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Convex optimization — Classical form

minimize  fy(x)
subject to fi(x) <0, i=1,....,m
Ax=0b

» variable x € R"

> fo,...,m are convex: for 6 € [0,1],
fi(0x + (1 = 0)y) < 0fi(x) + (1 — O)fi(y)

i.e., f; have nonnegative (upward) curvature
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Convex optimization — Cone form

minimize c¢x
subjectto x € K

Ax=b

» variable x € R”
» K C R" is a proper cone

» K nonnegative orthant — LP
» K Lorentz cone — SOCP
» K positive semidefinite matrices — SDP

» the ‘modern’ canonical form
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Why

» beautiful, nearly complete theory
» duality, optimality conditions, ...
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Why

v

beautiful, nearly complete theory
» duality, optimality conditions, ...

v

effective algorithms, methods (in theory and practice)

> get global solution (and optimality certificate)
» polynomial complexity

v

conceptual unification of many methods

v

lots of applications (many more than previously thought)
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Application areas

» machine learning, statistics

> finance

» supply chain, revenue management, advertising
> control

» signal and image processing, vision

> networking

> circuit design

» combinatorial optimization

» quantum mechanics
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Applications — Machine learning

> parameter estimation for regression and classification

> least squares, lasso regression
» logistic, SVM classifiers
» ML and MAP estimation for exponential families

» modern {1 and other sparsifying regularizers
» compressed sensing, total variation reconstruction

» k-means, EM (bi-convex)

Convex Optimization



Example — Support vector machine

» data (a;,b;), i=1,...,m
> a; € R" feature vectors; b; € {—1,1} Boolean outcomes

» prediction: b =sign(w”a — v)

» w € R" is weight vector; v € R is offset
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Example — Support vector machine

» data (a;,b;), i=1,...,m
> a; € R" feature vectors; b; € {—1,1} Boolean outcomes

» prediction: b =sign(w”a — v)

» w € R" is weight vector; v € R is offset

» SVM: choose w, v via (convex) optimization problem
minimize L+ (\/2)[|w]|3

L=(1/m)>", (1= bi(w"a;i —v)), is avg. loss
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SVM

w'z—v =0 (solid);
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lwTz — v| = 1 (dashed)
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Sparsity via /; regularization

» adding ¢1-norm regularization
Allxlle = Albal + Pl + -+ -+ |xal)
to objective results in sparse x

» A > 0 controls trade-off of sparsity versus main objective

> preserves convexity, hence tractability

» used for many years, in many fields
> sparse design
» feature selection in machine learning (lasso, SVM, ...)
» total variation reconstruction in signal processing
» compressed sensing

Convex Optimization
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Example — Lasso

> regression problem with ¢; regularization:
minimize (1/2)||Ax — bl|3 + A||x]|1

with A € R™*"

» useful even when n > m (!!); does feature selection
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Example — Lasso

> regression problem with ¢; regularization:
minimize (1/2)||Ax — bl|3 + A||x]|1

with A € R™*"

useful even when n>> m (!!); does feature selection

v

v

cf. {5 regularization (‘ridge regression’):

minimize (1/2)||Ax — b||3 + ||x||3

v

lasso, ridge regression have same computational cost

Convex Optimization
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Example — Lasso

» m = 200 examples, n = 1000 features
» examples are noisy linear measurements of true x

> true x is sparse (30 nonzeros)

true x {5 reconstruction
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Example — Lasso

true x

/1 (lasso) reconstruction
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State of the art — Medium scale solvers

» 1000s—-10000s variables, constraints
> reliably solved by interior-point methods on single machine
> exploit problem sparsity

> not quite a technology, but getting there

Convex Optimization
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State of the art — Modeling languages

» (new) high level language support for convex optimization

» describe problem in high level language
» description is automatically transformed to cone problem
» solved by standard solver, transformed back to original form
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State of the art — Modeling languages

» (new) high level language support for convex optimization

» describe problem in high level language
» description is automatically transformed to cone problem
» solved by standard solver, transformed back to original form

» enables rapid prototyping (for small and medium problems)

» ideal for teaching (can do a lot with short scripts)
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CvX

» parser/solver written in Matlab (M. Grant, 2005)
» SVM:
minimize L+ (A/2)[|w]|3

L=(1/m)> ", (1= bi(wa;i —v)), is avg. loss

» CVX specification:

cvx_begin
variables w(n) v % weight, offset
L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss
minimize (L+(lambda/2)*sum_square(w))

cvx_end

Convex Optimization
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Motivation

> in many applications, need to solve the same problem
repeatedly with different data

» control: update actions as sensor signals, goals change
» finance: rebalance portfolio as prices, predictions change

» used now when solve times are measured in minutes, hours
» supply chain, chemical process control, trading
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Motivation

> in many applications, need to solve the same problem
repeatedly with different data

» control: update actions as sensor signals, goals change
» finance: rebalance portfolio as prices, predictions change

» used now when solve times are measured in minutes, hours
» supply chain, chemical process control, trading

» (using new techniques) can be used for applications with
solve times measured in milliseconds or microseconds

Real-Time Embedded Optimization
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Example — Disk head positioning

0 =
F= 0

» force F(t) moves disk head/arm modeled as 3 masses
(2 vibration modes)

» goal: move head to commanded position as quickly as
possible, with |F(t)| <1

» reduces to a (quasi-) convex problem

Real-Time Embedded Optimization 20



Optimal force profile

position force F(t)
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Embedded solvers — Requirements

> high speed

» hard real-time execution limits

> extreme reliability and robustness

» no floating point exceptions
» must handle poor quality data

» small footprint
» no complex libraries

Real-Time Embedded Optimization
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Embedded solvers

