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Darwinian evolution

Three main ingredients:

• Heredity: transmissions of individual characteristics from a
generation to the next one.

• Mutation: cause of the variability in individual characteristics.

• Selection: consequence of the interactions between individuals
and their environment, including the rest of the population
(ecology).

First approach: population genetics (since the 30s)

• Wright-Fisher, Moran, Flemming-Viot, Kingman
coalescent. . . models

• Put emphasis on the genetic mechanism at the molecular level

• Selection: a fixed fitness value is associated to each allele
 supposes a fixed environment of the population
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Adaptive dynamics

Adaptive dynamics (since the 90s): Hofbauer and Sigmund (1990),
Metz, Geritz et al. (1992,1996), Dieckmann and Law (1996). . .

• Focus on the interplay between ecology and evolution
• Ecological interactions modeled in detail
• Heredity is simplified as much as possible: asexual (clonal)

reproduction

 Density-dependent individual-based models where no fitness is
given. The fitness landscape has to be constructed from the
parameters of the model.

 New phenomenon of evolutionary branching (Metz et al., 1996)
• Transition from a population concentrated around a single

phenotype to a population concentrated around several distinct
phenotypes, still under ecological interaction

• Mechanism of diversification
• Can lead to speciation without geographical separation

(Dieckmann and Doebeli, 1999)



Biological context Deterministic approach to adaptive dynamics Stochastic approach to adaptive dynamics Conclusion

Chemostat

Chemostat (J. Monod, 1950)

A chemostat is a bioreactor in which liquid is continuously injected
while volume is kept constant by an equal outflow:

• allows to control the growth rate of microorganisms in a
controlled environment (temperature, pH, nutrient
concentration...)

• used to grow cells or to perform a biochemical process (e.g.
wastewater treatment)

The chemostat is an efficient device to make bacteria adapt to given
environmental conditions, e.g. to improve nutrients consumption.
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Chemostat

Simple chemostat models

Our Goal: Study adaptation in a multi-resources chemostat model.

• Basic chemostat model (system of ODEs)

du

dt
= u(−1− d + ηR),

dR

dt
= 1− R − Rηu.

• u is the bacteria density
• R is the resource concentration
• d is the death rate of bacteria
• η is the efficiency of resource consumption by bacteria.

• A lot of more complicated ODE models exist (mulit-specific,
multi-resources... cf. Smith and Waltman, 1995)

... so far, no adaptation.
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The PDE model

A PDE model of adaptation in a chemostat

We consider a population of bacteria in a chemostat
• with r resources with concentrations Rk (t).
• where each bacteria is characterized by a (phenotypic) trait

x ∈ R (e.g. rate of nutrient intake, body size at maturity, age at
maturity. . . )
 population density u(t , x ).

∂tu(t , x ) =

(
r∑

k=1

Rk (t) ηk (x )− d(x )

)
u(t , x )

+

∫
R

K (z )(u(t , x + z )− u(t , x )) dz ,

where
• ηk (x ) is the consumption function of resource k ,
• d(x )− 1 is the death rate of a bacteria with trait x ,
• K (z ) is the L1 mutation kernel, satisfying

∫
R zK (z ) dz = 0.
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The PDE model

Resources dynamics

Classical chemostat models assume

dRk (t)

dt
= gk − Rk (t)− Rk (t)

∫
R
ηk (x )u(t , x )dx , 1 ≤ k ≤ r ,

where

• gk is the rate of inflow of resource k in the chemostat,

• the consumption function ηk (x ) is the same as in the equation for
densities (can be relaxed).

In this talk, to keep things simple, we shall assume that resources are
at quasi-equilibrium for all time:

Rk (t)=
gi

1 +
∫
R ηk (x ) u(x ) dx

, 1 ≤ k ≤ r .

Non-local reaction-diffusion equation.
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The PDE model

An example

Two resources, trait having opposite effects on the resources
consumption.

