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Convex optimization — Classical form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

◮ variable x ∈ Rn

◮ f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature
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Convex optimization — Cone form

minimize cT x

subject to x ∈ K

Ax = b

◮ variable x ∈ Rn

◮ K ⊂ Rn is a proper cone
◮ K nonnegative orthant −→ LP
◮ K Lorentz cone −→ SOCP
◮ K positive semidefinite matrices −→ SDP

◮ the ‘modern’ canonical form
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Why

◮ beautiful, nearly complete theory
◮ duality, optimality conditions, . . .

◮ effective algorithms, methods (in theory and practice)
◮ get global solution (and optimality certificate)
◮ polynomial complexity

◮ conceptual unification of many methods

◮ lots of applications (many more than previously thought)
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Application areas

◮ machine learning, statistics

◮ finance

◮ supply chain, revenue management, advertising

◮ control

◮ signal and image processing, vision

◮ networking

◮ circuit design

◮ combinatorial optimization

◮ quantum mechanics
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Applications — Machine learning

◮ parameter estimation for regression and classification
◮ least squares, lasso regression
◮ logistic, SVM classifiers
◮ ML and MAP estimation for exponential families

◮ modern ℓ1 and other sparsifying regularizers
◮ compressed sensing, total variation reconstruction

◮ k-means, EM (bi-convex)
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Example — Support vector machine

◮ data (ai , bi ), i = 1, . . . ,m
◮ ai ∈ Rn feature vectors; bi ∈ {−1, 1} Boolean outcomes

◮ prediction: b̂ = sign(wTa− v)
◮ w ∈ Rn is weight vector; v ∈ R is offset
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Example — Support vector machine

◮ data (ai , bi ), i = 1, . . . ,m
◮ ai ∈ Rn feature vectors; bi ∈ {−1, 1} Boolean outcomes

◮ prediction: b̂ = sign(wTa− v)
◮ w ∈ Rn is weight vector; v ∈ R is offset

◮ SVM: choose w , v via (convex) optimization problem

minimize L+ (λ/2)‖w‖22

L = (1/m)
∑

m

i=1

(

1− bi (w
Tai − v)

)

+
is avg. loss
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SVM

wT z − v = 0 (solid); |wT z − v | = 1 (dashed)
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Sparsity via ℓ1 regularization

◮ adding ℓ1-norm regularization

λ‖x‖1 = λ(|x1|+ |x2|+ · · ·+ |xn|)

to objective results in sparse x

◮ λ > 0 controls trade-off of sparsity versus main objective

◮ preserves convexity, hence tractability

◮ used for many years, in many fields
◮ sparse design
◮ feature selection in machine learning (lasso, SVM, . . . )
◮ total variation reconstruction in signal processing
◮ compressed sensing
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Example — Lasso

◮ regression problem with ℓ1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

◮ useful even when n ≫ m (!!); does feature selection
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Example — Lasso

◮ regression problem with ℓ1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

◮ useful even when n ≫ m (!!); does feature selection

◮ cf. ℓ2 regularization (‘ridge regression’):

minimize (1/2)‖Ax − b‖22 + λ‖x‖22

◮ lasso, ridge regression have same computational cost
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Example — Lasso

◮ m = 200 examples, n = 1000 features

◮ examples are noisy linear measurements of true x

◮ true x is sparse (30 nonzeros)

true x ℓ2 reconstruction
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Example — Lasso

true x ℓ1 (lasso) reconstruction
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State of the art — Medium scale solvers

◮ 1000s–10000s variables, constraints

◮ reliably solved by interior-point methods on single machine

◮ exploit problem sparsity

◮ not quite a technology, but getting there
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State of the art — Modeling languages

◮ (new) high level language support for convex optimization
◮ describe problem in high level language
◮ description is automatically transformed to cone problem
◮ solved by standard solver, transformed back to original form
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State of the art — Modeling languages

◮ (new) high level language support for convex optimization
◮ describe problem in high level language
◮ description is automatically transformed to cone problem
◮ solved by standard solver, transformed back to original form

◮ enables rapid prototyping (for small and medium problems)

◮ ideal for teaching (can do a lot with short scripts)
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CVX

◮ parser/solver written in Matlab (M. Grant, 2005)

◮ SVM:
minimize L+ (λ/2)‖w‖22

L = (1/m)
∑

m

i=1

(

1− bi (w
Tai − v)

)

+
is avg. loss

◮ CVX specification:

cvx begin

variables w(n) v % weight, offset

L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss

minimize (L+(lambda/2)*sum square(w))

cvx end
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Motivation

◮ in many applications, need to solve the same problem
repeatedly with different data

◮ control: update actions as sensor signals, goals change
◮ finance: rebalance portfolio as prices, predictions change

◮ used now when solve times are measured in minutes, hours
◮ supply chain, chemical process control, trading
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Motivation

◮ in many applications, need to solve the same problem
repeatedly with different data

◮ control: update actions as sensor signals, goals change
◮ finance: rebalance portfolio as prices, predictions change

◮ used now when solve times are measured in minutes, hours
◮ supply chain, chemical process control, trading

◮ (using new techniques) can be used for applications with
solve times measured in milliseconds or microseconds
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Example — Disk head positioning

replacements

F

◮ force F (t) moves disk head/arm modeled as 3 masses
(2 vibration modes)

◮ goal: move head to commanded position as quickly as
possible, with |F (t)| ≤ 1

◮ reduces to a (quasi-) convex problem
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Optimal force profile

position force F (t)
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Embedded solvers — Requirements