» (if a general solver works, use it)

Real-Time Embedded Optimization
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Embedded solvers

» (if a general solver works, use it)

» otherwise, develop custom code

» by hand
» automatically via code generation

» can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time
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Embedded solvers

v

(if a general solver works, use it)

v

otherwise, develop custom code

» by hand
» automatically via code generation

v

can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time

v

typical speed-up over general solver: 100—-10000 x

Real-Time Embedded Optimization
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Parser/solver vs. code generator

Problem
instance

Parser/solver

Real-Time Embedded Optimization
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Parser/solver vs. code generator

Real-Time Embedded Optimization

Problem | Parser/solver N
instance X
Problem family| Generator Compiler
description Source code Custom solver
v
Problem Custom solver *
Instance x
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CVXGEN code generator

» handles small, medium size problems transformable to QP
(J. Mattingley, 2010)

» uses primal-dual interior-point method

» generates flat library-free C source

Real-Time Embedded Optimization
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CVXGEN example specification — SVM

dimensions
m = 50 7 training examples
n = 10 % dimensions
end
parameters
alil] (m), i = 1..m ¥ features
bl[i]l, i = 1..m % outcomes
lambda positive
end
variables
w (n) 7 weights
v % offset
end
minimize
(1/m)*sum[i = 1..m](pos(1 - bl[il*(w’*al[i]l — v))) +
(lambda/2) *quad (w)
end

Real-Time Embedded Optimization 26



CVXGEN sample solve times

problem SVM
variables 61
constraints 100
CVX, Intel i3 270 ms

CVXGEN, Intel i3 230 us

Real-Time Embedded Optimization

Disk

590
742

2100 ms
4.8 ms

27



Outline

Large-Scale Distributed Optimization

Large-Scale Distributed Optimization

28



Motivation and goal

motivation:

» want to solve arbitrary-scale optimization problems

» machine learning/statistics with huge datasets
» dynamic optimization on large-scale networks
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Motivation and goal

motivation:

» want to solve arbitrary-scale optimization problems

» machine learning/statistics with huge datasets
» dynamic optimization on large-scale networks

goal:

> ideally, a system that

» has CVX-like interface
» targets modern large-scale computing platforms
» scales arbitrarily

... not there yet, but there's promising progress

Large-Scale Distributed Optimization
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Distributed optimization

» devices/processors/agents coordinate to solve large
problem, by passing relatively small messages

> can split variables, constraints, objective terms among
processors

» variables that appear in more than one processor called

‘complicating variables’
(same for constraints, objective terms)

Large-Scale Distributed Optimization 30



Example — Distributed optimization

minimize fi(x1, x2) + f(x2, x3) + (X1, X3)

fi fr f3

Large-Scale Distributed Optimization



Distributed optimization methods

» dual decomposition (Dantzig-Wolfe, 1950s-)

» subgradient consensus
(Tsitsiklis, Bertsekas, Nedi¢, Ozdaglar, Jadbabaie, 1980s—)

Large-Scale Distributed Optimization
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Distributed optimization methods

» dual decomposition (Dantzig-Wolfe, 1950s-)

» subgradient consensus
(Tsitsiklis, Bertsekas, Nedi¢, Ozdaglar, Jadbabaie, 1980s—)

» alternating direction method of multipliers (1980s-)

» equivalent to many other methods
(e.g., Douglas-Rachford splitting)
» well suited to modern systems and problems

Large-Scale Distributed Optimization
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Consensus optimization

» want to solve problem with N objective terms
C N
minimize ) ., fi(x)
e.g., f; is the loss function for ith block of training data

» consensus form:
. N
minimize Y. fi(x;)

subjectto x;—z =10

» x; are local variables
» z is the global variable
» x; — z = 0 are consistency or consensus constraints

Large-Scale Distributed Optimization
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Consensus optimization via ADMM

with XK = (1/N) S°N., xk (average over local variables)

x4t = argmin (f(x) + (p/2) s — % + uf|3)
Xi

S A D

v

get global minimum, under very general conditions

u¥ is running sum of inconsistencies (Pl control)

v

» minimizations carried out independently and in parallel

v

coordination is via averaging of local variables x;

Large-Scale Distributed Optimization 34



Statistical interpretation

» f; is negative log-likelihood (loss) for parameter x given ith
data block
> x“*1is MAP estimate under prior N(xk — uf‘,pl)

1

» processors only need to support a Gaussian MAP method
» type or number of data in each block not relevant
» consensus protocol yields global ML estimate

> privacy preserving: agents never reveal data to each other

Large-Scale Distributed Optimization
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Example — Consensus SVM

> baby problem with n =2, m = 400 to illustrate

» examples split into N = 20 groups, in worst possible way:
each group contains only positive or negative examples

Large-Scale Distributed Optimization 36



Iteration 1

37

1zation

Large-Scale Distributed Optim



Iteration 5
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Iteration 40
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Example — Distributed lasso

» example with dense A ¢ R#00000x8000 (30 GB of data)

» distributed solver written in C using MPI and GSL

> no optimization or tuned libraries (like ATLAS, MKL)

> split into 80 subsystems across 10 (8-core) machines on
Amazon EC2

> computation times

loading data 30s
factorization (5000 x 8000 matrices) 5m
subsequent ADMM iterations 0.5-2s

total time (about 15 ADMM iterations) 5-6m

Large-Scale Distributed Optimization 40
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Summary

convex optimization problems

» arise in many applications

» can be solved effectively
» small problems at microsecond/millisecond time scales
» medium-scale problems using general purpose methods
» arbitrary-scale problems using distributed optimization

Summary
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