
Extending the concept of an automatic group

Murray Elder, (U Newcastle, Australia)

Jennifer Taback, (Bowdoin, Maine USA)

AustMS 2013, Algebra special session

G a group with finite generating set X

would like to compute efficiently, i.e.

s • recognise equality
s • see when u, v differ by multiplication by x ∈ X
s • find a representative for elements

quickly.

Automatic groups were designed for this purpose

Automatic group

(G, X) is automatic if there is a language L⊆ X∗

in bijection with group elements

so that L is regular (recognised by a FSA)

and for each x ∈ X there is a FSA to check whether u, v ∈ L

satisfy v = ux

Example

Z = 〈a〉 is automatic with L = {ai | i ∈ Z}.

S
a a−1

a a−1

Example

Z = 〈a〉 is automatic with L = {ai | i ∈ Z}.

S

(
a
a

) (
a−1

a−1

)

(�
a

) (
a−1

�
)

(�
a

) (
a−1

�
)

(
a
a

) (
a−1

a−1

)

Graph automatic group

Kharlampovich, Khoussainov and Miasnikov modified the defini-

tion as follows:

let G be a group with (finite or not)† generating set X, and Λ be

a finite set of symbols

† they didn’t say X could be infinite, but its no problem

Graph automatic group

(G, Λ, X) is graph automatic if there is a language L⊆ Λ∗ st

u : L→ G is a bijection

L is regular (recognised by a FSA)

for each x ∈ X there is a FSA to check whether u, v ∈ L satisfy

v = ux

C-graph automatic group

Jen Taback and I extended the definition a bit further:

let C be a class of formal languages

eg. context-free

eg. k-counter

eg. indexed

eg. poly-context-free

eg. context-sensitive . . .

C-graph automatic group

(G, Λ, X) is C-graph automatic if there is a language L⊆ Λ∗ st

u : L→ G is a bijection

L is in C

for each x ∈ X there is a C-automaton to check whether u, v ∈ L

satisfy v = ux

C-graph automatic group

Before I go through an example, here is what we proved:

Thm if (G, X, Λ) is k-counter-graph automatic then there is an

algorithm that:

sp on input a word w ∈ X∗ of length n,

sp computes the L-word (in Λ∗) for w in time nk+2

Cor if we know the L-word for the identity, we can solve the

word problem in polynomial time

Examples

We proved that Thompson’s group F and Baumslag-Solitar groups

BS(m,n) = 〈a, t | tamt−1 = an〉 are 3-counter-graph automatic.

KKM proved BS(1, n) are graph automatic, and asked about F.

See our paper(s) to appear soon on the arXiv. The F result

is joint with Sharif Younes (undergraduate student project at

Bowdoin).

Kharlampovich, Khoussainov and Miasnikov

Examples

We proved that Thompson’s group F and Baumslag-Solitar groups

BS(m,n) = 〈a, t | tamt−1 = an〉 are 3-counter-graph automatic.

KKM proved BS(1, n) are graph automatic, and asked about F.

See our paper(s) to appear soon on the arXiv. The F result

is joint with Sharif Younes (undergraduate student project at

Bowdoin).

The example I will give here is the free group F∞ with countably

infinite basis.

Kharlampovich, Khoussainov and Miasnikov

Example

F∞ = 〈x1, x2, · · · | 〉 is not finitely generated, so cannot be

automatic (the language L must be over a finite alphabet)

We can represent a (freely reduced) word in the generators xi, x
−1
i

i = 1,2,3, . . . as follows.

space • map xi to p1i

space • map x−1
i to n1i

For example (x3)2 (x4)−1 is p111p111n1111

Example

let L1 be the set of strings

p/n 1i1 p/n 1i2︸ ︷︷ ︸ p/n 1i3 p/n 1i4︸ ︷︷ ︸ . . . p/n 1i2n−1 p/n 1i2n︸ ︷︷ ︸ p/n 1i2n+1

and L2 the set of strings

p/n 1i1 p/n 1i2 p/n 1i3︸ ︷︷ ︸ p/n 1i4 p/n 1i5︸ ︷︷ ︸ . . . p/n 1i2n p/n 1i2n+1︸ ︷︷ ︸ p/n 1i2n+1

where underbrace means the pair is freely reduced

(i.e. p1in1i, n1ip1i not allowed)

.

S1

S2

p 1

n

p↓

16=↓

1 1↓1↓

n1

p

n↓

16=↓

1

1−1−

1+ 1+

11

1

p, n

1

Example

So L=L1 ∩ L2 and is accepted by the (non-blind, non-deterministic)

2-counter automata that is is the intersection of the two

machines (start at S1 for L1, S2 for L2)

Example

So L=L1 ∩ L2 and is accepted by the (non-blind, non-deterministic)

2-counter automata that is is the intersection of the two

machines (start at S1 for L1, S2 for L2)

Define ⊗(L,L) to be the set of strings

⊗(u, v) =

(
u1
v1

)(
u2
v2

)
. . .

(
ui
vi

)(�
vi+1

)
. . .

(�
vj

)
if |u| ≤ |v|

(
u1
v1

)(
u2
v2

)
. . .

(
uj
vj

)(
ui+1
�
)
. . .

(
uj
�
)

if |u| > |v|

Example

Then Lxi is the set of strings in ⊗(L,L) of the form(r1

r1

)(1
1

)η1(r2

r2

)(1
1

)η2
. . .

(rk
rk

)(1
1

)ηk(�
p

)(�
1

)i
if rk = p or ηk 6= i,

and (r1

r1

)(1
1

)η1(r2

r2

)(1
1

)η2
. . .

(rk−1

rk−1

)(1
1

)ηk−1(n
�

)(1
�

)i
.

See paper for details. But its easy — you just intersect (a

modified version of) the above machine with a FSA to check

the suffix

Thanks – and for more :

http://www.stevens.edu/algebraic/GTI/

Dmytro Savchuk (University of South Florida)

An Example of an Automatic Graph of Intermediate Growth

noon Thurs New York time (2am Fri Syd time)

Paper(s) to appear on the arXiv very soon

