Equivalences between Yangian presentations

Alexander Molev

University of Sydney

Joint work with Naihuan Jing and Ming Liu

Drinfeld's definition

Drinfeld's definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with a fixed invariant bilinear form \langle,$\rangle .$

Drinfeld's definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with a fixed invariant bilinear form \langle,$\rangle .$

Definition. The Yangian $\mathrm{Y}(\mathfrak{g})$ is the associative algebra with generators $\{X, J(X) \mid X \in \mathfrak{g}\}$ and the following defining relations.

Drinfeld's definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with a fixed invariant bilinear form \langle,$\rangle .$

Definition. The Yangian $\mathrm{Y}(\mathfrak{g})$ is the associative algebra with generators $\{X, J(X) \mid X \in \mathfrak{g}\}$ and the following defining relations.

- $X Y-Y X=[X, Y]_{\mathfrak{g}}$,

Drinfeld's definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with a fixed invariant bilinear form \langle,$\rangle .$

Definition. The Yangian $\mathrm{Y}(\mathfrak{g})$ is the associative algebra with generators $\{X, J(X) \mid X \in \mathfrak{g}\}$ and the following defining relations.

- $X Y-Y X=[X, Y]_{\mathfrak{g}}$,
- $[X, J(Y)]=J([X, Y]), \quad J(X)$ is linear in X,

Drinfeld's definition

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} with
a fixed invariant bilinear form \langle,$\rangle .$
Definition. The Yangian $\mathrm{Y}(\mathfrak{g})$ is the associative algebra with generators $\{X, J(X) \mid X \in \mathfrak{g}\}$ and the following defining relations.

- $X Y-Y X=[X, Y]_{\mathfrak{g}}$,
- $[X, J(Y)]=J([X, Y]), \quad J(X)$ is linear in X,
- If $\mathfrak{g}=\mathfrak{s l}_{2}=\langle e, f, h\rangle$ then

$$
[[J(e), J(f)], J(h)]=(J(e) f-e J(f)) h .
$$

If $\mathfrak{g} \neq \mathfrak{s l}_{2}$ then consider a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \underset{\alpha \in \Phi}{\oplus} \mathfrak{g}_{\alpha},
$$

where \mathfrak{h} is a Cartan subalgebra, Φ is the root system.

If $\mathfrak{g} \neq \mathfrak{s l}_{2}$ then consider a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \underset{\alpha \in \Phi}{\oplus} \mathfrak{g}_{\alpha},
$$

where \mathfrak{h} is a Cartan subalgebra, Φ is the root system.
Choose positive roots, $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$and for each $\alpha \in \Phi^{+}$ choose root vectors $x_{\alpha}^{ \pm} \in \mathfrak{g}_{ \pm \alpha}$ such that $\left\langle x_{\alpha}^{+}, x_{\alpha}^{-}\right\rangle=1$.

If $\mathfrak{g} \neq \mathfrak{s l}_{2}$ then consider a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \underset{\alpha \in \Phi}{\oplus} \mathfrak{g}_{\alpha},
$$

where \mathfrak{h} is a Cartan subalgebra, Φ is the root system.
Choose positive roots, $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$and for each $\alpha \in \Phi^{+}$ choose root vectors $x_{\alpha}^{ \pm} \in \mathfrak{g}_{ \pm \alpha}$ such that $\left\langle x_{\alpha}^{+}, x_{\alpha}^{-}\right\rangle=1$.

Then the remaining defining relations are

If $\mathfrak{g} \neq \mathfrak{s l}_{2}$ then consider a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \underset{\alpha \in \Phi}{\oplus} \mathfrak{g}_{\alpha},
$$

where \mathfrak{h} is a Cartan subalgebra, Φ is the root system.
Choose positive roots, $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$and for each $\alpha \in \Phi^{+}$ choose root vectors $x_{\alpha}^{ \pm} \in \mathfrak{g}_{ \pm \alpha}$ such that $\left\langle x_{\alpha}^{+}, x_{\alpha}^{-}\right\rangle=1$.

Then the remaining defining relations are

$$
\left[J(h), J\left(h^{\prime}\right)\right]=\frac{1}{4} \sum_{\alpha, \beta \in \Phi^{+}} \alpha(h) \beta\left(h^{\prime}\right)\left[x_{\alpha}^{-} x_{\alpha}^{+}, x_{\beta}^{-} x_{\beta}^{+}\right]
$$

If $\mathfrak{g} \neq \mathfrak{s l}_{2}$ then consider a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \underset{\alpha \in \Phi}{\oplus} \mathfrak{g}_{\alpha},
$$

where \mathfrak{h} is a Cartan subalgebra, Φ is the root system.
Choose positive roots, $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$and for each $\alpha \in \Phi^{+}$ choose root vectors $x_{\alpha}^{ \pm} \in \mathfrak{g}_{ \pm \alpha}$ such that $\left\langle x_{\alpha}^{+}, x_{\alpha}^{-}\right\rangle=1$.

Then the remaining defining relations are

$$
\left[J(h), J\left(h^{\prime}\right)\right]=\frac{1}{4} \sum_{\alpha, \beta \in \Phi^{+}} \alpha(h) \beta\left(h^{\prime}\right)\left[x_{\alpha}^{-} x_{\alpha}^{+}, x_{\beta}^{-} x_{\beta}^{+}\right],
$$

for all $h, h^{\prime} \in \mathfrak{h} . \quad$ [Guay-Nakajima-Wendlandt, 2017].

The algebra $\mathrm{Y}(\mathfrak{g})$ is a quantization of $\mathrm{U}(\mathfrak{g}[z])$ in the class of Hopf algebras.

