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Tasks of the numerical analyst

@ Design numerical methods.

@ Test them in simple and real-world applications
(benchmarking).

© Analyse their convergence and other properties.

under assumptions compatible with real-world
applications.



Linear and non-linear elasticity

—div(o(x, e(u))) =
E(ﬁ) _ Vu+(Vu)T :
u=0,

o(x.e(@)n=g,

» Example: linear elasticity o(x, e(u))

in Q,
in Q,
onlp,
on FN,

= Ce(u).



Linear and non-linear elasticity

—div(e(x,e(u))) = in Q,
e(n) = v"+(V“)T , in Q,
u=20, onlp,
o(x,e(@)n=g, on [y,

» Example: linear elasticity o(x,e(u)) = Ce(u).

Weak formulation:
Find U € Hf_(Q) such that, for any v € HE (Q),
/Qa'(x, e(u)(x)) : e(v)(x)dx = /QF(X) -v(x)dx
+ [ 80 ()00 ds().

My

where HL (Q) = {v e H(Q)¢ : 7(v) =0o0n Ip} and 7 is the
trace operator.



Numerical methods and their convergence analysis

Methods:
» Finite Element (or Mixed FE) based.

» Sometimes with projections or modifications to stabilise in the
nearly-incompressible limit (mostly for linear elasticity).



Numerical methods and their convergence analysis

Methods:
» Finite Element (or Mixed FE) based.

» Sometimes with projections or modifications to stabilise in the
nearly-incompressible limit (mostly for linear elasticity).

Convergence analysis
» Based on error estimates, establish optimal orders of
convergence.

» Mostly/only done for:
@ Linear elasticity: conforming methods, or non-conforming
methods when u € H?.

@ Non-linear elasticity: conforming methods, under sometimes
very strong assumptions on U (e.g. C2(Q)).
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Gradient schemes for diffusion equations

» Developed for diffusion equations (Eymard, Guichard, Herbin,
Gallouét, D.: 2012+): linear, non-linear, stationary, transient,

non-local...

» Unified convergence analysis of numerous numerical schemes for
anisotropic diffusion equations for numerous models.

METHODS

FE
MFE
MPFA
MEFV
DDFV
MFD

MODELS

Linear diffusion
Non-linear diffusion
Multi-phase flow
Stefan problem
Image processing
Non-conservative eq.



Gradient schemes for diffusion equations

» Developed for diffusion equations (Eymard, Guichard, Herbin,
Gallouét, D.: 2012+): linear, non-linear, stationary, transient,
non-local...

» Unified convergence analysis of numerous numerical schemes for
anisotropic diffusion equations for numerous models.

METHODS MODELS
FE Linear diffusion
MFE Gradiont Non-linear diffusion
MPFA Scheme Multi-phase flow
MFV framework Stefan problem
DDFV Image processing

MFD Non-conservative eq.



e Gradient Schemes for elasticity equations
@ 4 discrete elements



Weak formulation of the elasticity equations:
Find u € Hll-D(Q) such that, for any v € H}D(Q),
/ o (x, e(@)(x)) : e(v)(x)dx = / F(x) - v(x)dx
Q Q
+ [ 809 () dS(0)

My



Gradient Scheme framework for elasticity: 4 discrete

elements

A Gradient Discretisation is D = (Xp, [p, Tp, Vp) with

e Xpr, = R9°f- discrete space (with Dirichlet boundary
conditions on p),

o Np: Xpr, = L?(Q) a reconstruction of functions,
o Tp: Xpr, — L2(0Q) a discrete trace operator,

e Vp: Xpr, — L2(R2)9 a discrete gradient such that
Il llo = [IVD - |l 12(q)¢ is @ norm on Xp .



Gradient Scheme for elasticity equations

Continuous equation
Find @ € HL_(Q) such that, for any v € H (),
/Qa'(x, e(u)(x)) s e(v)(x)dx = /QF(X) -v(x)dx
+ [ 800 S0

My



Gradient Scheme for elasticity equations

Continuous equation
Find @ € HL_(Q) such that, for any v € H (),
/Qa'(x, e(u)(x)) s e(v)(x)dx = /QF(X) -v(x)dx
+ [ 800 S0

Discretisation
Find u € X, such that, for any v € Xp ),
[ otxen@) : ep@xiix = [ FG)-M(w)x)dx
" /r 80 To()() 45()

.
where ep(u) = —VD“JF(;D“) .



e Gradient Schemes for elasticity equations

@ 3 properties



Gradient Scheme framework for elasticity: 3

properties to ensure convergence

A sequence (D,,) of Gradient discretisations is:

Coercive if there exists C such that, for all mand v € Xp,, .,
INp,,vl[2 < Cl[VD,vll.2,

I To,vllee < ClIVD, V|2,

IVD,vl[2 < Cllep,,vl|.2

(Poincaré’s, trace and Kérn's inequalities).