• K (z )dz = N (0, σ2),

• d(x ) = 1 + 4(x − 1/2)2, (minimum at 1/2), x ∈ [0, 1],

• r = 2 (2 resources), g1 = g2 = 1,

• η1(x ) = 2(x − 1)2, η2(x ) = 2x2, x ∈ [0, 1].

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,5

1

1,5

2

⎯⎯⎯   d(x)
⎯⎯⎯   eta_1(x)
⎯⎯⎯   eta_2(x)



Biological context Deterministic approach to adaptive dynamics Stochastic approach to adaptive dynamics Conclusion

The PDE model

Simulation

Competition for two resources

(Diekmann, Jabin, Mischler, Perthame, 2005)
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Hamilton Jacobi equation with constraint

Strong selection and small mutations

Non-local interactions favor the concentration of population densities
close to the “best” traits. The idea is to strengthen this concentration
in order to simplify the dynamics.

Sélection forte et petites mutations :

∂tuε(t , x ) =
1

ε
uε(t , x )

(
r∑

k=1

Rε
k (t) ηk (x )− d(x )

)

+
1

ε

∫
R

K (z )(uε(t , x + εz )− uε(t , x ))dz .
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Hamilton Jacobi equation with constraint

WKB ansatz

For reaction-diffusion: Fleming, Souganidis, 1986, Barles, Evans,
Souganidis, 1990, Freidlin, 1990.
For adaptive dynamics: Diekmann et al., 2005.

uε(t , x ) = exp
(ϕε(t , x )

ε

)
.

Then ∂tuε = uε

ε ∂tϕε and so

∂tϕε(t , x ) =

r∑
k=1

Rε
k (t) ηk (x )− d(x )

+

∫
Rk

K (z )
(

e(ϕ(t,x+εz)−ϕ(t,x))/ε − 1
)

dz .
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Hamilton Jacobi equation with constraint

Hamilton-Jacobi equation with constraint

Therefore, one expects ϕε → ϕ, where

∂tϕ =

r∑
k=1

Rk (t) ηk (x )− d(x ) + H (∂xϕ),

where Rε
k (t)→ Rk (t) and

H (p) =

∫
R

K (z ) (ep z − 1) dz .

By Jensen’s inequality, H (p) ≥ 0 and H (p) = 0 iff p = 0.

• All the mass of uε(t , ·) is concentrated close to {x : ϕ(t , x ) = 0}.
• If 0 < d ≤ d(·) and 0 < η ≤ ηk (·) ≤ η,

d

dt

∫
R

uε(t , x ) dx ≤
(∫

R
uε(t , x ) dx

)
1

ε

r∑
k=1

(
η

1 + η
∫
R uε(t , x ) dx

− d

)
.

 non-explosion of the total population density:
lim supε→0 maxx ϕε(t , x ) = 0.
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Hamilton Jacobi equation with constraint

Hamilton-Jacobi equation with constraints

One expects ϕε → ϕ, where

∂tϕ =

r∑
k=1

Rk (t) ηk (x )− d(x ) + H (∂xϕ),

and supx∈R ϕ(t , x ) = 0 for all t ≤ 0.

How to characterize Rk (t)?
In order to satisfy the constraint, one should also have

•
∑r

k=1 Rk (t) ηk (x )− d(x ) ≤ 0 for all x such that ϕ(t , x ) = 0,
•
∑r

k=1 Rk (t) ηk (x )− d(x ) = 0 for at least one x such that
ϕ(t , x ) = 0.

First approach:
• Rk are Lagrange multipliers associated with these contraints.

Works only in particular cases (Diekmann et al., 2005, Barles,
Perthame, 2007, 2008, Mirrahimi, Perthame, Wakano, 2012...).

• Difficulty: the number of unknown r can be different from the
number of constraints (number of zeroes of ϕ).
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Closed Hamilton Jacobi equation

Assumptions

• Smoothness of the parameters.
• For all distinct x1, . . . , xr+1, the vectors η1(x1)

...
η1(xr+1)

 . . .