The algebra $\mathrm{Y}(\mathfrak{g})$ is a quantization of $\mathrm{U}(\mathfrak{g}[z])$ in the class of Hopf algebras. The coproduct Δ on $\mathrm{Y}(\mathfrak{g})$ is

$$
\Delta(X)=X \otimes 1+1 \otimes X
$$

The algebra $\mathrm{Y}(\mathfrak{g})$ is a quantization of $\mathrm{U}(\mathfrak{g}[z])$ in the class of Hopf algebras. The coproduct Δ on $\mathrm{Y}(\mathfrak{g})$ is

$$
\begin{aligned}
\Delta(X) & =X \otimes 1+1 \otimes X, \\
\Delta(J(X)) & =J(X) \otimes 1+1 \otimes J(X)+\frac{1}{2}[X \otimes 1, \Omega],
\end{aligned}
$$

The algebra $\mathrm{Y}(\mathfrak{g})$ is a quantization of $\mathrm{U}(\mathfrak{g}[z])$ in the class of Hopf algebras. The coproduct Δ on $\mathrm{Y}(\mathfrak{g})$ is

$$
\begin{aligned}
\Delta(X) & =X \otimes 1+1 \otimes X, \\
\Delta(J(X)) & =J(X) \otimes 1+1 \otimes J(X)+\frac{1}{2}[X \otimes 1, \Omega],
\end{aligned}
$$

for all $X \in \mathfrak{g}$, where

$$
\Omega=\sum_{k=1}^{d} X_{k} \otimes X_{k}, \quad\left\{X_{k}\right\} \text { is an orthonormal basis of } \mathfrak{g},
$$

The algebra $\mathrm{Y}(\mathfrak{g})$ is a quantization of $\mathrm{U}(\mathfrak{g}[z])$ in the class of Hopf algebras. The coproduct Δ on $\mathrm{Y}(\mathfrak{g})$ is

$$
\begin{aligned}
\Delta(X) & =X \otimes 1+1 \otimes X \\
\Delta(J(X)) & =J(X) \otimes 1+1 \otimes J(X)+\frac{1}{2}[X \otimes 1, \Omega]
\end{aligned}
$$

for all $X \in \mathfrak{g}$, where

$$
\Omega=\sum_{k=1}^{d} X_{k} \otimes X_{k}, \quad\left\{X_{k}\right\} \text { is an orthonormal basis of } \mathfrak{g},
$$

the antipode S is an anti-automorphism of $\mathrm{Y}(\mathfrak{g})$,

$$
S(X)=-X, \quad S(J(X))=-J(X)+\frac{1}{4} c_{\mathfrak{g}} X
$$

$c_{\mathfrak{g}}$ is the eigenvalue of $\omega=\sum_{k=1}^{d} X_{k}^{2}$ in the adjoint module.

For any $c \in \mathbb{C}$ the map

$$
\tau_{c}: X \rightarrow X, \quad J(X) \mapsto J(X)+c X
$$

is a Hopf algebra automorphism.

For any $c \in \mathbb{C}$ the map

$$
\tau_{c}: X \rightarrow X, \quad J(X) \mapsto J(X)+c X
$$

is a Hopf algebra automorphism. Set $\tau_{u, v}=\tau_{u} \otimes \tau_{v}$.

For any $c \in \mathbb{C}$ the map

$$
\tau_{c}: X \rightarrow X, \quad J(X) \mapsto J(X)+c X
$$

is a Hopf algebra automorphism. Set $\tau_{u, v}=\tau_{u} \otimes \tau_{v}$.

Theorem [Drinfeld, 1985]. There exists a unique series

$$
\mathcal{R}(u)=1+\sum_{k=1}^{\infty} \mathcal{R}_{k} u^{-k}, \quad \mathcal{R}_{k} \in \mathrm{Y}(\mathfrak{g}) \otimes \mathrm{Y}(\mathfrak{g})
$$

For any $c \in \mathbb{C}$ the map

$$
\tau_{c}: X \rightarrow X, \quad J(X) \mapsto J(X)+c X
$$

is a Hopf algebra automorphism. Set $\tau_{u, v}=\tau_{u} \otimes \tau_{v}$.

Theorem [Drinfeld, 1985]. There exists a unique series

$$
\mathcal{R}(u)=1+\sum_{k=1}^{\infty} \mathcal{R}_{k} u^{-k}, \quad \mathcal{R}_{k} \in \mathrm{Y}(\mathfrak{g}) \otimes \mathrm{Y}(\mathfrak{g})
$$

such that

$$
(\mathrm{id} \otimes \Delta) \mathcal{R}(u)=\mathcal{R}_{12}(u) \mathcal{R}_{13}(u), \quad \text { and }
$$

For any $c \in \mathbb{C}$ the map

$$
\tau_{c}: X \rightarrow X, \quad J(X) \mapsto J(X)+c X
$$

is a Hopf algebra automorphism. Set $\tau_{u, v}=\tau_{u} \otimes \tau_{v}$.

Theorem [Drinfeld, 1985]. There exists a unique series

$$
\mathcal{R}(u)=1+\sum_{k=1}^{\infty} \mathcal{R}_{k} u^{-k}, \quad \mathcal{R}_{k} \in \mathrm{Y}(\mathfrak{g}) \otimes \mathrm{Y}(\mathfrak{g})
$$

such that

$$
\begin{aligned}
(\mathrm{id} \otimes \Delta) \mathcal{R}(u) & =\mathcal{R}_{12}(u) \mathcal{R}_{13}(u), & & \text { and } \\
\tau_{0, u} \Delta^{\mathrm{op}}(Y) & =\mathcal{R}(u)^{-1}\left(\tau_{0, u} \Delta(Y)\right) \mathcal{R}(u) & & \text { for all } Y \in \mathrm{Y}(\mathfrak{g})
\end{aligned}
$$

$\mathcal{R}(u)$ is the universal R-matrix.
$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v)
$$

$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v) .
$$

Let $\rho: \mathrm{Y}(\mathfrak{g}) \rightarrow$ End V be a finite-dimensional irreducible representation.
$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v)
$$

Let $\rho: \mathrm{Y}(\mathfrak{g}) \rightarrow$ End V be a finite-dimensional irreducible representation. Set $R(u)=(\rho \otimes \rho) \mathcal{R}(-u) \in$ End $V \otimes$ End V.
$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v)
$$

Let $\rho: \mathrm{Y}(\mathfrak{g}) \rightarrow$ End V be a finite-dimensional irreducible representation. Set $R(u)=(\rho \otimes \rho) \mathcal{R}(-u) \in$ End $V \otimes$ End V.

Theorem [Drinfeld, 1985]. $\quad R(u)$ is a unique solution of
$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v)
$$

Let $\rho: \mathrm{Y}(\mathfrak{g}) \rightarrow$ End V be a finite-dimensional irreducible representation. Set $R(u)=(\rho \otimes \rho) \mathcal{R}(-u) \in$ End $V \otimes$ End V.

