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Introduction Complete Graph Main Theorem Discussion

Probability on Graphs

I Many problems in statistical mechanics are of the form:
I Consider a sequence of finite graphs Gn = (Vn, En) with:

I Gn ⊂ Gn+1 and |Vn+1| > |Vn|
I E.g. complete graphs Kn, or tori Zdn

I Construct sample space Ωn of combinatorial objects built from Gn
I Define (up to normalization) a probability πn,β(·) on Ωn

I Potts model:

I Ω = [q]V for fixed q ∈ {2, 3, 4 . . .}

I π(σ) =
1

Z
e−βH(σ) for σ ∈ Ω

I H(σ) = −
∑
uv∈E δσu,σv

I β = 1/temperature

I If β ≈ 0 then π(·) ≈ uniform on Ω (“Disorder”)
I If β � 1 preference for u ∼ v to have σu = σv (“Order”)
I Phase transition between order and disorder at critical βc
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Markov-chain Monte Carlo

I We often don’t know how to normalize π(·)
I E.g. Potts partition function Z is #-P hard on generic graphs

I But we can often do the following:
I Construct a transition matrix P on Ω which:

I Is irreducible
I Has stationary distribution π(·)

I Generate random samples with (approximate) distribution π

I E.g. Single-vertex Glauber chain for Potts model:

I Transitions: σ 7→ σ′

I Uniformly choose v ∈ V
I σ′u = σu for u 6= v
I Choose σ′v ∈ [q] independently of σv via

π(σ′v |{σu}u∈V \v) =
eβ#{u∼v:σ

′
v=σu}∑

σv∈[q] e
β#{u∼v:σv=σu}
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Mixing times

I Consider a Markov chain
I finite state space Ω
I transition matrix P
I stationary distribution π
I irreducible
I aperiodic

d(t) := max
x∈Ω
‖P t(x, ·)− π(·)‖ ≤ Cαt, for α ∈ (0, 1)

I Mixing time quantifies the rate of convergence

tmix(ε) := min {t : d(t) ≤ ε}

I How does tmix depend on size of Ω?
I If tmix = O(poly(log |Ω|)) we have rapid mixing
I Otherwise, we have torpid mixing
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Swendsen-Wang process

I Irreducible aperiodic Markov chain on [q]V

I Stationary distribution is q-state Potts model

Given σt ∈ [q]V , SW chooses σt+1 as follows:

I Independently for each i ∈ [q] perform independent bond
percolation on G[σ−1

t (i)] with p = 1− e−β .

Let At+1 ⊆ E(G) be the union of all occupied edges

I Independently & uniformly q-colour each component of (V,At+1)
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SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n).

Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n)

.
I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n).

Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n)

.
I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n).

Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n)

.
I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:

I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n).

Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n)

.
I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n).

Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n)

.
I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n). Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n).

I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n). Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n).

I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

SW process on complete graph

On Kn:
I Potts model has transition at β = λc/n with λc = Θ(1)

I Continuous transition for q = 2 (Ising)
I Discontinuous transition for q ≥ 3

I Potts energy depends only on magnetization s(σ)

−βH(σ) =
λ

2
n s(σ) · s(σ) + constant

I si(σ) = |σ−1(i)|/n = fraction of vertices coloured i ∈ [q] by σ

I Let SWn(λ, q) = SW process on Kn with parameters λ and q

Given σt ∈ [q]n, SWn(λ, q) chooses σt+1 as follows:
I Independently for each i ∈ [q] choose Erdös-Renyi graph
G(σ−1

t (i), λ/n). Let At+1 = ∪i∈[q]G(σ−1
t (i), λ/n).

I Independently and uniformly q-colour each component of (V,At+1)

Note: edge probability in G(σ−1
t (i), λ/n) is λ/n = si(σt)λ/|σ−1

t (i)|



Introduction Complete Graph Main Theorem Discussion

Rapid mixing for q = 2
Potts model on Kn has continuous phase transition when q = 2

Theorem (Cooper, Dyer, Frieze & Rue 2000)
If q = 2 then SWn(λ, q) has mixing time

tmix = O(
√
n)

for all λ 6∈ (λc − δ, λc + δ) with δ
√

log n→∞ as n→∞.

