FUNDAMENTAL GROUPS OF FLAT PSEUDO-RIEMANNIAN SPACES

Wolfgang Globke

School of Mathematical Sciences

57th Annual Meeting of the Australian Mathematical Society

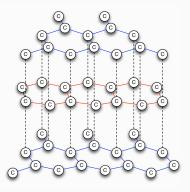
Introduction

A flat manifold is a smooth manifold M with a torsion-free affine connection ∇ of curvature 0.

- *M* geodesically complete:
 - $M = \mathbb{R}^n / \Gamma$
 - $\Gamma \subset \mathbf{Aff}(\mathbb{R}^n)$
 - Γ-action free and properly discontinuous
- *M* not complete:
 - $M = \mathfrak{D}/\Gamma$
 - $\mathfrak{D} \subset \mathbb{R}^n$ open and Γ -invariant

I Classical Results on Crystallographic Groups

Tilings and Crystals



Photographs by John Baez

http://math.ucr.edu/home/baez/alhambra/

Crystallographic Groups

- $\Gamma \subset \mathbf{Euc}(\mathbb{R}^n)$ is a crystallographic group if it is
 - discrete (as a subset of $\mathbf{Euc}(\mathbb{R}^n)$),
 - cocompact (has relatively compact fundamental domain).

If Γ is also torsion-free (no $\gamma \neq$ id of finite order) then Γ is called a Bieberbach group.

Hilbert's 18th Problem

"Is there in n-dimensional Euclidean space [...] only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?"

Bieberbach Theorems (1911/1912)

Bieberbach I

Let Γ be a crystallographic group. Then:

- $\Gamma \cap \mathbb{R}^n$ is a lattice in \mathbb{R}^n .
- LIN(Γ) is finite and faithfully represented in $\mathbf{GL}_n(\mathbb{Z})$.

Bieberbach II

Let Γ_1, Γ_2 be crystallographic groups. Then: $\Gamma_1 \cong \Gamma_2 \iff \Gamma_1$ and Γ_2 affinely equivalent.

Bieberbach III

For given dimension n, there exist only finitely many (affine equivalence classes of) crystallographic groups.

Flat Riemannian Manifolds

Let $M = \mathbb{R}^n / \Gamma$ be a compact complete connected flat Riemannian manifold.

The fundamental group $\Gamma \subset \mathbf{Euc}(\mathbb{R}^n)$ is ...

- discrete,
- torsion-free,
- cocompact.

In other words: Γ is a Bieberbach group.

Geometric Bieberbach Theorems

Bieberbach I*

Let M be a compact complete connected flat Riemannian manifold. Then:

- M is finitely covered by a flat torus.
- Hol(M) is finite.

Bieberbach II*

Let M_1 and M_2 be a compact complete connected flat Riemannian manifolds with fundamental groups Γ_1 and Γ_2 . Then: $\Gamma_1 \cong \Gamma_2 \iff M_1$ and M_2 are affinely equivalent.

Bieberbach III*

For a given dimension n, there are only finitely many equivalence classes of compact complete connected flat Riemannian manifolds.

n	crystallographic	Bieberbach
2	17	2
3	219 (or 230)	10
4	4783	74
5	222018	1060
6	28927915	38746

II Affine Crystallographic Groups

Generalise

Riemannian manifold ~ affine manifold:

- $\Gamma \subset \operatorname{Euc}(\mathbb{R}^n) \rightsquigarrow \Gamma \subset \operatorname{Aff}(\mathbb{R}^n).$
- Γ discrete, torsion-free, cocompact
 - \sim Γ -action properly discontinuous, free, (cocompact).

 Γ is an affine crystallographic group.

Do Bieberbach's Theorems hold in this setting?

No! Counterexamples to all three theorems exist.

Auslander Conjecture (1964)

A tentative analogue to Bieberbach's First Theorem:

Conjecture If $\Gamma \subset \mathbf{Aff}(\mathbb{R}^n)$ is an affine crystallographic group, then Γ is virtually polycyclic.

A group Γ is called...

• polycyclic if there exists a sequence of subgroups

```
\Gamma = \Gamma_0 \supset \Gamma_1 \supset \ldots \supset \Gamma_k = \mathbf{1}
```

such that all Γ_j/Γ_{j+1} are cyclic groups.

 virtually polycyclic if Γ contains a polycyclic subgroup Γ' of finite index (also: polycyclic-by-finite).

Milnor Theorem and Conjecture (1977)

Theorem

Let Γ be a torsion-free and virtually polycyclic group. Then: Γ is the fundamental group of some complete flat affine manifold.

Conjecture

The fundamental group of a flat affine manifold is virtually polycyclic.

Margulis (1983): Milnor's conjecture is wrong! Non-abelian free $\Gamma \subset \mathbf{O}_{2,1} \ltimes \mathbb{R}^3$ exist.

Special Cases

Auslander's Conjecture has been proven in special cases:

- $\Gamma \subset \mathbf{Aff}(\mathbb{R}^3)$ (Fried & Goldman, 1983)
- $\Gamma \subset Iso(\mathbb{R}_1^n)$ (Lorentz metric)
 - Conjecture holds for complete compact flat Lorentz manifolds (Goldman & Kamishima, 1984)
 - Compact flat Lorentz manifolds are complete (Carriere, 1989)
 - Classification is known (Grunewald & Margulis, 1989)

III Flat Pseudo-Riemannian Homogeneous Spaces

Flat Homogeneous Spaces

Let $M = \mathbb{R}^n / \Gamma$. Then: M homogeneous $\Leftrightarrow Z_{Aff(\mathbb{R}^n)}(\Gamma)$ acts transitively on \mathbb{R}^n .

Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

- Γ is 2-step nilpotent ($[\Gamma, [\Gamma, \Gamma]] = 1$).
- $\gamma = (I_n + A, v) \in \Gamma$ with $A^2 = 0$ and Av = 0 (unipotent).
- Γ abelian in signatures (n,0), (n-1,1), (n-2,2).

Questions

- Is Γ always abelian?
- **2** If not, is $LIN(\Gamma)$ (= **Hol**(M)) always abelian?
- Which Γ appear as fundamental groups of flat pseudo-Riemannian homogeneous spaces?
- And what about the compact case?

Baues (2010):

- Example of non-abelian Γ with abelian LIN(Γ), dim M = 6.
- Compact *M* always has abelian $LIN(\Gamma)$.

Dimensions bounds

Theorem (Globke, 2011) Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

dim $M \ge 8$.

If in addition M is complete, then

dim $M \ge 14$.

Examples show that both bounds are sharp.

Abstract Groups

Theorem (Globke, 2012) Let Γ be a group,

- finitely generated
- torsion-free
- 2-step nilpotent of rank n.

Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

References

- O. Baues, Prehomogeneous Affine Representations and Flat Pseudo-Riemannian Manifolds, in 'Handbook of Pseudo-Riemannian Geometry', EMS, 2010
- L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70, 1911 & Math. Ann. 72, 1912
- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- J.H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008
- W. Globke, Holonomy Groups of Flat Pseudo-Riemannian Homogeneous Manifolds, Dissertation, Karlsruhe Institute of Technology, 2011
- D. Fried, W.M. Goldman, M.W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helvetici 56, 1981
- J. Milnor, Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packings, in *John Milnor: Collected Papers I*, Publish or Perish, 1994
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011