A numerical analysis framework for linear and non-linear elasticity equations

J. Droniou

School of Mathematical Sciences, Monash University

AustMS 2013, 30/09/2013.

Joint work with B. P. Lamichhane (U. Newcastle)

2 Gradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

- 2 Gradient Schemes for elasticity equations
 - 4 discrete elements
 - 3 properties
 - Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

- Design numerical methods.
- Test them in simple and real-world applications (benchmarking).
- Analyse their convergence and other properties.

- Design numerical methods.
- Prest them in simple and real-world applications (benchmarking).
- **③** Analyse their convergence and other properties.

- Design numerical methods.
- Test them in simple and real-world applications (benchmarking).
- Analyse their convergence and other properties. under assumptions compatible with real-world applications.

Linear and non-linear elasticity

$$\left\{ \begin{array}{ll} -\mathrm{div}(\boldsymbol{\sigma}(x,\boldsymbol{\varepsilon}(\overline{\mathbf{u}}))) = \mathbf{F} \,, & \mathrm{in} \; \Omega, \\ \boldsymbol{\varepsilon}(\overline{\mathbf{u}}) = \frac{\nabla \overline{\mathbf{u}} + (\nabla \overline{\mathbf{u}})^T}{2} \,, & \mathrm{in} \; \Omega, \\ \overline{\mathbf{u}} = 0 \,, & \mathrm{on} \; \Gamma_D \,, \\ \boldsymbol{\sigma}(x,\boldsymbol{\varepsilon}(\overline{\mathbf{u}}))\mathbf{n} = \mathbf{g} \,, & \mathrm{on} \; \Gamma_N \,, \end{array} \right.$$

▶ Example: linear elasticity $\sigma(x, \varepsilon(\overline{\mathbf{u}})) = \mathbb{C}\varepsilon(\overline{\mathbf{u}})$.

Linear and non-linear elasticity

$$\begin{cases} -\operatorname{div}(\boldsymbol{\sigma}(x,\boldsymbol{\varepsilon}(\overline{\mathbf{u}}))) = \mathbf{F}, & \text{in } \Omega, \\ \boldsymbol{\varepsilon}(\overline{\mathbf{u}}) = \frac{\nabla \overline{\mathbf{u}} + (\nabla \overline{\mathbf{u}})^T}{2}, & \text{in } \Omega, \\ \overline{\mathbf{u}} = 0, & \text{on } \Gamma_D, \\ \boldsymbol{\sigma}(x,\boldsymbol{\varepsilon}(\overline{\mathbf{u}}))\mathbf{n} = \mathbf{g}, & \text{on } \Gamma_N, \end{cases}$$

▶ Example: linear elasticity $\sigma(x, \varepsilon(\overline{\mathbf{u}})) = \mathbb{C}\varepsilon(\overline{\mathbf{u}})$.

Weak formulation:

$$\begin{cases} \text{Find } \overline{\mathbf{u}} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega) \text{ such that, for any } \mathbf{v} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega), \\ \int_{\Omega} \boldsymbol{\sigma}(x, \boldsymbol{\varepsilon}(\overline{\mathbf{u}})(x)) : \boldsymbol{\varepsilon}(\mathbf{v})(x) \mathrm{d}x &= \int_{\Omega} \mathbf{F}(x) \cdot \mathbf{v}(x) \mathrm{d}x \\ &+ \int_{\Gamma_{N}} \mathbf{g}(x) \cdot \gamma(\mathbf{v})(x) \, dS(x). \end{cases}$$

where $\mathbf{H}_{\Gamma_D}^1(\Omega) = \{ \mathbf{v} \in H^1(\Omega)^d : \gamma(\mathbf{v}) = 0 \text{ on } \Gamma_D \}$ and γ is the trace operator.

Methods:

▶ Finite Element (or Mixed FE) based.

► Sometimes with projections or modifications to stabilise in the nearly-incompressible limit (mostly for linear elasticity).

Methods:

Finite Element (or Mixed FE) based.

► Sometimes with projections or modifications to stabilise in the nearly-incompressible limit (mostly for linear elasticity).

