Complete Graph

Main Theorem

Discussion O

Mixing time of the Swendsen-Wang process on the complete graph

Tim Garoni

School of Mathematical Sciences Monash University

Australian Government

Australian Research Council

Complete Graph

Main Theorem

Discussion O

Collaborators

► Peter Lin (Monash University → University of Washington)

Main Theorem

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - Construct sample space Ω_n of combinatorial objects built from G_n
 - Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Complete Graph

Main Theorem

Discussion O

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - Construct sample space Ω_n of combinatorial objects built from G_n
 - Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Potts model:

• $\Omega = [q]^V$ for fixed $q \in \{2, 3, 4 \dots\}$

•
$$\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)}$$
 for $\sigma \in \Omega$

•
$$H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$$

• $\beta = 1$ /temperature

Complete Graph

Main Theorem

Discussion O

Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - E.g. complete graphs K_n , or tori \mathbb{Z}_n^d
 - Construct sample space Ω_n of combinatorial objects built from G_n
 - Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Potts model:

- If $\beta \approx 0$ then $\pi(\cdot) \approx$ uniform on Ω
- If $\beta \gg 1$ preference for $u \sim v$ to have $\sigma_u = \sigma_v$
- Phase transition between order and disorder at critical β_c

("Disorder") ("Order")

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ► E.g. Potts partition function Z is #-P hard on generic graphs

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

Complete Graph

Main Theorem

Discussion O

Markov-chain Monte Carlo

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

• Transitions: $\sigma \mapsto \sigma'$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- Transitions: $\sigma \mapsto \sigma'$
 - $\blacktriangleright \quad \text{Uniformly choose } v \in V$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - ▶ E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in [q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in [q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

Complete Graph

Main Theorem

Discussion O

- We often don't know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:

- Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in[q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

Introduction	
0000	

Main Theorem

Discussion O

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

Introduction
0000

Main Theorem

Discussion O

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \le C\alpha^t, \quad \text{for } \alpha \in (0, 1)$$

Mixing time quantifies the rate of convergence

$$t_{\min}(\epsilon) := \min\left\{t : d(t) \le \epsilon\right\}$$

Introduction
0000

Main Theorem

Discussion O

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \le C\alpha^t, \quad \text{for } \alpha \in (0, 1)$$

Mixing time quantifies the rate of convergence

$$t_{\min}(\epsilon) := \min\left\{t : d(t) \le \epsilon\right\}$$

• How does t_{mix} depend on size of Ω ?

Introduction
0000

Main Theorem

Discussion O

Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \le C\alpha^t, \quad \text{for } \alpha \in (0, 1)$$

Mixing time quantifies the rate of convergence

$$t_{\min}(\epsilon) := \min\left\{t : d(t) \le \epsilon\right\}$$

• How does $t_{\rm mix}$ depend on size of Ω ?

- If $t_{mix} = O(poly(\log |\Omega|))$ we have rapid mixing
- Otherwise, we have torpid mixing

```
Introduction
0000
```

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is *q*-state Potts model

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on [q]^V
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on [q]^V
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

- ▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- ► Independently & uniformly *q*-colour each component of (V, A_{t+1})

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

- ▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- ► Independently & uniformly *q*-colour each component of (V, A_{t+1})

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

- ▶ Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- ► Independently & uniformly *q*-colour each component of (V, A_{t+1})

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- ▶ Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = rac{\lambda}{2} n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

► $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

▶ $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ

• Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

 $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

► Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and qGiven $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

▶ $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ

• Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

► Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

▶ $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ

• Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

► Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization s(σ)

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

 $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

• Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- ► Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.
- Independently and uniformly q-colour each component of (V, A_{t+1})

Main Theorem

Discussion O

SW process on complete graph

On K_n :

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for q = 2 (Ising)
 - Discontinuous transition for $q \ge 3$
- Potts energy depends only on magnetization $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}$$

 $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

• Let $SW_n(\lambda, q) = SW$ process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- ▶ Independently for each $i \in [q]$ choose Erdös-Renyi graph $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$.
- Independently and uniformly q-colour each component of (V, A_{t+1})