Theorem [Drinfeld, 1985]. $\quad R(u)$ is a unique solution of
$(\rho \otimes \rho)\left(\tau_{u, v} \Delta(J(X))\right) R(u-v)=R(u-v)(\rho \otimes \rho)\left(\tau_{u, v} \Delta^{\mathrm{op}}(J(X))\right)$,
for all $X \in \mathfrak{g}$,
$\mathcal{R}(u)$ is the universal R-matrix.
It is a solution of the Yang-Baxter equation

$$
\mathcal{R}_{12}(u-v) \mathcal{R}_{13}(u) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u) \mathcal{R}_{12}(u-v)
$$

Let $\rho: \mathrm{Y}(\mathfrak{g}) \rightarrow$ End V be a finite-dimensional irreducible representation. Set $R(u)=(\rho \otimes \rho) \mathcal{R}(-u) \in$ End $V \otimes$ End V.

Theorem [Drinfeld, 1985]. $\quad R(u)$ is a unique solution of
$(\rho \otimes \rho)\left(\tau_{u, v} \Delta(J(X))\right) R(u-v)=R(u-v)(\rho \otimes \rho)\left(\tau_{u, v} \Delta^{\mathrm{op}}(J(X))\right)$,
for all $X \in \mathfrak{g}$, up to a factor from $\mathbb{C}\left[\left[u^{-1}\right]\right]$. The factor can be chosen to make $R(u)$ a rational function in u.

Example. $\mathfrak{g}=\mathfrak{s l}_{N}$. Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Example. $\mathfrak{g}=\mathfrak{s l}_{N}$. Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Solving the equation, one recovers the Yang R-matrix given by

Example. $\mathfrak{g}=\mathfrak{s l}_{N}$. Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Solving the equation, one recovers the Yang R-matrix given by

$$
R(u)=1-\frac{P}{u},
$$

Example. $\mathfrak{g}=\mathfrak{s l}_{N}$. Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Solving the equation, one recovers the Yang R-matrix given by

$$
R(u)=1-\frac{P}{u}
$$

where

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

Example. $\mathfrak{g}=\mathfrak{s l}_{N}$. Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Solving the equation, one recovers the Yang R-matrix given by

$$
R(u)=1-\frac{P}{u}
$$

where

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

is the permutation operator

$$
P: \mathbb{C}^{N} \otimes \mathbb{C}^{N} \rightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{N}
$$

Example. Let $\mathfrak{g}=\mathfrak{g}_{N}$ which will denote the orthogonal Lie algebra \mathfrak{o}_{N} (with $N=2 n$ or $N=2 n+1$) or symplectic Lie algebra $\mathfrak{s p}_{N}$ (with $N=2 n$).

Example. Let $\mathfrak{g}=\mathfrak{g}_{N}$ which will denote
the orthogonal Lie algebra \mathfrak{o}_{N} (with $N=2 n$ or $N=2 n+1$) or symplectic Lie algebra $\mathfrak{s p}_{N}$ (with $N=2 n$).

Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Example. Let $\mathfrak{g}=\mathfrak{g}_{N}$ which will denote
the orthogonal Lie algebra \mathfrak{o}_{N} (with $N=2 n$ or $N=2 n+1$) or symplectic Lie algebra $\mathfrak{s p}_{N}$ (with $N=2 n$).

Take $V=\mathbb{C}^{N}$ with $J(X)$ acting as 0 .

Solving the equation, we get the R-matrix

$$
R(u)=1-\frac{P}{u}+\frac{Q}{u-\kappa},
$$

originally found for \mathfrak{o}_{N} by [A. \& Al. Zamolodchikov, 1979].

The operator Q is defined by the formulas

$$
Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \quad \text { and } \quad Q=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}}
$$

in the orthogonal and symplectic case, respectively.

The operator Q is defined by the formulas

$$
Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \quad \text { and } \quad Q=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}},
$$

in the orthogonal and symplectic case, respectively.

We use the notation $i^{\prime}=N-i+1$, and set
$\varepsilon_{i}=1$ for $i=1, \ldots, n$ and
$\varepsilon_{i}=-1$ for $i=n+1, \ldots, 2 n$.

The operator Q is defined by the formulas

$$
Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \quad \text { and } \quad Q=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}}
$$

in the orthogonal and symplectic case, respectively.

We use the notation $i^{\prime}=N-i+1$, and set
$\varepsilon_{i}=1$ for $i=1, \ldots, n$ and
$\varepsilon_{i}=-1$ for $i=n+1, \ldots, 2 n$.

The parameter κ is

$$
\kappa=\left\{\begin{array}{lll}
N / 2-1 & \text { for } & \mathfrak{o}_{N} \\
n+1 & \text { for } & \mathfrak{s p}_{2 n}
\end{array}\right.
$$

Choose a basis e_{1}, \ldots, e_{N} of V so that $e_{i j}$ is a basis of End V.

Choose a basis e_{1}, \ldots, e_{N} of V so that $e_{i j}$ is a basis of End V.
Definition. The extended Yangian $\mathrm{X}(\mathfrak{g})$ is generated by
elements $t_{i j}^{(r)}$ with $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$ subject to the defining relations

Choose a basis e_{1}, \ldots, e_{N} of V so that $e_{i j}$ is a basis of End V.
Definition. The extended Yangian $\mathrm{X}(\mathfrak{g})$ is generated by
elements $t_{i j}^{(r)}$ with $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$ subject to the defining relations

$$
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v)
$$

(the RTT-relation), where

Choose a basis e_{1}, \ldots, e_{N} of V so that $e_{i j}$ is a basis of End V.
Definition. The extended Yangian $\mathrm{X}(\mathfrak{g})$ is generated by
elements $t_{i j}^{(r)}$ with $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$ subject to the defining relations

$$
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v)
$$

(the $R T T$-relation), where the T-matrix is given by

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \in \text { End } V \otimes \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]
$$

Choose a basis e_{1}, \ldots, e_{N} of V so that $e_{i j}$ is a basis of End V.
Definition. The extended Yangian $\mathrm{X}(\mathfrak{g})$ is generated by
elements $t_{i j}^{(r)}$ with $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$ subject to the defining relations

$$
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v)
$$

(the $R T T$-relation), where the T-matrix is given by

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \in \text { End } V \otimes \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]
$$

with

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r}
$$

The subscripts indicate copies of End V of the tensor product algebra

End $V \otimes$ End $V \otimes \mathrm{X}(\mathfrak{g})$.