Convergence analysis

 Based on error estimates, establish optimal orders of convergence.

- Mostly/only done for:
 - Linear elasticity: conforming methods, or non-conforming methods when u
 ∈ H².
 - Non-linear elasticity: conforming methods, under sometimes very strong assumptions on <u>u</u> (e.g. C²(Ω)).

References

General theory

- Brenner & Scott, 1994.
- Ciarlet, 1978.

Linear elasticity

- Braess, Carstensen & Reddy, 2004.
- Brenner & Sung, 1992.
- Burman & Hansbo, 2006.
- Lamichhane, Reddy & Wohlmuth, 2006.

Non-linear elasticity

- Braess & Ming, 2005.
- Carstensen & Dolzmann, 2004.
- Gatica & Stephan, 2002.

Oradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Gradient schemes for diffusion equations

► Developed for diffusion equations (Eymard, Guichard, Herbin, Gallouët, D.: 2012+): linear, non-linear, stationary, transient, non-local...

► Unified convergence analysis of numerous numerical schemes for anisotropic diffusion equations for numerous models.

Methods

Models

Linear diffusion
Non-linear diffusion
Multi-phase flow
Stefan problem
Image processing
Non-conservative eq.

Gradient schemes for diffusion equations

► Developed for diffusion equations (Eymard, Guichard, Herbin, Gallouët, D.: 2012+): linear, non-linear, stationary, transient, non-local...

► Unified convergence analysis of numerous numerical schemes for anisotropic diffusion equations for numerous models.

Methods

Models

2 Gradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Weak formulation of the elasticity equations:

$$\begin{cases} \text{Find } \overline{\mathbf{u}} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega) \text{ such that, for any } \mathbf{v} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega), \\ \int_{\Omega} \boldsymbol{\sigma}(x, \boldsymbol{\varepsilon}(\overline{\mathbf{u}})(x)) : \boldsymbol{\varepsilon}(\mathbf{v})(x) \mathrm{d}x &= \int_{\Omega} \mathbf{F}(x) \cdot \mathbf{v}(x) \mathrm{d}x \\ &+ \int_{\Gamma_{N}} \mathbf{g}(x) \cdot \gamma(\mathbf{v})(x) \, dS(x). \end{cases}$$

Gradient Scheme framework for elasticity: 4 discrete elements

- A Gradient Discretisation is $\mathcal{D} = (X_{\mathcal{D}}, \Pi_{\mathcal{D}}, \mathcal{T}_{\mathcal{D}}, \nabla_{\mathcal{D}})$ with
 - X_{D,ΓD} = R^{d.o.f.} discrete space (with Dirichlet boundary conditions on Γ_D),
 - $\Pi_{\mathcal{D}}: \mathbf{X}_{\mathcal{D},\Gamma_{D}} \to L^{2}(\Omega)$ a reconstruction of functions,
 - $\mathcal{T}_{\mathcal{D}}: \mathbf{X}_{\mathcal{D}, \Gamma_{\mathcal{D}}} \to L^{2}(\partial \Omega)$ a discrete trace operator,
 - $\nabla_{\mathcal{D}} : \mathbf{X}_{\mathcal{D},\Gamma_D} \to L^2(\Omega)^d$ a discrete gradient such that $|| \cdot ||_{\mathcal{D}} = ||\nabla_{\mathcal{D}} \cdot ||_{L^2(\Omega)^d}$ is a norm on $\mathbf{X}_{\mathcal{D},\Gamma_D}$.

Continuous equation

$$\begin{cases} \text{Find } \overline{\mathbf{u}} \in \mathbf{H}_{\Gamma_D}^1(\Omega) \text{ such that, for any } \mathbf{v} \in \mathbf{H}_{\Gamma_D}^1(\Omega), \\ \int_{\Omega} \boldsymbol{\sigma}(x, \boldsymbol{\varepsilon}(\overline{\mathbf{u}})(x)) : \boldsymbol{\varepsilon}(\mathbf{v})(x) \mathrm{d}x &= \int_{\Omega} \mathbf{F}(x) \cdot \mathbf{v}(x) \mathrm{d}x \\ &+ \int_{\Gamma_N} \mathbf{g}(x) \cdot \gamma(\mathbf{v})(x) \, dS(x). \end{cases}$$

