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Tasks of the numerical analyst

1 Design numerical methods.

2 Test them in simple and real-world applications
(benchmarking).

3 Analyse their convergence and other properties.

under assumptions compatible with real-world
applications.
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Linear and non-linear elasticity


−div(σ(x , ε(u))) = F , in Ω,

ε(u) = ∇u+(∇u)T

2 , in Ω,
u = 0 , on ΓD ,
σ(x , ε(u))n = g , on ΓN ,

I Example: linear elasticity σ(x , ε(u)) = Cε(u).

Weak formulation:
Find u ∈ H1

ΓD
(Ω) such that, for any v ∈ H1

ΓD
(Ω),∫

Ω
σ(x , ε(u)(x)) : ε(v)(x)dx =

∫
Ω

F(x) · v(x)dx

+

∫
ΓN

g(x) · γ(v)(x) dS(x).

where H1
ΓD

(Ω) = {v ∈ H1(Ω)d : γ(v) = 0 on ΓD} and γ is the
trace operator.
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Numerical methods and their convergence analysis

Methods:
I Finite Element (or Mixed FE) based.

I Sometimes with projections or modifications to stabilise in the
nearly-incompressible limit (mostly for linear elasticity).

Convergence analysis
I Based on error estimates, establish optimal orders of
convergence.

I Mostly/only done for:

Linear elasticity: conforming methods, or non-conforming
methods when u ∈ H2.

Non-linear elasticity: conforming methods, under sometimes
very strong assumptions on u (e.g. C 2(Ω)).
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Gradient schemes for diffusion equations

I Developed for diffusion equations (Eymard, Guichard, Herbin,
Gallouët, D.: 2012+): linear, non-linear, stationary, transient,
non-local...

I Unified convergence analysis of numerous numerical schemes for
anisotropic diffusion equations for numerous models.

Linear diffusion

Non-linear diffusion

Multi-phase flow

Stefan problem

Image processing

Models

FE

MFE

MPFA

MFV

DDFV

MFD Non-conservative eq.

Methods
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Weak formulation of the elasticity equations:
Find u ∈ H1

ΓD
(Ω) such that, for any v ∈ H1

ΓD
(Ω),∫
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Gradient Scheme framework for elasticity: 4 discrete
elements

A Gradient Discretisation is D = (XD,ΠD, TD,∇D) with

XD,ΓD
= Rd .o.f . discrete space (with Dirichlet boundary

conditions on ΓD),

ΠD : XD,ΓD
→ L2(Ω) a reconstruction of functions,

TD : XD,ΓD
→ L2(∂Ω) a discrete trace operator,

∇D : XD,ΓD
→ L2(Ω)d a discrete gradient such that

|| · ||D = ||∇D · ||L2(Ω)d is a norm on XD,ΓD
.



Gradient Scheme for elasticity equations

Continuous equation
Find u ∈ H1

ΓD
(Ω) such that, for any v ∈ H1

ΓD
(Ω),∫

Ω
σ(x , ε(u)(x)) : ε(v)(x)dx =

∫
Ω

F(x) · v(x)dx

+

∫
ΓN

g(x) · γ(v)(x) dS(x).

Discretisation
Find u ∈ XD,ΓD

such that, for any v ∈ XD,ΓD
,∫

Ω
σ(x , εD(u)(x)) : εD(v)(x)dx =

∫
Ω

F(x) · ΠD(v)(x)dx

+

∫
ΓN

g(x) · TD(v)(x) dS(x).

where εD(u) = ∇Du+(∇Du)T

2 .
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Gradient Scheme framework for elasticity: 3
properties to ensure convergence

A sequence (Dm) of Gradient discretisations is:

Coercive if there exists C such that, for all m and v ∈ XDm,ΓD
,

||ΠDmv||L2 ≤ C ||∇Dmv||L2 ,

||TDmv||L2 ≤ C ||∇Dmv||L2 ,

||∇Dmv||L2 ≤ C ||εDmv||L2

(Poincaré’s, trace and Körn’s inequalities).



