Classifications of Symmetric Normal Form Games

Nick Ham

advisor: Des FitzGerald

University of Tasmania

September 27, 2013

Definition A normal form game Γ consists of

Definition

A normal form game Γ consists of a (finite) set N of at least two players

Definition

A normal form game Γ consists of a (finite) set N of at least two players, and for each player $i \in N$:

Definition

A normal form game Γ consists of a (finite) set N of at least two players, and for each player $i \in N$:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ A non-empty (finite) set of **strategies** A_i; and

Definition

A normal form game Γ consists of a (finite) set N of at least two players, and for each player $i \in N$:

- ► A non-empty (finite) set of **strategies** A_i; and
- A payoff function u_i : A → ℝ where A = ×_{i∈N}A_i is the set of strategy profiles or outcomes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Suppose:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose:

• $N = \{1, 2, 3\};$

Suppose:

- $N = \{1, 2, 3\};$
- ► $A_1 = \{a, b\},$

Suppose:

• $N = \{1, 2, 3\};$ • $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Suppose:

• $N = \{1, 2, 3\};$ • $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

Then:

 $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Suppose:

• $N = \{1, 2, 3\};$ • $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

Then:

 $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

We can display the payoffs in tables as follows:

Suppose:

•
$$N = \{1, 2, 3\};$$

• $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

Then:

 $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$

We can display the payoffs in tables as follows:

	е	f	_	е	f	
С	1, 1, 1	2, 2, 3	С	3, 2, 2	4, 5, 4	
d	2, 3, 2	5, 4, 4	d	4, 4, 5	6, 6, 6	
(a,,)				(<i>b</i> ,,)		

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Suppose:

•
$$N = \{1, 2, 3\};$$

• $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

Then:

 $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$

We can display the payoffs in tables as follows:

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The payoff to player 3 for the strategy profile (b, d, e) is

Suppose:

•
$$N = \{1, 2, 3\};$$

• $A_1 = \{a, b\}, A_2 = \{c, d\}, A_3 = \{e, f\}.$

Then:

 $A = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$

We can display the payoffs in tables as follows:

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The payoff to player 3 for the strategy profile (b, d, e) is $u_3(b, d, e) = 5$.

Suppose each player has the same strategy set.

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let $\pi \in S_N$ be a permutation of the players.

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Take $\pi = (123) \in S_3$ and $(s_1, s_2, s_3) \in A$.

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Take $\pi=(123)\in S_3$ and $(s_1,s_2,s_3)\in A.$ $\pi(s_1,s_2,s_3)$

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Take $\pi = (123) \in S_3$ and $(s_1, s_2, s_3) \in A$.

$$\pi(s_1, s_2, s_3) = (s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)})$$

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

Example

Take $\pi = (123) \in S_3$ and $(s_1, s_2, s_3) \in A$.

$$\pi(s_1, s_2, s_3) = (s_{\pi^{-1}(1)}, s_{\pi^{-1}(2)}, s_{\pi^{-1}(3)}) = (s_3, s_1, s_2)$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Suppose each player has the same strategy set.

Eg.
$$A_1 = A_2 = A_3 = \{a, b\}$$

Let $\pi \in S_N$ be a permutation of the players. The player permutations act on the left of strategy profiles via

$$\pi(s_1,...,s_n) = (s_{\pi^{-1}(1)},...,s_{\pi^{-1}(n)})$$

Example

Take $\pi = (123) \in S_3$ and $(s_1, s_2, s_3) \in A$.

$$\begin{aligned} \pi(s_1,s_2,s_3) &= (s_{\pi^{-1}(1)},s_{\pi^{-1}(2)},s_{\pi^{-1}(3)}) &= (s_3,s_1,s_2) \\ & \mathsf{Eg.} \ \pi(a,b,a) = (a,a,b) \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → �� ♡ � (♡

Γis:

▶ **invariant** under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Γis:

▶ **invariant** under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• fully symmetric if it is invariant under S_N.

Γis:

- ▶ invariant under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_N.

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Γis:

- ▶ invariant under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and
- ► fully symmetric if it is invariant under *S_N*.

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Γ is invariant under (123) and (12);

Γis:

- ▶ invariant under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_N.

Example

Γ is invariant under (123) and (12);

Eg. let $\pi = (123)$, $\pi(a, b, a) = (a, a, b)$ as before, and we see that $u_2(a, b, a) = u_{\pi(2)}(\pi(a, b, a)) = u_3(a, a, b) = 3$.