Continuous equation

$$\begin{cases} \text{Find } \overline{\mathbf{u}} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega) \text{ such that, for any } \mathbf{v} \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega), \\ \int_{\Omega} \boldsymbol{\sigma}(x, \boldsymbol{\varepsilon}(\overline{\mathbf{u}})(x)) : \boldsymbol{\varepsilon}(\mathbf{v})(x) \mathrm{d}x &= \int_{\Omega} \mathbf{F}(x) \cdot \mathbf{v}(x) \mathrm{d}x \\ &+ \int_{\Gamma_{N}} \mathbf{g}(x) \cdot \gamma(\mathbf{v})(x) \, dS(x). \end{cases}$$

Discretisation

$$\begin{cases} \text{Find } \mathbf{u} \in \mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}} \text{ such that, for any } \mathbf{v} \in \mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}}, \\ \int_{\Omega} \sigma(x, \boldsymbol{\varepsilon}_{\mathcal{D}}(\mathbf{u})(x)) : \boldsymbol{\varepsilon}_{\mathcal{D}}(\mathbf{v})(x) dx &= \int_{\Omega} \mathbf{F}(x) \cdot \Pi_{\mathcal{D}}(\mathbf{v})(x) dx \\ &+ \int_{\Gamma_{\mathcal{N}}} \mathbf{g}(x) \cdot \mathcal{T}_{\mathcal{D}}(\mathbf{v})(x) dS(x). \end{cases}$$

where $\varepsilon_{\mathcal{D}}(\mathbf{u}) = \frac{\nabla_{\mathcal{D}}\mathbf{u} + (\nabla_{\mathcal{D}}\mathbf{u})^T}{2}$.

2 Gradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Gradient Scheme framework for elasticity: 3 properties to ensure convergence

A sequence (\mathcal{D}_m) of Gradient discretisations is:

Coercive if there exists *C* such that, for all *m* and $\mathbf{v} \in \mathbf{X}_{\mathcal{D}_m, \Gamma_D}$, $\begin{aligned} ||\Pi_{\mathcal{D}_m} \mathbf{v}||_{L^2} &\leq C ||\nabla_{\mathcal{D}_m} \mathbf{v}||_{L^2} ,\\ ||\mathcal{T}_{\mathcal{D}_m} \mathbf{v}||_{L^2} &\leq C ||\nabla_{\mathcal{D}_m} \mathbf{v}||_{L^2} ,\\ ||\nabla_{\mathcal{D}_m} \mathbf{v}||_{L^2} &\leq C ||\varepsilon_{\mathcal{D}_m} \mathbf{v}||_{L^2} \end{aligned}$

(Poincaré's, trace and Körn's inequalities).

Gradient Scheme framework for elasticity: 3 properties to ensure convergence

A sequence (\mathcal{D}_m) of Gradient discretisations is:

Consistent if, for all $\varphi \in \mathbf{H}^{1}_{\Gamma_{D}}(\Omega)$ $S_{\mathcal{D}_{m}}(\varphi) := \min_{\mathbf{v} \in \mathbf{X}_{\mathcal{D}_{m},\Gamma_{D}}} (||\Pi_{\mathcal{D}_{m}}\mathbf{v} - \varphi||_{L^{2}} + ||\nabla_{\mathcal{D}_{m}}\mathbf{v} - \nabla\varphi||_{L^{2}})$ tends to 0 as $m \to \infty$.

(Ultimate density of the range of the discrete reconstruction and trace).

