Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator

Daniel Daners

The University of Sydney
Australia

AustMS Annual Meeting 2013
3 Oct, 2013

The Dirichlet-to-Neumann operator

Assume

- $\Omega \subseteq \mathbb{R}^{N}$ smooth bounded open domain
- $\lambda \in \mathbb{R}$

If $\lambda \notin \sigma(-\Delta)$, then for every $\varphi \in H^{1 / 2}(\partial \Omega)$

$$
\begin{aligned}
\Delta u+\lambda u & =0 \quad \text { in } \Omega, \\
u & =\varphi \quad \text { on } \partial \Omega
\end{aligned}
$$

has a unique solution $u \in H^{1}(\Omega)$.

Definition

The Dirichlet-to-Neumann operator is defined by

$$
D_{\lambda} \varphi:=\frac{\partial u}{\partial \nu} \in H^{-1 / 2}(\Omega)
$$

where v is the outer unit normal to $\partial \Omega$

Some known facts

Let $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots$ be the distinct eigenvalues of

$$
-\Delta u=\lambda u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

If λ is not one of these eigenvalues, then

- $D_{\lambda}: H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$ is bounded;
- $-D_{\lambda}$ generates an analytic semigroup on $L^{2}(\partial \Omega)$.

Moreover,

- if $\lambda<\lambda_{1}$, then $e^{-t D_{\lambda}}$ is a positive irreducible semigroup; see Arendt and Mazzeo (2012)

Aim of Talk

Investigate positivity/non-positivity of $e^{-t D_{\lambda}}$ for $\lambda>\lambda_{1}$.

Possible conjecture

In many cases, crossing a principal eigenvalue will result in loss of positivity and/or maximum principles.

First Conjecture

$$
e^{-t D_{\lambda}} \text { is not positive for all } \lambda>\lambda_{1}
$$

This conjecture is disproved by the simplest example, namely $\Omega=(0, L) \subseteq \mathbb{R}$ an interval.

The Dirichlet-to-Neumann semigroup on $(0, L)$

Solving

$$
u^{\prime \prime}+\lambda u=0 \quad u(0)=a, u(L)=b
$$

for $\lambda>\lambda_{1}=(\pi / L)^{2}$ gives

$$
u(x)=a \frac{\sin \sqrt{\lambda}(L-x)}{\sin \sqrt{\lambda} L}+b \frac{\sin \sqrt{\lambda} x}{\sin \sqrt{\lambda} L} .
$$

and therefore

$$
D_{\lambda}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
-u^{\prime}(0) \\
u^{\prime}(L)
\end{array}\right]=\frac{\sqrt{\lambda}}{\sin \sqrt{\lambda} L}\left[\begin{array}{cc}
\cos \sqrt{\lambda} L & -1 \\
-1 & \cos \sqrt{\lambda} L
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

- Hence we have the matrix representation

$$
D_{\lambda}=\left[\begin{array}{cc}
\alpha(\lambda) & -\beta(\lambda) \\
-\beta(\lambda) & \alpha(\lambda)
\end{array}\right],
$$

where

$$
\alpha(\lambda):=\frac{\sqrt{\lambda} \cos \sqrt{\lambda} L}{\sin \sqrt{\lambda} L} \quad \text { and } \quad \beta(\lambda):=\frac{\sqrt{\lambda}}{\sin \sqrt{\lambda} L} .
$$

- The Dirichlet-to-Neumann semigroup is given by

$$
e^{-t D_{\lambda}}=e^{-t \alpha(\lambda)}\left[\begin{array}{ll}
\cosh \beta(\lambda) t & \sinh \beta(\lambda) t \\
\sinh \beta(\lambda) t & \cosh \beta(\lambda) t
\end{array}\right],
$$

- Hence $e^{-t D_{\lambda}}$ is positive if and only if $\sinh \beta(\lambda) t \geq 0$ for all $t \geq 0 \Leftrightarrow \sin \sqrt{\lambda} L>0$.