Gradient Scheme framework for elasticity: 3

properties to ensure convergence

A sequence (D,,) of Gradient discretisations is:

Consistent if, for all ¢ € H{ (Q)

Spn(9) = _min  (|[Np,v = ¢ll2 +[[VD,v = Vel|2)

VEX’D,,,,FD

tends to 0 as m — oo.

(Ultimate density of the range of the discrete reconstruction and
trace).



Gradient Scheme framework for elasticity: 3

properties to ensure convergence

A sequence (D,,) of Gradient discretisations is:

Limit-conforming if, for all T € (L2)9%9 such that div(T) € (L)¢
and vo(7) € L3(Ty),

Wp,(¢) :=
/Q(mev) c17+ (Np,v)div(T) — / (T) - Tp,, (V)
My
max
VEXDm,FD ||V'DmV||Lp
v#£0

tends to 0 as m — oo.

(limm(Vop,,)* = —div and limp_,o Tp,, = 7y in weak topology).



e Gradient Schemes for elasticity equations

@ Convergence results



Linear elasticity: —div(Ce(u)) = F in Q.

Theorem (Error estimates for linear elasticity)

Assume that C is bounded and coercive, that F € (L?)9 and that
g € (L?)?. If (Dy,) is a coercive family of Gradient Discretization
then

[T — Mo, umlliz(@) + IV = Vo, umll2)e
< CWp,,(Ce(@)) + CSp,,(u).

In particular, if (Dy,) is consistent and limit-conforming, then
Mp, Um — U and Vp, u, — Vu in L2,
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» C(x) may be discontinuous, no regularity assumption on u.



Linear elasticity: —div(Ce(u)) = F in Q.

Theorem (Error estimates for linear elasticity)

Assume that C is bounded and coercive, that F € (L?)9 and that
g € (L?)?. If (Dy,) is a coercive family of Gradient Discretization
then

[u—Mp,umllizq) + VU = Vo, uml2q)
< CWDm(CE(ﬁ)) =F CSDm(U).
In particular, if (Dy,) is consistent and limit-conforming, then

Mp, Um — U and Vp, u, — Vu in L2,

» C(x) may be discontinuous, no regularity assumption on u.

» Error estimates if C is Lipschitz and u € H?:

Whp,,(Ce()) + Sp,,(u) = O(hm) (hm = mesh size).



Non-linear elasticity: —div(o(-,e(u))) = F in Q.

Theorem (Convergence for non-linear elasticity)

Assume that o has a linear growth, is coercive and strictly
monotone, that F € (L?) and that g € (L?)9.

If (D) is a coercive, consistent and limit-conforming family of
Gradient Discretization then, up to a subsequence, Np, u, — u
and Vp, u, — Vu in L2,



Non-linear elasticity: —div(o(-,e(u))) = F in Q.

Theorem (Convergence for non-linear elasticity)

Assume that o has a linear growth, is coercive and strictly
monotone, that F € (L?) and that g € (L?)9.

If (D) is a coercive, consistent and limit-conforming family of
Gradient Discretization then, up to a subsequence, Np, u, — u
and Vp, u, — Vu in L2

Covered models:
» Damage models o(x, &) = (1 — D(g))C(x)e (Cervera,
Chiumenti, Codina 2010).

» non-linear Hencky-von Mises elasticity
o = Mdev(g)) tr(e)l 4+ 2u(dev(eg))e.



e Examples of Gradient Schemes for elasticity equations
@ Displacement-based formulation
@ Stabilised nodal strain formulation
@ Hu-Washizu-based formulation



e Examples of Gradient Schemes for elasticity equations
@ Displacement-based formulation



Conforming methods (Galerkin approximation)

Replace H}D with Xp r,, in the weak continuous formulation!

e Xp,r, = finite-dimensional subspace of H}D(Q),
e Np=1Id, Tp=~vand Vp=V.

Example: any low- or high-degree conforming Finite Element
method (e.g. P1 on triangles or simplices, bilinear functions on
quadrilaterals, etc.)