Gradient Scheme framework for elasticity: 3 properties to ensure convergence

A sequence (\mathcal{D}_m) of Gradient discretisations is:

Limit-conforming if, for all $\tau \in (L^2)^{d \times d}$ such that $\operatorname{div}(\tau) \in (L^2)^d$ and $\gamma_{\mathbf{n}}(\boldsymbol{\tau}) \in L^2(\Gamma_N)$, $W_{\mathcal{D}_m}(\varphi) :=$ $\max_{\mathbf{v},\mathbf{v},\mathbf{v} \in \mathbf{v}} \left| \frac{\left| \int_{\Omega} (\nabla_{\mathcal{D}_m} \mathbf{v}) : \mathbf{\tau} + (\Pi_{\mathcal{D}_m} \mathbf{v}) \operatorname{div}(\mathbf{\tau}) - \int_{\Gamma_N} \gamma_{\mathbf{n}}(\mathbf{\tau}) \cdot \mathcal{T}_{\mathcal{D}_m}(\mathbf{v}) \right|$ $||\nabla_{\mathcal{D}_m} v||_{L^p}$ $\mathbf{v} \in \mathbf{X}_{\mathcal{D}_m, \Gamma_D}$ **v**≠0 tends to 0 as $m \to \infty$.

 $(\lim_{m} (\nabla_{\mathcal{D}_{m}})^{*} \approx -\operatorname{div} and \lim_{m \to \infty} \mathcal{T}_{\mathcal{D}_{m}} \approx \gamma in weak topology).$

2 Gradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Linear elasticity: $-\operatorname{div}(\mathbb{C}\varepsilon(\overline{\mathbf{u}})) = \mathbf{F}$ in Ω .

Theorem (Error estimates for linear elasticity)

Assume that \mathbb{C} is bounded and coercive, that $\mathbf{F} \in (L^2)^d$ and that $\mathbf{g} \in (L^2)^d$. If (\mathcal{D}_m) is a coercive family of Gradient Discretization then

$$egin{aligned} \|\overline{\mathbf{u}}-\Pi_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)}+\|
abla\overline{\mathbf{u}}-
abla_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)^d}\ &\leq \mathcal{CW}_{\mathcal{D}_m}(\mathbb{C}arepsilon(\overline{\mathbf{u}}))+\mathcal{CS}_{\mathcal{D}_m}(\overline{\mathbf{u}}). \end{aligned}$$

In particular, if (\mathcal{D}_m) is consistent and limit-conforming, then $\Pi_{\mathcal{D}_m} \mathbf{u}_m \to \overline{\mathbf{u}}$ and $\nabla_{\mathcal{D}_m} \mathbf{u}_m \to \nabla \overline{\mathbf{u}}$ in L^2 .

Linear elasticity: $-\operatorname{div}(\mathbb{C}\varepsilon(\overline{\mathbf{u}})) = \mathbf{F}$ in Ω .

Theorem (Error estimates for linear elasticity)

Assume that \mathbb{C} is bounded and coercive, that $\mathbf{F} \in (L^2)^d$ and that $\mathbf{g} \in (L^2)^d$. If (\mathcal{D}_m) is a coercive family of Gradient Discretization then

$$egin{aligned} \|\overline{\mathbf{u}}-\Pi_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)}+\|
abla\overline{\mathbf{u}}-
abla_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)^d}\ &\leq \mathcal{CW}_{\mathcal{D}_m}(\mathbb{C}arepsilon(\overline{\mathbf{u}}))+\mathcal{CS}_{\mathcal{D}_m}(\overline{\mathbf{u}}). \end{aligned}$$

In particular, if (\mathcal{D}_m) is consistent and limit-conforming, then $\Pi_{\mathcal{D}_m} \mathbf{u}_m \to \overline{\mathbf{u}}$ and $\nabla_{\mathcal{D}_m} \mathbf{u}_m \to \nabla \overline{\mathbf{u}}$ in L^2 .

▶ $\mathbb{C}(x)$ may be discontinuous, no regularity assumption on $\overline{\mathbf{u}}$.

Linear elasticity: $-\operatorname{div}(\mathbb{C}\varepsilon(\overline{\mathbf{u}})) = \mathbf{F}$ in Ω .

