d, e),(a, d, f),(b, c, e),(b, c, f),(b, d, e),(b, d, f)\}
$$

We can display the payoffs in tables as follows:

	e	f
$c \mid$	$1,1,1$	$2,2,3$
d	$2,3,2$	$5,4,4$
	$(a,)$	

	e	f
$c \mid$	$3,2,2$	$4,5,4$
d	$4,4,5$	$6,6,6$
	$(b,)$	

The payoff to player 3 for the strategy profile (b, d, e) is $u_{3}(b, d, e)=5$.

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Example
Take $\pi=(123) \in S_{3}$ and $\left(s_{1}, s_{2}, s_{3}\right) \in A$.

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Example
Take $\pi=(123) \in S_{3}$ and $\left(s_{1}, s_{2}, s_{3}\right) \in A$.

$$
\pi\left(s_{1}, s_{2}, s_{3}\right)
$$

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Example
Take $\pi=(123) \in S_{3}$ and $\left(s_{1}, s_{2}, s_{3}\right) \in A$.

$$
\pi\left(s_{1}, s_{2}, s_{3}\right)=\left(s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)}\right)
$$

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Example
Take $\pi=(123) \in S_{3}$ and $\left(s_{1}, s_{2}, s_{3}\right) \in A$.

$$
\pi\left(s_{1}, s_{2}, s_{3}\right)=\left(s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)}\right)=\left(s_{3}, s_{1}, s_{2}\right)
$$

Player Permutations S_{N} Acting on Strategy Profiles A

Suppose each player has the same strategy set.

$$
\text { Eg. } A_{1}=A_{2}=A_{3}=\{a, b\}
$$

Let $\pi \in S_{N}$ be a permutation of the players.
The player permutations act on the left of strategy profiles via

$$
\pi\left(s_{1}, \ldots, s_{n}\right)=\left(s_{\pi^{-1}(1)}, \ldots, s_{\pi^{-1}(n)}\right)
$$

Example
Take $\pi=(123) \in S_{3}$ and $\left(s_{1}, s_{2}, s_{3}\right) \in A$.

$$
\begin{gathered}
\pi\left(s_{1}, s_{2}, s_{3}\right)=\left(s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)}\right)=\left(s_{3}, s_{1}, s_{2}\right) \\
\text { Eg. } \pi(a, b, a)=(a, a, b)
\end{gathered}
$$

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_{N}.

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_{N}.

Example

	a	b
a	3,2,2	4, 5, 4
b	4, 4, 5	6,6,6
	$(b,$,	

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_{N}.

Example

	a	b
a	$1,1,1$	$2,2,3$
b	$2,3,2$	$5,4,4$
	$(a,)$	

- Γ is invariant under (123) and (12);

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_{N}.

Example

- Γ is invariant under (123) and (12);

Eg. let $\pi=(123), \pi(a, b, a)=(a, a, b)$ as before, and we see that $u_{2}(a, b, a)=u_{\pi(2)}(\pi(a, b, a))=u_{3}(a, a, b)=3$.

Label-Dependent Notions of Symmetry

Γ is:

- invariant under $\pi \in S_{N}$ if for each player $i \in N$ and strategy profile $s \in A, u_{i}(s)=u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_{N}.

Example

- Γ is invariant under (123) and (12);

Eg. let $\pi=(123), \pi(a, b, a)=(a, a, b)$ as before, and we see that $u_{2}(a, b, a)=u_{\pi(2)}(\pi(a, b, a))=u_{3}(a, a, b)=3$.

- $\langle(123),(12)\rangle=S_{3}$.

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example
Standard symmetric 3-player game.

	a	b
a	1, 1, 1	2, 3, 4
b	3,4,2	5,6,7
	$(a,$,	

	a	b
a	4, 2, 3	7,5,6
b	6,7,5	8,8,8
	$(b,$,	

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example
Standard symmetric 3-player game.

- Γ is invariant under (123);

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example
Standard symmetric 3-player game.

- Γ is invariant under (123);
- $\langle(123)\rangle=\{e,(123),(132)\}$ is a transitive subgroup of S_{3};

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example
Standard symmetric 3-player game.