Γis:

- ▶ invariant under $\pi \in S_N$ if for each player $i \in N$ and strategy profile $s \in A$, $u_i(s) = u_{\pi(i)}(\pi(s))$; and
- fully symmetric if it is invariant under S_N.

Example

Γ is invariant under (123) and (12);
Eg. let π = (123), π(a, b, a) = (a, a, b) as before, and we see that u₂(a, b, a) = u_{π(2)}(π(a, b, a)) = u₃(a, a, b) = 3.
⟨(123), (12)⟩ = S₃.

- Γis:
 - standard symmetric if it is invariant under a transitive subgroup of the player permutations.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Γis:

standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example

Standard symmetric 3-player game.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Γis:

standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example

Standard symmetric 3-player game.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Γ is invariant under (123);

Γis:

standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example

Standard symmetric 3-player game.

- Γ is invariant under (123);
- $\langle (123) \rangle = \{e, (123), (132)\}$ is a transitive subgroup of S_3 ;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Γis:

standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example

Standard symmetric 3-player game.

- Γ is invariant under (123);
- $\langle (123) \rangle = \{e, (123), (132)\}$ is a transitive subgroup of S_3 ;
- Γ is not invariant under (23).

Γis:

standard symmetric if it is invariant under a transitive subgroup of the player permutations.

Example

Standard symmetric 3-player game.

- Γ is invariant under (123);
- $\langle (123) \rangle = \{e, (123), (132)\}$ is a transitive subgroup of S_3 ;

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Γ is not invariant under (23).

Note: Must have $u_i(a, a, a) = u_j(a, a, a)$ for all $i, j \in N$ etc.
Definition

・ロト・雪ト・ヨト ヨーシック

Definition A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

We denote the set of all game bijections as $bij(\Gamma)$.

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

We denote the set of all game bijections as $bij(\Gamma)$.

game bijections act on the left of players and strategy profiles.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

We denote the set of all game bijections as $bij(\Gamma)$.

game bijections act on the left of players and strategy profiles.

Example

$$g = ((123); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix})$$

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

We denote the set of all game bijections as $bij(\Gamma)$.

game bijections act on the left of players and strategy profiles.

Example

$$g = ((123); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix})$$
$$g(2) = 3$$

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

We denote the set of all game bijections as $bij(\Gamma)$.

game bijections act on the left of players and strategy profiles.

Example

$$g = ((123); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix})$$

$$g(2) = 3, g(b, d, e) = (a, c, f)$$

Definition

A **bijection** from Γ to itself consists of a player permutation $\pi \in S_N$ and for each player $i \in N$, a strategy set bijection $\tau_i : A_i \to A_{\pi(i)}$.

We denote the set of all game bijections as $bij(\Gamma)$.

game bijections act on the left of players and strategy profiles.

Example

$$g = ((123); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix})$$

$$g(2) = 3, g(b, d, e) = (a, c, f)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: $\operatorname{bij}(\Gamma) \cong (S_m \operatorname{Wr} S_n)$.

Let G be a subgroup of the game bijections $bij(\Gamma)$.

Let G be a subgroup of the game bijections $bij(\Gamma)$.

▶ The stabiliser of player $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \leq G$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let G be a subgroup of the game bijections $bij(\Gamma)$.

▶ The stabiliser of player $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \le G$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

We say that G is:

Let G be a subgroup of the game bijections $bij(\Gamma)$.

▶ The stabiliser of player $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \leq G.$

We say that G is:

▶ player transitive if for each i, j ∈ N there exists g ∈ G such that g(i) = j;

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let G be a subgroup of the game bijections $bij(\Gamma)$.

▶ The stabiliser of player $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \leq G.$

We say that G is:

- ▶ player transitive if for each i, j ∈ N there exists g ∈ G such that g(i) = j;
- ▶ player *n*-transitive if for each π ∈ S_N there exists g ∈ G such that g(i) = π(i) for all i ∈ N; and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let G be a subgroup of the game bijections $bij(\Gamma)$.

▶ The stabiliser of player $i \in N$ is the subgroup $G_i = \{g \in G : g(i) = i\} \leq G.$

We say that G is:

- ▶ player transitive if for each i, j ∈ N there exists g ∈ G such that g(i) = j;
- ▶ player *n*-transitive if for each π ∈ S_N there exists g ∈ G such that g(i) = π(i) for all i ∈ N; and
- ► strategy trivial if for each g ∈ G_i, g(s_i) = s_i for all s_i ∈ A_i (ie. τ_i = id_{A_i}).

