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> G C Gn+1 and |Vn+1| > |Vn‘
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» Construct sample space 2,, of combinatorial objects built from G,,
» Define (up to normalization) a probability 7, 5(-) on Q,
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» Many problems in statistical mechanics are of the form:
» Consider a sequence of finite graphs G,, = (V,,, Ey) with:
> G C Gn+1 and |Vn+1| > |Vn‘
» E.g. complete graphs K, or tori Z¢
» Construct sample space 2,, of combinatorial objects built from G,,
» Define (up to normalization) a probability 7, 5(-) on Q,

» Potts model:

» Q=[q]" forfixed g € {2,3,4...}
] > 7T(U)I%(m@foroeﬂ

> H(o) = =3 yver Sou0on
> (B = 1/temperature

> If 3~ 0then 7(-) = uniform on (“Disorder”)
» If B> 1 preference for u ~ v to have o, = o (“Order”)
» Phase transition between order and disorder at critical 3.
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» We often don’t know how to normalize (+)

» E.g. Potts partition function Z is #-P hard on generic graphs
» But we can often do the following:

» Construct a transition matrix P on 2 which:

> Is irreducible
> Has stationary distribution = (-)

» Generate random samples with (approximate) distribution

» E.g. Single-vertex Glauber chain for Potts model:

» Transitions: o — o’

¢ » Uniformly choose v € V/
> o, =oyforu#ov

» Choose o), € [q] independently of &, via

eﬁ#{uwv:o'q/}:o'u}

Zo’v eld] eﬁ#{uf\/'v:ov =ou}

71F(‘Ti;|{‘7'7J}7J.€V\vu) =



Introduction
00@0

Complete Graph Main Theorem
0000 [e]e]e}

Mixing times

» Consider a Markov chain

yvYyVvYVvYy

finite state space 2
transition matrix P
stationary distribution =
irreducible

aperiodic

Discussion
[e]



Introduction Complete Graph Main Theorem Discussion
[eYe] Yol 0000

Mixing times

» Consider a Markov chain
finite state space 2
transition matrix P
stationary distribution =
irreducible

aperiodic

yvYyVvYVvYy
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irreducible
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d(t) == max||P'(z,) ==()| < Ca’,  forae(0,1) J

» Mixing time quantifies the rate of convergence
tmix(€) == min {¢ : d(t) < €}

» How does ¢,,;, depend on size of Q?

Main Theorem Discussion
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Mixing times

» Consider a Markov chain
finite state space 2
transition matrix P
stationary distribution =
irreducible

aperiodic

yvYyVvYVvYy

d(t) == max |Pt(z,) — m(-)|| < Cat, for o € (0,1)

» Mixing time quantifies the rate of convergence
tmix(€) :=min {¢t : d(t) < €}
» How does ¢,,;, depend on size of Q?

> If tmix = O(poly(log|?|)) we have rapid mixing
» Otherwise, we have torpid mixing
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SW process on complete graph

On K,:
» Potts model has transition at 5 = A./n with A\c = ©(1)

» Continuous transition for ¢ = 2 (Ising)
» Discontinuous transition for ¢ > 3

» Potts energy depends only on magnetization s(o)
—BH (o) = %ns(o) -s(o) + constant
» si(0) = |o~1(i)|/n = fraction of vertices coloured i € [¢] by o

» Let SW,, (A, ¢) = SW process on K,, with parameters A and ¢

Given o; € [¢]", SW,, (), q) chooses o;; as follows:
» Independently for each i € [q] choose Erdds-Renyi graph
G(og (i), A/n). Let Aryr = UserqG(oy ' (i), A/n).
» Independently and uniformly g-colour each component of (V, A;41)

Note: edge probability in G(o; ' (i), \/n) is A\/n = s'(a¢)\/|o; (i)
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Rapid mixing for ¢ = 2

Potts model on K,, has continuous phase transition when ¢ = 2

Theorem (Cooper, Dyer, Frieze & Rue 2000)
If g = 2 then SW,,(\, q) has mixing time

tmix = O(\/ﬁ)
forall X\ & (\c — 8, \c + 8) with 6y/logn — oo asn — oo.
Theorem (Long, Nachmias, Ning, & Peres 2012)
If ¢ = 2 then SW (X, ¢) has mixing time

o(1) A< A
tmix = O(n/%) X=X
O(logn) A > A

» Ray, Tamayo, & Klein (1989) conjectured n'/* at ).
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Torpid mixing for ¢ > 3