Gradient Scheme framework for elasticity: 3
properties to ensure convergence

A sequence (Dm) of Gradient discretisations is:

Consistent if, for all ϕ ∈ H1
ΓD

(Ω)

SDm(ϕ) := min
v∈XDm,ΓD

(||ΠDmv − ϕ||L2 + ||∇Dmv −∇ϕ||L2)

tends to 0 as m→∞.

(Ultimate density of the range of the discrete reconstruction and
trace).



Gradient Scheme framework for elasticity: 3
properties to ensure convergence

A sequence (Dm) of Gradient discretisations is:

Limit-conforming if, for all τ ∈ (L2)d×d such that div(τ ) ∈ (L2)d

and γn(τ ) ∈ L2(ΓN),

WDm(ϕ) :=

max
v ∈ XDm,ΓD

v 6=0

∣∣∣∣∫
Ω

(∇Dmv) : τ + (ΠDmv)div(τ )−
∫

ΓN

γn(τ ) · TDm(v)

∣∣∣∣
||∇Dmv ||Lp

tends to 0 as m→∞.

(limm(∇Dm)∗ ≈ −div and limm→∞ TDm ≈ γ in weak topology).
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Linear elasticity: −div(Cε(u)) = F in Ω.

Theorem (Error estimates for linear elasticity)

Assume that C is bounded and coercive, that F ∈ (L2)d and that
g ∈ (L2)d . If (Dm) is a coercive family of Gradient Discretization
then

‖u− ΠDmum‖L2(Ω) + ‖∇u−∇Dmum‖L2(Ω)d

≤ CWDm(Cε(u)) + CSDm(u).

In particular, if (Dm) is consistent and limit-conforming, then
ΠDmum → u and ∇Dmum → ∇u in L2.

I C(x) may be discontinuous, no regularity assumption on u.

I Error estimates if C is Lipschitz and u ∈ H2:

WDm(Cε(u)) + SDm(u) = O(hm) (hm = mesh size).
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Non-linear elasticity: −div(σ(·, ε(u))) = F in Ω.

Theorem (Convergence for non-linear elasticity)

Assume that σ has a linear growth, is coercive and strictly
monotone, that F ∈ (L2)d and that g ∈ (L2)d .

If (Dm) is a coercive, consistent and limit-conforming family of
Gradient Discretization then, up to a subsequence, ΠDmum → u
and ∇Dmum → ∇u in L2.

Covered models:
I Damage models σ(x , ε) = (1− D(ε))C(x)ε (Cervera,
Chiumenti, Codina 2010).

I non-linear Hencky-von Mises elasticity
σ = λ(dev(ε)) tr(ε)I + 2µ(dev(ε))ε.



Non-linear elasticity: −div(σ(·, ε(u))) = F in Ω.

Theorem (Convergence for non-linear elasticity)

Assume that σ has a linear growth, is coercive and strictly
monotone, that F ∈ (L2)d and that g ∈ (L2)d .

If (Dm) is a coercive, consistent and limit-conforming family of
Gradient Discretization then, up to a subsequence, ΠDmum → u
and ∇Dmum → ∇u in L2.

Covered models:
I Damage models σ(x , ε) = (1− D(ε))C(x)ε (Cervera,
Chiumenti, Codina 2010).

I non-linear Hencky-von Mises elasticity
σ = λ(dev(ε)) tr(ε)I + 2µ(dev(ε))ε.



Plan

1 Numerical methods for elasticity equations

2 Gradient Schemes for elasticity equations
4 discrete elements
3 properties
Convergence results

3 Examples of Gradient Schemes for elasticity equations
Displacement-based formulation
Stabilised nodal strain formulation
Hu-Washizu-based formulation

4 Conclusion



Plan

1 Numerical methods for elasticity equations

2 Gradient Schemes for elasticity equations
4 discrete elements
3 properties
Convergence results

3 Examples of Gradient Schemes for elasticity equations
Displacement-based formulation
Stabilised nodal strain formulation
Hu-Washizu-based formulation

4 Conclusion



Conforming methods (Galerkin approximation)

Replace H1
ΓD

with XD,ΓD
in the weak continuous formulation!