 ηr (x1)
...

ηr (xr+1)

 ,

 d(x1)
...

d(xr+1)


are linearly independent

• For all distinct x1, . . . , xr , the vectorsη1(x1)
...

ηr (x1)

 . . .

η1(xr )
...

ηr (xr )


are linearly independent.

Under these conditions, one can associate a unique environment
(resources) to the set of zeroes of ϕ, and a unique population measure
associated to this environment.
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Closed Hamilton Jacobi equation

Proposition (C., Jabin, 2011)

For all closed A ⊂ R, there exists a unique finite positive measure
µ(A) satisfying

(i) suppµ ⊂ A

(ii) if we define R̄k (µ) =
gk

1 +
∫
ηk (x ) dµ(x )

,

r∑
k=1

R̄k (µ) ηk (x )− d(x ) ≤ 0 in A,

r∑
k=1

R̄k (µ) ηk (x )− d(x ) = 0 in suppµ.

The limiting Rk (t) are then obtained as

Rk (t) = R̄k (µ({ϕ(t , .) = 0})).
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Closed Hamilton Jacobi equation

A remark on the number of coexisting traits

• In view of the previous result, given distinct x1, . . . , xn , one says
that these traits coexist if supp µ({x1, . . . , xn}) = {x1, . . . , xn}.

• In order to have coexistence of x1, . . . , xn , one must have

r∑
k=1

R̄k (µ) ηk (xi)− d(xi) ≤ 0, 1 ≤ i ≤ n.

Because of our assumptions, this is impossible if n > r .

• This has the following biological interpretation: one cannot have
coexistence of more species than resources. This is related to the
concept of ecological niche.



Biological context Deterministic approach to adaptive dynamics Stochastic approach to adaptive dynamics Conclusion

Closed Hamilton Jacobi equation

Proof of existence

We consider the differential equation in measure space

∂tν =

(
k∑

i=1

Īi(ν) ηi(x )− 1

)
ν.

A stable steady state of this equation should satisfy the conditions of
the Proposition.
Since this system has the convex, strict Lyapunov functional

L(ν) =

∫
R

d(x )ν(dx )−
r∑

k=1

gk log(1 +

∫
ηk (x )ν(dx )),

one can define the measure µ as the global minimizer of this
functional.
Indeed,

d

dt
L(νt) +−

∫ ( r∑
k=1

gkηk (x )

1 +
∫
ηk (y)νt(dy)

− d(x )

)2

νt(dx ).
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Closed Hamilton Jacobi equation

Theorem (C., Jabin, 2011)

Under the previous assumptions, if uε(t = 0) > 0 is smooth enough
and ϕε(t = 0) converges to ϕ0 in W 1,∞(R),

then, up to a subsequence extraction, ϕε uniformly converges on all
compact set and in W 1,p

loc (R+ × R) to ϕ, almost everywhere solution
to

∂tϕ =

r∑
k=1

Rk (t) ηk (x )− 1 + H (∂xϕ),

where Rk (t) = R̄k (µ({ϕ(t , .) = 0})).

In addition, the functions Rε
k converge to Rk in Lp for all p <∞.
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Closed Hamilton Jacobi equation

Some elements of the proof of the theorem

• One cannot have existence of a solution to HJ in the strong
sense. The Rk (t) need not be continuous.
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• We use classical a priori estimates for HJ equations, and prove
that they hold for ϕε uniformly in ε. In particular, we prove that
∂xϕ

ε is bounded in L∞([0,T ],BVloc(R)) and ∂xxϕε ≥ −C .

• This implies easily the strong convergence of a subsequence of ϕε.

• The difficult part is the convergence of Rε
k (t) to the correct limit.