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by Aut(Γ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by $\mathsf{Aut}(\Gamma).$ Example

Matching Pennies

	Н	Т
Н	1, -1	-1, 1
Т	-1, 1	1, -1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by $Aut(\Gamma).$ Example

Matching Pennies

$$\begin{array}{c|ccc} H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

 $Aut(\Gamma) = \{ (e; (\overset{H}{_{H}} \overset{T}{_{T}}), (\overset{H}{_{H}} \overset{T}{_{T}})), (e; (\overset{H}{_{T}} \overset{T}{_{H}}), (\overset{H}{_{H}} \overset{T}{_{H}})), \\ ((12); (\overset{H}{_{H}} \overset{T}{_{T}}), (\overset{H}{_{T}} \overset{T}{_{H}})), ((12); (\overset{H}{_{T}} \overset{H}{_{H}}), (\overset{H}{_{H}} \overset{T}{_{T}})) \}$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by $Aut(\Gamma).$ Example

Matching Pennies

$$\begin{array}{c|ccc} H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

 $Aut(\Gamma) = \{ (e; (\overset{H}{}_{H}\overset{T}{}_{T}), (\overset{H}{}_{H}\overset{T}{}_{T})), (e; (\overset{H}{}_{T}\overset{T}{}_{H}), (\overset{H}{}_{T}\overset{T}{}_{H})), ((12); (\overset{H}{}_{H}\overset{T}{}_{T}), (\overset{H}{}_{H}\overset{T}{}_{T})), ((12); (\overset{H}{}_{T}\overset{T}{}_{H}), (\overset{H}{}_{H}\overset{T}{}_{T})) \}$

Aut(Γ) is player transitive,

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by $Aut(\Gamma).$ Example

Matching Pennies

$$\begin{array}{c|ccc} H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

$$\mathsf{Aut}(\Gamma) = \{ (e; (\overset{H}{}_{H}\overset{T}{}_{T}), (\overset{H}{}_{H}\overset{T}{}_{T})), (e; (\overset{H}{}_{T}\overset{T}{}_{H}), (\overset{H}{}_{T}\overset{T}{}_{H})), ((12); (\overset{H}{}_{T}\overset{T}{}_{H}), (\overset{H}{}_{H}\overset{T}{}_{T})) \}$$

Aut(Γ) is player transitive, is not strategy trivial and

An **automorphism** of Γ is an invariant bijection $g \in bij(\Gamma)$

ie.
$$u_i(s) = u_{g(i)}(g(s))$$
 for all $i \in N$, $s \in A$

The automorphisms of Γ form a group which we denote by $Aut(\Gamma).$ Example

Matching Pennies

$$\begin{array}{c|ccc} H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

$$Aut(\Gamma) = \{ (e; ({}^{H}_{H} {}^{T}_{T}), ({}^{H}_{H} {}^{T}_{T})), (e; ({}^{H}_{T} {}^{T}_{H}), ({}^{H}_{T} {}^{T}_{H})), ((12); ({}^{H}_{H} {}^{T}_{T}), ({}^{H}_{T} {}^{T}_{H})), ((12); ({}^{H}_{T} {}^{T}_{H}), ({}^{H}_{H} {}^{T}_{T})) \}$$

Aut(Γ) is player transitive, is not strategy trivial and contains no proper transitive subgroups.

Theorem

The following conditions are equivalent:

Theorem

The following conditions are equivalent:

• there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;
- Aut(Γ) has a player transitive and strategy trivial subgroup.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;
- Aut(Γ) has a player transitive and strategy trivial subgroup.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Definition

Γis:

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;
- Aut(Γ) has a player transitive and strategy trivial subgroup.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Definition

Γis:

symmetric if Aut(Γ) is player transitive; and

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;
- Aut(Γ) has a player transitive and strategy trivial subgroup.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Γis:

- symmetric if Aut(Γ) is player transitive; and
- *n*-transitive if $Aut(\Gamma)$ is player *n*-transitive.

Theorem

The following conditions are equivalent:

- there exists standard symmetric Γ' such that $\Gamma' \cong \Gamma$;
- Aut(Γ) has a player transitive and strategy trivial subgroup.

Definition

Γis:

- symmetric if Aut(Γ) is player transitive; and
- *n*-transitive if Aut(Γ) is player *n*-transitive.

We can construct a symmetric game Γ as follows:

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of bij(Γ); and

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

We can construct a symmetric game Γ as follows:

- take a player transitive subgroup G of bij(Γ); and
- ▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of $bij(\Gamma)$; and

▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of bij(Γ); and

▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: G can be a proper subgroup of $Aut(\Gamma)$.