Conclusion

$e^{-t D_{\lambda}}$ is positive if and only if $\lambda<\left(\frac{\pi}{L}\right)^{2}$ or

$$
\left(\frac{2 k \pi}{L}\right)^{2}<\lambda<\left(\frac{(2 k+1) \pi}{L}\right)^{2}, \quad k \geq 1 .
$$

That is, positivity and non-positivity of $e^{-t D_{\lambda}}$ alternate at each eigenvalue:

The spectrum of D_{λ}

- A necessary condition for $e^{-D_{\lambda}}$ to be positive is that the minimal eigenvalue of D_{λ} has a positive eigenvector.
- We have

$$
\left[\begin{array}{cc}
\alpha(\lambda) & -\beta(\lambda) \\
-\beta(\lambda) & \alpha(\lambda)
\end{array}\right]\left[\begin{array}{c}
1 \\
\pm 1
\end{array}\right]=(\alpha(\lambda) \mp \beta(\lambda))\left[\begin{array}{c}
1 \\
\pm 1
\end{array}\right]
$$

- Hence the eigenvalues/eigenvectors are

$$
\begin{array}{ll}
\mu_{0}(\lambda)=\alpha(\lambda)-\beta(\lambda)=-\sqrt{\lambda} \tan \frac{\sqrt{\lambda} L}{2} & \text { e-vect }\left[\begin{array}{c}
1 \\
1
\end{array}\right] \gg 0 ; \\
\mu_{1}(\lambda)=\alpha(\lambda)-\beta(\lambda)=\sqrt{\lambda} \cot \frac{\sqrt{\lambda} L}{2} & \text { e-vect }\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \ngtr 0 .
\end{array}
$$

Hence a necessary condition for positivity of $e^{-t D_{\lambda}}$ is

$$
\mu_{0}(\lambda)<\mu_{1}(\lambda)
$$

Possible modifed conjectures

Second conjectures

- Positivity and non-positivity of $e^{-t D_{\lambda}}$ alternate at each eigenvalue λ_{k}, possibly counting multiplicity.
- If $e^{-t D_{\lambda}}$ is positive for some $\lambda \in\left(\lambda_{k}, \lambda_{k+1}\right)$, then it is positive for all $\lambda \in\left(\lambda_{k}, \lambda_{k+1}\right)$.
- If $\lambda>\lambda_{1}$, then $e^{-t D_{\lambda}}$ is not positive in higher dimensions.

We show that all these conjectures are disproved by the example of the disc in \mathbb{R}^{2}.

The Dirichlet-to-Neumann operator on the disc

- Given $\varphi \in H^{1 / 2}(\partial B)$ solve

$$
\begin{equation*}
\Delta u+\lambda u=0 \quad \text { in } B, \quad u=\varphi \quad \text { on } \partial B \tag{BVP}
\end{equation*}
$$

- We compute u for an orthogonal basis on $L^{2}(\partial B)$:

$$
\varphi_{k}=e^{i k \theta}, \quad k \in \mathbb{Z}
$$

- The solution of (BVP) is

$$
u_{k}(r, \theta)=\frac{J_{k}(\sqrt{\lambda} r)}{J_{k}(\sqrt{\lambda})} e^{i k \theta}
$$

- Hence, for $k \in \mathbb{Z}$,

$$
D_{\lambda} e^{i k \theta}=\frac{\partial u_{k}}{\partial \nu}=\left.\frac{\partial J_{k}(\sqrt{\lambda} r)}{\partial r} \frac{J_{k}(\sqrt{\lambda})}{e^{i k \theta}}\right|_{r=1}=\frac{\sqrt{\lambda} J_{k}^{\prime}(\sqrt{\lambda})}{J_{k}(\sqrt{\lambda})} e^{i k \theta}
$$

Note that $e^{i k \theta}$ is an eigenfunction of D_{λ}.

As $J_{-k}(s)=(-1)^{k} J_{k}(s)$ the eigenvalue

$$
\mu_{k}(\lambda):=\frac{\sqrt{\lambda} J_{k}^{\prime}(\sqrt{\lambda})}{J_{k}(\sqrt{\lambda})}, \quad k=0,1,2, \ldots
$$

has eigenfunctions $e^{ \pm i k \theta}$.
Operator and semigroup on $L^{2}(\partial \Omega)$
If $\varphi=\sum_{k=-\infty}^{\infty} c_{k} e^{i k \theta} \in H^{1 / 2}(\partial B)$, then

$$
\begin{gathered}
D_{\lambda} \varphi=\sum_{k=-\infty}^{\infty} c_{k} \mu_{|k|}(\lambda) e^{i k \theta} \\
e^{-t D_{\lambda}} \varphi=\sum_{k=-\infty}^{\infty} c_{k} e^{-t \mu_{|k|}(\lambda)} e^{i k \theta}
\end{gathered}
$$