The subscripts indicate copies of End V of the tensor product algebra

$$
\text { End } V \otimes \operatorname{End} V \otimes \mathrm{X}(\mathfrak{g})
$$

In type A we have $\mathrm{X}\left(\mathfrak{s l}_{N}\right)=\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, the Yangian for $\mathfrak{g l}_{N}$,

The subscripts indicate copies of End V of the tensor product algebra

$$
\text { End } V \otimes \operatorname{End} V \otimes \mathrm{X}(\mathfrak{g})
$$

In type A we have $\mathrm{X}\left(\mathfrak{s l}_{N}\right)=\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, the Yangian for $\mathfrak{g l}_{N}$,

The defining relations take the form

$$
\left[t_{i j}(u), t_{k l}(v)\right]=\frac{1}{u-v}\left(t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)\right)
$$

Defining relations for $\mathrm{X}\left(\mathfrak{g}_{N}\right)$:

Defining relations for $\mathrm{X}\left(\mathfrak{g}_{N}\right)$:

$$
\begin{aligned}
& {\left[t_{i j}(u), t_{k l}(v)\right]=\frac{1}{u-v}\left(t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)\right)} \\
& \quad-\frac{1}{u-v-\kappa}\left(\delta_{k i^{\prime}} \sum_{p=1}^{N} \theta_{i p} t_{p j}(u) t_{p^{\prime} l}(v)-\delta_{l j^{\prime}} \sum_{p=1}^{N} \theta_{j p} t_{k p^{\prime}}(v) t_{i p}(u)\right)
\end{aligned}
$$

Defining relations for $\mathrm{X}\left(\mathfrak{g}_{N}\right)$:

$$
\begin{aligned}
& {\left[t_{i j}(u), t_{k l}(v)\right]=\frac{1}{u-v}\left(t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)\right)} \\
& \quad-\frac{1}{u-v-\kappa}\left(\delta_{k i^{\prime}} \sum_{p=1}^{N} \theta_{i p} t_{p j}(u) t_{p^{\prime} l}(v)-\delta_{l j^{\prime}} \sum_{p=1}^{N} \theta_{j p} t_{k p^{\prime}}(v) t_{i p}(u)\right)
\end{aligned}
$$

where

$$
\theta_{i j}=\left\{\begin{array}{lll}
1 & \text { for } & \mathfrak{o}_{N} \\
\varepsilon_{i} \varepsilon_{j} & \text { for } & \mathfrak{s p}_{2 n}
\end{array}\right.
$$

The extended Yangian $\mathrm{X}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{a=1}^{N} t_{i a}(u) \otimes t_{a j}(u)
$$

The extended Yangian $\mathrm{X}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{a=1}^{N} t_{i a}(u) \otimes t_{a j}(u)
$$

the antipode $S: T(u) \mapsto T(u)^{-1}$ and the counit $\epsilon: T(u) \mapsto 1$.

The extended Yangian $\mathrm{X}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{a=1}^{N} t_{i a}(u) \otimes t_{a j}(u)
$$

the antipode $S: T(u) \mapsto T(u)^{-1}$ and the counit $\epsilon: T(u) \mapsto 1$.

Definition. The Yangian in the R-matrix presentation is the algebra $\mathrm{Y}^{R}(\mathfrak{g})$ defined by

$$
\mathrm{Y}^{R}(\mathfrak{g})=\left\{y \in \mathrm{X}(\mathfrak{g}) \mid \mu_{f}(y)=y \quad \text { for all } \mu_{f}\right\}
$$

where the automorphism $\mu_{f}: \mathrm{X}(\mathfrak{g}) \rightarrow \mathrm{X}(\mathfrak{g})$ is defined by

$$
\mu_{f}: T(u) \mapsto f(u) T(u), \quad f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right] .
$$

Theorem [Wendlandt, 2017].

$$
S^{2}(T(u)) T\left(u+c_{\mathfrak{g}} / 2\right)^{-1}=z(u) 1
$$

for a series $z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\cdots \in \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]$.

Theorem [Wendlandt, 2017].

$$
S^{2}(T(u)) T\left(u+c_{\mathfrak{g}} / 2\right)^{-1}=z(u) 1
$$

for a series $z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\cdots \in \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]$.
The coefficients z_{2}, z_{3}, \ldots are free generators of the center
$\mathrm{ZX}(\mathfrak{g})$ of $\mathrm{X}(\mathfrak{g})$.

Theorem [Wendlandt, 2017].

$$
S^{2}(T(u)) T\left(u+c_{\mathfrak{g}} / 2\right)^{-1}=z(u) 1
$$

for a series $z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\cdots \in \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]$.
The coefficients z_{2}, z_{3}, \ldots are free generators of the center
$\operatorname{ZX}(\mathfrak{g})$ of $X(\mathfrak{g})$. Moreover,

$$
\mathrm{X}(\mathfrak{g})=\mathrm{ZX}(\mathfrak{g}) \otimes \mathrm{Y}^{R}(\mathfrak{g})
$$

Theorem [Wendlandt, 2017].

$$
S^{2}(T(u)) T\left(u+c_{\mathfrak{g}} / 2\right)^{-1}=z(u) 1
$$

for a series $z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\cdots \in \mathrm{X}(\mathfrak{g})\left[\left[u^{-1}\right]\right]$.
The coefficients z_{2}, z_{3}, \ldots are free generators of the center
$\mathrm{ZX}(\mathfrak{g})$ of $\mathrm{X}(\mathfrak{g})$. Moreover,

$$
\mathrm{X}(\mathfrak{g})=\mathrm{ZX}(\mathfrak{g}) \otimes \mathrm{Y}^{R}(\mathfrak{g})
$$

We have the isomorphism $\mathrm{Y}^{R}(\mathfrak{g}) \cong \mathrm{Y}(\mathfrak{g})$,

$$
\mathrm{X}(\mathfrak{g}) /\langle z(u)=1\rangle \cong \mathrm{Y}(\mathfrak{g}), \quad T(u) \mapsto(\rho \otimes 1) \mathcal{R}(-u)
$$

Drinfeld presentation

Drinfeld presentation

Suppose that \mathfrak{g} is a simple Lie algebra of rank n and let $A=\left[a_{i j}\right]$ be the associated Cartan matrix.

Drinfeld presentation

Suppose that \mathfrak{g} is a simple Lie algebra of rank n and let $A=\left[a_{i j}\right]$ be the associated Cartan matrix.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the corresponding simple roots.