◮ high speed
◮ hard real-time execution limits

◮ extreme reliability and robustness
◮ no floating point exceptions
◮ must handle poor quality data

◮ small footprint
◮ no complex libraries
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Embedded solvers

◮ (if a general solver works, use it)
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Embedded solvers

◮ (if a general solver works, use it)

◮ otherwise, develop custom code
◮ by hand
◮ automatically via code generation

◮ can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time
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Embedded solvers

◮ (if a general solver works, use it)

◮ otherwise, develop custom code
◮ by hand
◮ automatically via code generation

◮ can exploit known sparsity pattern, data ranges, required
tolerance at solver code development time

◮ typical speed-up over general solver: 100–10000×
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Parser/solver vs. code generator

Problem
instance

Parser/solver
x
⋆
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Parser/solver vs. code generator

Problem
instance

Parser/solver
x
⋆

Source code
GeneratorProblem family

description

Custom solver

Custom solver
Compiler

Problem
instance x

⋆
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CVXGEN code generator

◮ handles small, medium size problems transformable to QP
(J. Mattingley, 2010)

◮ uses primal-dual interior-point method

◮ generates flat library-free C source
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CVXGEN example specification — SVM

dimensions

m = 50 % training examples

n = 10 % dimensions

end

parameters

a[i] (n), i = 1..m % features

b[i], i = 1..m % outcomes

lambda positive

end

variables

w (n) % weights

v % offset

end

minimize

(1/m)*sum[i = 1..m](pos(1 - b[i]*(w’*a[i] − v))) +

(lambda/2)*quad(w)

end
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CVXGEN sample solve times

problem SVM Disk

variables 61 590

constraints 100 742

CVX, Intel i3 270 ms 2100 ms

CVXGEN, Intel i3 230 µs 4.8 ms
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Motivation and goal

motivation:

◮ want to solve arbitrary-scale optimization problems
◮ machine learning/statistics with huge datasets
◮ dynamic optimization on large-scale networks
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Motivation and goal

motivation:

◮ want to solve arbitrary-scale optimization problems
◮ machine learning/statistics with huge datasets
◮ dynamic optimization on large-scale networks

goal:

◮ ideally, a system that
◮ has CVX-like interface
◮ targets modern large-scale computing platforms
◮ scales arbitrarily

. . . not there yet, but there’s promising progress
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Distributed optimization

◮ devices/processors/agents coordinate to solve large
problem, by passing relatively small messages

◮ can split variables, constraints, objective terms among
processors

◮ variables that appear in more than one processor called
‘complicating variables’
(same for constraints, objective terms)
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Example — Distributed optimization

minimize f1(x1, x2) + f2(x2, x3) + f3(x1, x3)

f1 f2 f3

x2 x3

x1
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Distributed optimization methods

◮ dual decomposition (Dantzig-Wolfe, 1950s–)

◮ subgradient consensus
(Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)
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Distributed optimization methods

◮ dual decomposition (Dantzig-Wolfe, 1950s–)

◮ subgradient consensus
(Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

◮ alternating direction method of multipliers (1980s–)
◮ equivalent to many other methods

(e.g., Douglas-Rachford splitting)
◮ well suited to modern systems and problems

Large-Scale Distributed Optimization 32



Consensus optimization

◮ want to solve problem with N objective terms

minimize
∑

N

i=1 fi (x)

e.g., fi is the loss function for ith block of training data

◮ consensus form:

minimize
∑

N

i=1 fi (xi )
subject to xi − z = 0

◮ xi are local variables
◮ z is the global variable
◮ xi − z = 0 are consistency or consensus constraints
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Consensus optimization via ADMM

with xk = (1/N)
∑

N

i=1 x
k

i
(average over local variables)

xk+1
i

:= argmin
xi

(

fi (xi ) + (ρ/2)‖xi − xk + uki ‖
2
2

)

uk+1
i

:= uki + (xk+1
i

− xk+1)

◮ get global minimum, under very general conditions

◮ uk is running sum of inconsistencies (PI control)

◮ minimizations carried out independently and in parallel

◮ coordination is via averaging of local variables xi
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Statistical interpretation

◮ fi is negative log-likelihood (loss) for parameter x given ith
data block

◮ xk+1
i

is MAP estimate under prior N (xk − uk
i
, ρI )

◮ processors only need to support a Gaussian MAP method
◮ type or number of data in each block not relevant
◮ consensus protocol yields global ML estimate

◮ privacy preserving: agents never reveal data to each other

Large-Scale Distributed Optimization 35



Example — Consensus SVM

◮ baby problem with n = 2, m = 400 to illustrate

◮ examples split into N = 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1
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Iteration 5
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Iteration 40
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Example — Distributed lasso

◮ example with dense A ∈ R400000×8000 (∼30 GB of data)
◮ distributed solver written in C using MPI and GSL
◮ no optimization or tuned libraries (like ATLAS, MKL)
◮ split into 80 subsystems across 10 (8-core) machines on

Amazon EC2

◮ computation times

loading data 30s

factorization (5000× 8000 matrices) 5m

subsequent ADMM iterations 0.5–2s

total time (about 15 ADMM iterations) 5–6m
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Summary

convex optimization problems

◮ arise in many applications

◮ can be solved effectively
◮ small problems at microsecond/millisecond time scales
◮ medium-scale problems using general purpose methods
◮ arbitrary-scale problems using distributed optimization
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