This is done by proving uniform Lebesgue-right-continuity
estimates.
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Closed Hamilton Jacobi equation

Simulation of the PDE for population densities

(Implicit finite differences)
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Closed Hamilton Jacobi equation

Simulation of the HJ equation with constraints
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Consequences in adaptive dynamics

The fitness function

The fitness function can be defined as the growth rate of a trait x in
the absence of mutation and in a given environment. For example, in
the environment in the HJ equation at time t (the Rk (t)),

f (x , t) =

r∑
k=1

Rk (t)ηk (x )− d(x ).

More generally, given a closed subset A of R, we define the fitness of
a trait x in the population characterized by A as

f (x ,A) =

r∑
k=1

R̄k (µ(A))ηk (x )− d(x ).

The sign of this fitness function characterizes the direction of
evolution of the population.
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Consequences in adaptive dynamics

Coevolution with the fitness landscape
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Consequences in adaptive dynamics

Coevolution with the fitness landscape



Biological context Deterministic approach to adaptive dynamics Stochastic approach to adaptive dynamics Conclusion

Consequences in adaptive dynamics

The canonical equation of adaptive dynamics: first form

• As long as there is only a single point in {ϕ(t , ·) = 0},
µ({ϕ(t , ·) = 0}) = ū(t)δx̄(t).

• Since ∂xϕ(t , x̄ (t)) = 0, we have

∂txϕ(t , x̄ (t)) + ∂xxϕ(t , x̄ (t))
dx̄ (t)

dt
= 0.

• Since ∂tϕ(t , x ) = f (x , {x̄ (t)}) + H (∂xϕ(t , x )),

∂txϕ(t , x̄ (t)) = ∂x f (x , {x̄ (t)})+H ′(∂xϕ(t , x̄ (t)))∂xxϕ(t , x̄ (t)) = ∂x f (x , t).

Therefore

dx̄ (t)

dt
= −(∂xxϕ(t , x̄ (t)))−1∂x f (x , {x̄ (t)}).

This equation is called “canonical equation of adaptive dynamics”.
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Consequences in adaptive dynamics

Adaptive dynamics via the PDE approach

• Until the first time where ϕ has two distinct zeroes (jump or
evolutionary branching), the support of the population evolves
according to the canonical equation, and tries to locally increase
the fitness.

• Evolutionary branching can only occur at points x∗ where
∂x f (x , {x∗}) = 0 (evolutionary singularity).

• Evolutionary branching occurs at evolutionary singularities where
the fitness function is convex.
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Consequences in adaptive dynamics

Mathematical questions

• Open problem: well-posedness of the Hamilton-Jacobi equation
with contraint. Only known in special cases (a single resource or
no mutation)

• Jumps in the Rk and in ∂xϕ are possible.
• Vicosity solutions or variational characterizations do not extend

easily to this problem.
• This is also important in simulations.

• Smoothness of the solution is only known in special cases
 justification of the canonical equation and of the branching
criterion only in special cases.

• Open problems: time of branching, speed of branching, after
evolutionary branching...
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Individual-based model

Individual-based model

2 scaling parameters:

• K scales the size of the population (large K means large
population)

• µK scales the probability of mutation (small µK means rare
mutations)

Birth-death-mutation discrete process coupled with r continuous
resources with concentrations RK

1 (t), . . . ,RK
r (t):

• each individual is characterized by a phenotypic trait x in R
• a population of N K (t) individuals holding traits

x1, . . . , xN (t) ∈ X is represented by νKt =
1

K

NK (t)∑
i=1

δxi
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Individual-based model

Transitions

• Each individual with trait x gives birth at (inhomogeneous) rate
r∑

k=1

ηk (x )RK
k (t) to a single individual.

ηk (x ) represents the consumption efficiency of resource k by
bacteria with trait x . At each birth time:

• with probability 1 − µK , clonal reproduction (trait x)
• with probability µK , mutation; the mutant trait is x + h where h

has given law m(x , h)dh.

• Each individual with trait x dies or is removed from the
chemostat at rate d(x ).