Theorem (Error estimates for linear elasticity)

Assume that \mathbb{C} is bounded and coercive, that $\mathbf{F} \in (L^2)^d$ and that $\mathbf{g} \in (L^2)^d$. If (\mathcal{D}_m) is a coercive family of Gradient Discretization then

$$egin{aligned} \|\overline{\mathbf{u}}-\Pi_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)}+\|
abla\overline{\mathbf{u}}-
abla_{\mathcal{D}_m}\mathbf{u}_m\|_{\mathsf{L}^2(\Omega)^d}\ &\leq CW_{\mathcal{D}_m}(\mathbb{C}arepsilon(\overline{\mathbf{u}}))+CS_{\mathcal{D}_m}(\overline{\mathbf{u}}). \end{aligned}$$

In particular, if (\mathcal{D}_m) is consistent and limit-conforming, then $\Pi_{\mathcal{D}_m} \mathbf{u}_m \to \overline{\mathbf{u}}$ and $\nabla_{\mathcal{D}_m} \mathbf{u}_m \to \nabla \overline{\mathbf{u}}$ in L^2 .

▶ $\mathbb{C}(x)$ may be discontinuous, no regularity assumption on $\overline{\mathbf{u}}$.

▶ Error estimates if \mathbb{C} is Lipschitz and $\overline{\mathbf{u}} \in H^2$:

$$W_{\mathcal{D}_m}(\mathbb{C}\varepsilon(\overline{\mathbf{u}})) + S_{\mathcal{D}_m}(\overline{\mathbf{u}}) = \mathcal{O}(h_m) \qquad (h_m = \text{mesh size}).$$

Theorem (Convergence for non-linear elasticity)

Assume that σ has a linear growth, is coercive and strictly monotone, that $\mathbf{F} \in (L^2)^d$ and that $\mathbf{g} \in (L^2)^d$.

If (\mathcal{D}_m) is a coercive, consistent and limit-conforming family of Gradient Discretization then, up to a subsequence, $\Pi_{\mathcal{D}_m} \mathbf{u}_m \to \overline{\mathbf{u}}$ and $\nabla_{\mathcal{D}_m} \mathbf{u}_m \to \nabla \overline{\mathbf{u}}$ in L^2 .

Theorem (Convergence for non-linear elasticity)

Assume that σ has a linear growth, is coercive and strictly monotone, that $\mathbf{F} \in (L^2)^d$ and that $\mathbf{g} \in (L^2)^d$.

If (\mathcal{D}_m) is a coercive, consistent and limit-conforming family of Gradient Discretization then, up to a subsequence, $\Pi_{\mathcal{D}_m} \mathbf{u}_m \to \overline{\mathbf{u}}$ and $\nabla_{\mathcal{D}_m} \mathbf{u}_m \to \nabla \overline{\mathbf{u}}$ in L^2 .

Covered models:

- ▶ Damage models $\sigma(x, \varepsilon) = (1 D(\varepsilon))\mathbb{C}(x)\varepsilon$ (Cervera, Chiumenti, Codina 2010).
- ▶ non-linear Hencky-von Mises elasticity $\sigma = \lambda(\operatorname{dev}(\varepsilon))\operatorname{tr}(\varepsilon)\mathbf{I} + 2\mu(\operatorname{dev}(\varepsilon))\varepsilon.$

- 2 Gradient Schemes for elasticity equations
 - 4 discrete elements
 - 3 properties
 - Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

- 2 Gradient Schemes for elasticity equations
 - 4 discrete elements
 - 3 properties
 - Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Replace $\mathbf{H}_{\Gamma_D}^1$ with $\mathbf{X}_{\mathcal{D},\Gamma_D}$ in the weak continuous formulation!

- $\mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}}$ = finite-dimensional subspace of $\mathbf{H}_{\Gamma_{\mathcal{D}}}^{1}(\Omega)$,
- $\Pi_{\mathcal{D}} = \mathrm{Id}, \ \mathcal{T}_{\mathcal{D}} = \gamma \text{ and } \nabla_{\mathcal{D}} = \nabla.$

Example: any low- or high-degree conforming Finite Element method (e.g. *P*1 on triangles or simplices, bilinear functions on quadrilaterals, etc.)

Given T a triangulation of Ω ,

- X_{D,ΓD} =space of piecewise linear functions on T, which are continuous at the edge mid-points,
- $\Pi_{\mathcal{D}} = \mathrm{Id}$, $\mathcal{T}_{\mathcal{D}} = \mathrm{restriction}$ to $\partial \Omega$ and $\nabla_{\mathcal{D}} = \mathrm{broken}$ gradient.