Drinfeld presentation

Suppose that \mathfrak{g} is a simple Lie algebra of rank n and let $A=\left[a_{i j}\right]$ be the associated Cartan matrix.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the corresponding simple roots. Set

$$
\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}, \quad i=1, \ldots, n-1, \quad \text { for } \quad A_{n-1}
$$

Drinfeld presentation

Suppose that \mathfrak{g} is a simple Lie algebra of rank n and let $A=\left[a_{i j}\right]$ be the associated Cartan matrix.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the corresponding simple roots. Set

$$
\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}, \quad i=1, \ldots, n-1, \quad \text { for } \quad A_{n-1} .
$$

In addition, in types B_{n}, C_{n} and D_{n} respectively set

$$
\alpha_{n}=\epsilon_{n}, \quad \alpha_{n}=2 \epsilon_{n} \quad \text { and } \quad \alpha_{n}=\epsilon_{n-1}+\epsilon_{n}
$$

Drinfeld presentation

Suppose that \mathfrak{g} is a simple Lie algebra of rank n and let $A=\left[a_{i j}\right]$ be the associated Cartan matrix.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the corresponding simple roots. Set

$$
\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}, \quad i=1, \ldots, n-1, \quad \text { for } \quad A_{n-1} .
$$

In addition, in types B_{n}, C_{n} and D_{n} respectively set

$$
\alpha_{n}=\epsilon_{n}, \quad \alpha_{n}=2 \epsilon_{n} \quad \text { and } \quad \alpha_{n}=\epsilon_{n-1}+\epsilon_{n},
$$

Here $\epsilon_{1}, \ldots, \epsilon_{n}$ is an orthonormal basis of an Euclidian space with the bilinear form (. . .).

The Drinfeld Yangian $\mathrm{Y}^{D}(\mathfrak{g})$ is generated by elements $\kappa_{i r}, \xi_{i r}^{ \pm}$ with $i=1, \ldots, n$ and $r=0,1, \ldots$ subject to the defining relations

The Drinfeld Yangian $\mathrm{Y}^{D}(\mathfrak{g})$ is generated by elements $\kappa_{i r}, \xi_{i r}^{ \pm}$ with $i=1, \ldots, n$ and $r=0,1, \ldots$ subject to the defining relations

$$
\begin{gathered}
{\left[\kappa_{i r}, \kappa_{j s}\right]=0,} \\
{\left[\xi_{i r}^{+}, \xi_{j s}^{-}\right]=\delta_{i j} \kappa_{i r+s},} \\
{\left[\kappa_{i 0}, \xi_{j s}^{ \pm}\right]= \pm\left(\alpha_{i}, \alpha_{j}\right) \xi_{j s}^{ \pm},} \\
{\left[\kappa_{i r+1}, \xi_{j s}^{ \pm}\right]-\left[\kappa_{i r}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\kappa_{i r} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \kappa_{i r}\right),} \\
{\left[\xi_{i r+1}^{ \pm}, \xi_{j s}^{ \pm}\right]-\left[\xi_{i r}^{ \pm}, \xi_{j s+1}^{ \pm}\right]= \pm \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2}\left(\xi_{i r}^{ \pm} \xi_{j s}^{ \pm}+\xi_{j s}^{ \pm} \xi_{i r}^{ \pm}\right),} \\
\sum_{p \in \mathfrak{S}_{m}}\left[\xi_{i r_{p(1)}}^{ \pm},\left[\xi_{i r_{p(2)}}^{ \pm}, \ldots,\left[\xi_{i r_{p(m)}}^{ \pm}, \xi_{j s}^{ \pm}\right] \ldots\right]\right]=0,
\end{gathered}
$$

where the last relation holds for all $i \neq j$ with $m=1-a_{i j}$.

Combine the generators of $\mathrm{Y}^{D}(\mathfrak{g})$ into power series in u^{-1},

$$
\kappa_{i}(u)=1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1} \quad \text { and } \quad \xi_{i}^{ \pm}(u)=\sum_{r=0}^{\infty} \xi_{i r}^{ \pm} u^{-r-1}
$$

for $i=1, \ldots, n$.

Combine the generators of $Y^{D}(\mathfrak{g})$ into power series in u^{-1},

$$
\kappa_{i}(u)=1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1} \quad \text { and } \quad \xi_{i}^{ \pm}(u)=\sum_{r=0}^{\infty} \xi_{i r}^{ \pm} u^{-r-1}
$$

for $i=1, \ldots, n$.
Theorem [Drinfeld, 1988]. Every finite-dimensional irreducible representation L of the algebra $\mathrm{Y}^{D}(\mathfrak{g})$ contains a unique (up to constant factor) nonzero vector ζ (the highest vector) such that

Combine the generators of $\mathrm{Y}^{D}(\mathfrak{g})$ into power series in u^{-1},

$$
\kappa_{i}(u)=1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1} \quad \text { and } \quad \xi_{i}^{ \pm}(u)=\sum_{r=0}^{\infty} \xi_{i r}^{ \pm} u^{-r-1}
$$

for $i=1, \ldots, n$.
Theorem [Drinfeld, 1988]. Every finite-dimensional irreducible representation L of the algebra $Y^{D}(\mathfrak{g})$ contains a unique (up to constant factor) nonzero vector ζ (the highest vector) such that

$$
\begin{aligned}
\xi_{i}^{+}(u) \zeta & =0, \\
\kappa_{i}(u) \zeta & =\frac{P_{i}\left(u+d_{i}\right)}{P_{i}(u)} \zeta, \quad d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2,
\end{aligned}
$$

for $i=1, \ldots, n$, where $P_{1}(u), \ldots, P_{n}(u)$ are monic polynomials.

Next goal: to construct an isomorphism $Y^{R}(\mathfrak{g}) \cong Y^{D}(\mathfrak{g})$.

Next goal: to construct an isomorphism $Y^{R}(\mathfrak{g}) \cong Y^{D}(\mathfrak{g})$.
Type A is known: [Drinfeld, 1985, Brundan-Kleshchev, 2005].

Next goal: to construct an isomorphism $\mathrm{Y}^{R}(\mathfrak{g}) \cong \mathrm{Y}^{D}(\mathfrak{g})$.
Type A is known: [Drinfeld, 1985, Brundan-Kleshchev, 2005].