Spectrum of D_{λ} on the disc

- The eigenspace to the eigenvalues $\mu_{k}(\lambda)$, $k=0,1,2, \ldots$, is spanned by $\cos k \theta, \quad \sin k \theta$.
- $\mu_{0}(\lambda)$ is the only eigenvalue having a positive eigenfunction.
- Hence a necessary condition for $e^{-t D_{\lambda}}$ to be positive is that

$$
\begin{equation*}
\mu_{0}(\lambda)<\mu_{k}(\lambda) \quad \text { for all } k>0 . \tag{1}
\end{equation*}
$$

- We shall show that (1) is not sufficient for $e^{-t D_{\lambda}}$ to be positive.

The Dirichlet eigenvalues λ_{n} "jumble" the order of $\mu_{k}(\lambda)$

Where can $e^{-D_{\lambda}}$ be positive?

- From the graph we see that $e^{-t D_{\lambda}}$ can only be positive in a left neighbourhood of some of the Dirichlet eigenvalues, namely where

$$
\lim _{\lambda \rightarrow \lambda_{k}^{-}} \mu_{0}(\lambda)=-\infty
$$

- Recall that

$$
\mu_{0}(\lambda)=\frac{\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda})}{J_{0}(\sqrt{\lambda})}
$$

- These are the Dirichlet eigenvalues of $-\Delta$ determined by the zeros of J_{0}.

Fourier series of non-negative functions

- Let

$$
\varphi=\sum_{-\infty}^{\infty} c_{k} e^{i k \theta} \geq 0
$$

Then $c_{-k}=\bar{c}_{k}$ and $\left(c_{k}\right)$ is positive definite.

- Indeed, if $\xi_{k} \in \mathbb{C}$, then

$$
\begin{aligned}
\sum_{j, k=1}^{n} c_{k-j} \xi_{k} \bar{\xi}_{j}= & \sum_{j, k=1}^{n} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i j \theta} e^{i k \theta} \xi_{k} \bar{\xi}_{j} \varphi(\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{k=1}^{n} e^{-i k \theta} \xi_{k}\right|^{2} \varphi(\theta) d \theta \geq 0
\end{aligned}
$$

- In particular $c_{0} \geq\left|c_{n}\right|$ for all $n \in \mathbb{Z}$. Choose $\xi_{0}=1$, $\xi_{n}=\alpha$ with $|\alpha|=1$ so that $\alpha c_{n}=-\left|c_{n}\right|$ and $\xi_{j}=0$:

$$
\sum_{j, k=1}^{n} c_{k-j} \xi_{k} \bar{\xi}_{j}=2 c_{0}+\alpha c_{0-n}+\bar{\alpha} c_{n-0}=2\left(c_{0}-\left|c_{n}\right|\right) \geq 0
$$

Eventual positivity \& irreducibility

Theorem

Let $\mu_{0}(\lambda)<\mu_{k}(\lambda)$ for all $k \geq 1$.

- There exists $T>0$ such that the operator $e^{-t D_{\lambda}}$ is positive and irreducible for all $t \geq T$.
- It is possible that $e^{-t D_{\lambda}}$ is not positive for all $t>0$.

If $\varphi=\sum_{k=-\infty}^{\infty} c_{k} e^{i k \theta} \geq 0$, then $c_{0} \geq\left|c_{k}\right|$ and

$$
\begin{gathered}
e^{-t D_{\lambda}} \varphi=\sum_{k=-\infty}^{\infty} c_{k} e^{-t \mu_{k \mid}(\lambda)} e^{i k \theta} \geq c_{0} e^{-t \mu_{0}(\lambda)}-2 c_{0} \sum_{k=1}^{\infty} e^{-t \mu_{k}(\lambda)} \\
=c_{0} e^{-t \mu_{0}(\lambda)}\left(1-2 \sum_{k=1}^{\infty} e^{-t\left(\mu_{k}(\lambda)-\mu_{0}(\lambda)\right)}\right)>0
\end{gathered}
$$

for t large enough, independently of $\varphi \geq 0$.

Non-positivity if $\mu_{0}(\lambda)<\mu_{k}(\lambda)$ for all $k \geq 1$

The solution may dip below zero for some $\lambda \in\left(\lambda_{3}, \lambda_{4}\right)$.

