The cogrowth series for BS(N,N) is D-finite

Murray Elder, (U Newcastle, Australia) Andrew Rechnitzer, (UBC, Canada) Buks van Rensburg, (York U, Canada) Tom Wong, (UBC, Canada)

AustMS 2013, Group Actions special session

Cogrowth

(G,X) a group with finite generating set

 c_n = number of words in $\left(\mathsf{X} \cup \mathsf{X}^{-1}\right)^n$ equal to the identity in G

 $n \mapsto c_n$ is the *cogrowth function* for (G,X)

Cogrowth

(G,X) a group with finite generating set

 c_n = number of words in $(X \cup X^{-1})^n$ equal to the identity in G

 $n \mapsto c_n$ is the *cogrowth function* for (G,X)

 $c_n \leq (2|\mathsf{X}|)^n$ so $\limsup c_n^{1/n} \leq 2|\mathsf{X}|$

Thm(Grigorchuk/Cohen): G is amenable iff $\limsup c_n^{1/n} = 2|X|$

BS(N,M)

is the 1 relator group $\langle a, b \mid ba^{\mathsf{N}} = a^{\mathsf{M}}b \rangle$

which satisfies $(n + 1)^2 c_{2n+2} = 4(2n + 1)^2 c_{2n}$

(sequence A002894 OEIS)

BS(1,1)

$$\{c_n\}$$
 satisfies $(\frac{n}{2}+1)^2 c_{n+2} = 4(n+1)^2 c_n$

so the sequence $\{c_n\}$ is *P*-recursive

(satisfies a linear recurrence with polynomial coefficients)

BS(1,1)

$$\{c_n\}$$
 satisfies $(\frac{n}{2}+1)^2 c_{n+2} = 4(n+1)^2 c_n$

so the sequence $\{c_n\}$ is *P*-recursive

(satisfies a linear recurrence with polynomial coefficients)

Thm(Stanley):
$$\{a_n\}$$
 is P-recursive iff $\sum_n a_n z^n$ is D-finite

(satisfies a linear differential equation with polynomial coefficients)

Why D-finite?

- closed under addition and multiplication
- includes rational and algebraic functions
- fast to compute terms of the sequence from the DEs
- can compute asymptotics of the sequence from the DEs

This project: understanding the cogrowth series $\sum_{n} c_n z^n$ for BS(N,N)

Kouksov

— cogrowth series is rational iff the group is finite

Not many explicit cogrowth series (closed form, etc) known — free groups, abelian groups, some free products

Experimental work (ERvRW) to compute cogrowth rates for groups whose amenability is unknown

— need exact results for comparison/validation

Thm(ERvRW): cogrowth series $\sum_{n} c_n z^n$ is D-finite

Proof sketch: instead of counting just words = id, count more.

Let $g_{n,k}$ be the number of words of length n that evaluate to a^k in BS(N,N)

so $g_{n,0} = c_n$, but it is easier to count $g_{n,k}$ then *diagonalise* its generating function at q = 0

Define
$$G(z;q) = \sum_{n,k} g_{n,k} z^n q^k$$
 $[q^0] G(z;q) = \sum_{n,k} g_{n,0} z^n$

Thm(ERvRW): cogrowth series $\sum_{n} c_n z^n$ is D-finite

Proof sketch: instead of counting just words = id, count more.

Let $g_{n,k}$ be the number of words of length n that evaluate to a^k in BS(N,N)

so $g_{n,0} = c_n$, but it is easier to count $g_{n,k}$ then *diagonalise* its generating function at q = 0

Define
$$G(z;q) = \sum_{n,k} g_{n,k} z^n q^k$$
 $[q^0] G(z;q) = \sum_{n,k} g_{n,0} z^n$

Thm(ERvRW): G(z;q) is algebraic

Since the *diagonal* of an D-finite function is D-finite (Lipshitz), the result follows.

Details

Proving that G(z;q) is algebraic is pretty cool, see

http://arxiv.org/abs/1309.4184

for details.

For the rest of the talk I will explain how we compute explicitly the cogrowth rate, which is the exponential growth rate of the cogrowth function, *i.e.* $\limsup c_n^{1/n}$

Lemma: $g_{n,k} = g_{n,-k}$

Proof: switch $a \leftrightarrow a^{-1}$ in words counted by $g_{n,k}$

Eg in BS(10,10):

 $a^{13}ba^{-10}b^{-1}a^2 \quad \longleftrightarrow \quad a^{-13}ba^{10}b^{-1}a^{-2}$

Lemma: $g_{n,k} = 0$ for |k| > n

Proof: if w has length n, replace $a^{\pm N}b^{\pm 1}$ by $b^{\pm 1}a^{\pm N}$ and freely reduce. These moves do not increase length, and repeating them gives a word with no $a^{\pm N}$ subwords except possibly on the right.