Potts model on K, has discontinuous phase transition when ¢ > 3



Introduction Complete Graph Main Theorem Discussion
0000 00e0 000 o

Torpid mixing for ¢ > 3

Potts model on K,, has discontinuous phase transition when ¢ > 3




Complete Graph
ooceo

Torpid mixing for ¢ > 3
Potts model on K, has discontinuous phase transition when ¢ > 3

Theorem (Gore & Jerrum 1999)
If g > 3 then SW,,(\¢, q) has mixing time

tmix = exp(2(v/n))

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012)
If ¢ > 3 then the single-site Glauber process for the Potts model has
O(nlogn) A< A (q)

tmix = {4 O(n?/3) A= Ao(q
exp(2(n)) A > Ao(q)

~—

where \.(q) < A:(q), so torpid mixing begins before transition
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Magnetization distribution
Iy 5 Large n distribution of s(¢) known explicitly:

: ) - B l [ i ) : . —% logP(s(0) = a) ~ ¢x(a) — aeigf—l oa(a)
'I L \ Pala) = Z <ai loga; — %/\a?>

B € (Ber Bs)

B € (B, 8)
‘L—— r Minima of ¢, correspond either to:
» disordered state: s = 1/q for all i € [q]
> ordered states: s' = a > 1/q
Figure: From Cuff et. al 2012 and s” = ;_T? forj #

Ao(q) :=inf{X > 0 : there exist ordered local minima of ¢, },
Aa(q) ;= sup{\ > 0 : the disordered state locally minimizes ¢, }.
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Complete picture for SW,, (X, ¢) with ¢ > 3

v

Gore & Jerrum’s torpid mixing result extends to a non-trivial
interval (A\,(q), Aa(g)) containing A.(q)

Nothing special happens at \.(q)
Non-trivial scaling arises at A,(q)
Low and high temperature same as Ising case

v

v

v
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Sketch of Proof

> If Yiyy :=siy — Elsiyq|o¢] then
Str1 % 8¢+ D(s;) + Vi (+)

where
Dy 4(x)=002)1-1/q)z+1/qg—=x

6(X) n = E(size of giant component) in Erdés-Renyi G(n, A/n)
(Y1):>0 is a sequence of martingale increments

var(Yi|ot) = ©(n™ 1)

Conditioning on a certain a.a.s. event makes (x) exact

v vy VvVyYy
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Aq =sup{A > 0: Dy ,(1/q) =0}
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where
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6(X) n = E(size of giant component) in Erdés-Renyi G(n, A/n)
(Y1):>0 is a sequence of martingale increments

var(Yi|ot) = ©(n™ 1)

Conditioning on a certain a.a.s. event makes (x) exact

» Roots of D, , coincide with minima of Potts free energy ¢, ,

v vy VvVyYy

Ao = inf{\ > 0: D, ,(x) has arooton (1/¢,1]}
Aq =sup{A > 0: Dy ,(1/q) =0}

» Coupling arguments reduce mixing time to hitting time of s}
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Swendsen-Wang drift
Dy 4(z) =0 )1 -1/q)x+1/q — =z

Discussion
[e]

A< Ao(Q) Ao(0) < A < A(Q) A= 24(0)
& & & —
X X X
A= 2(0) A(@) < A < Ag(q) 1> A4(@)
8 0 8 10 8 10
5 00s| 6 00s| o 6 00s| T g
X X X
o(1) A< (9
1/3 _
_Jem3) A= Xo(q)
tmix -

exp(yn))  Ao(q) < A < Aalq)
O(log(n)) A >Aalg)
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» construct couplings to complete proof
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Discussion

» Our hitting-time estimates for s} explain exponent values in
mixing times for several other Potts/Ising processes
» Mixing time exponents depend on:

> drift asymptotics near roots
> decay of noise term

» Give conjectured results for the Potts censored Glauber chain
» construct couplings to complete proof

» Jon Machta (private communication) has conjectured mixing time
asymptotics at A. for all real ¢ > 1 for complete graph
Chayes-Machta chain. Can this be proved?

» Can one say anything for the Glauber chain for the
Fortuin-Kasteleyn model?