Given T a triangulation of Ω ,

- X_{D,ΓD} =space of piecewise linear functions on T, which are continuous at the edge mid-points,
- $\Pi_{\mathcal{D}} = \mathrm{Id}$, $\mathcal{T}_{\mathcal{D}} = \mathrm{restriction}$ to $\partial \Omega$ and $\nabla_{\mathcal{D}} = \mathrm{broken}$ gradient.

► May not be coercive (no Körn inequality) if $\Gamma_D \neq \partial \Omega$. Higher order methods (still Gradient Schemes) then required.

- 2 Gradient Schemes for elasticity equations
 - 4 discrete elements
 - 3 properties
 - Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

 \mathbf{V}_h standard Finite Element space on a partition \mathcal{T}_h of Ω . $\mathcal{T}_h^* = \text{dual mesh.}$

In the weak formulation of the FE scheme, replace

$$\int_{\Omega} \mathbb{C}\varepsilon(\mathbf{u}_h) : \varepsilon(\mathbf{v}_h)$$

with

$$\int_{\Omega} \Pi_h^* \varepsilon(\mathbf{u}_h) : \mathbb{C}\varepsilon(\mathbf{v}_h) + \int_{\Omega} \mathbb{D}(\varepsilon(\mathbf{u}_h) - \Pi_h^* \varepsilon(\mathbf{u}_h)) : \varepsilon(\mathbf{v}_h) \, dx$$

where \mathbb{D} is symmetric definite positive and Π_h^* =orthogonal projection on piecewise constant functions on \mathcal{T}_h^* .

(Flanagan & Belytschko 1981, Puso & Solberg 2006, Lamichhane 2009)

Gradient Discretisation

•
$$\mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}} = \mathbf{V}_{h}, \ \Pi_{\mathcal{D}} = \mathrm{Id}, \ \mathcal{T}_{\mathcal{D}} = \gamma,$$

• For $\mathbf{v} \in \mathbf{X}_{\mathcal{D}, \Gamma_D}$,

$$abla_{\mathcal{D}}\mathbf{v} = \Pi_h^*
abla \mathbf{v} + \mathbb{C}^{-1/2} \mathbb{D}^{1/2} (
abla \mathbf{v} - \Pi_h^*
abla \mathbf{v})$$

(for \mathbb{C} and \mathbb{D} piecewise constant on \mathcal{T}_h^*).

• Orthogonality properties of Π_h^* and $I - \Pi_h^*$ eliminate the cross products in $\int_{\Omega} \mathbb{C} \varepsilon_{\mathcal{D}}(\mathbf{u}) : \varepsilon_{\mathcal{D}}(\mathbf{v})$.

Gradient Discretisation

•
$$\mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}} = \mathbf{V}_{h}, \ \Pi_{\mathcal{D}} = \mathrm{Id}, \ \mathcal{T}_{\mathcal{D}} = \gamma,$$

• For
$$\mathbf{v} \in \mathbf{X}_{\mathcal{D}, \Gamma_{\mathcal{D}}}$$
,

$$abla_{\mathcal{D}}\mathbf{v} = \Pi_h^*
abla \mathbf{v} + \mathbb{C}^{-1/2} \mathbb{D}^{1/2} (
abla \mathbf{v} - \Pi_h^*
abla \mathbf{v})$$

(for \mathbb{C} and \mathbb{D} piecewise constant on \mathcal{T}_h^*).

• Orthogonality properties of Π_h^* and $I - \Pi_h^*$ eliminate the cross products in $\int_{\Omega} \mathbb{C} \varepsilon_{\mathcal{D}}(\mathbf{u}) : \varepsilon_{\mathcal{D}}(\mathbf{v})$.

Consistency and limit-conformity follow because

$$abla_{\mathcal{D}}\mathbf{v} =
abla \mathbf{v} + \mathcal{L}_h
abla \mathbf{v}$$

where $\mathcal{L}_h : (L^2)^d \to (L^2)^d$ is self-adjoint, bounded and converges pointwise to 0.

