
Convex Optimization:

from Real-Time Embedded

to Large-Scale Distributed

Stephen Boyd
Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley

Electrical Engineering Department, Stanford University

AustMS, Sydney, 30/9/2013

1

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

2

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Convex Optimization 3

Convex optimization — Classical form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

◮ variable x ∈ Rn

◮ f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature

Convex Optimization 4

Convex optimization — Cone form

minimize cT x

subject to x ∈ K

Ax = b

◮ variable x ∈ Rn

◮ K ⊂ Rn is a proper cone
◮ K nonnegative orthant −→ LP
◮ K Lorentz cone −→ SOCP
◮ K positive semidefinite matrices −→ SDP

◮ the ‘modern’ canonical form

Convex Optimization 5

Why

◮ beautiful, nearly complete theory
◮ duality, optimality conditions, . . .

Convex Optimization 6

Why

◮ beautiful, nearly complete theory
◮ duality, optimality conditions, . . .

◮ effective algorithms, methods (in theory and practice)
◮ get global solution (and optimality certificate)
◮ polynomial complexity

Convex Optimization 6

Why

◮ beautiful, nearly complete theory
◮ duality, optimality conditions, . . .

◮ effective algorithms, methods (in theory and practice)
◮ get global solution (and optimality certificate)
◮ polynomial complexity

◮ conceptual unification of many methods

Convex Optimization 6

Why

◮ beautiful, nearly complete theory
◮ duality, optimality conditions, . . .

◮ effective algorithms, methods (in theory and practice)
◮ get global solution (and optimality certificate)
◮ polynomial complexity

◮ conceptual unification of many methods

◮ lots of applications (many more than previously thought)

Convex Optimization 6

Application areas

◮ machine learning, statistics

◮ finance

◮ supply chain, revenue management, advertising

◮ control

◮ signal and image processing, vision

◮ networking

◮ circuit design

◮ combinatorial optimization

◮ quantum mechanics

Convex Optimization 7

Applications — Machine learning

◮ parameter estimation for regression and classification
◮ least squares, lasso regression
◮ logistic, SVM classifiers
◮ ML and MAP estimation for exponential families

◮ modern ℓ1 and other sparsifying regularizers
◮ compressed sensing, total variation reconstruction

◮ k-means, EM (bi-convex)

Convex Optimization 8

Example — Support vector machine

◮ data (ai , bi), i = 1, . . . ,m
◮ ai ∈ Rn feature vectors; bi ∈ {−1, 1} Boolean outcomes

◮ prediction: b̂ = sign(wTa− v)
◮ w ∈ Rn is weight vector; v ∈ R is offset

Convex Optimization 9

Example — Support vector machine

◮ data (ai , bi), i = 1, . . . ,m
◮ ai ∈ Rn feature vectors; bi ∈ {−1, 1} Boolean outcomes

◮ prediction: b̂ = sign(wTa− v)
◮ w ∈ Rn is weight vector; v ∈ R is offset

◮ SVM: choose w , v via (convex) optimization problem

minimize L+ (λ/2)‖w‖22

L = (1/m)
∑

m

i=1

(

1− bi (w
Tai − v)

)

+
is avg. loss

Convex Optimization 9

SVM

wT z − v = 0 (solid); |wT z − v | = 1 (dashed)

Convex Optimization 10

Sparsity via ℓ1 regularization

◮ adding ℓ1-norm regularization

λ‖x‖1 = λ(|x1|+ |x2|+ · · ·+ |xn|)

to objective results in sparse x

◮ λ > 0 controls trade-off of sparsity versus main objective

◮ preserves convexity, hence tractability

◮ used for many years, in many fields
◮ sparse design
◮ feature selection in machine learning (lasso, SVM, . . .)
◮ total variation reconstruction in signal processing
◮ compressed sensing

Convex Optimization 11

Example — Lasso

◮ regression problem with ℓ1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

◮ useful even when n ≫ m (!!); does feature selection

Convex Optimization 12

Example — Lasso

◮ regression problem with ℓ1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

◮ useful even when n ≫ m (!!); does feature selection

◮ cf. ℓ2 regularization (‘ridge regression’):

minimize (1/2)‖Ax − b‖22 + λ‖x‖22

Convex Optimization 12

Example — Lasso

◮ regression problem with ℓ1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