Eg in BS(10,10): $a^{13}ba^{12}b\ldots \longrightarrow a^{3}ba^{2}ba^{20}\ldots$

Lemma: $g_{n,k} = 0$ for |k| > n

Proof: if w has length n, replace $a^{\pm N}b^{\pm 1}$ by $b^{\pm 1}a^{\pm N}$ and freely reduce. These moves do not increase length, and repeating them gives a word with no $a^{\pm N}$ subwords except possibly on the right.

Eg in BS(10,10): $a^{13}ba^{12}b\ldots \longrightarrow a^{3}ba^{2}ba^{20}\ldots$

If w equals a power of a, there can be no $b^{\pm 1}$ letters in the resulting word (*Britton's lemma*)

So the resulting word a^k is no longer than n, so $|k| \leq n$.

The diagonal of $G(z;q) = \sum_{n,k} g_{n,k} z^n q^k$ is not so easy to work with. Instead, consider the generating function with q = 1:

$$G(z;1) = \sum_{n} \left(\sum_{k} g_{n,k}\right) z^{n}$$

The diagonal of $G(z;q) = \sum_{n,k} g_{n,k} z^n q^k$ is not so easy to work with. Instead, consider the generating function with q = 1:

$$G(z; 1) = \sum_{n} g_{n} z^{n} \left(\text{where } g_{n} = \sum_{k} g_{n,k} \right).$$

The diagonal of $G(z;q) = \sum_{n,k} g_{n,k} z^n q^k$ is not so easy to work with. Instead, consider the generating function with q = 1:

$$G(z; 1) = \sum_{n} g_{n} z^{n} \left(\text{where } g_{n} = \sum_{k} g_{n,k} \right).$$

Thm(ERvRW): $\limsup c_n^{1/n} = \limsup g_n^{1/n}$

So to compute cogrowth we find the asymptotic growth rate of a function that is counting more than just trivial words! **Thm(ERvRW):** $\limsup c_n^{1/n} = \limsup g_n^{1/n}$

The proof makes use of a *"most popular"* argument that is popular in statistical physics.

Thm(ERvRW): $\limsup c_n^{1/n} = \limsup g_n^{1/n}$

The proof makes use of a *"most popular"* argument that is popular in statistical physics.

Proof: Let $\mu_{all} = \limsup g_n^{1/n}$ and $\mu_0 = \limsup c_n^{1/n} = \limsup g_{n,0}^{1/n}$

Since $g_{n,k}$ are nonnegative and $g_{n,0} \leq g_n$ we have $\mu_{all} \geq \mu_0$.

Proof continued:

Now we prove that $\mu_{all} \leq \mu_0$.

Recall that $g_{n,k} = 0$ when |k| > n

so there is some k^* so that g_{n,k^*} is maximised (k^* is popular)

So
$$g_{n,k^*} \le \sum_k g_{n,k} = g_n \le (2n+1)g_{n,k^*}$$

so taking lim sup we get the same answer, so $\mu_{all} = \limsup g_{n,k^*}$

Proof continued:

Now consider words that equal a^{k^*} , and words that equal a^{-k^*} . Put them together and you get a word equal to a^0 , so

$$(g_{n,k})^2 = g_{n,k^*} \cdot g_{n,-k^*} \le g_{2n,0} \qquad (g_{n,k} = g_{n,-k})$$

Raise both sides to 1/2n:

$$(g_{n,k^*})^{1/n} \le (g_{2n,0})^{1/2n}$$

send $n \to \infty$:

$$\mu_{\text{all}} = \limsup(g_{n,k^*})^{1/n} \le \limsup(g_{2n,0})^{1/2n} = \mu_0$$

The rate of growth of G(z; 1) (which is algebraic) is therefore the same as the cogrowth.

We can find it by taking the explicit polynomial equation satisfied by G(z; 1) and solving the discriminant *

N	μ_0
1	4
2	3.792765039
3	3.647639445
4	3.569497357

*David A. Klarner and Patricia Woodworth. Asymptotics for coefficients of algebraic functions. Aequationes Math. 23, 1981.

N	μ_0
1	4
2	3.792765039
3	3.647639445
4	3.569497357
5	3.525816111
6	3.500607636
7	3.485775158
8	3.476962757
9	3.471710431
10	3.468586539

The cogrowth rate $\mu_0 = \mu_{all}$ in BS(N,N) up to 10 (the polynomials and DEs up to 10 are online).

Note that the cogrowth rate for the 2-generator free group is $\sqrt{12} = 3.464101615$

N	μ_0
1	4
2	3.792765039
3	3.647639445
4	3.569497357
5	3.525816111
6	3.500607636
7	3.485775158
8	3.476962757
9	3.471710431
10	3.468586539

The cogrowth rate $\mu_0 = \mu_{all}$ in BS(N,N) up to 10 (the polynomials and DEs up to 10 are online).

Note that the cogrowth rate for the 2-generator free group is $\sqrt{12} = 3.464101615$

Thanks! http://arxiv.org/abs/1309.4184