Note: edge probability in $\mathcal{G}(\sigma_t^{-1}(i),\lambda/n)$ is $\lambda/n=s^i(\sigma_t)\lambda/|\sigma_t^{-1}(i)|$

Complete Graph

Main Theorem

Discussion O

Rapid mixing for q = 2

Potts model on K_n has **continuous** phase transition when q = 2

Complete Graph

Main Theorem

Discussion O

Rapid mixing for q = 2

Potts model on K_n has **continuous** phase transition when q = 2

Theorem (Cooper, Dyer, Frieze & Rue 2000) If q = 2 then $SW_n(\lambda, q)$ has mixing time

$$t_{\min} = O(\sqrt{n})$$

for all $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.

Complete Graph

Main Theorem

Discussion O

Rapid mixing for q = 2

Potts model on K_n has **continuous** phase transition when q = 2

Theorem (Cooper, Dyer, Frieze & Rue 2000) If q = 2 then $SW_n(\lambda, q)$ has mixing time

$$t_{\min} = O(\sqrt{n})$$

for all $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.

Theorem (Long, Nachmias, Ning, & Peres 2012) If q = 2 then $SW_n(\lambda, q)$ has mixing time

$$t_{\rm mix} = \begin{cases} \Theta(1) & \lambda < \lambda_{\rm c} \\ \Theta(n^{1/4}) & \lambda = \lambda_{\rm c} \\ \Theta(\log n) & \lambda > \lambda_{\rm c} \end{cases}$$

▶ Ray, Tamayo, & Klein (1989) conjectured $n^{1/4}$ at λ_c

Complete Graph

Main Theorem

Discussion O

Torpid mixing for $q \ge 3$

Potts model on K_n has **discontinuous** phase transition when $q \ge 3$

Complete Graph

Main Theorem

Discussion O

Torpid mixing for $q \ge 3$

Potts model on K_n has **discontinuous** phase transition when $q \ge 3$

Theorem (Gore & Jerrum 1999) If $q \ge 3$ then $SW_n(\lambda_c, q)$ has mixing time

 $t_{\rm mix} = \exp(\mathbf{\Omega}(\sqrt{n}))$

Complete Graph

Main Theorem

Discussion O

Torpid mixing for $q \ge 3$

Potts model on K_n has **discontinuous** phase transition when $q \ge 3$

Theorem (Gore & Jerrum 1999) If $q \ge 3$ then $SW_n(\lambda_c, q)$ has mixing time

 $t_{\min} = \exp(\mathbf{\Omega}(\sqrt{n}))$

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012) If $q \ge 3$ then the single-site Glauber process for the Potts model has

$$t_{\rm mix} = \begin{cases} \Theta(n\log n) & \lambda < \lambda_{\rm o}(q) \\ \Theta(n^{4/3}) & \lambda = \lambda_{\rm o}(q) \\ \exp(\Omega(n)) & \lambda > \lambda_{\rm o}(q) \end{cases}$$

where $\lambda_o(q) < \lambda_c(q)$, so torpid mixing begins **before** transition

Complete Graph

Main Theorem

Discussion O

Magnetization distribution

Figure: From Cuff et. al 2012

Large *n* distribution of $s(\sigma)$ known explicitly:

$$\frac{1}{n}\log \mathbb{P}(s(\sigma) = a) \sim \phi_{\lambda}(a) - \inf_{a \in \Delta^{q-1}} \phi_{\lambda}(a)$$

$$\phi_{\lambda}(a) = \sum_{i=1}^{q} \left(a_i \log a_i - \frac{1}{2} \lambda a_i^2 \right)$$

Minima of ϕ_{λ} correspond either to:

• disordered state: $s^i = 1/q$ for all $i \in [q]$

▶ ordered states:
$$s^i = \alpha > 1/q$$

and $s^j = \frac{1-\alpha}{q-1}$ for $j \neq i$

$$\begin{split} \lambda_{\mathrm{o}}(q) &:= \inf\{\lambda \geq 0: \text{there exist ordered local minima of } \phi_{\lambda}\}, \\ \lambda_{\mathrm{d}}(q) &:= \sup\{\lambda \geq 0: \text{the disordered state locally minimizes } \phi_{\lambda}\}. \end{split}$$

Main Theorem

Complete picture for $SW_n(\lambda, q)$ with $q \ge 3$

Theorem (Lin & G. 2013) If $q \ge 3$ then $SW_n(\lambda, q)$ has mixing time $t_{mix} = \begin{cases} \Theta(1) & \lambda < \lambda_o(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_o(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_o(q) < \lambda < \lambda_d(q) \\ \Theta(\log(n)) & \lambda \ge \lambda_d(q) \end{cases}$

Complete picture for $SW_n(\lambda, q)$ with $q \ge 3$

Theorem (Lin & G. 2013)

If $q \geq 3$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\rm mix} = \begin{cases} \Theta(1) & \lambda < \lambda_{\rm o}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\rm o}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\rm o}(q) < \lambda < \lambda_{\rm d}(q) \\ \Theta(\log(n)) & \lambda \ge \lambda_{\rm d}(q) \end{cases}$$

- ► Gore & Jerrum's torpid mixing result extends to a non-trivial interval (λ_o(q), λ_d(q)) containing λ_c(q)
- Nothing special happens at $\lambda_{c}(q)$
- Non-trivial scaling arises at $\lambda_o(q)$
- Low and high temperature same as Ising case

Complete Graph

Main Theorem

Discussion O

(*)

Sketch of Proof

► If
$$Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$$
 then
 $s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1}$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- ▶ $\theta(\lambda) n = \mathbb{E}(\text{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n, \lambda/n)$
- Y_t)_{t≥0} is a sequence of martingale increments
- $\operatorname{var}(Y_t|\sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (*) exact

Complete Graph

Main Theorem

Discussion O

Sketch of Proof

• If
$$Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$$
 then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{(*)}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- ▶ $\theta(\lambda) n = \mathbb{E}(\text{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n, \lambda/n)$
- Y_t)_{t≥0} is a sequence of martingale increments
- $\operatorname{var}(Y_t|\sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (*) exact

▶ Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

$$\lambda_{o} = \inf\{\lambda \ge 0 : D_{\lambda,q}(x) \text{ has a root on } (1/q, 1]\}$$

$$\lambda_{d} = \sup\{\lambda \ge 0 : D_{\lambda,q}(1/q) = 0\}$$

Complete Graph

Main Theorem

Discussion O

Sketch of Proof

• If
$$Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$$
 then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{(*)}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- ► $\theta(\lambda) n = \mathbb{E}(\text{size of giant component})$ in Erdös-Renyi $\mathcal{G}(n, \lambda/n)$
- Y_t)_{t≥0} is a sequence of martingale increments
- $\operatorname{var}(Y_t|\sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (*) exact
- ▶ Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

$$\lambda_{o} = \inf\{\lambda \ge 0 : D_{\lambda,q}(x) \text{ has a root on } (1/q, 1]\}$$

$$\lambda_{\rm d} = \sup\{\lambda \ge 0 : D_{\lambda,q}(1/q) = 0\}$$

Coupling arguments reduce mixing time to hitting time of s¹_t

Complete Graph

Main Theorem

Discussion O

Swendsen-Wang drift

Complete Graph

Main Theorem

Discussion

Discussion

- Our hitting-time estimates for s¹_t explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof

Complete Graph

Main Theorem

Discussion

Discussion

- Our hitting-time estimates for s¹_t explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof
- Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real q > 1 for complete graph Chayes-Machta chain. Can this be proved?

Complete Graph

Main Theorem

Discussion

Discussion

- Our hitting-time estimates for s¹_t explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof
- Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real q > 1 for complete graph Chayes-Machta chain. Can this be proved?
- Can one say anything for the Glauber chain for the Fortuin-Kasteleyn model?