The construction is based on the natural embedding

$$
\mathrm{Y}\left(\mathfrak{g l}_{N-1}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right), \quad t_{i j}(u) \mapsto t_{i j}(u),
$$

for $1 \leqslant i, j \leqslant N-1$.

Next goal: to construct an isomorphism $Y^{R}(\mathfrak{g}) \cong Y^{D}(\mathfrak{g})$.
Type A is known: [Drinfeld, 1985, Brundan-Kleshchev, 2005].

The construction is based on the natural embedding

$$
\mathrm{Y}\left(\mathfrak{g l}_{N-1}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right), \quad t_{i j}(u) \mapsto t_{i j}(u)
$$

for $1 \leqslant i, j \leqslant N-1$.

Main sticking point for types B, C, D :
There is no natural embedding of $\mathrm{X}\left(\mathfrak{g}_{N-2}\right)$ into $\mathrm{X}\left(\mathfrak{g}_{N}\right)$.

Quasideterminants

Quasideterminants

Consider a $k \times k$ matrix of the form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

with entries in a ring, where D is an element of the ring.

Quasideterminants

Consider a $k \times k$ matrix of the form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

with entries in a ring, where D is an element of the ring.

Then its (k, k)-quasideterminant is defined by

$$
\left|\begin{array}{cc}
A & B \\
C & D
\end{array}\right|=D-C A^{-1} B .
$$

[Gelfand-Retakh, 1991].

Theorem [Jing-Liu-M., 2017]. The mapping

$$
t_{i j}(u) \mapsto\left|\begin{array}{cc}
t_{11}(u) & t_{1 j}(u) \\
t_{i 1}(u) & t_{i j}(u)
\end{array}\right|=t_{i j}(u)-t_{i 1}(u) t_{11}(u)^{-1} t_{1 j}(u)
$$

with $2 \leqslant i, j \leqslant 2^{\prime}$,

Theorem [Jing-Liu-M., 2017]. The mapping

$$
t_{i j}(u) \mapsto\left|\begin{array}{cc}
t_{11}(u) & t_{1 j}(u) \\
t_{i 1}(u) & \boxed{t_{i j}(u)}
\end{array}\right|=t_{i j}(u)-t_{i 1}(u) t_{11}(u)^{-1} t_{1 j}(u)
$$

with $2 \leqslant i, j \leqslant 2^{\prime}$, defines an injective algebra homomorphism $\mathrm{X}\left(\mathfrak{g}_{N-2}\right) \rightarrow \mathrm{X}\left(\mathfrak{g}_{N}\right)$.

Theorem [Jing-Liu-M., 2017]. The mapping

$$
t_{i j}(u) \mapsto\left|\begin{array}{cc}
t_{11}(u) & t_{1 j}(u) \\
t_{i 1}(u) & \boxed{t_{i j}(u)}
\end{array}\right|=t_{i j}(u)-t_{i 1}(u) t_{11}(u)^{-1} t_{1 j}(u)
$$

with $2 \leqslant i, j \leqslant 2^{\prime}$, defines an injective algebra homomorphism $\mathrm{X}\left(\mathfrak{g}_{N-2}\right) \rightarrow \mathrm{X}\left(\mathfrak{g}_{N}\right)$.

We will use this embedding to regard $\mathrm{X}\left(\mathfrak{g}_{N-2}\right)$ as a subalgebra of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$.

Theorem [Jing-Liu-M., 2017]. The mapping

$$
t_{i j}(u) \mapsto\left|\begin{array}{cc}
t_{11}(u) & t_{1 j}(u) \\
t_{i 1}(u) & \boxed{t_{i j}(u)}
\end{array}\right|=t_{i j}(u)-t_{i 1}(u) t_{11}(u)^{-1} t_{1 j}(u)
$$

with $2 \leqslant i, j \leqslant 2^{\prime}$, defines an injective algebra homomorphism $\mathrm{X}\left(\mathfrak{g}_{N-2}\right) \rightarrow \mathrm{X}\left(\mathfrak{g}_{N}\right)$.

We will use this embedding to regard $\mathrm{X}\left(\mathfrak{g}_{N-2}\right)$ as a subalgebra of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$.

It is consistent with the embedding $\mathfrak{g}_{N-2} \hookrightarrow \mathfrak{g}_{N}$.

Let $m \leqslant n$ for type B and $m \leqslant n-1$ for types C and D.

Let $m \leqslant n$ for type B and $m \leqslant n-1$ for types C and D.
Theorem [JLM, 2017]. The mapping

$$
\psi_{m}^{(N)}: t_{i j}(u) \mapsto\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 m}(u) & t_{1 j}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{m 1}(u) & \ldots & t_{m m}(u) & t_{m j}(u) \\
t_{i 1}(u) & \ldots & t_{i m}(u) & t_{i j}(u)
\end{array}\right|,
$$

with $m+1 \leqslant i, j \leqslant(m+1)^{\prime}$ defines an injective homomorphism
$\mathrm{X}\left(\mathfrak{g}_{N-2 m}\right) \rightarrow \mathrm{X}\left(\mathfrak{g}_{N}\right)$.

Let $m \leqslant n$ for type B and $m \leqslant n-1$ for types C and D.
Theorem [JLM, 2017]. The mapping

$$
\psi_{m}^{(N)}: t_{i j}(u) \mapsto\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 m}(u) & t_{1 j}(u) \\
\ldots & \ldots & \ldots & \ldots \\
t_{m 1}(u) & \ldots & t_{m m}(u) & t_{m j}(u) \\
t_{i 1}(u) & \ldots & t_{i m}(u) & t_{i j}(u)
\end{array}\right|,
$$

with $m+1 \leqslant i, j \leqslant(m+1)^{\prime}$ defines an injective homomorphism
$\mathrm{X}\left(\mathfrak{g}_{N-2 m}\right) \rightarrow \mathrm{X}\left(\mathfrak{g}_{N}\right)$.
Moreover, we have the equality of maps

$$
\psi_{l}^{(N)} \circ \psi_{m}^{(N-2 l)}=\psi_{l+m}^{(N)} .
$$

Gaussian generators

Apply the Gauss decomposition to the matrix $T(u)$,

$$
T(u)=F(u) H(u) E(u)
$$

Gaussian generators

Apply the Gauss decomposition to the matrix $T(u)$,

$$
T(u)=F(u) H(u) E(u),
$$

for uniquely determined matrices $F(u), H(u), E(u)$,

$$
F(u)=\left[\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
f_{N 1}(u) & \ldots & 1
\end{array}\right], \quad E(u)=\left[\begin{array}{ccc}
1 & \ldots & e_{1 N}(u) \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right]
$$

Gaussian generators

Apply the Gauss decomposition to the matrix $T(u)$,

$$
T(u)=F(u) H(u) E(u),
$$

for uniquely determined matrices $F(u), H(u), E(u)$,

$$
F(u)=\left[\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
f_{N 1}(u) & \ldots & 1
\end{array}\right], \quad E(u)=\left[\begin{array}{ccc}
1 & \ldots & e_{1 N}(u) \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right]
$$

and $\quad H(u)=\operatorname{diag}\left[h_{1}(u), \ldots, h_{N}(u)\right]$.