◮ useful even when n ≫ m (!!); does feature selection

◮ cf. ℓ2 regularization (‘ridge regression’):

minimize (1/2)‖Ax − b‖22 + λ‖x‖22

◮ lasso, ridge regression have same computational cost

Convex Optimization 12

Example — Lasso

◮ m = 200 examples, n = 1000 features

◮ examples are noisy linear measurements of true x

◮ true x is sparse (30 nonzeros)

true x ℓ2 reconstruction

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Convex Optimization 13

Example — Lasso

true x ℓ1 (lasso) reconstruction

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Convex Optimization 14

State of the art — Medium scale solvers

◮ 1000s–10000s variables, constraints

◮ reliably solved by interior-point methods on single machine

◮ exploit problem sparsity

◮ not quite a technology, but getting there

Convex Optimization 15

State of the art — Modeling languages

◮ (new) high level language support for convex optimization
◮ describe problem in high level language
◮ description is automatically transformed to cone problem
◮ solved by standard solver, transformed back to original form

Convex Optimization 16

State of the art — Modeling languages

◮ (new) high level language support for convex optimization
◮ describe problem in high level language
◮ description is automatically transformed to cone problem
◮ solved by standard solver, transformed back to original form

◮ enables rapid prototyping (for small and medium problems)

◮ ideal for teaching (can do a lot with short scripts)

Convex Optimization 16

CVX

◮ parser/solver written in Matlab (M. Grant, 2005)

◮ SVM:
minimize L+ (λ/2)‖w‖22

L = (1/m)
∑

m

i=1

(

1− bi (w
Tai − v)

)

+
is avg. loss

◮ CVX specification:

cvx begin

variables w(n) v % weight, offset

L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss

minimize (L+(lambda/2)*sum square(w))

cvx end

Convex Optimization 17

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Real-Time Embedded Optimization 18

Motivation

◮ in many applications, need to solve the same problem
repeatedly with different data

◮ control: update actions as sensor signals, goals change
◮ finance: rebalance portfolio as prices, predictions change

◮ used now when solve times are measured in minutes, hours
◮ supply chain, chemical process control, trading

Real-Time Embedded Optimization 19

Motivation

◮ in many applications, need to solve the same problem
repeatedly with different data

◮ control: update actions as sensor signals, goals change
◮ finance: rebalance portfolio as prices, predictions change

◮ used now when solve times are measured in minutes, hours
◮ supply chain, chemical process control, trading

◮ (using new techniques) can be used for applications with
solve times measured in milliseconds or microseconds

Real-Time Embedded Optimization 19

Example — Disk head positioning

replacements

F

◮ force F (t) moves disk head/arm modeled as 3 masses
(2 vibration modes)

◮ goal: move head to commanded position as quickly as
possible, with |F (t)| ≤ 1

◮ reduces to a (quasi-) convex problem

Real-Time Embedded Optimization 20

Optimal force profile

position force F (t)

−2 0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

t
−2 0 2 4 6 8 10 12

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Real-Time Embedded Optimization 21

Embedded solvers — Requirements

◮ high speed
◮ hard real-time execution limits

◮ extreme reliability and robustness
◮ no floating point exceptions
◮ must handle poor quality data

◮ small footprint
◮ no complex libraries

Real-Time Embedded Optimization 22

Embedded solvers

◮ (if a general solver works, use it)

Real-Time Embedded Optimization 23

Embedded solvers

◮ (if a general solver works, use it)

◮ otherwise, develop custom code
◮ by hand
◮ automatically via code generation

◮ can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time

Real-Time Embedded Optimization 23

Embedded solvers

◮ (if a general solver works, use it)

◮ otherwise, develop custom code
◮ by hand
◮ automatically via code generation

◮ can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time

◮ typical speed-up over general solver: 100–10000×

Real-Time Embedded Optimization 23

Parser/solver vs. code generator

Problem
instance

Parser/solver
x
⋆

Real-Time Embedded Optimization 24

Parser/solver vs. code generator

Problem
instance

Parser/solver
x
⋆

Source code
GeneratorProblem family

description

Custom solver

Custom solver
Compiler

Problem
instance x

⋆

Real-Time Embedded Optimization 24

CVXGEN code generator

◮ handles small, medium size problems transformable to QP
(J. Mattingley, 2010)

◮ uses primal-dual interior-point method

◮ generates flat library-free C source

Real-Time Embedded Optimization 25

CVXGEN example specification — SVM

dimensions

m = 50 % training examples

n = 10 % dimensions

end

parameters

a[i] (n), i = 1..m % features

b[i], i = 1..m % outcomes

lambda positive

end

variables

w (n) % weights

v % offset

end

minimize

(1/m)*sum[i = 1..m](pos(1 - b[i]*(w’*a[i] − v))) +

(lambda/2)*quad(w)

end

Real-Time Embedded Optimization 26

CVXGEN sample solve times

problem SVM Disk

variables 61 590

constraints 100 742

CVX, Intel i3 270 ms 2100 ms

CVXGEN, Intel i3 230 µs 4.8 ms

Real-Time Embedded Optimization 27

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Large-Scale Distributed Optimization 28

Motivation and goal

motivation:

◮ want to solve arbitrary-scale optimization problems
◮ machine learning/statistics with huge datasets
◮ dynamic optimization on large-scale networks

Large-Scale Distributed Optimization 29

Motivation and goal

motivation:

◮ want to solve arbitrary-scale optimization problems
◮ machine learning/statistics with huge datasets
◮ dynamic optimization on large-scale networks

goal:

◮ ideally, a system that
◮ has CVX-like interface
◮ targets modern large-scale computing platforms
◮ scales arbitrarily

. . . not there yet, but there’s promising progress

Large-Scale Distributed Optimization 29

Distributed optimization

◮ devices/processors/agents coordinate to solve large
problem, by passing relatively small messages

◮ can split variables, constraints, objective terms among
processors

◮ variables that appear in more than one processor called
‘complicating variables’
(same for constraints, objective terms)

Large-Scale Distributed Optimization 30

Example — Distributed optimization

minimize f1(x1, x2) + f2(x2, x3) + f3(x1, x3)

f1 f2 f3

x2 x3

x1

Large-Scale Distributed Optimization 31

Distributed optimization methods

◮ dual decomposition (Dantzig-Wolfe, 1950s–)

◮ subgradient consensus
(Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

Large-Scale Distributed Optimization 32

Distributed optimization methods

◮ dual decomposition (Dantzig-Wolfe, 1950s–)

◮ subgradient consensus
(Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

◮ alternating direction method of multipliers (1980s–)
◮ equivalent to many other methods

(e.g., Douglas-Rachford splitting)
◮ well suited to modern systems and problems

Large-Scale Distributed Optimization 32

Consensus optimization

◮ want to solve problem with N objective terms

minimize
∑

N

i=1 fi (x)

e.g., fi is the loss function for ith block of training data

◮ consensus form:

minimize
∑

N

i=1 fi (xi)
subject to xi − z = 0

◮ xi are local variables
◮ z is the global variable
◮ xi − z = 0 are consistency or consensus constraints

Large-Scale Distributed Optimization 33

Consensus optimization via ADMM

with xk = (1/N)
∑

N

i=1 x
k

i
(average over local variables)

xk+1
i

:= argmin
xi

(

fi (xi) + (ρ/2)‖xi − xk + uki ‖
2
2

)

uk+1
i

:= uki + (xk+1
i

− xk+1)

◮ get global minimum, under very general conditions

◮ uk is running sum of inconsistencies (PI control)

◮ minimizations carried out independently and in parallel

◮ coordination is via averaging of local variables xi

Large-Scale Distributed Optimization 34

Statistical interpretation

◮ fi is negative log-likelihood (loss) for parameter x given ith
data block

◮ xk+1
i

is MAP estimate under prior N (xk − uk
i
, ρI)

◮ processors only need to support a Gaussian MAP method
◮ type or number of data in each block not relevant
◮ consensus protocol yields global ML estimate

◮ privacy preserving: agents never reveal data to each other

Large-Scale Distributed Optimization 35

Example — Consensus SVM

◮ baby problem with n = 2, m = 400 to illustrate

◮ examples split into N = 20 groups, in worst possible way:
each group contains only positive or negative examples

Large-Scale Distributed Optimization 36

Iteration 1

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Large-Scale Distributed Optimization 37

Iteration 5

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Large-Scale Distributed Optimization 38

Iteration 40

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Large-Scale Distributed Optimization 39

Example — Distributed lasso

◮ example with dense A ∈ R400000×8000 (∼30 GB of data)
◮ distributed solver written in C using MPI and GSL
◮ no optimization or tuned libraries (like ATLAS, MKL)
◮ split into 80 subsystems across 10 (8-core) machines on

Amazon EC2

◮ computation times

loading data 30s

factorization (5000× 8000 matrices) 5m

subsequent ADMM iterations 0.5–2s

total time (about 15 ADMM iterations) 5–6m

Large-Scale Distributed Optimization 40

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Summary 41

Summary

convex optimization problems

◮ arise in many applications

◮ can be solved effectively
◮ small problems at microsecond/millisecond time scales
◮ medium-scale problems using general purpose methods
◮ arbitrary-scale problems using distributed optimization

Summary 42

References

◮ Convex Optimization (Boyd & Vandenberghe)

◮ CVX: Matlab software for disciplined convex programming

(Grant & Boyd)

◮ CVXGEN: A code generator for embedded convex

optimization (Mattingley & Boyd)

◮ Distributed optimization and statistical learning via the

alternating direction method of multipliers

(Boyd, Parikh, Chu, Peleato, & Eckstein)

all available (with code) from stanford.edu/~boyd

Summary 43

stanford.edu/~boyd

	Convex Optimization
	Real-Time Embedded Optimization
	Large-Scale Distributed Optimization
	Summary