XD,ΓD
= finite-dimensional subspace of H1

ΓD
(Ω),

ΠD = Id, TD = γ and ∇D = ∇.

Example: any low- or high-degree conforming Finite Element
method (e.g. P1 on triangles or simplices, bilinear functions on
quadrilaterals, etc.)



Non-conforming method: Crouzeix-Raviart

Given T a triangulation of Ω,

XD,ΓD
=space of piecewise linear functions on T , which are

continuous at the edge mid-points,

ΠD = Id, TD =restriction to ∂Ω and ∇D =broken gradient.

I May not be coercive (no Körn inequality) if ΓD 6= ∂Ω.
Higher order methods (still Gradient Schemes) then required.
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Formulation

Vh standard Finite Element space on a partition Th of Ω.
T ∗h =dual mesh.

Dual cell

Initial partition



Formulation

In the weak formulation of the FE scheme, replace∫
Ω
Cε(uh) : ε(vh)

with ∫
Ω

Π∗hε(uh) : Cε(vh) +

∫
Ω
D(ε(uh)− Π∗hε(uh)) : ε(vh) dx

where D is symmetric definite positive and Π∗h =orthogonal
projection on piecewise constant functions on T ∗h .

(Flanagan & Belytschko 1981, Puso & Solberg 2006, Lamichhane
2009)



Gradient Discretisation

XD,ΓD
= Vh, ΠD = Id, TD = γ,

For v ∈ XD,ΓD
,

∇Dv = Π∗h∇v + C−1/2D1/2(∇v − Π∗h∇v)

(for C and D piecewise constant on T ∗h ).

I Orthogonality properties of Π∗h and I− Π∗h eliminate the cross
products in

∫
Ω CεD(u) : εD(v).

I Consistency and limit-conformity follow because

∇Dv = ∇v + Lh∇v

where Lh : (L2)d → (L2)d is self-adjoint, bounded and converges
pointwise to 0.
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Basics

I Based on a 3-field formulation (u, ε and σ approximated in
three different spaces).

I Gives stable numerical scheme in the nearly-incompressible limit.

I Can be reduced to a displacement formulation by static
condensation.

(Lamichhane, Reddy & Wohlmuth, 2006).



Reduced displacement formulation of the
Hu-Washizu method

Vh space of bilinear conforming Finite Element on quadrilaterals.
In the weak formulation of the FE scheme, replace∫

Ω
Cε(uh) : ε(vh)

with ∫
Ω
ChPShε(uh) : PShε(vh) dx .

Sh = a suitable sub-space of Vh (several possible examples),

PSh = orthogonal projection on Sh,

Ch = approximation of C defined by

∀τ ∈ Vh , : Chτ = CPSc
h
τ + θPS t

h
τ

where

Sc
h = {τ ∈ Sh : Cτ ∈ Sh} , Sh = Sc

h ⊕ S t
h.
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Gradient Discretisation
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= Vh, ΠD = Id, TD = γ,

For v ∈ XD,ΓD
,

∇Dv = PSc
h
∇v +

√
θC−1/2PS t

h
∇v.

I The particular choices of Sh (and orthogonality properties)
eliminate the cross products.

I Consistency and limit-conformity follow because
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where Lh : (L2)d → (L2)d is self-adjoint, bounded and converges
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Gradient
Scheme
framework

FE
MFE
MPFA
MFV
DDFV
MFD

Linear diffusion
Non-linear diffusion
Multi-phase flow
Stefan problem
Image processing
Non-conservative eq.

ModelsMethods

......



Add two branches...

Gradient
Scheme
framework

FE
MFE
MPFA
MFV
DDFV
MFD

Linear diffusion
Non-linear diffusion
Multi-phase flow
Stefan problem
Image processing
Non-conservative eq.

ModelsMethods

Linear &Stabilised/
projected FE

... ...

nonlinear elasticity



Thanks.


	Numerical methods for elasticity equations
	Gradient Schemes for elasticity equations
	4 discrete elements
	3 properties
	Convergence results

	Examples of Gradient Schemes for elasticity equations
	Displacement-based formulation
	Stabilised nodal strain formulation
	Hu-Washizu-based formulation

	Conclusion

