The cogrowth series for $B S(N, N)$ is D-finite

Murray Elder, (U Newcastle, Australia)
Andrew Rechnitzer, (UBC, Canada)
Buks van Rensburg, (York U, Canada)
Tom Wong, (UBC, Canada)

AustMS 2013, Group Actions special session

Cogrowth

(G, X) a group with finite generating set
$c_{n}=$ number of words in $\left(\mathrm{X} \cup \mathrm{X}^{-1}\right)^{n}$ equal to the identity in G
$n \mapsto c_{n}$ is the cogrowth function for (G, X)

Cogrowth

(G, X) a group with finite generating set
$c_{n}=$ number of words in $\left(X \cup \mathrm{X}^{-1}\right)^{n}$ equal to the identity in G
$n \mapsto c_{n}$ is the cogrowth function for (G, X)
$c_{n} \leq(2|\mathrm{X}|)^{n} \quad$ so $\lim \sup c_{n}^{1 / n} \leq 2|\mathrm{X}|$
Thm(Grigorchuk/Cohen): G is amenable iff $\limsup c_{n}^{1 / n}=2|\mathrm{X}|$

$B S(N, M)$

is the 1 relator group $\left\langle a, b \mid b a^{\mathrm{N}}=a^{\mathrm{M}} b\right\rangle$
$\mathrm{BS}(1,1)$ is just \mathbb{Z}^{2}

$B S(1,1)$

$$
\begin{array}{cccccccccccccccccc}
a & a & b^{-1} & b & a & b & a^{-1} & a & b & a^{-1} & b & a^{-1} & a^{-1} & b^{-1} & a^{-1} & b^{-1} & b^{-1} & a \\
+ & + & - & + & + & + & - & + & + & - & + & - & - & - & - & - & - & + \\
+ & + & + & - & + & - & - & + & - & - & - & - & - & + & - & + & + & +
\end{array}
$$

$B S(1,1)$

$$
\begin{aligned}
& c_{2 n}=\binom{2 n}{n}\binom{2 n}{n} \\
& c_{2 n+1}=0
\end{aligned}
$$

$$
\begin{array}{cccccccccccccccccc}
a & a & b^{-1} & b & a & b & a^{-1} & a & b & a^{-1} & b & a^{-1} & a^{-1} & b^{-1} & a^{-1} & b^{-1} & b^{-1} & a \\
+ & + & - & + & + & + & - & + & + & - & + & - & - & - & - & - & - & + \\
+ & + & + & - & + & - & - & + & - & - & - & - & - & + & - & + & + & +
\end{array}
$$

BS $(1,1)$

$$
\begin{aligned}
& c_{2 n}=\binom{2 n}{n}\binom{2 n}{n} \\
& c_{2 n+1}=0
\end{aligned}
$$

which satisfies $(n+1)^{2} c_{2 n+2}=4(2 n+1)^{2} c_{2 n}$

BS $(1,1)$

$\left\{c_{n}\right\}$ satisfies $\left(\frac{n}{2}+1\right)^{2} c_{n+2}=4(n+1)^{2} c_{n}$
so the sequence $\left\{c_{n}\right\}$ is P-recursive
(satisfies a linear recurrence with polynomial coefficients)

BS $(1,1)$

$\left\{c_{n}\right\}$ satisfies $\left(\frac{n}{2}+1\right)^{2} c_{n+2}=4(n+1)^{2} c_{n}$
so the sequence $\left\{c_{n}\right\}$ is P-recursive
(satisfies a linear recurrence with polynomial coefficients)

Thm(Stanley): $\left\{a_{n}\right\}$ is P-recursive iff $\sum_{n} a_{n} z^{n}$ is D-finite
(satisfies a linear differential equation with polynomial coefficients)

Why D-finite?