- 2 Gradient Schemes for elasticity equations
 - 4 discrete elements
 - 3 properties
 - Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

▶ Based on a 3-field formulation (\mathbf{u} , ε and σ approximated in three different spaces).

▶ Gives stable numerical scheme in the nearly-incompressible limit.

► Can be reduced to a displacement formulation by static condensation.

(Lamichhane, Reddy & Wohlmuth, 2006).

Reduced displacement formulation of the Hu-Washizu method

 \mathbf{V}_h space of bilinear conforming Finite Element on quadrilaterals. In the weak formulation of the FE scheme, replace

$$\int_{\Omega} \mathbb{C} \boldsymbol{\varepsilon}(\mathbf{u}_h) : \boldsymbol{\varepsilon}(\mathbf{v}_h)$$

with

$$\int_{\Omega} \mathbb{C}_h P_{S_h} \varepsilon(\mathbf{u}_h) : P_{S_h} \varepsilon(\mathbf{v}_h) \, dx$$

Reduced displacement formulation of the Hu-Washizu method

 \mathbf{V}_h space of bilinear conforming Finite Element on quadrilaterals. In the weak formulation of the FE scheme, replace

$$\int_{\Omega} \mathbb{C} \varepsilon(\mathbf{u}_h) : \varepsilon(\mathbf{v}_h)$$

with

$$\int_{\Omega} \mathbb{C}_h P_{S_h} \varepsilon(\mathbf{u}_h) : P_{S_h} \varepsilon(\mathbf{v}_h) \, dx.$$

- $S_h = a$ suitable sub-space of V_h (several possible examples),
- P_{S_h} = orthogonal projection on S_h ,
- \mathbb{C}_h = approximation of \mathbb{C} defined by

$$\forall \boldsymbol{\tau} \in \mathbf{V}_h, : \ \mathbb{C}_h \boldsymbol{\tau} = \mathbb{C} P_{S_h^c} \boldsymbol{\tau} + \theta P_{S_h^t} \boldsymbol{\tau}$$

where

$$S_h^c = \{ \boldsymbol{\tau} \in S_h : \mathbb{C} \boldsymbol{\tau} \in S_h \}, \quad S_h = S_h^c \oplus S_h^t.$$

Gradient Discretisation

$$\nabla_{\mathcal{D}}\mathbf{v} = P_{\mathcal{S}_h^c}\nabla\mathbf{v} + \sqrt{\theta}\mathbb{C}^{-1/2}P_{\mathcal{S}_h^t}\nabla\mathbf{v}.$$

▶ The particular choices of S_h (and orthogonality properties) eliminate the cross products.

Gradient Discretisation

•
$$\mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}} = \mathbf{V}_{h}, \ \Pi_{\mathcal{D}} = \mathrm{Id}, \ \mathcal{T}_{\mathcal{D}} = \gamma,$$

• For $\mathbf{v} \in \mathbf{X}_{\mathcal{D},\Gamma_{\mathcal{D}}},$

$$\nabla_{\mathcal{D}}\mathbf{v} = P_{\mathcal{S}_h^c}\nabla\mathbf{v} + \sqrt{\theta}\mathbb{C}^{-1/2}P_{\mathcal{S}_h^t}\nabla\mathbf{v}.$$

▶ The particular choices of S_h (and orthogonality properties) eliminate the cross products.

Consistency and limit-conformity follow because

$$abla_{\mathcal{D}}\mathbf{v} =
abla \mathbf{v} + \mathcal{L}_h
abla \mathbf{v}$$

where $\mathcal{L}_h : (L^2)^d \to (L^2)^d$ is self-adjoint, bounded and converges pointwise to 0.

2 Gradient Schemes for elasticity equations

- 4 discrete elements
- 3 properties
- Convergence results

3 Examples of Gradient Schemes for elasticity equations

- Displacement-based formulation
- Stabilised nodal strain formulation
- Hu-Washizu-based formulation

Models

Linear diffusion Non-linear diffusion Multi-phase flow Stefan problem Image processing Non-conservative eq.

Thanks.