• Resources concentrations as before in a quasi-equilibrium

RK
k (t) =

gk

1 +
(

1
K

∑N (t)
i=1 ηk (xi)

) =
gk

1 + 〈νK , ηk 〉
.

gk > 0 is incoming concentration of resource k .
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Individual-based model

Simulations

K = 300, µK = 0.1, σ = 0.01 K = 300, µK = 0.1, σ = 0.01
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Limit of large population

K → +∞ (without time scaling)

Theorem

If µK → 0 when K → +∞ and νK0 converges in distribution to a
deterministic measure ν0 =

∑n
i=1 ui(0)δxi , then (νKt , t ≥ 0) converges

in distribution to the function (
∑n

i=1 ui(t)δxi , t ≥ 0), where

u̇i = ui

(
− d(xi) +

r∑
k=1

ηk (xi) Rk

)
, ∀1 ≤ i ≤ n,

Rk =
gk

1 +
∑n

i=1 ηk (xi) ui
, ∀1 ≤ k ≤ r .

This system will be called below chemostat system.
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Limit of large population

Long-time behavior of chemostat systems

Proposition (C., Jabin, Raoul, 2010)

Under the previus assumptions, for all n ≥ 1 and all distinct
x1, · · · , xn ∈ X , there exists a unique ū in (R+)n+r such that any
solution u(t) of the chemostat system with ui(0) > 0 for any
1 ≤ i ≤ n, converges to ū.
With our previous notation, we have µ({x1, . . . , xn}) =

∑n
i=1 ūiδxi .

We shall denote by ū(x) this equilibrium, where x := (x1, . . . , xn).
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Limit of large population

Link with the fitness function

The case of two trait:

If n = 2, the equilibrium (ū(x1), 0) is stable iff f (x2, {x1}) ≤ 0.

If both (ū(x1), 0) and (0, ū(x2)) are unstable, i.e. if f (x1, {x2}) > 0 and
f (x2, {x1}) > 0, then there exists a stable equilibrium where both
traits coexist.

We will write for simplicity f (x ; y) for f (x , {y}).
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Limit of rare mutations

Limit of rare mutations: biological idea (Metz et al. 1996)

• The selection process has sufficient time between two mutations
to eliminate disadvantaged traits (time scale separation)

• The assumption of large populations allows one to assume a
deterministic population dynamics
 one can predict the outcome of competition between several
traits.

• Succession of phases of mutant invasion, and phases of
competition between traits
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Limit of rare mutations

Simulations: rare mutations

K = 300, µK = 0.1, σ = 0.01 K = 300, µK = 0.0003, σ = 0.06
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Limit of rare mutations

Convergence to the PES (C., Jabin, Méléard, 2013)

Theorem

Assume (A). If νK0 = uK
0 δx with uK

0 → ū(x ) in probability when
K → +∞. Assume also

∀C > 0, log K � 1

KµK
� exp(CK ),

then, the process (νKt/KµK
, t ≥ 0) converges for f.d.d. to a pure jump

Markov process (Λt , t ≥ 0) with explicit jump rates and taking values
in

M0 :=

{
d∑

i=1

ūi(x)δxi , d ≥ 1, x1, . . . , xd ∈ X coexist

}
.

The process Λt is called Polymorphic Evolution Sequence (PES).
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Limit of rare mutations

General principle

The transition rates from a given population state of the PES are
constructed in 3 steps:

1 wait for the first next mutation (mutation rate and mutant
distribution)  mutation time scale t/KµK

2 look if the mutant individual invades the population (invasion
probability)

3 once the mutant has invaded, the fate of the competition between
the different traits in the population is given by the globally
asymptotic stable equilibrium of the chemostat system.
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Limit of rare mutations

After the first mutation: competition phase

• between 0 and t1: the number of mutant individuals is close to
a branching process with birth rate

∑
k ηk (y)R̄(x ) and death rate

d(y)
 survival probability [f (y ; x )]+/(

∑
k ηk (y)R̄(x ))

• between t1 and t2: close to the chemostat system
• after t2: the number of resident individuals is close to a

sub-critical branching process
• If log K � 1

KuK
the next mutation occurs after this phase with

high probability.