- Γ is invariant under (123);
- $\langle(123)\rangle=\{e,(123),(132)\}$ is a transitive subgroup of S_{3};
- Γ is not invariant under (23).

Label-Dependent Notions of Symmetry

Γ is:

- standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example
Standard symmetric 3-player game.

- 「 is invariant under (123);
- $\langle(123)\rangle=\{e,(123),(132)\}$ is a transitive subgroup of S_{3};
- Γ is not invariant under (23).

Note: Must have $u_{i}(a, a, a)=u_{j}(a, a, a)$ for all $i, j \in N$ etc.

Game Bijections

Definition

Game Bijections

Definition
A bijection from 「 to itself consists of a player permutation $\pi \in S_{N}$ and

Game Bijections

Definition

A bijection from Γ to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

Game Bijections

Definition

A bijection from Γ to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

Game Bijections

Definition

A bijection from 「 to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

- game bijections act on the left of players and strategy profiles.

Game Bijections

Definition

A bijection from 「 to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

- game bijections act on the left of players and strategy profiles.

Example

$$
g=\left((123) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right),\left(\begin{array}{c}
e \\
a \\
a
\end{array}\right)\right)
$$

Game Bijections

Definition

A bijection from Γ to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

- game bijections act on the left of players and strategy profiles.

Example

$$
\begin{aligned}
& g=\left((123) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right),\left(\begin{array}{c}
e \\
a \\
a
\end{array}\right)\right) \\
& g(2)=3
\end{aligned}
$$

Game Bijections

Definition

A bijection from Γ to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

- game bijections act on the left of players and strategy profiles.

Example

$$
\begin{gathered}
g=\left((123) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right),\left(\begin{array}{ll}
e & f \\
a & b
\end{array}\right)\right) \\
g(2)=3, g(b, d, e)=(a, c, f)
\end{gathered}
$$

Game Bijections

Definition

A bijection from 「 to itself consists of a player permutation $\pi \in S_{N}$ and for each player $i \in N$, a strategy set bijection $\tau_{i}: A_{i} \rightarrow A_{\pi(i)}$.

We denote the set of all game bijections as $\operatorname{bij}(\Gamma)$.

- game bijections act on the left of players and strategy profiles.

Example

$$
\begin{gathered}
g=\left((123) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right),\left(\begin{array}{ll}
e & f \\
a & b
\end{array}\right)\right) \\
g(2)=3, g(b, d, e)=(a, c, f)
\end{gathered}
$$

Note: $\operatorname{bij}(\Gamma) \cong\left(S_{m} \mathrm{Wr} S_{n}\right)$.

Properties of Subgroups of $\mathrm{bij}(\Gamma)$

Let G be a subgroup of the game bijections $\operatorname{bij}(\Gamma)$.

Properties of Subgroups of $\operatorname{bij}(\Gamma)$

Let G be a subgroup of the game $\operatorname{bijections~} \operatorname{bij}(\Gamma)$.

- The stabiliser of player $i \in N$ is the subgroup

$$
G_{i}=\{g \in G: g(i)=i\} \leq G .
$$

Properties of Subgroups of $\operatorname{bij}(\Gamma)$

Let G be a subgroup of the game $\operatorname{bijections~} \operatorname{bij}(\Gamma)$.

- The stabiliser of player $i \in N$ is the subgroup

$$
G_{i}=\{g \in G: g(i)=i\} \leq G .
$$

We say that G is:

Properties of Subgroups of $\operatorname{bij}(\Gamma)$

Let G be a subgroup of the game $\operatorname{bijections~} \operatorname{bij}(\Gamma)$.

- The stabiliser of player $i \in N$ is the subgroup

$$
G_{i}=\{g \in G: g(i)=i\} \leq G .
$$

We say that G is:

- player transitive if for each $i, j \in N$ there exists $g \in G$ such that $g(i)=j$;

Properties of Subgroups of $\mathrm{bij}(\Gamma)$

Let G be a subgroup of the game $\operatorname{bijections~} \operatorname{bij}(\Gamma)$.