Non-conforming method: Crouzeix-Raviart

Given T a triangulation of €,

o Xp,r, =space of piecewise linear functions on T, which are
continuous at the edge mid-points,

o lp = Id, Tp =restriction to I and Vp =broken gradient.



Non-conforming method: Crouzeix-Raviart

Given T a triangulation of €,

o Xp,r, =space of piecewise linear functions on T, which are
continuous at the edge mid-points,

o lp = Id, Tp =restriction to I and Vp =broken gradient.

» May not be coercive (no Korn inequality) if ['p # Q.
Higher order methods (still Gradient Schemes) then required.



e Examples of Gradient Schemes for elasticity equations

@ Stabilised nodal strain formulation



Formulation

V,, standard Finite Element space on a partition 7j of 2.
T, =dual mesh.

Initial partition

">~ _Dual cell



Formulation

In the weak formulation of the FE scheme, replace

/ Ce(up) : e(vp)

Q

with
/ “e(up) : Celvp) + / D(e(up) — Mie(up)) : £(vp) d
Q Q

where D is symmetric definite positive and [1} =orthogonal
projection on piecewise constant functions on 7"

(Flanagan & Belytschko 1981, Puso & Solberg 2006, Lamichhane
2009)



Gradient Discretisation

e Xpr, =Vp, MNp=1d, Tp =7,
e Forve Xpr,,

Vpv = M;Vv + C2DY2(Vv — M} Vv)

for C and DD piecewise constant on 7*).
h

» Orthogonality properties of I} and I — I} eliminate the cross
products in [, Cep(u) : ep(v).



Gradient Discretisation

e Xpr, =Vp, MNp=1d, Tp =7,
@ Forve Xpr,,

Vpv = M;Vv + C2DY2(Vv — M} Vv)

(for C and D piecewise constant on 7).

» Orthogonality properties of I} and I — I} eliminate the cross
products in [, Cep(u) : ep(v).

» Consistency and limit-conformity follow because
Vpv =Vv+ L,Vv

where Lp, : (L?)9 — (L?)? is self-adjoint, bounded and converges
pointwise to 0.



e Examples of Gradient Schemes for elasticity equations

@ Hu-Washizu-based formulation



Basics

» Based on a 3-field formulation (u, € and o approximated in
three different spaces).

» Gives stable numerical scheme in the nearly-incompressible limit.

» Can be reduced to a displacement formulation by static
condensation.

(Lamichhane, Reddy & WohImuth, 2006).



Reduced displacement formulation of the

Hu-Washizu method

V4, space of bilinear conforming Finite Element on quadrilaterals.
In the weak formulation of the FE scheme, replace

/ Ce(up) : e(vp)
Q
with
/Q(ChPshe(uh) : Ps,e(vp) dx.



Reduced displacement formulation of the

Hu-Washizu method

V4, space of bilinear conforming Finite Element on quadrilaterals.
In the weak formulation of the FE scheme, replace

/ Ce(up) : e(vp)
Q

with
/Q(ChPshe(uh) : Ps,e(vp) dx.

@ S, = a suitable sub-space of V, (several possible examples),
@ Ps, = orthogonal projection on Sj,
o Cj = approximation of C defined by

V17 eV, (ChT:(CPSE’T-FHPSﬁT

where
Sﬁ:{TGSh:CTESh}, ShZS;fGBS;;.



Gradient Discretisation

@ Xprp, =V, Mp=1d, Tp =1,
@ ForveXpr,,

Vpv = PscVv + VOC /2 Pg: Vv,

» The particular choices of S, (and orthogonality properties)
eliminate the cross products.



Gradient Discretisation

@ Xprp, =V, Mp=1d, Tp =1,
@ ForveXpr,,

VDV = PSEVV + \/5(C_1/2P5;VV.
» The particular choices of S, (and orthogonality properties)
eliminate the cross products.
» Consistency and limit-conformity follow because
Vpv =Vv + ﬁhVV

where Lj, : (L?)9 — (L?)? is self-adjoint, bounded and converges
pointwise to 0.



@ Conclusion
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DDFV Image processing
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Add two branches...

METHODS MODELS
FE Linear diffusion
MFE Gradient Non-linear diffusion
MPFA Schem Multi-phase flow
MFV frcanelev:ork Stefan problem
DDFV Image processing
MFD Non-conservative eq.
Stabilised/ Linear &

projected FE nonlinear elasticity



Thanks.
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