- closed under addition and multiplication
- includes rational and algebraic functions
- fast to compute terms of the sequence from the DEs
- can compute asymptotics of the sequence from the DEs

This project: understanding the cogrowth series $\sum_{n} c_{n} z^{n}$ for $B S(N, N)$

Kouksov

- cogrowth series is rational iff the group is finite

Not many explicit cogrowth series (closed form, etc) known

- free groups, abelian groups, some free products

Experimental work (ERvRW) to compute cogrowth rates
for groups whose amenability is unknown

- need exact results for comparison/validation

Thm(ERvRW): cogrowth series $\sum_{n} c_{n} z^{n}$ is D-finite
Proof sketch: instead of counting just words $=$ id, count more.
Let $g_{n, k}$ be the number of words of length n that evaluate to a^{k} in $\mathrm{BS}(\mathrm{N}, \mathrm{N})$
so $g_{n, 0}=c_{n}$, but it is easier to count $g_{n, k}$ then diagonalise its generating function at $q=0$

Define $G(z ; q)=\sum_{n, k} g_{n, k} z^{n} q^{k} \quad\left[q^{0}\right] G(z ; q)=\sum_{n, k} g_{n, 0} z^{n}$

Thm(ERvRW): cogrowth series $\sum_{n} c_{n} z^{n}$ is D-finite
Proof sketch: instead of counting just words $=$ id, count more.
Let $g_{n, k}$ be the number of words of length n that evaluate to a^{k} in $\operatorname{BS}(N, N)$
so $g_{n, 0}=c_{n}$, but it is easier to count $g_{n, k}$ then diagonalise its generating function at $q=0$

Define $G(z ; q)=\sum_{n, k} g_{n, k} z^{n} q^{k}$

$$
\left[q^{0}\right] G(z ; q)=\sum_{n, k} g_{n, 0} z^{n}
$$

Thm(ERvRW): $G(z ; q)$ is algebraic
Since the diagonal of an D-finite function is D-finite (Lipshitz), the result follows.

Details

Proving that $G(z ; q)$ is algebraic is pretty cool, see
http: / /arxiv.org/abs/1309.4184
for details.

For the rest of the talk I will explain how we compute explicitly the cogrowth rate, which is the exponential growth rate of the cogrowth function, i.e. $\lim \sup c_{n}^{1 / n}$

Lemma: $g_{n, k}=g_{n,-k}$
Proof: switch $a \longleftrightarrow a^{-1}$ in words counted by $g_{n, k}$

Eg in $\operatorname{BS}(10,10)$:

$$
a^{13} b a^{-10} b^{-1} a^{2} \quad \longleftrightarrow \quad a^{-13} b a^{10} b^{-1} a^{-2}
$$

Lemma: $g_{n, k}=0$ for $|k|>n$
Proof: if w has length n, replace $a^{ \pm N_{b}} b^{ \pm 1}$ by $b^{ \pm 1} a^{ \pm \mathrm{N}}$ and freely reduce. These moves do not increase length, and repeating them gives a word with no $a^{ \pm \mathrm{N}}$ subwords except possibly on the right.

Eg in $\mathrm{BS}(10,10): \quad a^{13} b a^{12} b \ldots \quad \longrightarrow \quad a^{3} b a^{2} b a^{20} \ldots$

Lemma: $g_{n, k}=0$ for $|k|>n$
Proof: if w has length n, replace $a^{ \pm N} b^{ \pm 1}$ by $b^{ \pm 1} a^{ \pm N}$ and freely reduce. These moves do not increase length, and repeating them gives a word with no $a^{ \pm \mathrm{N}}$ subwords except possibly on the right.

Eg in $B S(10,10): \quad a^{13} b a^{12} b \ldots \quad a^{3} b a^{2} b a^{20} \ldots$

If w equals a power of a, there can be no $b^{ \pm 1}$ letters in the resulting word (Britton's lemma)

So the resulting word a^{k} is no longer than n, so $|k| \leq n$.

Computing the cogrowth

The diagonal of $G(z ; q)=\sum_{n, k} g_{n, k} z^{n} q^{k}$ is not so easy to work with.
Instead, consider the generating function with $q=1$:
$G(z ; 1)=\sum_{n}\left(\sum_{k} g_{n, k}\right) z^{n}$

Computing the cogrowth

The diagonal of $G(z ; q)=\sum_{n, k} g_{n, k} z^{n} q^{k}$ is not so easy to work with.
Instead, consider the generating function with $q=1$:
$G(z ; 1)=\sum_{n} g_{n} z^{n}\left(\right.$ where $\left.g_{n}=\sum_{k} g_{n, k}\right)$.