The entries of the matrices $F(u), H(u), E(u)$ are expressed in terms of quasideterminants of submatrices of $T(u)$ as follows.

The entries of the matrices $F(u), H(u), E(u)$ are expressed in terms of quasideterminants of submatrices of $T(u)$ as follows.

We have

$$
h_{i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i i}(u)
\end{array}\right|
$$

for $i=1, \ldots, N$.

Moreover, for $1 \leqslant i<j \leqslant N$ we have

$$
e_{i j}(u)=h_{i}(u)^{-1}\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 j}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 j}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i j}(u)
\end{array}\right|
$$

Moreover, for $1 \leqslant i<j \leqslant N$ we have

$$
e_{i j}(u)=h_{i}(u)^{-1}\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 j}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 j}(u) \\
t_{i 1}(u) & \ldots & t_{i i-1}(u) & t_{i j}(u)
\end{array}\right|
$$

and

$$
f_{j i}(u)=\left|\begin{array}{cccc}
t_{11}(u) & \ldots & t_{1 i-1}(u) & t_{1 i}(u) \\
\vdots & \ddots & \vdots & \vdots \\
t_{i-11}(u) & \ldots & t_{i-1 i-1}(u) & t_{i-1 i}(u) \\
t_{j 1}(u) & \ldots & t_{j i-1}(u) & t_{j i}(u)
\end{array}\right| h_{i}(u)^{-1} .
$$

Use the Gauss decomposition $T(u)=F(u) H(u) E(u)$ to introduce generators of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ by the formulas

Use the Gauss decomposition $T(u)=F(u) H(u) E(u)$ to introduce generators of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ by the formulas

$$
\kappa_{i}(u)=h_{i}\left(u-\frac{i-1}{2}\right)^{-1} h_{i+1}\left(u-\frac{i-1}{2}\right)
$$

for $i=1, \ldots, n-1$,

Use the Gauss decomposition $T(u)=F(u) H(u) E(u)$ to introduce generators of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ by the formulas

$$
\kappa_{i}(u)=h_{i}\left(u-\frac{i-1}{2}\right)^{-1} h_{i+1}\left(u-\frac{i-1}{2}\right)
$$

for $i=1, \ldots, n-1$, and

$$
\kappa_{n}(u)= \begin{cases}h_{n}\left(u-\frac{n-1}{2}\right)^{-1} h_{n+1}\left(u-\frac{n-1}{2}\right) & \text { for } \mathfrak{o}_{2 n+1} \\ h_{n}\left(u-\frac{n}{2}\right)^{-1} h_{n+1}\left(u-\frac{n}{2}\right) & \text { for } \mathfrak{s p}_{2 n} \\ h_{n-1}\left(u-\frac{n-2}{2}\right)^{-1} h_{n+1}\left(u-\frac{n-2}{2}\right) & \text { for } \mathfrak{o}_{2 n}\end{cases}
$$

Furthermore, for $i=1, \ldots, n-1$ set

$$
\xi_{i}^{+}(u)=f_{i+1 i}\left(u-\frac{i-1}{2}\right), \quad \xi_{i}^{-}(u)=e_{i i+1}\left(u-\frac{i-1}{2}\right),
$$

Furthermore, for $i=1, \ldots, n-1$ set

$$
\begin{array}{r}
\xi_{i}^{+}(u)=f_{i+1 i}\left(u-\frac{i-1}{2}\right), \quad \xi_{i}^{-}(u)=e_{i i+1}\left(u-\frac{i-1}{2}\right), \\
\xi_{n}^{+}(u)= \begin{cases}f_{n+1 n}\left(u-\frac{n-1}{2}\right) & \text { for } \mathfrak{o}_{2 n+1} \\
f_{n+1 n}(u-n / 2) & \text { for } \mathfrak{s p}_{2 n} \\
f_{n+1 n-1}\left(u-\frac{n-2}{2}\right) & \text { for } \mathfrak{o}_{2 n}\end{cases}
\end{array}
$$

and

$$
\xi_{n}^{-}(u)= \begin{cases}e_{n n+1}\left(u-\frac{n-1}{2}\right) & \text { for } \mathfrak{o}_{2 n+1} \\ 1 / 2 e_{n n+1}(u-n / 2) & \text { for } \mathfrak{s p}_{2 n} \\ e_{n-1 n+1}\left(u-\frac{n-2}{2}\right) & \text { for } \mathfrak{o}_{2 n}\end{cases}
$$

Introduce elements of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ by the respective expansions into power series in u^{-1},

$$
\kappa_{i}(u)=1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1} \quad \text { and } \quad \xi_{i}^{ \pm}(u)=\sum_{r=0}^{\infty} \xi_{i r}^{ \pm} u^{-r-1}
$$

for $i=1, \ldots, n$.

Introduce elements of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ by the respective expansions into power series in u^{-1},

$$
\kappa_{i}(u)=1+\sum_{r=0}^{\infty} \kappa_{i r} u^{-r-1} \quad \text { and } \quad \xi_{i}^{ \pm}(u)=\sum_{r=0}^{\infty} \xi_{i r}^{ \pm} u^{-r-1}
$$

for $i=1, \ldots, n$.

Theorem [JLM, 2017]. The mapping which sends the generators $\kappa_{i r}$ and $\xi_{i r}^{ \pm}$of $\mathrm{Y}^{D}\left(\mathfrak{g}_{N}\right)$ to the elements of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ with the same names defines an isomorphism $\mathrm{Y}^{D}\left(\mathfrak{g}_{N}\right) \cong \mathrm{Y}^{R}\left(\mathfrak{g}_{N}\right)$.