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of $bij(\Gamma)$; and

▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: G can be a proper subgroup of $Aut(\Gamma)$.

Example

$$g = ((12); \left(egin{array}{c} a & b \ c & d \end{array}
ight), \left(egin{array}{c} c & d \ a & b \end{array}
ight))$$
 requires that we have,

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of bij(Γ); and

▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

Note: G can be a proper subgroup of $Aut(\Gamma)$.

Example

$$g = ((12); \left(egin{array}{c} a & b \\ c & d \end{array}
ight), \left(egin{array}{c} c & d \\ a & b \end{array}
ight))$$
 requires that we have,

$$u_1(a, c) = u_2(a, c) = \alpha$$
 $u_1(a, d) = u_2(b, c) = \gamma$
 $u_1(b, c) = u_2(a, d) = \beta$ $u_1(b, d) = u_2(b, d) = \delta$
Constructing Symmetric Games

We can construct a symmetric game Γ as follows:

• take a player transitive subgroup G of bij(Γ); and

▶ for each $g \in G$, $s \in A$ and $i \in N$, set $u_i(s) = u_{g(i)}(g(s))$.

This ensures the elements of $N \times A$ that are in the same orbit have the same payoff.

Note: G can be a proper subgroup of $Aut(\Gamma)$.

Example

$$g = ((12); \left(egin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight), \left(egin{smallmatrix} c & d \\ a & b \end{smallmatrix}
ight))$$
 requires that we have,

$$u_1(a,c) = u_2(a,c) = \alpha$$
 $u_1(a,d) = u_2(b,c) = \gamma$
 $u_1(b,c) = u_2(a,d) = \beta$ $u_1(b,d) = u_2(b,d) = \delta$

$$\begin{array}{c}
c & d \\
a & \alpha, \alpha & \gamma, \beta \\
b & \beta, \gamma & \delta, \delta
\end{array}$$

 $\mathsf{Aut}(\Gamma) = \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}), ((12); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ b & a \end{pmatrix}, \begin{pmatrix} e & f \\ f & e \end{pmatrix}) \rangle$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

 $\mathsf{Aut}(\Gamma) = \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}), ((12); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ b & a \end{pmatrix}, \begin{pmatrix} e & f \\ f & e \end{pmatrix}) \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aut(Γ) is player n-transitive;

 $\mathsf{Aut}(\Gamma) = \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}), ((12); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ b & a \end{pmatrix}, \begin{pmatrix} e & f \\ f & e \end{pmatrix}) \rangle$

Aut(Γ) is player *n*-transitive;

► \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}) \rangle is player transitive and strategy trivial;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathsf{Aut}(\Gamma) = \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}), ((12); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ b & a \end{pmatrix}, \begin{pmatrix} e & f \\ f & e \end{pmatrix}) \rangle$

Aut(Γ) is player n-transitive;

► \langle ((123); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}) \rangle is player transitive and strategy trivial;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► $((12); \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} c & d \\ a & b \end{pmatrix}, \begin{pmatrix} e & f \\ e & f \end{pmatrix}) \notin \operatorname{Aut}(\Gamma).$

Example: only-transitive non-standard symmetric

$$\begin{aligned} \mathsf{Aut}(\Gamma) \geq \langle \left((12) \circ (34); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ a & b \end{pmatrix}, \begin{pmatrix} e & f \\ h & g \end{pmatrix}, \begin{pmatrix} g & h \\ e & f \end{pmatrix} \right), \\ \left((13) \circ (24); \begin{pmatrix} a & b \\ f & e \end{pmatrix}, \begin{pmatrix} c & d \\ h & g \end{pmatrix}, \begin{pmatrix} e & f \\ a & b \end{pmatrix}, \begin{pmatrix} g & h \\ c & d \end{pmatrix} \right), \\ \left((14) \circ (23); \begin{pmatrix} a & b \\ h & g \end{pmatrix}, \begin{pmatrix} c & d \\ f & e \end{pmatrix}, \begin{pmatrix} e & f \\ c & d \end{pmatrix}, \begin{pmatrix} g & h \\ c & d \end{pmatrix} \right) \rangle\end{aligned}$$

▲日 ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Bonus Example: only-transitive non-standard symmetric

 $\mathsf{Aut}(\Gamma) \geq \langle ((1234); \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \begin{pmatrix} c & d \\ e & f \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \begin{pmatrix} g & h \\ a & b \end{pmatrix}) \rangle$