- The stabiliser of player $i \in N$ is the subgroup $G_{i}=\{g \in G: g(i)=i\} \leq G$.
We say that G is:
- player transitive if for each $i, j \in N$ there exists $g \in G$ such that $g(i)=j$;
- player n-transitive if for each $\pi \in S_{N}$ there exists $g \in G$ such that $g(i)=\pi(i)$ for all $i \in N$; and

Properties of Subgroups of $\mathrm{bij}(\Gamma)$

Let G be a subgroup of the game $\operatorname{bijections~} \operatorname{bij}(\Gamma)$.

- The stabiliser of player $i \in N$ is the subgroup $G_{i}=\{g \in G: g(i)=i\} \leq G$.
We say that G is:
- player transitive if for each $i, j \in N$ there exists $g \in G$ such that $g(i)=j$;
- player n-transitive if for each $\pi \in S_{N}$ there exists $g \in G$ such that $g(i)=\pi(i)$ for all $i \in N$; and
- strategy trivial if for each $g \in G_{i}, g\left(s_{i}\right)=s_{i}$ for all $s_{i} \in A_{i}$ (ie. $\tau_{i}=\mathrm{id}_{A_{i}}$).

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$
ie. $u_{i}(s)=u_{g(i)}(g(s))$ for all $i \in N, s \in A$

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).
Example
Matching Pennies

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).
Example
Matching Pennies

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).
Example
Matching Pennies

Aut (Γ) is player transitive,

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).
Example
Matching Pennies

Aut (Γ) is player transitive, is not strategy trivial and

Automorphism Group

An automorphism of Γ is an invariant bijection $g \in \operatorname{bij}(\Gamma)$

$$
\text { ie. } u_{i}(s)=u_{g(i)}(g(s)) \text { for all } i \in N, s \in A
$$

The automorphisms of Γ form a group which we denote by Aut (Γ).
Example
Matching Pennies

Aut (Γ) is player transitive, is not strategy trivial and contains no proper transitive subgroups.

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;
- Aut (Γ) has a player transitive and strategy trivial subgroup.

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;
- Aut (Γ) has a player transitive and strategy trivial subgroup.

Definition

Γ is:

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;
- Aut(Г) has a player transitive and strategy trivial subgroup.

Definition

Γ is:

- symmetric if $\operatorname{Aut}(\Gamma)$ is player transitive; and

Label-Independent Notions of Symmetry

Theorem
The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;
- Aut(Г) has a player transitive and strategy trivial subgroup.

Definition

Γ is:

- symmetric if $\operatorname{Aut}(\Gamma)$ is player transitive; and
- n-transitive if $\operatorname{Aut}(\Gamma)$ is player n-transitive.

Label-Independent Notions of Symmetry

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ^{\prime} such that $\Gamma^{\prime} \cong \Gamma$;
- Aut(Г) has a player transitive and strategy trivial subgroup.

Definition

Γ is:

- symmetric if $\operatorname{Aut}(\Gamma)$ is player transitive; and
- n-transitive if $\operatorname{Aut}(\Gamma)$ is player n-transitive.

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.
Note: G can be a proper subgroup of $\operatorname{Aut}(\Gamma)$.

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.
Note: G can be a proper subgroup of Aut(Г).
Example
$g=\left((12) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)\right)$ requires that we have,

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.
Note: G can be a proper subgroup of Aut(Γ).
Example
$g=\left((12) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)\right)$ requires that we have,

$$
\begin{array}{ll}
u_{1}(a, c)=u_{2}(a, c)=\alpha & u_{1}(a, d)=u_{2}(b, c)=\gamma \\
u_{1}(b, c)=u_{2}(a, d)=\beta & u_{1}(b, d)=u_{2}(b, d)=\delta
\end{array}
$$

Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of $\operatorname{bij}(\Gamma)$; and
- for each $g \in G, s \in A$ and $i \in N$, set $u_{i}(s)=u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.
Note: G can be a proper subgroup of $\operatorname{Aut}(\Gamma)$.
Example
$g=\left((12) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)\right)$ requires that we have,

$$
\begin{array}{ll}
u_{1}(a, c)=u_{2}(a, c)=\alpha & u_{1}(a, d)=u_{2}(b, c)=\gamma \\
u_{1}(b, c)=u_{2}(a, d)=\beta & u_{1}(b, d)=u_{2}(b, d)=\delta
\end{array}
$$