Non-positivity if $\mu_{m}(\lambda)<\mu_{0}(\lambda)$ for some $m>0$

An oscillating term dominates the series

$$
e^{-t D_{\lambda}} \varphi=\sum_{k=-\infty}^{\infty} c_{k} e^{-t \mu_{k \mid}(\lambda)} e^{i k \theta} .
$$

Positivity of $e^{-t D_{\lambda}}$

Theorem

For each Dirichlet eigenvalue λ_{ℓ} such that $J_{0}\left(\sqrt{\lambda_{\ell}}\right)=0$ there exists $\beta<\lambda_{\ell}$ such that $e^{-t D_{\lambda}}$ is a positive semigroup for all $\lambda \in\left[\beta, \lambda_{\ell}\right)$.

- Write

$$
\begin{aligned}
& e^{-t D_{\lambda}} \varphi=\sum_{-\infty}^{\infty} c_{k} e^{-t \mu_{|k|}} e^{i k \theta} \\
&=G_{\lambda, t} * \varphi:=\int_{-\pi}^{\pi} G_{\lambda, t}(\theta-\cdot) \varphi(\theta) d \theta
\end{aligned}
$$

- $G_{\lambda, t}$ is the "heat kernel" of $e^{-t D_{\lambda}}$ given by

$$
G_{\lambda, t}(\theta):=\sum_{k=-\infty}^{\infty} e^{-t \mu_{|k|}} e^{i k \theta} \quad t>0 .
$$

Positivity of $e^{-t D_{\lambda}}$

- Show that $G_{\lambda, t}(\theta) \geq 0$ for all $t>0$ for λ in some interval $\left[\beta, \lambda_{\ell}\right)$.
- $G_{\lambda, t}(\theta) \geq 0$ if and only if the sequence

$$
e^{-t \mu_{|k|}(\lambda)}
$$

of Fourier coefficients is positive definite.

- Positive definiteness is hard to check but there is a sufficient condition, Polya's criterion:
- $c_{k} \rightarrow 0$
- $k \mapsto c_{k}$ is convex, that is, $c_{k-1}+c_{k+1}-2 c_{k} \geq 0$
- Express the Fourier series in terms of the Féjer kernels $K_{n}(\theta) \geq 0$ in the form

$$
\sum_{n=1}^{\infty} n\left(c_{k-1}+c_{k+1}-2 c_{k}\right) K_{n-1}(\theta) \geq 0
$$

Positivity of $e^{-t D_{\lambda}}$

Polya's criterion is only a sufficient condition.
However the formula is still valid if the sequence of Fourier coefficients is eventually convex.

Proposition

$$
G_{\lambda, t}(\theta)=\sum_{n=1}^{\infty} n b_{n}(\lambda, t) K_{n-1}(\theta),
$$

where

$$
b_{n}(\lambda, t):=e^{-t \mu_{n+1}(\lambda)}+e^{-t \mu_{n-1}(\lambda)}-2 e^{-t \mu_{n}(\lambda)} .
$$

Moreover, $b_{n}(\lambda, t) \geq 0$ for all $n>\sqrt{\lambda}$ and all $t>0$.

Positivity of $e^{-t D_{\lambda}}$

- If $j_{k, \ell}$ are the positive zeros of J_{k}, then

$$
\mu_{k}(\lambda)=\frac{\sqrt{\lambda} J_{k}^{\prime}(\sqrt{(} \lambda)}{J_{k}(\lambda)}=\sum_{\ell=1}^{\infty} \frac{2 \lambda}{j_{k, \ell}^{2}-\lambda}
$$

- It is shown in Elbert and Laforgia (1984) that

$$
k \rightarrow j_{k, \ell}^{2} \quad \text { is concave. }
$$

- Hence $k \mapsto e^{-\mu_{k}(\lambda)}$ is eventually convex.
- This means almost all terms in the series

$$
G_{\lambda, t}(\theta)=\sum_{n=1}^{\infty} n b_{n}(\lambda, t) K_{n-1}(\theta)
$$

are positive.

- If $\mu_{0}(\lambda) \ll 0$, then the sum of the finitely many terms is postitive for all $t>0$.

Open Questions

What happens on more general domains?

References I

Arendt, W. and R. Mazzeo. 2012. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup, Commun. Pure Appl. Anal. 11, no. 6, 2201-2212. MR2912743

Daners, D. 2013. Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator. to appear.
Elbert, Á. and A. Laforgia. 1984. On the square of the zeros of Bessel functions, SIAM J. Math. Anal. 15, no. 1, 206-212. MR728696 (85a:33011)