Theorem (Long, Nachmias, Ning, & Peres 2012)
If q = 2 then SWn(λ, q) has mixing time

tmix =


Θ(1) λ < λc

Θ(n1/4) λ = λc

Θ(log n) λ > λc

I Ray, Tamayo, & Klein (1989) conjectured n1/4 at λc
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Rapid mixing for q = 2
Potts model on Kn has continuous phase transition when q = 2
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Torpid mixing for q ≥ 3

Potts model on Kn has discontinuous phase transition when q ≥ 3

Theorem (Gore & Jerrum 1999)
If q ≥ 3 then SWn(λc, q) has mixing time

tmix = exp(Ω(
√
n))

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012)
If q ≥ 3 then the single-site Glauber process for the Potts model has

tmix =


Θ(n log n) λ < λo(q)

Θ(n4/3) λ = λo(q)

exp(Ω(n)) λ > λo(q)

where λo(q) < λc(q), so torpid mixing begins before transition
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Magnetization distribution

Figure: From Cuff et. al 2012

Large n distribution of s(σ) known explicitly:

− 1

n
logP(s(σ) = a) ∼ φλ(a)− inf

a∈∆q−1
φλ(a)

φλ(a) =

q∑
i=1

(
ai log ai −

1

2
λ a2

i

)

Minima of φλ correspond either to:
I disordered state: si = 1/q for all i ∈ [q]

I ordered states: si = α > 1/q
and sj = 1−α

q−1 for j 6= i

λo(q) := inf{λ ≥ 0 : there exist ordered local minima of φλ},
λd(q) := sup{λ ≥ 0 : the disordered state locally minimizes φλ}.
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Complete picture for SWn(λ, q) with q ≥ 3

Theorem (Lin & G. 2013)
If q ≥ 3 then SWn(λ, q) has mixing time

tmix =


Θ(1) λ < λo(q)

Θ(n1/3) λ = λo(q)

exp(Ω(
√
n)) λo(q) < λ < λd(q)

Θ(log(n)) λ ≥ λd(q)

I Gore & Jerrum’s torpid mixing result extends to a non-trivial
interval (λo(q), λd(q)) containing λc(q)

I Nothing special happens at λc(q)

I Non-trivial scaling arises at λo(q)

I Low and high temperature same as Ising case
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Sketch of Proof

I If Yt+1 := s1
t+1 − E[s1

t+1|σt] then

s1
t+1 ≈ s1

t +D(s1
t ) + Yt+1 (∗)

where
Dλ,q(x) := θ(λx)(1− 1/q)x+ 1/q − x

I θ(λ)n = E(size of giant component) in Erdös-Renyi G(n, λ/n)
I (Yt)t≥0 is a sequence of martingale increments
I var(Yt|σt) = Θ(n−1)
I Conditioning on a certain a.a.s. event makes (∗) exact

I Roots of Dλ,q coincide with minima of Potts free energy φλ,q

λo = inf{λ ≥ 0 : Dλ,q(x) has a root on (1/q, 1]}
λd = sup{λ ≥ 0 : Dλ,q(1/q) = 0}

I Coupling arguments reduce mixing time to hitting time of s1
t
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Swendsen-Wang drift
Dλ,q(x) := θ(λx)(1− 1/q)x+ 1/q − x
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Discussion

I Our hitting-time estimates for s1
t explain exponent values in

mixing times for several other Potts/Ising processes
I Mixing time exponents depend on:

I drift asymptotics near roots
I decay of noise term

I Give conjectured results for the Potts censored Glauber chain
I construct couplings to complete proof

I Jon Machta (private communication) has conjectured mixing time
asymptotics at λc for all real q > 1 for complete graph
Chayes-Machta chain. Can this be proved?

I Can one say anything for the Glauber chain for the
Fortuin-Kasteleyn model?
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