Computing the cogrowth

The diagonal of $G(z ; q)=\sum_{n, k} g_{n, k} z^{n} q^{k}$ is not so easy to work with.
Instead, consider the generating function with $q=1$:
$G(z ; 1)=\sum_{n} g_{n} z^{n}\left(\right.$ where $\left.g_{n}=\sum_{k} g_{n, k}\right)$.

Thm(ERvRW): $\limsup c_{n}^{1 / n}=\limsup g_{n}^{1 / n}$

So to compute cogrowth we find the asymptotic growth rate of a function that is counting more than just trivial words!

Thm(ERvRW): $\limsup c_{n}^{1 / n}=\limsup g_{n}^{1 / n}$

The proof makes use of a "most popular" argument that is popular in statistical physics.

Thm(ERvRW): $\limsup c_{n}^{1 / n}=\limsup g_{n}^{1 / n}$

The proof makes use of a "most popular" argument that is popular in statistical physics.

Proof: Let $\mu_{\text {all }}=\limsup g_{n}^{1 / n}$ and $\mu_{0}=\limsup c_{n}^{1 / n}=\limsup g_{n, 0}^{1 / n}$

Since $g_{n, k}$ are nonnegative and $g_{n, 0} \leq g_{n}$ we have $\mu_{\text {all }} \geq \mu_{0}$.

Proof continued:

Now we prove that $\mu_{\text {all }} \leq \mu_{0}$.
Recall that $g_{n, k}=0$ when $|k|>n$
so there is some k^{*} so that $g_{n, k^{*}}$ is maximised (k^{*} is popular)

So $g_{n, k^{*}} \leq \sum_{k} g_{n, k}=g_{n} \leq(2 n+1) g_{n, k^{*}}$
so taking limsup we get the same answer, so $\mu_{\text {all }}=\lim \sup g_{n, k^{*}}$

Proof continued:

Now consider words that equal $a^{k^{*}}$, and words that equal $a^{-k^{*}}$. Put them together and you get a word equal to a^{0}, so
$\left(g_{n, k}\right)^{2}=g_{n, k^{*}} \cdot g_{n,-k^{*}} \leq g_{2 n, 0}$

$$
\left(g_{n, k}=g_{n,-k}\right)
$$

Raise both sides to $1 / 2 n$:
$\left(g_{n, k^{*}}\right)^{1 / n} \leq\left(g_{2 n, 0}\right)^{1 / 2 n}$
send $n \rightarrow \infty$:
$\mu_{\text {all }}=\limsup \left(g_{n, k^{*}}\right)^{1 / n} \leq \lim \sup \left(g_{2 n, 0}\right)^{1 / 2 n}=\mu_{0}$

Computing the cogrowth

The rate of growth of $G(z ; 1)$ (which is algebraic) is therefore the same as the cogrowth.

We can find it by taking the explicit polynomial equation satisfied by $G(z ; 1)$ and solving the discriminant *

N	μ_{0}
1	4
2	3.792765039
3	3.647639445
4	3.569497357

*David A. Klarner and Patricia Woodworth. Asymptotics for coefficients of algebraic functions. Aequationes Math. 23, 1981.

Computing the cogrowth

N	μ_{0}
1	4
2	3.792765039
3	3.647639445
4	3.569497357
5	3.525816111
6	3.500607636
7	3.485775158
8	3.476962757
9	3.471710431
10	3.468586539

The cogrowth rate $\mu_{0}=\mu_{\text {all }}$ in $B S(N, N)$ up to 10 (the polynomials and DEs up to 10 are online).

Note that the cogrowth
rate for the 2-generator free group is $\sqrt{12}=3.464101615$

Computing the cogrowth

N	μ_{0}
1	4
2	3.792765039
3	3.647639445
4	3.569497357
5	3.525816111
6	3.500607636
7	3.485775158
8	3.476962757
9	3.471710431
10	3.468586539

The cogrowth rate $\mu_{0}=\mu_{\text {all }}$ in $B S(N, N)$ up to 10 (the polynomials and DEs up to 10 are online).

Note that the cogrowth
rate for the 2-generator free group is $\sqrt{12}=3.464101615$

Thanks!
http://arxiv.org/abs/1309.4184