-

6

0

ε

ūy

ūx

t1 t2 t3 t

〈νKt ,1{y}〉

〈νKt ,1{x}〉
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The limit of small mutations

The Canonical Equation of Adaptive Dynamics

• Small mutations: size of mutations scaled by ε, i.e. m(x , h)dh
replaced by 1

εm(x , hε )dh.
• Renormalized PES: Λε.
• Rescaled time: t/ε2.

Theorem

The processes (Λεt/ε2 , t ≥ 0) converge in law as ε→ 0 to

(ū(x (t))δx(t), t ≥ 0), where x is solution of the ODE

dx

dt
=

∫
h2ū(x )∂1f (x ; x )m(x , h)dh.

This is the canonical equation of adaptive dynamics (Dieckmann and
Law, 1996).

 Evolutionary branching can only occur in the neighborhood of a
point where ∂1f (x , x ) = 0.
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The limit of small mutations

A definition of evolutionary branching

Definition

For any η > 0, we say that there is η-branching at the evolutionary
singularity x∗ if

• There exist t > 0 such that the support of Λεt is composed of a
single trait in (x∗ − η, x∗ + η).

• There exist s > t such that the support of Λεs is composed of two
traits distant of more than η.

• Between s and t, the support of Λε is always a subset of
[x∗ − η, x∗ + η] composed of at most 2 traits.
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The limit of small mutations

Branching criterion

• Assume that ∂1f (0; 0) = 0.

• Let a = ∂11f (0; 0) and c = ∂22f (0; 0). Assume that a 6= 0 and
a + c 6= 0.

• The equilibrium x∗ = 0 is stable for the canonical equation if

c > a.

Theorem

When c > a, for all sufficiently small η > 0, there exists ε0 > 0 s.t.
for all ε < ε0,

• If a > 0, then Pε(η-branching) = 1.

• If a < 0, then Pε(η-branching) = 0.
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Comparison of the two approaches (1)

• We used 3 limits in our two approaches:

1 large population
2 rare mutations
3 small mutations

• The PDE approach corresponds to (1) then (3).

• The stochastic approach corresponds to (1)+(2) then (3).
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Comparison of the two approaches (2)

• The two approaches give qualitatively similar results
(convergence to equilibria according to a canonical equation,
same branching criterion)...

• ... but quantitatively different results (the two canonical
equations are different, the time scales of evolutionary branching
are different).

• Both approaches are criticized by biologists: in the PDE
approach, very small densities have a strong influence; in the
stochastic approach, assumptions are biologically too strong (rare
mutations).

• The results seem robust  intermediate approaches (e.g. small
mutations only, but with simultaneously large populations)
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Open problems (1)

Deterministic approach

• Well-posedness theory for Hamilton-Jacobi equations with
constraints, to fully characterize the limit and be sure of the
biological consequences.

• Change the model so that very small densities correspond to
extinction (cutoff or additional non-linear terms in the PDE, cf.
Jabin, 2012, Barles, Mirrahimi, Perthame, 2013)

Stochastic approach

• Other scalings (small mutations only, or the three limits
together).

• Extension of the results to higher-dimensional traits (the fitness
function is not smooth in this case).

• Precise study of the time of evolutionary branching, and of what
happens after the first evolutionary branching.
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Open problems (2)

All approaches

• Evolutionary branching criteria in models with sexual
reproduction.
 crucial from the biological point of view.

• Some works have already be done in the subject, but they are
very preliminary (Collet, Méléard, Metz, 2013).


	Biological context
	Adaptive dynamics
	Chemostat

	Deterministic approach to adaptive dynamics
	The PDE model
	Hamilton Jacobi equation with constraint
	Closed Hamilton Jacobi equation
	Consequences in adaptive dynamics

	Stochastic approach to adaptive dynamics
	Individual-based model
	Limit of large population
	Limit of rare mutations
	The limit of small mutations

	Conclusion