Example: n-transitive standard non-fully symmetric

$\operatorname{Aut}(\Gamma)=\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{c}c \\ e \\ e\end{array}\right),\binom{e}{a}\right),\left((12) ;\left(\begin{array}{l}a \\ a \\ d\end{array}\right),\left(\begin{array}{cc}c & d \\ b & a\end{array}\right),\binom{e}{f}\right)\right\rangle$

Example: n-transitive standard non-fully symmetric

$\operatorname{Aut}(\Gamma)=\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}c & d \\ e & f\end{array}\right),\left(\begin{array}{ll}e & f \\ a & b\end{array}\right)\right),\left((12) ;\left(\begin{array}{ll}a & b \\ d & c\end{array}\right),\left(\begin{array}{ll}c & d \\ b & a\end{array}\right),\binom{e}{f}\right)\right\rangle$

- Aut (Γ) is player n-transitive;

Example: n-transitive standard non-fully symmetric

$\operatorname{Aut}(\Gamma)=\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}c & d \\ e & f\end{array}\right),\binom{e}{a}\right),\left((12) ;\left(\begin{array}{ll}a & b \\ d & c\end{array}\right),\left(\begin{array}{cc}c & d \\ b & a\end{array}\right),\left(\begin{array}{l}e \\ f \\ f\end{array}\right)\right)\right\rangle$

- Aut (Γ) is player n-transitive;
- $\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ e & f\end{array}\right),\left(\begin{array}{ll}e & f \\ a & b\end{array}\right)\right)\right\rangle$ is player transitive and strategy trivial;

Example: n-transitive standard non-fully symmetric

$\operatorname{Aut}(\Gamma)=\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{c}c \\ e \\ e\end{array}\right),\binom{e}{a}\right),\left((12) ;\left(\begin{array}{l}a \\ a \\ d\end{array}\right),\binom{c}{c},\left(\begin{array}{l}e \\ b \\ b\end{array}\right),\binom{e}{f}\right)\right\rangle$

- Aut (Γ) is player n-transitive;
- $\left\langle\left((123) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ e & f\end{array}\right),\left(\begin{array}{ll}e & f \\ a & b\end{array}\right)\right)\right\rangle$ is player transitive and strategy trivial;
- $\left((12) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}c & d \\ a & b\end{array}\right),\left(\begin{array}{ll}e & f \\ e & f\end{array}\right)\right) \notin \operatorname{Aut}(\Gamma)$.

Example: only-transitive non-standard symmetric

$$
\begin{aligned}
\operatorname{Aut}(\Gamma) \geq\langle & \left((12) \circ(34) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right),\left(\begin{array}{ll}
e & f \\
h & g
\end{array}\right),\left(\begin{array}{ll}
g & h \\
e & f
\end{array}\right)\right), \\
& \left((13) \circ(24) ;\left(\begin{array}{ll}
a & b \\
f & e
\end{array}\right),\left(\begin{array}{ll}
c & d \\
h & g
\end{array}\right),\left(\begin{array}{ll}
e & f \\
a & b
\end{array}\right),\left(\begin{array}{ll}
g & h \\
c & d
\end{array}\right)\right), \\
& \left.\left((14) \circ(23) ;\left(\begin{array}{ll}
a & b \\
h & g
\end{array}\right),\left(\begin{array}{ll}
c & d \\
f & e
\end{array}\right),\left(\begin{array}{ll}
e & f \\
c & d
\end{array}\right),\left(\begin{array}{ll}
g & h \\
a & b
\end{array}\right)\right)\right\rangle
\end{aligned}
$$

Questions?

Questions?

Questions?

Bonus Example: only-transitive non-standard symmetric

$$
\operatorname{Aut}(\Gamma) \geq\left\langle\left((1234) ;\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right),\left(\begin{array}{cc}
c & d \\
e & f
\end{array}\right),\binom{e}{g},\left(\begin{array}{cc}
g & h \\
a & b
\end{array}\right)\right)\right\rangle
$$