Applications: coproduct and representations

Applications: coproduct and representations

The coproduct formula for the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$,

Applications: coproduct and representations

The coproduct formula for the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$,

$$
\Delta: t_{i j}(u) \mapsto \sum_{a=1}^{N} t_{i a}(u) \otimes t_{a j}(u)
$$

Applications: coproduct and representations

The coproduct formula for the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$,

$$
\Delta: t_{i j}(u) \mapsto \sum_{a=1}^{N} t_{i a}(u) \otimes t_{a j}(u)
$$

and the isomorphism $\mathrm{Y}^{D}\left(\mathfrak{g}_{N}\right) \cong \mathrm{Y}^{R}\left(\mathfrak{g}_{N}\right)$ can be used to
calculate the coproduct in terms of the Drinfeld presentation (which has not been explicitly described).

A representation V of the algebra $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is called a highest weight representation

A representation V of the algebra $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\xi \in V$ such that V is generated by ξ,

$$
\begin{aligned}
& t_{i j}(u) \xi=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
& t_{i i}(u) \xi=\lambda_{i}(u) \xi \quad \text { for } \quad 1 \leqslant i \leqslant N,
\end{aligned}
$$

A representation V of the algebra $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\xi \in V$ such that V is generated by ξ,

$$
\begin{aligned}
& t_{i j}(u) \xi=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
& t_{i i}(u) \xi=\lambda_{i}(u) \xi \quad \text { for } \quad 1 \leqslant i \leqslant N,
\end{aligned}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\cdots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

Every finite-dimensional irreducible representation of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is isomorphic to the highest weight representation $L(\lambda(u))$ for a certain N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ with

Every finite-dimensional irreducible representation of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is isomorphic to the highest weight representation $L(\lambda(u))$ for a certain N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ with

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, n-1,
$$

Every finite-dimensional irreducible representation of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is isomorphic to the highest weight representation $L(\lambda(u))$ for a certain N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ with

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, n-1
$$

and

$$
\frac{\lambda_{n}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+1 / 2)}{P_{n}(u)} \quad \text { for } \quad o_{2 n+1}
$$

Every finite-dimensional irreducible representation of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is isomorphic to the highest weight representation $L(\lambda(u))$ for a certain N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ with

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, n-1
$$

and

$$
\begin{aligned}
& \frac{\lambda_{n}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+1 / 2)}{P_{n}(u)} \quad \text { for } \quad \mathfrak{o}_{2 n+1} \\
& \frac{\lambda_{n}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+2)}{P_{n}(u)} \quad \text { for } \quad \mathfrak{s p}_{2 n}
\end{aligned}
$$

Every finite-dimensional irreducible representation of $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is isomorphic to the highest weight representation $L(\lambda(u))$ for a certain N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ with

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, n-1,
$$

and

$$
\begin{gathered}
\frac{\lambda_{n}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+1 / 2)}{P_{n}(u)} \quad \text { for } \quad \mathfrak{o}_{2 n+1} \\
\frac{\lambda_{n}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+2)}{P_{n}(u)} \quad \text { for } \quad \mathfrak{s p}_{2 n} \\
\frac{\lambda_{n-1}(u)}{\lambda_{n+1}(u)}=\frac{P_{n}(u+1)}{P_{n}(u)} \quad \text { for } \quad \mathfrak{o}_{2 n}
\end{gathered}
$$

where $P_{1}(u), \ldots, P_{n}(u)$ are monic polynomials in u called the Drinfeld polynomials of the representation [Arnaudon-M.-Ragoucy, 2006].
where $P_{1}(u), \ldots, P_{n}(u)$ are monic polynomials in u called the Drinfeld polynomials of the representation
[Arnaudon-M.-Ragoucy, 2006].

Hence, by applying the isomorphism $\mathrm{Y}^{D}\left(\mathfrak{g}_{N}\right) \cong \mathrm{Y}^{R}\left(\mathfrak{g}_{N}\right)$ we thus obtain the Drinfeld classification theorem for finite-dimensional irreducible representations of $\mathrm{Y}^{D}\left(\mathfrak{g}_{N}\right)$.

Centers of the Yangians

The center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u+N-1) \ldots t_{p(N) N}(u)
$$

Centers of the Yangians

The center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u+N-1) \ldots t_{p(N) N}(u)
$$

The Wendlandt series $z(u)$ is given by

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr} T(u+N) T(u)^{-1}=\frac{\mathrm{qdet} T(u+1)}{\mathrm{q} \operatorname{det} T(u)}
$$

Centers of the Yangians

The center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of the quantum determinant

$$
\operatorname{qdet} T(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1) 1}(u+N-1) \ldots t_{p(N) N}(u)
$$

The Wendlandt series $z(u)$ is given by

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr} T(u+N) T(u)^{-1}=\frac{\mathrm{qdet} T(u+1)}{\mathrm{q} \operatorname{det} T(u)}
$$

the last equality is the quantum Liouville formula
[Nazarov, 1991].

The center $\mathrm{ZY}\left(\mathfrak{g}_{N}\right)$ of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is generated by the coefficients of the series

$$
\zeta(u)=\frac{1}{N} \operatorname{tr} T(u+\kappa)^{\prime} T(u), \quad \kappa=N / 2 \mp 1
$$

The center $\mathrm{ZY}\left(\mathfrak{g}_{N}\right)$ of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is generated by the coefficients of the series

$$
\zeta(u)=\frac{1}{N} \operatorname{tr} T(u+\kappa)^{\prime} T(u), \quad \kappa=N / 2 \mp 1
$$

[Drinfeld 1985, Arnaudon et al. 2003, 2006].

The center $\mathrm{ZY}\left(\mathfrak{g}_{N}\right)$ of the extended Yangian $\mathrm{X}\left(\mathfrak{g}_{N}\right)$ is generated by the coefficients of the series

$$
\zeta(u)=\frac{1}{N} \operatorname{tr} T(u+\kappa)^{\prime} T(u), \quad \kappa=N / 2 \mp 1
$$

[Drinfeld 1985, Arnaudon et al. 2003, 2006].

The Wendlandt series $z(u)$ is given by

$$
z(u)=\frac{\zeta(u)}{\zeta(u+\kappa)} .
$$

